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Abstract: 19 

Due to the large computational burden associated with the direct assessment of reliability, the 20 

indirect indices of reliability have recently received more attention in the framework of water 21 

distribution system design. Two new energy related indices for reliability evaluation (i.e., 22 

available power index and pipe hydraulic resilience index) are developed in this paper. The 23 

performance of these new indices is evaluated and compared with that of four existing indices 24 

(other three energy related indices, i.e., resilience index, network resilience index, modified 25 

resilience index, and the entropy-based method, i.e., diameter-sensitive flow entropy) 26 

according to the following two-step methodology. In the first step, the application of the 27 

multi-objective optimization makes it possible to determine optimal network configurations 28 

that trade-off the installation cost (to be minimized) against the generic indirect reliability 29 

index (to be maximized). In the second step, the performance of the optimal solutions in 30 

terms of explicit reliability assessment is examined under conditions in which the original 31 

network is perturbed by applying demand variations and random pipe failures to account for 32 

future operating uncertainties. The Hanoi and the Fossolo benchmark networks are used as 33 

case studies. The results obtained show that energy based indices yield an overall superior 34 

estimate of reliability in comparison with the diameter-sensitive flow entropy. Furthermore, 35 

the new indices show some advantages in the evaluations performed under demand and pipe 36 

failure uncertainties.  37 
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Keywords: water distribution system, reliability surrogate measure, available power index, 38 

pipe hydraulic resilience index, flow entropy.  39 

Introduction 40 

Traditionally, the optimal design of water distribution systems (WDSs) in the single objective 41 

optimisation framework is to obtain the least cost solution in which optional pipe diameters 42 

are usually the decision variables and the water sources and layout are known a priori [Savic 43 

and Walters, 1997]. In the drive to improve cost effectiveness and ensure water security, the 44 

WDS design should incorporate many more aspects [Walski, 2001]. A multiobjective 45 

optimisation model generally takes cost as a common objective and combines one or more 46 

benefit objectives, such as reliability, robustness, water quality, into a trade-off relationship 47 

[Farmani et al., 2005; Kapelan et al., 2005; Creaco and Franchini, 2012; Ostfeld, 2012; 48 

Marchi et al., 2014]. Reliability can be classified into three categories: mechanical reliability, 49 

hydraulic reliability, and water quality reliability [Ostfeld, 2004; Atkinson et al., 2014; 50 

Shafiqul Islam et al., 2014; Gheisi and Naser, 2015]. Reliability is defined as the ability of a 51 

WDS to provide an adequate level of service to customers under both normal and abnormal 52 

operating conditions within a prescribed time interval [Xu and Goulter, 1999]. Although Jung 53 

et al. [2014] argued that robustness definition covers additional information that assesses not 54 

only the probability of pressure meeting requirement but also the variation in pressure, 55 

reliability undoubtedly remains the most widely applied method for the assessment of WDS 56 

performance and is substantially investigated by the scientific community [Dandy and 57 
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Engelhardt, 2006; Martinez, 2010; Ostfeld, 2012; Piratla and Ariaratnam, 2012; Torii and 58 

Lopez, 2012; Shafiqul Islam et al., 2014].  59 

Disruptions in supply could potentially result in a financial loss to a WDS operator. The 60 

concern of how to improve reliability of supply during the design phase is vital. Fujiwara and 61 

Tung [1991] stated that reliability could be improved by increasing pipe size. Additionally, 62 

tanks play an important role in reliability improvement studies as they help balance water 63 

supply and demand in the system, as well as supply water during an emergency situation 64 

[Farmani et al., 2005; van Zyl et al., 2008]. Walski [1993] highlighted the importance of 65 

adequate isolation valve systems for providing reliability for WDS. Other methods, e.g., 66 

adaptive pump operation, multiple sources, are also important for reliability assessment 67 

[Zhuang et al., 2013].  68 

Reliability is usually assessed using a probabilistic approach, such as Monte Carlo Simulation, 69 

First Order Reliability Method and/or the Cut-set method [Park et al., 1998]. These 70 

methodologies are computationally expensive because the assessment involves sampling 71 

methods or a traversing process across all combinations of pipe failure. Thus they are 72 

difficult to implement within the multiobjective optimisation design methods for a real WDS 73 

[Bao and Mays, 1990; Maier et al., 2001; Kapelan et al., 2005; Yannopoulos and Spiliotis, 74 

2013]. As WDS is a complex system and changes over time, the network design that is 75 

assessed to be reliable at the design stage is likely to become unreliable in meeting the 76 

performance requirements in the future. Another related concept – resilience – can be used to 77 

assess reliability indirectly in both conventional [Farmani et al., 2005] and adaptive WDS 78 
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design [Basupi and Kapelan 2013]. Resilience is defined as the ability of system to ‘bounce 79 

back’ following some failure and hence can be estimated as the capacity of a system to 80 

absorb disturbance while the system is undergoing changes so as to still retain essentially the 81 

same function, structure, identity and feedbacks [Folke, 2006]. Todini [2000] proposed the 82 

surplus power at nodes to characterise the resilience of looped water networks. Many 83 

improvements and applications associated with Todini’s resilience index appeared thereafter 84 

[Prasad and Park, 2004; Farmani et al., 2005; Jayaram and Srinivasan, 2008; Basupi et al., 85 

2013]. Creaco et al. [2014] showed that a good indication of the network reliability under 86 

such critical operation scenarios as those related to pipe isolation and hydrant activation can 87 

be obtained when the multi-objective optimization is performed considering three objective 88 

functions: 1) cost to be minimized; 2) Todini’s resilience to be maximized; 3) loop diameter 89 

uniformity to be maximized. Despite the advantages of the methodology proposed by Creaco 90 

et al. [2014], the use of three objectives may be too cumbersome in the optimization context 91 

for a large network problem.  92 

Other studies have developed indices to assess reliability of water supply. Flow entropy 93 

characterising uniformity of pipe flows can be employed to assess reliability of a WDS 94 

