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This article describes a process theory based on active inference and be-
lief propagation. Starting from the premise that all neuronal processing
(and action selection) can be explained by maximizing Bayesian model
evidence—or minimizing variational free energy—we ask whether neu-
ronal responses can be described as a gradient descent on variational free
energy. Using a standard (Markov decision process) generative model, we
derive the neuronal dynamics implicit in this description and reproduce
a remarkable range of well-characterized neuronal phenomena. These in-
clude repetition suppression, mismatch negativity, violation responses,
place-cell activity, phase precession, theta sequences, theta-gamma cou-
pling, evidence accumulation, race-to-bound dynamics, and transfer of
dopamine responses. Furthermore, the (approximately Bayes’ optimal)
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behavior prescribed by these dynamics has a degree of face validity, pro-
viding a formal explanation for reward seeking, context learning, and
epistemic foraging. Technically, the fact that a gradient descent appears
to be a valid description of neuronal activity means that variational free
energy is a Lyapunov function for neuronal dynamics, which therefore
conform to Hamilton’s principle of least action.

1 Introduction

There has been a paradigm shift in the cognitive neurosciences over the
past decade toward the Bayesian brain and predictive coding (Ballard, Hin-
ton, & Sejnowski, 1983; Rao & Ballard, 1999; Knill & Pouget, 2004; Yuille &
Kersten, 2006; De Bruin & Michael, 2015). At the same time, there has been
a resurgence of enactivism; emphasizing the embodied aspect of percep-
tion (O’Regan & Noë, 2001; Friston, Mattout, & Kilner, 2011; Ballard, Kit,
Rothkopf, & Sullivan, 2013; Clark, 2013; Seth, 2013; Barrett & Simmons, 2015;
Pezzulo, Rigoli, & Friston, 2015). Even in consciousness research and phi-
losophy, related ideas are finding traction (Clark, 2013; Hohwy, 2013, 2014).
Many of these developments have informed (and have been informed by) a
variational principle of least free energy (Friston, Kilner, & Harrison, 2006;
Friston, 2012), namely, active (Bayesian) inference.

However, the enthusiasm for Bayesian theories of brain function is ac-
companied by an understandable skepticism about their usefulness, par-
ticularly in furnishing testable process theories (Bowers & Davis, 2012).
Indeed, one could argue that many current normative theories fail to pro-
vide detailed and physiologically plausible predictions about the processes
that might implement them. And when they do, their connection with
a normative or variational principle is often obscure. In this work, we
show that process theories can be derived in a relatively straightforward
way from variational principles. The level of detail we consider is fairly
coarse; however, the explanatory scope of the resulting process theory is
remarkable—and provides an integrative (and simplifying) perspective on
many phenomena that are studied in systems neuroscience. The aim of this
article is to describe the basic ideas and illustrate the emergent processes
using simulations of neuronal responses. We anticipate revisiting some is-
sues in depth: in particular, a companion paper focuses on learning and
the emergence of habits as a natural consequence of observing one’s own
behavior (Friston et al., 2016).

This article has three sections. The first describes active inference, com-
bining earlier formulations of planning as inference (Botvinick & Tous-
saint, 2012; Friston et al., 2014) with Bayesian model averaging (FitzGerald,
Dolan, & Friston, 2014) and learning (FitzGerald, Dolan, & Friston, 2015).
Importantly, action (i.e., policy selection), perception (i.e., state estimation),
and learning (i.e., reinforcement learning) all minimize the same quantity:
variational free energy. This refinement of previous schemes considers an
explicit representation of past and future states, conditioned on competing
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policies. This leads to Bayesian belief updates that are informed by beliefs
about the future (prediction) and context learning that is informed by beliefs
about the past (postdiction). Technically, these updates implement a form
of Bayesian smoothing, with explicit representations of states over time,
which include future (i.e., counterfactual) states. Furthermore, the implicit
variational updates have some biological plausibility in the sense that they
eschew neuronally implausible computations. For example, expectations
about future states are sigmoid functions of linear mixtures of the pre-
ceding and subsequent states. An alternative parameterization, which did
not appeal to explicit representations over time, would require recursive
matrix multiplication, for which no neuronally plausible implementation
has been proposed. Under this belief parameterization, learning is medi-
ated by classical associative (synaptic) plasticity. The remaining sections
use simulations of foraging in a radial maze to illustrate some key aspects
of inference and learning, respectively.

The inference section describes the behavioral and neuronal correlates
of belief updating during inference or planning, with an emphasis on elec-
trophysiological correlates and the encoding of precision by dopamine. It
illustrates a number of phenomena that are ubiquitous in empirical stud-
ies. These include repetition suppression (de Gardelle, Waszczuk, Egner,
& Summerfield, 2013), violation and omission responses (Bendixen, San-
Miguel, & Schroger, 2012), and neuronal responses that are characteris-
tic of the hippocampus, namely, place cell activity (Moser, Rowland, &
Moser, 2015), theta-gamma coupling, theta sequences and phase precession
(Burgess, Barry, & O’Keefe, 2007; Lisman & Redish, 2009). We also touch on
dynamics seen in parietal and prefrontal cortex, such as evidence accumula-
tion and race-to-bound or threshold (Huk & Shadlen, 2005, Gold & Shadlen,
2007; Hunt et al., 2012; Solway & Botvinick, 2012; de Lafuente, Jazayeri, &
Shadlen, 2015; FitzGerald, Moran, Friston, & Dolan, 2015; Latimer, Yates,
Meister, Huk, & Pillow, 2015).

The final section considers context learning and illustrates the transfer
of dopamine responses to conditioned stimuli, as agents become familiar
with experimental contingencies (Fiorillo, Tobler, & Schultz, 2003). We con-
clude with a brief demonstration of epistemic foraging. The aim of these
simulations is to illustrate how all of the phenomena emerge from a sin-
gle imperative (to minimize free energy) and how they contextualize each
other.

2 Active Inference and Learning

This section provides a brief overview of active inference that builds
on our previous treatments of Markov decision processes. Specifically, it
introduces a parameterization of posterior beliefs about the past and future
that makes state estimation (i.e., belief updating) biologically plausible.
(A slightly fuller version of this material can be found in Friston et al.,
2016.) Active inference is based on the premise that everything minimizes
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variational free energy (Friston, 2013). This leads to some surprisingly sim-
ple update rules for action, perception, policy selection, learning, and the
encoding of uncertainty or its complement, precision. Although some of
the intervening formalism looks complicated, what comes out at the end
are update rules that will be familiar to many readers (e.g., integrate-and-
fire dynamics with sigmoid activation functions and plasticity with asso-
ciative and decay terms). This means that the underlying theory can be
tied to neuronal processes in a fairly straightforward way. Furthermore, the
formalism accommodates a number of established normative approaches,
thereby providing an integrative framework.

In principle, the scheme described in this section can be applied to any
paradigm or choice behavior. Indeed, earlier versions have been used to
model waiting games (Friston et al., 2013), the urn task and evidence accu-
mulation (FitzGerald, Schwartenbeck, Moutoussis, Dolan, & Friston, 2015),
trust games from behavioral economics (Moutoussis, Trujillo-Barreto, El-
Deredy, Dolan, & Friston, 2014; Schwartenbeck, FitzGerald, Mathys, Dolan,
Kronbichler et al., 2015), addictive behavior (Schwartenbeck, FitzGerald,
Mathys, Dolan, Wurst et al., 2015), two-step maze tasks (Friston, Rigoli
et al., 2015), and engineering benchmarks such as the mountain car prob-
lem (Friston, Adams, & Montague, 2012). It has also been used in the setting
of computational fMRI (Schwartenbeck, FitzGerald, Mathys, Dolan, & Fris-
ton, 2015).

In brief, active inference separates the problems of optimizing action
and perception by assuming that action fulfills predictions based on in-
ferred states of the world. Optimal predictions are therefore based on (sen-
sory) evidence that is evaluated using a generative model of (observed)
outcomes. This allows one to frame behavior as fulfilling optimistic pre-
dictions, where the optimism is prescribed by prior preferences or goals
(Friston et al., 2014). In other words, action realizes predictions that are
biased toward preferred outcomes. More specifically, the generative model
entails beliefs about future states and policies, where policies that lead to
preferred outcomes are more likely. This enables action to realize the next
(proximal) outcome predicted by the policy that leads to (distal) goals. This
behavior emerges when action and inference maximize the evidence or
marginal likelihood of the model generating predictions. Note that action
is prescribed by predictions of the next outcome and is not itself part of
the inference process. This separation of action and perceptual inference or
state estimation can be understood by associating action with peripheral
reflexes in the motor system that fulfill top-down motor predictions about
how we move (Feldman, 2009; Adams, Shipp, & Friston, 2013).

The models considered in this article include states of the world in
the past and the future. This enables agents to select policies that will
maximize model evidence in the future by minimizing expected free en-
ergy. Furthermore, it enables learning about contingencies based on state
transitions that are inferred retrospectively. We will see that this leads to a
Bayes-optimal arbitration between epistemic (explorative) and pragmatic
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(exploitative) behavior that is formally related to several established ideas
(e.g., the infomax principle, Bayesian surprise, the value of information,
artificial curiosity, and expected utility theory).

We start by describing the generative model on which predictions and
actions are based. We then describe how action is specified by beliefs about
states of the world under different policies. The section concludes by con-
sidering the optimization of these beliefs through Bayesian belief updating
and implicit neuronal processing.

The parameters of categorical distributions over discrete states s ∈ {0, 1}
are denoted by column vectors of expectations s ∈ [0, 1], where the ∼ nota-
tion denotes sequences of variables over time, for example, s̃ = (s1, . . . , sT ).
The entropy of a probability distribution P(s) = Pr(S = s) is denoted by
H(S) = H[P(s)] = EP[− ln P(s)], while the relative entropy or Kullback-
Leibler (KL) divergence is denoted by D[Q(s)||P(s)] = EQ[ln Q(s) − ln P(s)].
Inner and outer products are indicated by A · B = ATB, and A ⊗ B = ABT ,
respectively. We use a hat notation

�

s = ln s to denote (natural) logarithms. Fi-
nally, P(o|s) = Cat(A) implies Pr(o = i|s = j) = Cat(Ai j). Definitions of the
variables referred to are in Table 1.

Definition. Active inference rests on the tuple (O, P, Q, R, S, T, Υ ):

� A finite set of outcomes O
� A finite set of control states or actions Υ
� A finite set of hidden states S
� A finite set of time-sensitive policies T
� A generative process R(õ, s̃, ũ) that generates probabilistic outcomes o ∈ O

from (hidden) states s ∈ S and action u ∈ Υ
� A generative modelP(õ, s̃, π, η) with parameters η, over outcomes, states,

and policies π ∈ T, where π ∈ {0, . . . , K } returns a sequence of actions
ut = π(t)

� An approximate posterior Q(s̃, π, η) = Q(s0|π) . . . Q(sT |π)Q(π)Q(η) over
states, policies and parameters with expectations (sπ

0 , . . . , sπ
T ,π, η)

Remark. The generative process describes transitions among states in the
world that generate observed outcomes. These states are referred to as
hidden because they cannot be observed directly. Their transitions depend
on action, which depends on posterior beliefs about the next state. In turn,
these beliefs are formed using a generative model of how observations are
generated. The generative model describes what the agent believes about
the world, where beliefs about hidden states and policies are encoded by
expectations. Note the distinction between actions (that are part of the
generative process in the world) and policies (that are part of the generative
model of an agent). This distinction allows actions to be specified by beliefs
about policies, effectively converting an optimal control problem into an
optimal inference problem (Attias, 2003; Botvinick & Toussaint, 2012).
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Table 1: Glossary of Expressions.

Expression Description

o
τ

∈ {0, 1} Outcomes, their posterior expectations and
logarithmso

τ
∈ [0, 1]

�
o

τ
= ln o

τ

õ = (o1, . . . , ot ) Sequences of outcomes until the current time point

s
τ

∈ {0, 1} Hidden states and their posterior expectations and
logarithms, conditioned on each policysπ

τ
∈ [0, 1]

�
sπ

τ
= ln sπ

τ

s̃ = (s1, . . . , sT ) Sequences of hidden states until the end of the
current trial

π = (π1, . . . , πK ) : π ∈ {0, 1} Policies specifying action sequences, their posterior
expectations, and logarithmsπ = (π1, . . . , πK ) : π ∈ [0, 1]

�
π = ln π

u = π(t) Action or control variables

A ∈ [0, 1] Likelihood matrix mapping from hidden states to
outcomes and its expected logarithm

�

A = ψ(a) − ψ(a0)

Bπ
τ

= B(u = π(τ )) ∈ [0, 1] Transition probability for hidden states under each
action prescribed by a policy at a particular time
and its logarithm

�

Bπ
τ

= ln Bπ
τ

D ∈ [0, 1] Prior expectation of the hidden state at the beginning
of each trial

U
τ

= ln P(o
τ
) ⇔ P(o

τ
) = σ (U

τ
) Logarithm of prior preference over outcomes or

utility

F : F
π

= F(π ) = ∑
τ

F(π, τ ) ∈ R Variational free energy for each policy

G : G
π

= G(π ) = ∑
τ

G(π, τ ) ∈ R Expected free energy for each policy

st = ∑
π

π
π

· sπ
t Bayesian model average of hidden states over

policies

H = −diag(Ă · �

A) The vector encoding the entropy or ambiguity over
outcomes for each hidden state

�

A = EQ[ln A] = ψ(a) − ψ(a0) Expected outcome probabilities for each hidden
states and their expected logarithmsĂ = EQ[Ai j] = a × a−1

0
a0i j = ∑

i ai j
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2.1 The Generative Model. The generative model is at the heart of (ac-
tive) Bayesian inference. In simple terms, the generative model is just a way
of formalizing beliefs about the way outcomes are caused. Usually a genera-
tive model is specified in terms of the likelihood of each outcome, given their
causes and the prior probability of those causes. Inference then corresponds
to inverting the model, which means computing the posterior probability
of (unknown or hidden) causes, given observed outcomes. In approximate
Bayesian inference, this entails optimizing an approximate posterior so that
it minimizes variational free energy. In other words, the difficult problem
of exact Bayesian inference is converted into an easy optimization prob-
lem, where the approximate posterior minimizes a (variational free energy)
functional of observed outcomes, under a given generative model. We will
see later that when variational free energy is minimized, it approximates
the (negative) log evidence or marginal likelihood of the outcomes, namely,
the probability of the outcomes under the generative model.

In our case, the generative model can be parameterized in a general way
as follows, where the model parameters are η = {a, b, d, β}:

P
(
õ, s̃, π, η

) = P(π )P(η)
∏T

t=1
P(ot |st )P(st |st−1, π )

P
(
ot |st

) =Cat(A)

P
(
st+1|st, π

) =Cat(B(u = π(t)))

P
(
s1|s0

) =Cat(D)

P (π ) = σ (−γ · G(π )) (2.1)

P(A)= Dir(a)

P(B) = Dir(b)

P(D)= Dir(d)

P(γ ) =�(1, β).