[Awumah et al., 1990; Tanyimboh and Templeman, 2000; Liu et al., 2014]. Park et al. [1998] 95 

introduced an indicator of hydraulic power capacity, which combines flow and pressure in a 96 

single dimension for measuring capacity (or reliability) of a WDS. It is, therefore, of interest 97 

to researchers and practitioners to determine which reliability assessment method is the most 98 

appropriate measure for optimal design studies.  99 
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Raad et al. [2010] conducted a comparative analysis of four reliability surrogate measures 100 

based on the assumptions of demand and pipe failure uncertainties. They only considered one 101 

assessment indicator, i.e., the average demand satisfaction as a result of the demand 102 

variability and pipe failure consequence analyses. Baños et al. [2011] compared three existing 103 

reliability indices by using the indicators of average percentage of unfeasible scenarios and 104 

average minimum over-demand in the scheme of demand uncertainty. Most recently, 105 

Atkinson et al. [2014] investigated the correlations amongst resilience index, entropy and 106 

minimum surplus head, and examined the hydraulic performance of the solutions for the 107 

Anytown benchmark network. 108 

Despite the many existing contributions to the field, the assessment of the best reliability 109 

surrogate measure(s) is still an open issue. In this paper, two new measures are proposed and 110 

their performance compared to four existing measures in the context of the multiobjective 111 

design of water distribution systems. In particular, a novel a posteriori performance 112 

assessment is used to analyse and compare the surrogate measures in two benchmark 113 

networks. 114 

The rest of the paper is organized as follows. Firstly, the surrogate measures (including two 115 

newly developed) are presented. Secondly, the optimization process and an a posteriori 116 

performance assessment method are described. Lastly, the applications are demonstrated and 117 

the conclusions drawn. Note that several abbreviations are used in this paper. A list of these 118 

abbreviations can be found in Table 1. 119 
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Reliability surrogate measures 120 

In this study, three existing reliability surrogate measures from literature are analysed, 121 

including the resilience index (RI) [Todini, 2000], network resilience index (NRI) [Prasad 122 

and Park, 2004] and modified resilience index (MRI) [Jayaram and Srinivasan, 2008]. The 123 

above three measures are all derived from the power analysis of water systems. The 124 

diameter-sensitive flow entropy (DSFE), newly introduced reliability index based on an 125 

extension of the flow entropy formulation [Liu et al., 2014], is also considered. Furthermore, 126 

the analysis is also extended to two new measures, the available power index (API) and the 127 

pipe hydraulic resilience index (PHRI), which belong to the classes of the power and pipe 128 

hydraulic gradient measures, respectively. 129 

The following subsections report the formulations of the two new measures (API and PHRI). 130 

The other four surrogate measures (RI, NRI, MRI and DSFE) are reviewed in the 131 

supplementary material.  132 

Available power index 133 

A WDS is a dynamic, constantly changing and balanced system, which obeys the energy 134 

conservation law. The input power (energy per unit time) is derived from sources, pumps and 135 

tanks located in high elevations, while the output power could be divided into the available 136 

and unavailable power. The available power represents the output power at demand nodes; 137 

the unavailable power includes pipe friction losses, minor losses from pumps and bends, and 138 

leakage. The output power function ( outP ) is given by  139 
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out ava unavaP P P                                    (1)
 

140 

where avaP  is the available portion of output power; unavaP  is the unavailable portion.  141 

A WDS with higher reliability has the additional capacity to resist the perturbation caused by 142 

external uncertainty sources. An obvious way to improve reliability would be to provide a 143 

high level of available power while reducing the unavailable power as much as possible. In 144 

this paper, a new method, the available power index, is introduced to measure reliability, 145 

which is defined as a ratio of the available power ( avaP ) to the total output power ( outP ). The 146 

available power index is formulated as, 147 

ava

out

P
API

P
                                    (2) 148 

The available power is delivered to users, which is calculated in terms of flow ( iQ ) and head 149 

( ,ava iH ) at each demand node, shown as follows,  150 

,

1

nnode

ava i ava i

i

P Q H


                                   (3) 151 

The input power ( inP ) includes the power introduced into the network by pumps ( kP ) and 152 

provided by reservoirs and tanks. 153 

1 1 1

npumpnreservoir ntank

in j j k l l

j k l

P Q H P Q H 
  

                            (4)

 

154 

where lQ  is the tank flow into or out of the network and lH  is the free surface elevation at 155 

tank l ; ntank  is the number of tanks. The flow of tank is positive when the water comes 156 
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out of the tank, and vice versa. Due to the input power equal to the output power ( in outP P ), 157 

Equation 2 could be substituted with Equation 3 and 4. The available power index is written 158 

as,  159 

,

1

1 1 1

nnode

i ava i

i

npumpnreservoir ntank
k

j j l l

j k l

Q H

API
P

Q H Q H




  



 



  
                          (5) 160 

A tank can be viewed as a feeding or demanding node. The tank in Equation 5 is put in the 161 

supply term, since the tank power avoids the denominator becoming zero when the pump 162 

does not supply water to the pressurized system. The available power index is the limiting 163 

form of Todini’s resilience index, i.e., RI’s required head equal to zero. However, they have 164 

entirely different physical meanings. API is based on the analysis of the energy conservation 165 

principle and is expressed as the available power in a WDS, while the RI concept emphasizes 166 

the surplus power in the system. In addition, due to requiring one parameter less (i.e., the 167 

required head at demand nodes), the available power index is more straightforward and 168 

readily computed in comparison with the resilience index. Furthermore, the available power 169 

index explicitly expresses the significance of tanks. This is essential, since tanks not only 170 

balance the flow difference between on-peak and off-peak periods, but also store energy 171 

during normal operation and emergency situations (e.g., fire fighting, pipe breaks). Hence 172 

tanks play a key role of energy transfer within a WDS are necessary in the analysis of the 173 

available power.  174 
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Pipe hydraulic resilience index 175 