An approximate posterior over hidden states and parameters x =
(s̃, π, η) can be expressed in terms of its sufficient statistics, which are ex-
pectations x = (sπ

0 , . . . , sπ
T ,π, η) and η = (a, b, d,β):

Q(x) = Q(s1|π) . . . Q(sT |π)Q(π )Q(A)Q(B)Q(D)Q(γ )

Q
(
st |π

) =Cat(sπ
t )

Q(π ) =Cat(π) (2.2)

Q(A) = Dir(a)

Q(B) = Dir(b)
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Q(D) = Dir(d)

Q(γ ) = �(1,β)

In this model, observations depend only on the current state, while
state transitions depend on a policy or sequence of actions. This sequential
policy is sampled from a Gibbs distribution or softmax function of expected
free energy, with inverse temperature or precision γ . Here G(π ) is the
free energy expected under each policy (see below). The role of the model
parameters will be unpacked later, when we consider model inversion.

Note that the policy is a random variable that has to be inferred. In
other words, the agent entertains competing hypotheses or models of its
behavior in terms of policies. This contrasts with standard formulations in
which a single state-action policy returns an action as a function of each
state u = π(s), as opposed to time, u = π(t). Furthermore, the approximate
posterior is parameterized in terms of expected states under each policy. In
other words, we assume that the agent keeps a separate record of expected
states—in the past and future—for each allowable policy.

The predictions that guide action are based on a Bayesian model av-
erage of these policy-specific states. This means that expectations about
policies (and their precision) also have to be optimized. All the posterior
probabilities over model parameters, including the initial state, are Dirich-
let distributions (FitzGerald, Dolan et al., 2015). The sufficient statistics of
these distributions are concentration parameters that can be regarded as the
number of occurrences encountered in the past. In what follows, we first
describe how actions are selected, given beliefs about the hidden state of
the world and the policies currently being pursued. We then turn to the
more difficult problem of optimizing the beliefs on which action is based.

2.2 Behavior Action and Reflexes. We associate action with reflexes
that minimize the expected difference between the outcomes predicted at
the next time step and the outcome following an action. Mathematically,
this can be expressed in terms of (outcome) prediction errors as follows:

ut = min
u

EQ[D[P(ot+1|st+1)||R(ot+1|st, u)]]

= min
u

ot+1 · εu
t+1

εu
t+1 = �

ot+1 − �

ou
t+1 (2.3)

ot+1 = Ast+1

ou
t+1 = AB(u)st

st =
∑
π

ππ · sπ
t .
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This specification of action is considered reflexive by analogy to mo-
tor reflexes that minimize the discrepancy between proprioceptive signals
(i.e., primary afferents) and descending motor commands or predictions.
Heuristically, action realizes expected outcomes by minimizing the ex-
pected outcome prediction error (Adams et al., 2013). Expectations about
the next outcome therefore enslave behavior. If we regard competing poli-
cies as models of behavior, the predicted outcome is formally equivalent
to a Bayesian model average of outcomes, under posterior beliefs about
policies (last equality in equation 2.3).

For simplicity, we assume the agent has learned the consequences of ac-
tion. More complete schemes would incorporate learning the consequences
of action by analogy with learning transitions among hidden states.

Having specified action selection in terms of expected outcomes, we now
consider how these expectations are optimized. In active inference, there
are no stimulus-response links found in conventional formulations: choices
or actions are separated from inference in the same way that peripheral
reflexes are separated from processing in the central nervous system. This
means all behavior rests on optimizing beliefs or expectations about the
next state of the world. These expectations furnish predictions of the next
outcome that action simply fulfills. Following action, a new observation
becomes available, and the perception-action cycle starts again.

2.3 Free Energy and Expected Free Energy. In active inference, all the
heavy lifting is done by minimizing free energy with respect to expectations
about hidden states, policies, and parameters. Variational free energy can
be expressed as a function of these posterior beliefs in a number of ways:

Q(x)= arg min
Q(x)

F

≈ P(x|õ)

F = EQ[ln Q(x) − ln P(x, õ)]

= EQ[ln Q(x) − ln P(x|õ) − ln P(õ)]

= EQ[ln Q(x) − ln P(õ|x) − ln P(x)] (2.4)

= D[Q(x)||P(x|õ)]︸ ︷︷ ︸
relative entropy

− ln P(õ)︸ ︷︷ ︸
logevidence

= D[Q(x)||P(x)]︸ ︷︷ ︸
complexity

− EQ[ln P(õ|x)]︸ ︷︷ ︸
accuracy

,
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where õ = (o1, . . . , ot ) denotes observed outcomes up until the current
time.

Because KL divergences cannot be less than zero, the penultimate
equality in equation 2.4 means that free energy is minimized when the
approximate posterior becomes the true posterior. At this point, the free
energy becomes the negative log evidence for the generative model (Beal,
2003). This means that minimizing free energy is equivalent to maximizing
model evidence, which is equivalent to minimizing the complexity of accu-
rate explanations for observed outcomes (the last equality in equation 2.4).

With this equivalence in mind, we now turn to the prior beliefs about
policies that shape posterior beliefs—and the Bayesian model averaging
that determines action. Minimizing free energy with respect to expecta-
tions of hidden states and parameters ensures that they encode posterior
beliefs, given observed outcomes. However, beliefs about policies rest on
outcomes in the future, because these beliefs determine action and action
determines subsequent outcomes. This means that policies should, a priori,
minimize the free energy of beliefs about the future. Equation 2.1 expresses
this formally by making the log probability of a policy proportional to the
expected free energy if that policy was pursued. The expected free energy
of a policy follows from equation 2.4 (Friston, Rigoli et al., 2015):

G(π ) =
∑

τ

G(π, τ ),

G(π, τ ) = EQ̃[ln Q(sτ |π) − ln P(sτ , oτ |õ, π )]

= EQ̃[ln Q(sτ |π) − ln P(sτ |oτ , õ, π ) − ln P(oτ )], (2.5)

≈ EQ̃[ln Q(sτ |π) − ln Q(sτ |oτ , π )]︸ ︷︷ ︸
(−ve) mutualin f ormation

− EQ̃[ln P(oτ )]︸ ︷︷ ︸
expected logevidence

= EQ̃[ln Q(oτ |π) − ln Q(oτ |sτ , π )]︸ ︷︷ ︸
(−ve) epistemic value

− EQ̃[ln P(oτ )]︸ ︷︷ ︸
extrinsic value

= D[Q(oτ |π)||P(oτ )]︸ ︷︷ ︸
expected cost

+ EQ̃[H[P(oτ |sτ )]]︸ ︷︷ ︸
expected ambiguity

,

where Q̃ = Q(oτ , sτ |π) = P(oτ |sτ )Q(sτ |π) ≈ P(oτ , sτ |õ, π ) and Q(oτ |sτ , π ) =
P(oτ |sτ ).

In the expected free energy, the relative entropy becomes the mutual
information between hidden states and the outcomes they cause (and vice
versa), while the log evidence becomes the log evidence expected under
predicted outcomes. By associating the log-prior over outcomes with utility
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or prior preferences, U(oτ ) = ln P(oτ ), the expected free energy can also
be expressed in terms of epistemic and extrinsic value (the penultimate
equality in equation 2.5). This means that extrinsic value is the (log) evidence
for a generative model expected under a particular policy. In other words,
because our model of the world entails prior preferences, any outcomes that
provide evidence for our model (and implicit preferences) have pragmatic
or extrinsic value. In practice, utilities are defined only to within an additive
constant, such that the prior probability of an outcome is a softmax function
of utility: P(oτ ) = σ (U(oτ )). This means prior preferences depend only on
utility differences and are inherently context sensitive (Rigoli, Friston, &
Dolan, 2016).