The aforementioned methods associated with resilience of WDSs belong to a same class in 176 

which power at nodes is taken into account. A new method in terms of the hydraulic gradient 177 

along pipes is developed and presented here. Hydraulic gradient is related to the head 178 

difference at both ends of a pipe and the pipe length. When water flows through a pipe, the 179 

hydraulic grade line (HGL) will decline due to friction loss, as shown in Figure 1. If upstream 180 

pipes dissipate less energy, the downstream pipes will obtain more head. The magnitude of 181 

available head could reflect the capacity of a WDS to handle the perturbation caused by 182 

uncertainty. However, available heads are insufficient to quantify reliability on their own, as 183 

one metre head loss in a pipe of 100-metre length differs from that of a one-kilometre long 184 

pipe. Hence, a new measure for WDS resilience which combines pressure head and pipe 185 

length is developed. 186 

The product of pressure head and pipe length is represented by an area, as shown in Figure 1. 187 

The blue triangle area ( iA ) is characterized by the head loss and the projection length of the 188 

pipe, while the red triangle area ( iS ) is determined by the available head and the projection 189 

length of the pipe. Pipe hydraulic resilience index is defined as  190 

 

1

1

n

i

i

n

i i

i

S

PHRI

A S












                                  (6) 191 
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where n  is the number of pipes in the WDS. It is worth noting that the areas are summed up 192 

prior to being divided in order to avoid simultaneous reduction of pipe length. The functions 193 

of area iS , i iS A  and the projection length of pipe i   ,pro iL  are expressed as follows,  194 

 , ,

1

2
i ds i req pro iS H H L                                 (7) 195 

 , ,

1

2
i i us i req pro iS A H H L                              (8) 196 

 
22

, , ,pro i i us i ds iL L Z Z                                (9) 197 

where ,ds iH  and ,us iH  are the heads at downstream and upstream nodes, respectively, for 198 

pipe i ; reqH  is the required head of the system; iL  and ,pro iL  are the length and the 199 

projection length, respectively, for pipe i . ,ds iZ  and ,us iZ  are the elevations at downstream 200 

and upstream nodes for pipe i . 201 

Assessment and comparison methodology 202 

A comprehensive framework is established here to evaluate and compare the surrogate 203 

reliability measures. The assessment procedure is based on a set of solutions derived from the 204 

optimal design of WDSs associated with each reliability measure. The design samples (i.e., 205 

the optimal solutions of network design) are tested in scenarios perturbed by demand spatial 206 

fluctuation and random pipe failure uncertainties. The evaluation indicators are proposed to 207 

assess the performances of the design samples, and then determine the performance of 208 

reliability surrogate measures. 209 
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The sample of WDS designs is obtained by applying a multiobjective optimisation process. 210 

Each of reliability surrogate measures introduced above is respectively used as a conflicting 211 

objective against the WDS design cost. The optional diameters of new pipes are the only 212 

decision variables. A well-known multiobjective optimisation algorithm, the elitist 213 

Non-dominated Sorting Genetic Algorithm II (NSGA-II), is used to solve this problem [Deb 214 

et al., 2002]. A modified version of EPANET2 [Rossman, 2000] is used as the hydraulic 215 

engine. In order to compare the performance of the six different surrogate measures, the 216 

optimal solutions for each pair of surrogate reliability and cost (i.e. six different formulations) 217 

are respectively derived by the optimisation process. The same optimization process is 218 

conducted ten times for each of the six formulations to avoid the influence of the randomness 219 

of generating initial solutions. Ten sets of non-dominated solutions are aggregated to yield an 220 

optimal solution set by using Pareto dominance concept.  221 

WDS performance in perturbed scenarios 222 

The uncertainty of WDSs stems from a variety of aspects, while in this paper the two 223 

common uncertainties of demand spatial fluctuation and pipe random failure are considered. 224 

Probabilistic methods are typically used for handling uncertainty analysis in WDSs [Kapelan 225 

et al., 2005; Filion et al., 2007; Sumer and Lansey, 2009; Fu and Kapelan, 2011]. Moreover, a 226 

marginal quantity method could be used to quantify the ability of systems to withstand 227 

uncertain incidents. The marginal quantity could be represented by a number or a polyhedron 228 

[Housh et al., 2011; Sun et al., 2011]. In order to establish the accessible and versatile 229 

evaluation indicators for reliability, the probabilistic method is still applied herein.  230 
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The demand uncertainty is often characterised by an appropriate probability density function 231 

(PDF) through a considerable amount of sampling [Fu and Kapelan, 2011]. Many researchers 232 

conducted the analysis for demand fluctuation in the assumption of uncertainty following 233 

various PDFs including normal, log normal, uniform,  , Pearson type III, to name a few [Bao 234 

and Mays, 1990; Giustolisi et al., 2009; Kang et al., 2009]. The normal distribution is used 235 

most frequently out of those mentioned above, and thus is adopted in this paper. The mean of 236 

normal distribution is equal to the design demand. The coefficient of variation is assumed to 237 

be 0.5, which implies a wide range of demand variation, e.g., when the change of usage type 238 

occurs due to area development. The Latin Hypercube Sampling (LHS) is used to sample 239 

varying demand in terms of the PDF for each node. The Latin Hypercube Sampling (LHS) 240 

technique is selected here to reduce the computational effort substantially in comparison with 241 

the Monte Carlo sampling procedure [Kang et al., 2009]. LHS is implemented based on 1,000 242 

samples in this study. 243 

The second part of the assessment framework for reliability surrogate measures is established 244 

using perturbation related to pipe failure. Under the assumption that a failed pipe can be 245 

specified and isolated, the procedure involves the assessment of the system performance. To 246 

this end a single pipe isolation is considered, since the probability of simultaneous occurrence 247 

of two pipes failure is extremely low, and the procedure then traverses each pipe one by one 248 

across the network. Raad et al. [2010] conducted the comparison of reliability measures 249 

associated with a single pipe failure under the assumption of the equal probability of failure 250 

for all pipes. However, the failure probability of pipes with large diameters is much lower 251 
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than in the case of small-diameter ones, since former have thicker walls and are usually better 252 

maintained (due to higher importance in the system). The new method combines the 253 

probability of pipe failure with the reliability evaluation indicators. Some common 254 

assumptions with respect to pipe failure are stated as follows: 255 

1) N-type isolation valves: There are isolation valves at both ends of every pipe, and thus 256 

the isolation segment is just limited to a pipe;  257 

2) Simulation of a failed pipe: A pipe outage is simulated by closing the corresponding 258 

link in the model; and 259 

3) Nodal demand: Water is distributed along pipes. However, it is common modelling 260 

practice to aggregate demand at nodes. When a given pipe is closed, the reduced quantity 261 

supplied by that pipe is ignored. 262 

The testing for demand fluctuation and pipe failure intervention are both based on the same 263 

set of design solutions for each reliability surrogate measure, but they are independent and 264 

executed separately. 265 

Reliability evaluation indicators 266 

The best performance associated with reliability is achieved when the solution sample is able 267 

to sustain in a normal operation/level of service under various kinds of perturbation or have 268 

the least impact on the performance under the failed scenarios. A failed scenario refers to the 269 

case when there is at least one failed node in the system, i.e., such that it cannot achieve the 270 

prescribed level of service (supplied water cannot meet the demand). Farmani et al. [2005] 271 
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indicated that a reliability measure should reflect the way in which water users are affected, 272 

i.e., the number of users with restricted or no service and the degree (magnitude) of the effect 273 

on the service level. Improved assessment indicators are introduced in this study, consisting 274 

of: 275 

 The sum of the number of scenarios with at least one failed node; 276 

 The spatial extent of failed nodes in the network, which is represented by a failed 277 

node count under a particular failed scenario;  278 

 The failure magnitude associated with the level of service at nodes.  279 

In order to evaluate these indicators, pressure driven demand (PDD) needs to be integrated 280 

into the WDS hydraulic solver. The modified version of EPANET2 [Morley and Tricarico, 281 

2008] is implemented in this study. Three global indicators of system performance are 282 

proposed as follows:  283 

 Percentage of Failure Scenarios (PFS). For each solution (i.e., network design), the 284 

PFS function returns the percentage of the total evaluated scenarios in which the 285 

network fails to achieve the prescribed demand target for at least one node.  286 

 Failure Node Count (FNC). For each failed scenario, the FNC function returns the 287 

total number of failed nodes where the demand at nodes does not meet the required 288 

level of service. For all failed scenarios of a given optimal solution, the average of 289 

FNC  meanFNC , the median of FNC  medianFNC , the 25th percentile of FNC 290 

 25thFNC  and the 75th percentile of FNC  75thFNC  could be calculated.  291 



 16 / 37 

 

 Fraction of Failure Degree (FFD). For failed nodes, the FFD function returns a ratio 292 

of the inadequate amount of water (i.e. the difference between the demand and the 293 

actual supplied water at a node) to the sum of the water required. Similarly, some 294 

statistics with respect to the FFD indicator are proposed: the average of FFD 295 

 meanFFD , the median of FFD  medianFFD , the 25th percentile of FFD  25thFFD  296 

and the 75th percentile of FFD  75thFFD . 297 

The greater the values of PFS, FNC and FFD, the greater the impact of perturbation on the 298 

network is, and thus the worse the performance of reliability surrogate measure. A method for 299 

evaluating overall performance of all solutions of a surrogate measure is proposed, which is 300 

defined as an integral of an indicator value at a fixed cost step. In detail, the integral method 301 

is implemented by the sum of the indicator values for each solution multiplied by the cost 302 

step between two consecutive solutions. The smaller the integral value, the better the overall 303 

performance of the reliability surrogate measure is. The integral method is mathematically 304 

expressed as follows: 305 

    dindicatorOP f P


                         (10) 306 

where OP  is the overall performance of an indicator at a range of costs;    is the 307 

vector space of costs;   is the cost variable; ( )indicatorf P  represents the statistical method 308 

of an indicator; indicatorP  represents the value of a reliability evaluation indicator 309 
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Case studies  310 

Benchmark networks  311 

We use two different case studies, the Hanoi and Fossolo benchmark networks, to 312 

demonstrate and test our methodology. The comparative analysis of reliability surrogate 313 

measures in the first case study is based on a modified benchmark network [Fujiwara and 314 

Khang, 1990]. The original Hanoi network is supplemented by a tank with an initial head of 315 

80 m which is connected to the network by a 100m-long pipe, as shown in Figure 2(a). The 316 

network is flat as the elevation of all nodes (apart from the elevated tank) are the same. The 317 

head at all nodes of the network is required to be larger than or equal to 30 m. The search 318 

space for the Hanoi network design problem is equal to 2.87 x 1026. 319 

The second case study is a benchmark network adopted from Wang et al. [2014]. The Fossolo 320 

network, which includes 58 pipes, 36 demand nodes, and one reservoir with a fixed head of 321 

121 m, is a much more complex design problem to solve as its search space is equal to 7.25 x 322 

1077. The Fossolo network shows a variation of node elevation, ranging from 61.24 m to 323 

67.90 m. The minimum pressure head of all the demand nodes is to be maintained at or above 324 