Epistemic value is the expected information gain (i.e., mutual informa-
tion) afforded to hidden states by future outcomes and vice-versa.1 We
will see below that epistemic value can be thought of as driving curiosity
and novelty-seeking behavior, by which we resolve uncertainty and ig-
norance. A final rearrangement shows that complexity becomes expected
cost—namely, the KL divergence between the posterior predictions and
prior preferences—while accuracy becomes the accuracy expected under
predicted outcomes (i.e., negative ambiguity). This last equality in equa-
tion 2.5 shows how expected free energy can be evaluated relatively easily;
it is just the divergence between the predicted and preferred outcomes plus
the ambiguity (i.e., entropy) expected under predicted states.

In summary, expected free energy is defined in relation to prior beliefs
about future outcomes. These define the expected cost or complexity and
complete the generative model. It is these priors that lend inference and
action a purposeful or goal-directed aspect because they represent prefer-
ences or goals. These preferences define agents in terms of characteristic
states they expect to occupy and, through action, tend to frequent.

There are several interpretations of expected free energy that appeal to
and contextualize/established constructs. For example, maximizing epis-
temic value is equivalent to maximizing (expected) Bayesian surprise
(Schmidhuber, 1991; Itti & Baldi, 2009), where Bayesian surprise is the KL
divergence between posterior and prior beliefs. This can also be interpreted
in terms of the principle of maximum mutual information or minimum re-
dundancy (Barlow, 1961; Linsker, 1990; Olshausen & Field, 1996; Laughlin,
2001). This is because epistemic value is the mutual information between
hidden states and observations: I(Sτ , Oτ |π) = H[Q(sτ |π)] − H[Q(sτ |oτ , π )].
In other words, it reports the reduction in uncertainty about hidden states
afforded by observations. Because the KL divergence or information gain

1Note that the negative mutual information (which is never positive) is not an expected
KL divergence (which is never negative). This is because the expectation is under the joint
distribution over outcomes and hidden states. Furthermore, epistemic value is never
positive, which means that the best one can do is to have an epistemic value of zero; in
other words, a preferred outcome is expected with probability one.
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cannot be less than zero, it disappears when the (predictive) posterior
beliefs are not informed by new observations. Heuristically, this means
that epistemic policies will search out observations that resolve uncertainty
about the state of the world (e.g., foraging to locate a prey or fixating on
informative part of a face, such as the eyes or mouth). However, when there
is no posterior uncertainty and the agent is confident about the state of the
world, there can be no further information gain, and epistemic value will
be the same for all policies, allowing preferences to dictate action.

Conversely, with no preferences (i.e., all outcomes are deemed equally
likely), the most likely policies maximize uncertainty over outcomes (i.e.,
keeping all options open), in accord with the maximum entropy principle
(Jaynes, 1957), while minimizing the entropy of outcomes, given the state.
Heuristically, this means agents will try to avoid uninformative (low en-
tropy) outcomes (e.g., closing one’s eyes) while avoiding states that produce
ambiguous (high-entropy) outcomes (e.g., a noisy discotheque) (Schwarten-
beck, Fitzgerald, Dolan, & Friston, 2013). This resolution of uncertainty is
closely related to satisfying artificial curiosity (Schmidhuber, 1991; Still &
Precup, 2012) and speaks to the value of information (Howard, 1966). It is
also referred to as intrinsic value (see Barto, Singh, & Chentanez, 2004) for a
discussion of intrinsically motivated learning). In one sense, epistemic value
can be regarded as the drive for novelty-seeking behavior (Wittmann, Daw,
Seymour, & Dolan, 2008; Krebs, Schott, Schütze, & Düzel, 2009; Schwarten-
beck et al., 2013), in which we anticipate uncertainty that can be resolved
(e.g., opening a birthday present: see also Barto, Mirolli, & Baldassarre,
2013).

The expected complexity or cost is exactly the same quantity minimized
in risk-sensitive or KL control (Klyubin, Polani, & Nehaniv, 2005; van den
Broek, Wiegerinck, & Kappen, 2010), and underpins related variational for-
mulations of bounded rationality based on complexity costs (Braun, Ortega,
Theodorou, & Schaal, 2011; Ortega & Braun, 2013). In other words, minimiz-
ing expected complexity renders behavior risk-sensitive, while maximizing
expected accuracy induces ambiguity-sensitive behavior. In short, expected
free energy covers nearly all measures that have been proposed to explain
adaptive behavior, and has each as a special case.

Although the expressions above may appear complicated, expected
free energy can be expressed in a simple form in terms of the generative
model:

G(π, τ ) = D[Q(oτ |π)||P(oτ )]︸ ︷︷ ︸
expected cost

+ EQ̃[H[P(oτ |sτ )]]︸ ︷︷ ︸
expected ambiguity

= oπ
τ · (

�

o
π

τ − Uτ )︸ ︷︷ ︸
risk

+ sπ
τ · H︸ ︷︷ ︸

ambiguity

,
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oπ
τ = Ă · sπ

τ

�

oπ
τ = ln oπ

τ

Uτ =U(oτ ) = ln P(oτ ) (2.6)

H =−diag(Ă · �

A),

�

A = EQ[ln A] = ψ(a) − ψ(a0)

Ă = EQ[Ai j] = a × a−1
0 : a0i j =

∑
i

ai j.

The two terms in the first expression for expected free energy represent risk-
and ambiguity-sensitive contributions, respectively, where utility is a vector
of preferences over outcomes. This decomposition lends a formal meaning
to risk and ambiguity: risk is the relative entropy or uncertainty about
outcomes, in relation to preferences, while ambiguity is the uncertainty
about outcomes given the state of the world. This is largely consistent with
the use of risk and ambiguity in economics (Kahneman & Tversky, 1979;
Zak, 2004; Knutson & Bossaerts, 2007; Preuschoff, Quartz, & Bossaerts,
2008), where ambiguity reflects uncertainty about the context (e.g., which
lottery is currently in play).

In summary, the above formalism suggests that expected free energy can
be carved in two complementary ways. First, it can be decomposed into
a mixture of epistemic and extrinsic value, promoting explorative, novelty
seeking, and exploitative, reward-seeking behavior, respectively (Friston,
Rigoli et al., 2015). Equivalently, minimizing expected free energy can be
formulated as minimizing a mixture of expected cost or risk and ambiguity.
This completes our description of free energy. We now turn to belief updat-
ing that is based on minimizing free energy under the generative model we
have described.

2.4 Belief Updating and Belief Propagation. Belief updating medi-
ates inference and learning, where inference means optimizing expectations
about hidden states (policies and precision), while learning refers to opti-
mizing model parameters. This optimization entails finding the sufficient
statistics of posterior beliefs that minimize variational free energy. These
solutions are (see appendix A):

sπ
τ = σ (

�

A · oτ + �

Bπ
τ−1sπ

τ−1 + �

Bπ
τ · sπ

τ+1)

π = σ (−F − γ · G)

β = β + (π − π0) · G

⎫⎪⎪⎬
⎪⎪⎭

Inference,
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�

A = ψ(a) − ψ(a0) a = a + ∑
τ oτ ⊗ sτ

�

B = ψ(b) − ψ(b0) b(u) = b(u) + ∑
π(τ )=u ππ · sπ

τ ⊗ sπ
τ−1

�

D = ψ(d) − ψ(d0) d = d + s1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Learning.

(2.7)

For notational simplicity, we have used
�

Bπ
τ = �

B(π(τ )),
�

D = �

Bπ
0 sπ

0 , γ = 1/β,
and π0 = σ (−γ · G). Usually one would iterate the equalities in equation
2.7 until convergence. However, we can also obtain the solution in a robust
and biologically more plausible fashion using a gradient descent on free
energy (see appendixes B and C):

.
�

sπ
τ = ∂�

s
sπ
τ · επ

τ

sπ
τ = σ (

�

sπ
τ )

.