40 m, and a maximum pressure head is specified for each node, respectively. In addition, the 325 

flow velocity in each pipe should be no greater than 1 m/s. Figure 2(b) depicts the layout of 326 

the network. Both networks use the same cost objective, given as: 327 

1

( )
N

c i i

i

Cost U D L


                                 (11) 328 
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where cU  is the unit cost of pipe i  which is a function of diameter iD ; iL  is the length 329 

of pipe i ; N  is the total number of pipes.   330 

Sample of Solutions 331 

Optimizations are carried out considering, as objective functions, the network cost and each 332 

of the six reliability measures described in the methodology section. In particular, for each 333 

pair of objective functions (i.e., one of the reliability surrogate measures and cost), a set of 10 334 

optimization runs is carried out in order to explore the influence of randomly generated initial 335 

populations. For the Hanoi network, a preliminary sensitivity analysis led to the choice of a 336 

population of 200 individuals and of a total of 500 generations for the optimization sets with 337 

RI, NRI, MRI, API and PHRI. Additional analyses determined that optimisation runs with 338 

these NSGA-II parameters and using DSFE were not converging. Therefore, a population of 339 

200 individuals and a total of 5,000 generations were allowed for the optimization set with 340 

DSFE. For the Fossolo network, the parameters used for the optimization are the population 341 

of 200 individuals and 5,000 generations per run, while 10,000 generations were allowed for 342 

the runs using the DSFE measure.  343 

The optimal solutions are generated using the Pareto dominance approach by aggregating 344 

best solutions from all ten optimization runs. This was done to ensure that as optimal as 345 

possible Pareto fronts are obtained and compared. The solution samples for Hanoi are 346 

selected from the overlapping area of costs, as shown in Figure 3, in order to implement the 347 

integral method and provide a fair comparison. The values of RI, NRI, API and PHRI range 348 

from 0 to 1, while MRI and DSFE only have a lower bound (i.e., 0). The Pareto front of 349 
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DSFE is less smooth when compared to other fronts, as a consequence of the more 350 

complicated search for solutions in this case. The Pareto optimal solutions for Fossolo are 351 

shown in Figure 4(a), and the shared cost solutions in the range from 0.03 to 0.7 million 352 

dollars are selected as samples to be evaluated. The Figure 4(b) represents the enlarged area 353 

from Figure 4(a). 354 

The comparative analysis of the surrogate measures is fair on the premise of the same 355 

convergence of the optimization process. For both networks used in this paper, the near 356 

optimal solutions were validated in comparison with the results obtained by Wang et al [2014] 357 

where they used massive computational resources in order to achieve the best-know 358 

approximation of the true Pareto front.  359 

Comparison of results: Case #1 360 

Perturbation of demand 361 

The samples of the solutions obtained in the previous section are evaluated first using the 362 

indicators of PFS, FNC and FFD under demand perturbation. In Figure 5, meanFNC , 363 

medianFNC , 25thFNC  and 75thFNC  are calculated for each solution. For all surrogate 364 

measures, the extent of FNC variation tends to be small and 75thFNC  decreases with the 365 

increase in cost in the testing of demand perturbation. The reason is that the system with 366 

higher cost has consistently greater redundancy to cope with demand changes for all 367 

surrogate measures. Obviously, the values of FNC (i.e., the number of the failed nodes) of RI, 368 

NRI, MRI and API decline steeply for lower costs. As a result, when RI, NRI, MRI and API 369 

measures are used to investigate reliability, increasing the capital investment at the lower 370 
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costs will have a significant effect on mitigating the affected (failure) area under demand 371 

perturbation. It is interesting to observe that meanFNC  of DSFE remains at an almost 372 

constant value of about nine failure nodes across all the costs in Figure 5(f). The increased 373 

cost is not necessarily beneficial for reducing the impact of demand perturbation on the 374 

failure extent captured by the DSFE measure. The vast majority of
 medianFNC  values of 375 

DSFE are greater than meanFNC . More values are clustered toward the upper end of the range 376 

or few extreme values at the lower end are causing this skewness. For the network, a few 377 

cases of demand fluctuations have a less significant impact on the spatial extent of the 378 

deficient nodes. 379 

The indicator of FFD is a widely used measure, and in this assessment framework, FFD 380 

represents the inadequate degree of water delivered at failed nodes. FFD statistics for all 381 

solutions are shown in Figure 6. The overall trend is that FFD values decline with the cost 382 

increase except for DSFE. Unlike the FNC, the trends of 25thFFD  and 75thFFD  are 383 

relatively consistent. The FFD values (i.e., the fraction of failure degree) of RI, NRI, MRI 384 

and API experience no significant change for the lower cost values, while the FNC values of 385 

these solutions decrease dramatically. This implies that, among these solutions, the spatial 386 

extent of failed nodes has not expanded, but the failure degree of these failed nodes becomes 387 

more severe.  The failure degree of PHRI at failed nodes declines throughout all the costs. 388 

The FFD statistics of DSFE are approximately invariable.  389 

Reliability surrogate measures are analysed using the integral method (i.e., Equation 10) 390 

based on two kinds of scale: 1) one-segment cost step for which the integral procedure is 391 
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calculated once throughout the cost values; and 2) five-segment cost step for which the 392 

integral calculation will be conducted at each fifth of the cost interval. The computation at 393 

two scales is based on Equation 10, and the difference is that the one fifth range of cost is 394 

respectively calculated in the five-segment integral. The integral results under demand 395 

uncertainty perturbation are shown in Figure 7. The one-segment integral is plotted as light 396 

grey columns, and that of five-segment results are represented by a line and symbol plot. 397 

Figure 7(a) shows that the PFS values of PHRI are the lowest in the low cost region, but they 398 

grow with the increase in cost. The figure also shows that the PHRI solutions with the smaller 399 

diameter redundancy have the smallest failure scenario count and the strongest resistance 400 

capacity with respect to the perturbation caused by demand variation. Overall, the PHRI 401 

solutions have the smallest failure scenario count in terms of the 1-segment integral. DSFE 402 

performs poorly compared with other surrogate measures throughout the entire cost spectrum. 403 