β = γ2εγ

επ
τ = (

�

A · oτ + �

Bπ
τ−1sπ

τ−1 + �

Bπ
τ · sπ

τ+1) − �

sπ
τ

εγ = (β − β) + (π − π0) · G. (2.8)

This converts the discrete updates above into dynamics for inference that
minimize state and precision prediction errors επ

τ = −∂sF and εγ = ∂γF,
where these prediction errors are free energy gradients.

Solving these equations produces posterior expectations that minimize
free energy to provide Bayesian estimates of hidden variables. This means
that expectations change over several timescales: a fast timescale that up-
dates posterior beliefs about hidden states after each observation (to min-
imize free energy over peristimulus time) and a slower timescale that
updates posterior beliefs as new observations are sampled (to mediate
evidence accumulation over observations): (see also Penny, Zeidman, &
Burgess, 2013). Finally, at the end of each sequence of observations (i.e.,
trial of observation epochs), the expected (concentration) parameters are
updated to mediate learning over trials (FitzGerald, Dolan, & Friston, 2015).
These updates are remarkably simple and have intuitive (neurobiological)
interpretations:

2.5 Belief Updating and Neuronal Dynamics. Updating hidden states
corresponds to state estimation, under each policy. Because beliefs about
the current state are informed by expectations about past and future states,
this scheme has the form of a Bayesian smoother that combines (empirical)



Active Inference 15

prior expectations about hidden states with the likelihood of the current
observation (Kass & Steffey, 1989). However, the scheme does not use con-
ventional forward and backward sweeps (Penny et al., 2013; Pezzulo, Rigoli,
& Chersi, 2013), because all future and past states are encoded explicitly.
In other words, representations always refer to the same hidden state at
the same time in relation to the start of the trial, not in relation to the cur-
rent time. This may seem counterintuitive, but this form of spatiotemporal
(place and time) encoding finesses belief updating considerably and, as we
will see later, has a degree of plausibility in relation to empirical findings.

The formulation in equation 2.8 is important because it describes dy-
namics that can be related to neuronal processes. In other words, we move
a variational Bayesian scheme toward a process theory that can predict neu-
ronal responses during state estimation and action selection (e.g., Solway
& Botvinick, 2012). This process theory associates the expected probabil-
ity of a state with the probability of a neuron (or population) firing and
the logarithm of this probability with postsynaptic membrane potential.
This fits comfortably with theoretical proposals and empirical work on the
accumulation of evidence (Kira, Yang, & Shadlen, 2015) and the neuronal
encoding of probabilities (Deneve, 2008), while rendering the softmax func-
tion a (sigmoid) activation function that converts membrane potentials to
firing rates. The postsynaptic depolarization caused by afferent input can
now be interpreted in terms of free energy gradients (i.e., state prediction
errors) that are linear mixtures of firing rates in other neurons (or pop-
ulations). These prediction errors play the role of postsynaptic currents,
which drive changes in membrane potential and subsequent firing rates.
This means that when there are no prediction errors, postsynaptic currents
disappear and depolarizations (and firing rates) converge to the free energy
minimum. Note that the above expressions imply a self-inhibition because
prediction errors decrease when log expectations increase.

Technically, replacing the explicit solutions, equation 2.7, with a gradi-
ent ascent, equation 2.8, is exactly the same generalization of variational
Bayes found in variational Laplace (Friston et al., 2007), namely, a gen-
eralized coordinate descent. This is nice, because it means one can think
about process theories for variational treatments of Markov decision pro-
cesses as formally similar to equivalent process theories for state-space
models, such as predictive coding (Rao & Ballard, 1999; Bastos et al., 2012).
There are some finer, neurobiologically plausible details of the dynamics of
expectations about hidden states that we will consider elsewhere. For ex-
ample, the modulation by ∂�

s
sπ
τ implies activity-dependent (e.g., NMDA-R

dependent) depolarization that enforces an excitation-inhibition balance
(see appendix B).

2.6 Action Selection, Precision, and Dopamine. The policy updates are
just a softmax function of their log probability, which has two components:
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the free energy based on past outcomes and the expected free energy based
on preferences about future outcomes. In other words, prior beliefs about
policies in the generative model are supplemented or informed by the free
energy based on outcomes. Policy selection also entails the optimization
of expected uncertainty or precision. This is expressed above in terms of
the temperature (inverse precision), which encodes posterior beliefs about
precision: β = 1/γ .

Interestingly, the updates for temperature are determined by the differ-
ence between the expected free energy under posterior and prior beliefs
about policies, that is, the prediction error based on expected free energy.
This endorses the notion of reward prediction errors as an update signal that
the brain might use, in the sense that if posterior beliefs based on current
observations reduce the expected free energy, relative to prior beliefs, then
precision will increase (FitzGerald, Dolan et al., 2015). This can be related
to dopamine discharges that have been interpreted in terms of changes
in expected reward (Schultz & Dickinson, 2000; Fiorillo et al., 2003) and
marginal utility (Stauffer, Lak, & Schultz, 2014). We have previously con-
sidered the intimate (monotonic) relationship between expected precision
and expected utility in this context (see Friston et al., 2014, for a fuller dis-
cussion). The role of the neuromodulator dopamine in encoding precision
is also consistent with its multiplicative effect in equation 2.7, to nuance the
selection among competing policies (Fiorillo et al., 2003; Frank, Scheres, &
Sherman, 2007; Humphries, Wood, & Gurney, 2009; Humphries, Khamassi,
& Gurney, 2012; Solway & Botvinick, 2012; Mannella & Baldassarre, 2015).
We will return to this later.

2.7 Learning and Associative Plasticity. Finally, the updates for the
parameters bear a marked resemblance to classical Hebbian plasticity (Ab-
bott & Nelson, 2000). The parameter updates for state transitions comprise
two terms: an associative term that is a digamma function of the accumu-
lated coincidence of past (postsynaptic) and current (presynaptic) states
(or observations under hidden causes) and a decay term that reduces each
connection as the total afferent connectivity increases. The associative and
decay terms are strictly increasing but saturating functions of the concen-
tration parameters. Note that the updates for the connectivity parameters
accumulate coincidences over time, because parameters are time invariant
(in contrast to states that change over time). Furthermore, the parameters
encoding state transitions have associative terms that are modulated by
policy expectations.

In addition to learning contingencies through the parameters of the tran-
sition matrices, the vectors encoding beliefs about initial states accumulate
evidence by simply counting the number of times an initial state occurs. In
other words, if a particular state is encountered frequently, it will come to
dominate posterior expectations. This mediates context learning in terms of
the initial state. In practice, the parameters are updated at the end of each
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trial or sequence of observations. This ensures that learning benefits from
postdicted states, after ambiguity has been resolved through epistemic be-
havior. For example, the agent can learn about the initial state even if the
initial cues were completely ambiguous.

Collectively, the updates above constitute a formal description of percep-
tion and learning. In what follows, we will associate electrophysiological
responses with depolarization (i.e., state prediction error) driving changes
in neuronal activity. For simplicity, we recover this from the rate of change
of the associated expectation (see equation 2.8).

2.8 Summary. By assuming a generic (Markovian) form for the gen-
erative model, it is fairly easy to derive Bayesian updates that clarify the
relationships among perception, policy selection, precision, and action and
how these quantities shape beliefs about hidden states of the world and
subsequent behavior. In brief, the agent first infers the hidden states under
each model or policy that it entertains. It then evaluates the evidence for
each policy based on prior beliefs or preferences about future outcomes.
Having optimized the precision or confidence in beliefs about policies, they
are used to form a Bayesian model average of the next outcome, which is
realized through action. The anatomy of the implicit message passing is not
inconsistent with functional anatomy in the brain (see Friston et al., 2014,
and Figures 1 and 2). Figure 1 reproduces the (solutions to) belief updating
and assigns them to plausible brain structures. Figure 2 rehearses the belief
updating in terms of the implicit computations. This functional anatomy
rests on reciprocal message passing among expected policies (e.g., in the
striatum) and expected precision (e.g., in the substantia nigra). Expecta-
tions about policies depend on expected outcomes and states of the world
for example, in the prefrontal cortex (Mushiake, Saito, Sakamoto, Itoyama,
& Tanji, 2006) and hippocampus (Pezzulo, van der Meer, Lansink, & Pen-
nartz, 2014). Crucially, this scheme entails reciprocal interactions between
the prefrontal cortex and basal ganglia (Botvinick & An, 2009), in particu-
lar, selection of expected motor outcomes by the basal ganglia (Mannella &
Baldassarre, 2015).

In this scheme, the scope and depth of the policy search is exhaustive, in
the sense that all policies entertained by an agent are encoded explicitly and
all hidden states over the sequence of actions entailed by policy are con-
tinuously updated. This may sound like an overcomplete representation of
policies; however, this sort of architecture is implicit in salience maps in the
brain (Santangelo, 2015; Zelinsky & Bisley, 2015). This is because a salience
map represents the value (e.g., epistemic value or Bayesian surprise) of all
possible actions (e.g., saccadic eye movements), from which the best action
is selected: see Mirza, Adams, Mathys, and Friston (2016) for a simulation of
saccadic searches and scene construction using the current scheme. In the
simulations below, each policy comprises two actions, whereas in Mirza
et al. (2016), we used just a single action: each policy specified where to
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Figure 1: Schematic overview of belief updates for active inference under dis-
crete Markovian models. The left panel lists the solutions in the main text,
associating various updates with action, perception, policy selection, precision,
and learning. It assigns the variables (sufficient statistics or expectations) that
are updated to various brain areas. This attribution should not be taken too se-
riously but serves to illustrate a rough functional anatomy, implied by the form
of the belief updates. In this simplified scheme, we have assigned observed
outcomes to visual representations in the occipital cortex and state estimation
to the hippocampal formation. The evaluation of policies, in terms of their
(expected) free energy, has been placed in the ventral prefrontal cortex. Ex-
pectations about policies per se and the precision of these beliefs have been
attributed to striatal and ventral tegmental areas to indicate a putative role for
dopamine in encoding precision. Finally, beliefs about policies are used to create
Bayesian model averages over future states that are fulfilled by action. The blue
arrows denote message passing, and the solid red line indicates a modulatory
weighting that implements Bayesian model averaging. The broken red lines
indicate the updates for parameters or connectivity (in blue circles) that depend
on expectations about hidden states. This scheme is described heuristically in
Figure 2. See the appendixes and Table 1 for an explanation of the equations and
variables.

look next. In the next section, we use equation 2.8 to simulate neuronal
responses and show that many familiar electrophysiological phenomena
emerge.
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Figure 2: Summary of belief updates in terms of functional anatomy. Sensory
evidence is accumulated to optimize expectations about the current state of the
world, which are constrained by expectations of past and future states. This
corresponds to state estimation under each policy the agent entertains. The
quality of each policy is evaluated in the ventral prefrontal cortex, possibly
in combination with ventral striatum (van der Meer, Kurth-Nelson, & Redish,
2012), in terms of its expected free energy. This evaluation and the ensuing
policy selection rest on expectations about future states. Note that the explicit
encoding of future states lends this scheme the ability to plan and explore.
After the free energy of each policy has been evaluated, it is used to predict
the subsequent hidden state through Bayesian model averaging (over policies).
This enables an action to be selected that is most likely to realize the predicted
outcome. Once an action has been selected, it generates a new observation, and
the cycle begins again.

3 Simulations of Inference

This section considers inference using simulations of foraging in a maze.
Its aim is to illustrate belief updating as a process theory for commonly
observed electrophysiological and behavioral responses. We first describe
the simulation setup and then establish the construct validity of the scheme
in terms of simulated electrophysiological responses. The simulations in-
volve searching for rewards in a T-maze. This T-maze contains primary
rewards such as food and cues that are not rewarding per se but disclose
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the location of rewards. The basic structure of this problem can be trans-
lated to any number of scenarios (e.g., saccadic eye movements to visual
targets). The simulations use the same setup as in Friston et al. (2015) and
is as simple as possible while illustrating some fairly complicated behav-
iors. This example can also be interpreted in terms of responses elicited in
reinforcement learning paradigms by unconditioned (US) and conditioned
(CS) stimuli. Strictly speaking, our paradigm is instrumental, and the cue is
a discriminative stimulus; however, we retain the Pavlovian nomenclature
when relating precision updates to dopaminergic discharges.

3.1 The Setup. An agent, such as a rat, starts in the center of a T-maze,
where either the right or left arms are baited with a reward (US). The lower
arm contains a discriminative cue (CS) that tells the animal whether the
reward is in the upper right or left arm. Crucially, the agent can make only
two moves. Furthermore, the agent cannot leave the baited arms after they
are entered. This means that the optimal behavior is to first go to the lower
arm to find where the reward is located and then retrieve the reward at the
cued location.

In terms of a Markov decision process, there are four control states that
correspond to visiting, or sampling, the four locations (the center and three
arms). For simplicity, we assume that each control state takes the agent to
the associated location, as opposed to moving in a particular direction from
the current location. This is analogous to place-based navigation strategies
mediated by the hippocampus (e.g., Moser, Kropff, & Moser, 2008). There
are eight hidden states (four locations by two contexts) and seven possible
outcomes. The outcomes correspond to being in the center of the maze plus
the (two) outcomes at each of the (three) arms that are determined by the
context (the right or left arm is more rewarding).

Having specified the state-space, it is now necessary to specify the (A,B)

matrices encoding contingencies. These are shown in Figure 3, where the
A matrix maps from hidden states to outcomes, delivering an ambiguous
cue at the center (first) location and a definitive cue at the lower (fourth)
location. The remaining locations provide a reward with probability p =
98% depending on the context. The B(u) matrices encode action-specific
transitions, with the exception of the baited (second and third) locations,
which are absorbing hidden states that the agent cannot leave.

In general treatments, we would consider learning contingencies by up-
dating the prior concentration parameters (a,b) of the transition matrices,
but we will assume the agent knows (i.e., has very precise beliefs about) the
contingencies. This corresponds to making the prior concentration param-
eters very large. Conversely, we will use small values of d to enable context
learning. Preferences in the vector Uτ = ln P(oτ ) ≤ 0 encode the utility of
outcomes. Here, the (relative) utilities of a rewarding and unrewarding out-
come were 3 and −3, respectively (and zero otherwise). This means, that
the agent expects to be rewarded exp(3) ≈ 20 times more than experiencing
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Figure 3: The generative model used to simulate foraging in a three-arm maze
(insert on the upper right). This model contains four control states that encode
movement to one of four locations (three arms and a central location). These
control the transition probabilities among hidden states that have a tensor prod-
uct form with two factors: the first is place (one of four locations), and the second
is one of two contexts. These correspond to the location of rewarding (red) out-
comes and the associated cues (blue or green circles). Each of the eight hidden
states generates an observable outcome, where the first two hidden states gen-
erate the same outcome that just tells the agent that it is at the center. Some
selected transitions are shown as arrows, indicating that control states attract
the agent to different locations, where outcomes are sampled. The equations
define the generative model in terms of its parameters (A,B), which encode
mappings from hidden states to outcomes and state transitions, respectively.
The lower vector corresponds to prior preferences—namely, the agent expects
to find a reward. Here, ⊗ denotes a Kronecker tensor product.

a neutral outcome. Note that utility is always relative because the proba-
bilities over outcomes must sum to one. As noted above, this means the
prior preferences are a softmax function of utility P(oτ ) = σ (Uτ ). Associat-
ing utility with log probabilities is important because it endows utility with
the same measure as information, namely, nats (i.e., units of information or
entropy based on natural logarithms). This highlights the close connection
between value and information (Howard, 1966).