RI, NRI, MRI and API have the similar PFS values for the five-segment cost steps. In the 404 

comparison for 1-segment cost step, the NRI is slightly better than RI, MRI and API (see 405 

Figure 7(d).  406 

It is worth noting that the FNC statistics are only considered based on the failed scenarios. 407 

For PHRI solutions, the probability of occurrence of failed scenarios associated with demand 408 

perturbation is lower (see Figure 7d), but there will be a greater extent of impact on system 409 

when a failure occurs (see Figure 7e). 410 

The values of meanFNC  are used to calculate the integral of FNC, whose results are shown as 411 

Figure 7(b) and (e). The smallest value of 1-segment integral of FNC is derived from RI. 412 
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However, the RI measure shows the lowest integral values at the higher cost steps for 413 

5-segement integral of FNC in comparison with NRI, MRI and API. NRI has the greatest 414 

mean value of failure nodes among the power-related family of surrogate measures. The 415 

measures of PHRI and DSFE show the larger extent of impact under demand perturbation.  416 

The mean FFD related to demand uncertainty is used to calculate the integral of FFD, as 417 

shown in Figure 7(c) and (f). PHRI has the smallest integral value of FFD for 1-segment. The 418 

analysis of the 5-segment integral shows that the PHRI plays a dominant role for the lower 419 

cost region in comparison to other surrogate measures. NRI is the second best for failure 420 

degree at failed nodes. Again, DSFE does not perform well and has an increasing difference 421 

from other indices towards the high cost.  422 

Perturbation of pipe failure 423 

Pipe failure uncertainty is considered in this paper by using the concept of network 424 

availability [Cullinane et al., 1992], which is defined as the proportion of the time that the 425 

system will satisfactorily fulfil its function. Only the FFD indicator involves the network 426 

availability, since PFS and FNC indicate the actual number of failed scenarios and nodes, 427 

respectively. All failure scenarios considered are based on the fully connected network 428 

configurations.  429 

The failure node count values for each solution are shown in Figure 8. There are similar, 430 

relatively flat patterns of variation for FNC statistics amongst RI, NRI, MRI, API and PHRI. 431 

The figure also shows that most of solutions have a relatively small number of failed nodes 432 

and some critical nodes are significantly influenced by pipe failure. The medianFNC  values 433 
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are lower than meanFNC (Figure 8a-8f). This skewness is inverse in comparison with the 434 

results of FNC in demand perturbation scenarios (Figure 5). It demonstrates that several 435 

critical pipe failures could result in a great number of nodes affected (failed). It can be 436 

observed that 75thFNC
 
of PHRI declines slightly as the cost increases in Figure 8(e).  437 

In Figure 9, the failure degree at failed nodes declines with the increase in cost for all 438 

reliability surrogate measures. However, the failed node count does not decrease in the pipe 439 

failure testing in Figure 8. The downward trend of FFD can be attributed to the cost increase, 440 

either larger diameter pipe leading to a lower probability of pipe failure or conveying more 441 

water to failed nodes through other pathways. Although it is difficult to identify which is the 442 

dominant reason, this trend reflects better the practical situation. The declining trends of 443 

25thFFD
 
and 75thFFD

 
are consistent throughout the cost range for RI, NRI, MRI, API, 444 

PHRI (see Figure 9a-9e). The redundancy of pipes increases consistently with increases in 445 

cost. However, with reference to DSFE, some of pipes taken out of service could lead to the 446 

severely decreased system performance (see Figure 9f).  447 

The integral of PFS is shown in Figure 10(a) and (d). The trends of all surrogate measures 448 

show a decline with the increase in cost, which illustrates that by increasing capital cost one 449 

can reduce the impact of pipe failure on WDSs. The comparison of surrogate measures 450 

demonstrates that API has the lowest value of 1-segment integral and the lowest failure 451 

scenario count under pipe failure perturbation. RI has the second lower value for the PFS 452 

1-segment integral. There is a similar situation with DSFE for the case of demand uncertainty. 453 
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The failure scenario count of DSFE shows the similar results with other measures at the 454 

lowest cost step, but the DSFE has great differences at other cost steps.  455 

meanFNC
 
is used as a representative value to calculate the integral of FNC, as shown in 456 

Figure 10(b) and (e). PHRI has the best performance with respect to failure node count for 457 

1-segment integral and outperforms other indices almost at all cost steps for 5-segment 458 

integral. In the power family of surrogate measures, MRI obtains a better performance than 459 

other power-related indices. Once again, DSFE has the greatest number of failed node count.  460 

The integral of meanFFD  is shown in Figure 10 (c) and (f). The integral values of NRI and 461 

DSFE for 1-segment are relatively small. However, they are not ideal options since DSFE 462 

values vary significantly and the NRI measure outperforms other indices only at the highest 463 

cost step in the 5-segment integral. By the comparison of Figure 7 and 10, DSFE seems to 464 

perform better in resisting the perturbation of pipe failure than the disturbance of demand 465 

changes due to taking into account the impact of diameters on reliability. 466 

Comparison of results: Case #2 467 

Perturbation of demand 468 

The Pareto optimal solutions for the Fossolo network are derived via the previously described 469 

optimization process. The assessment associated with demand and pipe failure perturbations 470 

is performed post optimization based on the obtained optimal solutions. The assessment 471 

results are represented by a set of indicator statistics. The indicator based on the failure node 472 

count (FNC) is shown in Figure S1 in the supplementary material. For RI, NRI, MRI, API 473 

and PHRI, the FNC values declines sharply at the lower cost, while the changes of the FNC 474 