Having specified the state-space and contingencies, one can solve the
belief updating equations in equation 2.8 to simulate behavior. Prior beliefs
about the initial state were initialized to d = 8 for the central location for
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each context and zero otherwise. These concentration parameters can be
regarded as the number of times each state, transition, or policy has been
encountered in previous trials.

Figure 4 summarizes simulated behavioral and physiological responses
over 32 successive trials using a format that will be used in subsequent
figures. Each trial comprises two actions following an initial outcome. The
first panel shows the initial states on each trial (as colored circles) and sub-
sequent policy selection (in image format) over the 10 policies considered.
These correspond to staying at the center and then moving to each of the
four possible locations (policies 1–4; ending in the center, left, right, or lower
arm), moving to the left or right arm and staying there (policies 5 and 6),
or moving to the lower arm and then to each of the four locations (policies
7–10). The second panel reports the final outcomes (encoded by colored
circles) and performance. Performance is reported in terms of preferred
(i.e., utility of) outcomes, summed over time (black bars) and reaction times
(cyan dots). Note that because utilities are log probabilities, they are always
negative, and the best outcome is zero. The reaction times here are based
on the actual processing time in the simulations (using the Matlab tic-toc
facility) and are shown after normalization to a mean of zero and standard
deviation of one.

In this example, the first couple of trials alternate between the two con-
texts with rewards on the right and left. After this, the context (indicated
by the cue) remained unchanged. For the first 20 trials, the agent selects
epistemic policies—first going to the lower arm and then proceeding to
the reward location (i.e., left for policy 8 and right for policy 9). After this,
the agent becomes increasingly confident about the context and starts to
visit the reward location directly. The differences in performance—between
these epistemic and pragmatic behaviors—are revealed in the second panel
as a decrease in reaction time and an increase in the average utility. This
increase follows because the average is over trials and the agent spends
two trials enjoying its preferred outcome when seeking reward directly, as
opposed to one trial when behaving epistemically. Note that on trial 12,
the agent received an unexpected (null) outcome that induces a degree of
posterior uncertainty about which policy it was pursuing, indicated by the
red dot. This is seen as a nontrivial posterior probability for three policies:
the correct (context-sensitive) epistemic policy and the best alternatives that
involve staying in the lower arm or returning to the center. This loss of cer-
tainty is accompanied by a low-utility outcome and a suppression of phasic
dopamine responses reporting the confidence in behavior.

The marked reduction in reaction times, with the emergence of prag-
matic behavior, reflects the fact that the estimation of hidden states under
policies that have a small posterior probability is omitted. This is a com-
mon device in Bayesian model averaging, where the evidence for implau-
sible models that fall outside Occam’s window are not evaluated. Here,
we removed policies with a relative posterior probability of 1/128 or less.
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Figure 4: Simulated responses over 32 trials. The behavioral and (simulated)
physiological responses during successive trials. The first panel shows, for each
trial, the initial state (as blue and red circles indicating the context) and the
selected policy (in image format) over the policies considered. The policies se-
lected in the first two trials correspond to epistemic policies (8 and 9), which
involve examining the cue in the lower arm and then going to the left or right
arm to secure the reward (depending on the context). After the agent becomes
sufficiently confident that the context does not change (after trial 21), it indulges
in pragmatic behavior, accessing the reward directly. The second panel reports
the final outcomes (encoded by colored circles: cyan and blue for rewarding
outcomes in the left and right arms) and performance measures in terms of
preferred outcomes, summed over time (black bars) and reaction times (cyan
dots). The third panel shows a succession of simulated event-related potentials
following each outcome. The different colors correspond to expectations about
different hidden states. These are the rate of change of neuronal activity, encod-
ing the expected probability of hidden states. The fourth panel shows phasic
fluctuations in posterior precision that can be interpreted in terms of dopamine
responses. The final panel shows the accumulated posterior beliefs about the
initial state, where black denotes a posterior expectation of one and white a
posterior expectation of zero.
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Neurobiologically, this would entail a selective suspension of belief up-
dating, mediated by neuromodulatory projections (omitted from Figure
1). When the agent becomes increasingly confident about the context, the
precision of competing policies increases, enabling it to focus on a smaller
number and select one quickly and efficiently.

The third panel shows a succession of simulated event-related potentials
following each outcome. These are the rates of change of neuronal activity,
encoding expectations about hidden states. The fourth panel shows pha-
sic fluctuations in posterior precision that can be interpreted in terms of
dopamine responses. Here, the phasic component of simulated dopamine
responses corresponds to the rate of change of precision (multiplied by
eight) and the tonic component to the precision per se (divided by eight;
see appendix 5). The phasic part reflects the precision prediction error (cf.
reward prediction error: see equation 2.8). These simulated responses re-
veal a phasic response to the cue (CS) during epistemic trials that emerges
with context learning over repeated trials. This reflects an implicit transfer
of dopamine responses from the US to the CS. When the reward (US) is ac-
cessed directly, there is a profound increase in the phasic response relative
to the response elicited after it has been predicted by the CS.

The final panel illustrates learning in terms of the accumulated posterior
expectations about the initial state. The implicit learning reflects an accu-
mulation of evidence that the reward will be found in the same location.
In other words, initially ambiguous priors over the first two hidden states
come to reflect the agent’s experience that it always starts in the first hid-
den state. It is this context learning that underlies the pragmatic behavior
in later trials. We talk about context learning (as opposed to inference) be-
cause, strictly speaking, Bayesian updates to model parameters (between
trials) are referred to as learning, while updates to hidden states (within
trial) correspond to inference.

3.2 Electrophysiological Correlates of Variational Belief Updating.
Figure 5 shows responses during the first trial in a way that speaks to
empirical responses in studies of spatial navigation and decision making.
The upper left panel shows simulated neuronal activity (firing rate) for
units encoding hidden states using an image (or raster) format. There are
eight hidden states for each of the three epochs or moves. These responses
are organized such that the first eight rows show the probability of the
eight states in the first observation epoch (i.e., period before moving), while
subsequent epochs are shown in the middle and lower rows. This format
illustrates the encoding of states over time, where the past lies in the upper
diagonal blocks and the future in the lower diagonal blocks. To interpret
these responses in relation to empirical results, we assume that outcomes
are sampled every 250 ms. Although this is a little fast for overt exploratory
movements in a maze, it corresponds to the intervals between saccadic eye
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movements in visual exploration (Srihasam, Bullock, & Grossberg, 2009)
and the rate at which syllables are articulated in normal speech (Gross et al.,
2013). Furthermore, it corresponds to the timescale of neuronal dynamics
in the hippocampus (e.g., the duty cycle of theta activity).

Note the changes in activity after each new outcome is observed. For
example, the two units encoding the first two hidden states in the first
epoch (circled) maintain their firing rate at equivalent levels, reflecting
uncertainty about which of the two hidden states are occupied. However,
after observing the cue, their activity diverges to properly infer that the
first state was the central location under the second context. In other words,
representations of the past are informed by current outcomes. The implicit
postdiction enables the agent to update its representation (i.e., memory)
of the initial state (i.e., past), which it can call on for context learning (see
below).