 25 / 37 

 

indicator become relatively flat at the high cost. Meanwhile, the 25th percentile and 75th 475 

percentile and median merge together with the increase in cost. This indicates that the 476 

solutions at the high cost end have only one or no failed scenarios in 1,000 demand 477 

fluctuation evaluations, which can also been seen in Figure 11(a). It should be emphasized 478 

that the indicators can achieve zero at the highest cost when using RI, NRI, MRI and API 479 

surrogate measures, which shows these networks exhibit high reliability with respect to 480 

demand fluctuations.  481 

The DSFE surrogate measure has the worst performance with respect to the FNC indicator. In 482 

the case of increasing cost, the networks derived using DSFE still have a large number of 483 

failed nodes. However, the range of variation of FNC is small for DSFE. For the NRI 484 

measure, the networks with the higher cost exhibit a wide range of changes of failed nodes. It 485 

is worth noting that the Latin Hypercube sampling method uses the same random seed for all 486 

surrogate measures, but the NRI solutions at higher costs are not as good as other surrogate 487 

measures with respect to the demand perturbation. In other words, the solutions obtained by 488 

using NRI show a larger spatial extent of failures under the demand perturbation condition.  489 

The indicator of fraction of failure degree (FFD) is calculated and the results of its statistics 490 

are shown in Figure S2 in the supplementary material. All the surrogate measures except 491 

DSFE exhibit a reduction in failure degree with the increase in cost. Furthermore, at the 492 

lower costs, the FFD decreases sharply and then became relatively flat at the higher costs. RI, 493 

MRI, API and PHRI have very narrow ranges of variation for the demand perturbation. In 494 

contrast, the NRI has a wider range of variation, which demonstrates that although network 495 
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configurations derived from NRI can resist a proportion of the demand perturbation very well, 496 

they are less effective for other perturbations. This is likely due to NRI being based on a 497 

uniformity coefficient for pipe diameters, which means that diameters in the network tend to 498 

increase evenly from the source to the extremities. If the increased demands appear near the 499 

source, the network can easily handle this perturbation. However, if the increased demands 500 

are applied at the nodes far away from the source, it is most likely to result in a failed 501 

scenarios. Different from source-bias diameter layout of the NRI, it is common engineering 502 

practice that larger diameters are associated with trunk mains, and the relatively small 503 

diameters are deployed as offshoots from the trunks.  504 

The integral method is used to compare the surrogate measures. The integral results of the 505 

Fossolo network is given in Figure 11. The DSFE surrogate has the largest values for all three 506 

indicators. It should, however, be noted that DSFE solutions with smaller costs (basically in 507 

the first cost segment) are competitive with other surrogate measures, but when the cost 508 

increases, it becomes inferior.  509 

NRI is the second worse measure when demand perturbations are applied to the Fossolo 510 

network. This is probably because NRI tends to favour diameter redundancy (i.e., larger 511 

diameters) near the source of the network. However, the demand perturbations are applied 512 

uniformly across the network. As a results, NRI’s bias for diameter redundancy fails to 513 

perform well for this kind of global demand perturbations.  514 
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The surrogate measures of RI, MRI and API show similar behaviour to each other under 515 

demand perturbations. The newly developed PHRI outperforms other measures with respect 516 

to other indicators in the number of failed scenarios. It could be seen in Figure 11(d) that the 517 

tiny advantage is stemmed from the second cost interval in the five-segment integral. But 518 

PHRI becomes slightly inferior for other two indicators.  519 

Perturbation of pipe failure 520 

Failure node count is calculated next with respect to the pipe failure perturbation, as shown in 521 

Figure S3 in the supplementary material. The RI, MRI, and API measures show similar 522 

behaviour in terms of FNC values such that with the increase in cost, the number of failed 523 

nodes decreases generally. Here, the variation of FNC is different from its behaviour shown 524 

in the demand perturbation graphs. However, the non-monotonic decreasing trend is the same 525 

as in the pipe failure perturbation case in the Hanoi network. The pipe faliure perturbation 526 

ususlly causes the node failure at the downstream of the incident pipe, and these failed nodes 527 

tend to locate at the extremities. Hence, it indicates that the pipe failure often fails the critical 528 

nodes in a certain extent.  529 

The values of the FNC indicator exhibit significant changes at the lower cost values for PHRI 530 

and NRI. And, at most higher costs, the FNC values of PHRI and NRI are eqaul to zero. This 531 

indicates that there is no node that fails to meet the requirement in the network, no matter 532 

which pipe is taken out of service. On the contrary, DSFE does not show an obvious trend 533 

regarding the FNC indicator.  534 
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The fraction of failure degree indicator (FFD) is shown in Figure S4 in the supplementary 535 

material. All surrogate measures, except DSFE, show a similar trend in which FFD decreases 536 

with the increase in cost. Particularly, NRI and PHRI achieve a good performance for the 537 

pipe failure perturbation. However, these two surrogate measures are worse than RI, MRI and 538 

API in the assessment of demand perturbation in the Fossolo network. This demonstrates that 539 

the network designs derived from MRI and PHRI measures are good at coping with local 540 

perturbations (i.e., the pipe failure), rather than global perturbations (i.e., demand fluctuation) 541 

for this particular network. The range of variation of DSFE is relatively small at the lower 542 

costs, but its statistics takes a much wider range at the higher cost end.  543 

The integral values are calculated by Equation 10, and the results are shown in Figure 12. 544 

With respect to the pipe failure perturbation in the Fossolo network, NRI achieves the best 545 

performance for all three indicators, as it obviously has a much lower value than other 546 

surrogate measures. PHRI is the second best in the assessment, while RI, MRI and API have 547 

similar values in both one segment and five-segment integrals.  548 

DSFE has the worst results overall by using the one segment integral analysis, but it can be 549 

seen that it facilitates searching for reliable solutions, especially in the lower cost range. 550 

Another point which is worth noting is that DSFE’s solutions have a better performance in 551 

handling the pipe failure perturbation than that for the demand uncertainty perturbation. This 552 

can be reflected in both case studies. With a sufficient budget, DSFE tends to deploy multiple, 553 

and long, trunk mains in order to achieve uniformly distributed flows based on the flow 554 

entropy measure. The pipe flows take a long route to the users, and thus more energy is 555 
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dissipated, which leads to a more severe impact once the demand fluctuation and pipe 556 

isolation occur. Besides, it may be that the higher cost solutions derived by using DSFE are 557 

sub-optimal for this network.  558 

Conclusions 559 

The paper presented two new reliability surrogate measures (i.e., available power index and 560 

pipe hydraulic resilience index) and compared these to the four existing measures from the 561 

literature (i.e., resilience index, network resilience index, modified resilience index and 562 

diameter-sensitive flow entropy). The comparison was done under the conditions of demand 563 

and pipe failure uncertainties on the problem of optimal WDS design. The demand 564 

uncertainty, characterised using normal distribution, is implemented by a stochastic sampling 565 

procedure which simulates different demand spatial fluctuations. The pipe failure uncertainty 566 

is described by the existing probability of a pipe failure model. The performance of obtained 567 

optimal WDS designs, derived by minimising total cost of interventions and maximising 568 

system reliability of supply (achieved by using above reliability surrogate measures, one at a 569 

time), is examined by using three indicators: (i) percentage of failure scenarios, which 570 

represents the overall performance of a system under uncertain conditions; (ii) failure node 571 

count, which indicates the spatial extent of the level of service reduction in failed scenarios; 572 

and (iii) the fraction of failure degree, which denotes the magnitude of service deficiency at 573 

failed nodes.  574 
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The above methodology was applied to the case studies of Hanoi and Fossolo WDSs. The 575 

results obtained show that the pipe hydraulic resilience index and available power index 576 

proposed performed well under demand and pipe failure perturbations. Opposite of this, the 577 

diameter-sensitive flow entropy performed relatively poorly. It is worth noting that the 578 

low-cost DSFE solutions performed much better than that at the larger cost. The NRI 579 

surrogate measure has a better performance in the pipe failure perturbation than that for the 580 

demand fluctuation perturbation. Generally speaking, it seems that the power family of 581 

reliability surrogates, including RI, MRI and API, achieved similar results despite small 582 

differences in implementation.  583 

Further work would be necessary to investigate the reliability surrogate measures in a wide 584 

range of large-scale real-world WDSs. Note that not only should surrogate measures assess 585 

reliability accurately, but also it is a concern that, in the case of large-scale real-world WDSs, 586 

the measure can be implemented in the search of optimal solutions with high computational 587 

efficiency.  588 
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Table 1. List of Abbreviations 

API Available power index 

DSFE Diameter-sensitive flow entropy 

FFD Fraction of failure degree 

FNC Failure node count 

RI Resilience index 

HGL Hydraulic grade line 

LHS Latin hypercube sampling 

MRI Modified resilience index 

NRI Network resilience index 

PDD Pressure driven demand 

PDF Probability density function 

PFS Percentage of failure scenario 

PHRI Pipe hydraulic resilience index 

WDS Water distribution system 
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Figure captions  

 

Figure 1. A diagram of water distribution systems with HGL (a) a pressurized supply 

system, (b) a gravity supply system. The two systems are assumed with only a fixed 

demand q  at node nJ  

Figure 2. The schematic diagram with nodal demand represented by the bubble size: (a) 

Hanoi network; (b) Fossolo network 

Figure 3. Pareto fronts obtained using each reliability surrogate measure and cost 

objectives for the Hanoi network 

Figure 4. Pareto fronts obtained using each reliability surrogate measure and cost 

objectives for the Fossolo network: (a) Pareto fronts derived by six surrogate reliability 

measures; (b) enlarged part of Figure 4a 

Figure 5. Failure node count under perturbation of demand uncertainty in the Hanoi 

network: (a) RI, (b) NRI, (c) MRI, (d) API, (e) PHRI, and (f) DSFE 

Figure 6. Fraction of failure degree under perturbation of demand uncertainty in the 

Hanoi network: (a) RI, (b) NRI, (c) MRI, (d) API, (e) PHRI, and (f) DSFE 

Figure 7. Integral of evaluation indicators under perturbation of demand uncertainty in 

the Hanoi network. PFS is the percentage of failure scenarios with both integral 

approaches (Figures 7a and 7d); FNC is the failure node count with both integral 

approaches (Figures 7b and 7e); and FFD is the fraction of failure degree with both 

integral approaches (Figures 7c and 7f).  

Figure 8. Failure node count under perturbation of pipe failure in the Hanoi network: 

(a) RI, (b) NRI, (c) MRI, (d) API, (e) PHRI, and (f) DSFE  

Figure 9. Fraction of failure degree under disturbance of pipe failure uncertainty in the 

Hanoi network: (a) RI, (b) NRI, (c) MRI, (d) API, (e) PHRI, and (f) DSFE  

Figure 10. Integral of evaluation indicators under perturbation of pipe failure 

uncertainty in the Hanoi network. PFS is the percentage of failure scenarios with both 

integral approaches (Figures 10a and 10d); FNC is the failure node count with both 

integral approaches (Figures 10b and 10e); and FFD is the fraction of failure degree 

with both integral approaches(Figures 10c and 10f) 

Figure Caption List



Figure 11. Integral of evaluation indicators under perturbation of demand uncertainty 

in the Fossolo network. PFS is the percentage of failure scenarios with both integral 

approaches (Figures 11a and 11d); FNC is the failure node count with both integral 

approaches (Figures 11b and 11e); and FFD is the fraction of failure degree with both 

integral approaches (Figures 11c and 11f) 

Fiugre 12. Integral of evaluation indicators under perturbation of pipe failure 

uncertainty in the Fossolo network. PFS is the percentage of failure scenarios with 

both integral approaches (Figures 12a and 12d); FNC is the failure node count with 

both integral approaches (Figures 12b and 12e); and FFD is the fraction of failure 

degree with both integral approaches (Figures 12c and 12f) 

 