The upper right panel plots the same information, highlighting two units
(in solid lines), encoding the upper left and right location on the third epoch.
These are the chosen and unchosen states, respectively. Initially, both units
encode the same uncertain beliefs about the state that will be occupied,
which are resolved in the second epoch and confirmed in the third. The en-
suing pattern of firing reflects a saltatory or stepwise evidence accumulation
in which expectations about occupying the chosen and unchosen states di-
verge as the trial progresses. This belief updating is formally identical to
evidence accumulation described by drift diffusion or race-to-bound mod-
els (Solway & Botvinick, 2012; Zhang & Maloney, 2012; de Lafuente et al.,
2015; Kira et al., 2015) and nicely recapitulates the emergence of a choice as
evaluation of options proceeds (Hunt et al., 2012). Furthermore, the separa-
tion of timescales implicit in variational updating reproduces the stepping
dynamics seen in parietal responses during decision making (Latimer et al.,
2015).

The right middle panel shows the associated local field potentials, which
are simply the rate of change of neuronal firing shown on the upper right.
These simulated responses show that units encoding locations later in the
trial peak earlier, as successive outcomes are observed. This necessarily re-
sults in a phase precession (Burgess et al., 2007; Lisman & Buzsaki, 2008;
Lisman & Redish, 2009). In other words, units (e.g., place cells) encoding
the same location at the same point in the trial reach their maximum activity
more quickly with each successive (theta cycle) of evidence accumulation
(see the arrows in the middle right panel of Figure 5). This phenomenon
reflects the fact that locations visited toward the end of a trial only receive
sensory evidence when they are encountered, at which point they quickly
converge to their posterior expectations. The implicit encoding of trajecto-
ries through (state) space has many similarities with the notion of a to-do list
that has been invoked to explain phase precession (Jensen, Gips, Bergmann,
& Bonnefond, 2014).
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The lower left panel illustrates simulated dopamine responses. Here,
we see a phasic suppression when the cue (conditioned stimulus—CS)
is located, followed by a phasic burst when the reward (unconditioned
stimulus—US) is secured. The suppressive responses to the CS shown here
are during the first trial. As noted above, these reductions quickly reverse
and come to resemble the responses to the US after a few trials. We will
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return to this; however, we first consider the place coding responses of
units representing hidden states.

3.3 Theta-Gamma Coupling and Place Cell Activity. The lower right
panel of Figure 5 shows the same firing rate responses above but highlights
units encoding the three locations visited (the thick green blue and red
lines). These responses reflect increases in activity (during the second theta
epoch) in the same sequence that the locations are visited. Empirically,
this phenomenon is called a theta sequence: short (3–5) sequences of place
cells that fire sequentially within each theta cycle, as if they were encoding
time-compressed trajectories (Lisman & Redish, 2009).

In our setting, theta-gamma coupling is a straightforward consequence
of belief updating every 250 ms (i.e., theta), where each observation induces
phasic updates that necessarily possess high-frequency (i.e., gamma) com-
ponents. This is illustrated in the middle left panel of Figure 5, which shows

Figure 5: Simulated electrophysiological responses for the first trial. This figure
reports the belief updating described in the text. It presents responses in sev-
eral formats that emulate empirical characterizations of spatial navigation and
decision-making responses. The upper left panel shows the activity (firing rate)
of all units encoding hidden states in image (raster) format. There are eight hid-
den states for each of the three epochs in this trial, where each (250 ms or theta)
epoch starts with an observation and ends with an action. These responses are
organized such that the upper rows encode the probability of the eight states
in the first epoch, with subsequent epochs in the middle and lower rows. Note
the fluctuations in activity after each new outcome is observed. The upper right
panel plots the same information highlighting two units (in solid lines), en-
coding the upper left (rewarded and chosen state) and upper right location on
the third epoch (unrewarded and unchosen state). The simulated local field
potentials for these units (i.e., their rate of change of neuronal firing) are shown
in the middle right panel. This pattern of firing reflects a saltatory evidence
accumulation (stepping dynamics), in which expectations about occupying the
chosen and unchosen states diverge as the trial progresses. The simulated local
field potentials also show that responses in units encoding locations later in the
trial peak earlier, as successive outcomes are observed. This necessarily results
in a phase precession that is also illustrated in the middle left panel. This panel
shows the response of the rewarded hidden state unit before (dotted line) and
after (solid line) filtering at 4 Hz, superimposed on a time-frequency decompo-
sition of the local field potential (averaged over all units). The key observation
here is that depolarization in the 4 Hz range coincides with induced responses,
including gamma activity. The lower left panel illustrates simulated dopamine
responses in terms of a mixture of precision and its rate of change. Finally, the
lower right panel reproduces the upper right panel but highlights responses
in units encoding the states visited (green, – first; blue, second; and red, final
state).
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the response of the second (rewarded hidden state) unit before (dotted line)
and after (solid line) filtering at 4 Hz. These responses are superimposed on
a time frequency decomposition of the local field potential averaged over
all units. The key observation here is that depolarization in the theta range
coincides with induced responses, including gamma activity. The implicit
theta-gamma coupling during navigation can be seen more clearly in Fig-
ure 6. This figure reports simulated electrophysiological responses over the
first eight trials, with the top panel showing the responses of units encoding
hidden states and the second panel showing the associated time frequency
response (and depolarization of the first unit, after filtering at 4 Hz). The
final two panels show the simulated local field potentials and dopamine
responses using the same format as the previous figure. The key observa-
tion in this here is that fluctuations in gamma power (averaged over all
units) are tightly coupled to the depolarization in the theta range (of single
units).

Phase precession and theta-gamma coupling are typically observed in
the context of place cell activity, in which units respond selectively when an
animal passes through particular locations. This sort of response is easy to
demonstrate under the current scheme. Figure 7 (upper right panel) plots
the activity of two units encoding the rewarded locations at the right (green
dots) and left (red dots) arms as a function of the location in the maze
over the first eight trials. The trajectories (dotted lines) were constructed
by adding random displacements (with a standard deviation of an eighth)
to the trajectory prescribed by action. The dots indicate times at which
the unit approached its maximal firing rate (i.e., greater than 80%) and
illustrate place cell activity that is specific to the locations they encode.
However, this response profile is unique to the units encoding the final
location: units encoding the location in the second epoch fire maximally
at both the target location and the preceding (cue) location (lower right
panel).

We present these results to address an interesting question. Hitherto, we
have assumed that units encode states (location) in a frame of reference
that is locked to the beginning of a trial or trajectory. The alternative is that
each unit encodes the state in relation to the current time, in a moving time
frame. This distinction is shown schematically in the lower left panel of
Figure 7. If we use a fixed frame of reference, the successive activities of the
two units are described by rows of the raster, indicated with white numbers.
Conversely, if the encoding uses a moving frame of reference, these units
would show the activity along the leading diagonal of the raster, indicated
by the red numbers. Crucially, in a moving frame of reference, all units
would show classical place cell responses, whereas in a fixed frame of
reference, some units will encode the location of states that will be visited
in the future. This would lead to a more complicated relationship between
neuronal firing and the location of the animal.
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Figure 6: Theta-gamma phase coupling during spatial navigation. Simulated
electrophysiological responses as in the previous figure. Here, the first eight
trials are shown, with the top panel reporting the responses of units encoding
hidden states and the second panel showing the associated time frequency
response (and depolarization of a single unit after bandpass filtering at 4 Hz).
The final two panels show the simulated local field potentials and dopamine
responses using the same format as the previous figure. Every other trial is
highlighted with a gray background, where each trial comprises three epochs
(following the first and subsequent outcomes after two movements). The key
observation here is that fluctuations in gamma power (averaged over all units)
are tightly coupled to the depolarization in the theta range (of single units).
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Figure 7: Place cell responses. The upper right panel plots the activity of two
units encoding the rewarded locations at the right (green dots) and left (red
dots) arms, as a function of the location in the maze, over the first eight trials.
The trajectories (dotted lines) were constructed by adding (smooth) random
displacements (with a standard deviation of an eighth) to the trajectory pre-
scribed by action. The dots indicate times at which the unit exceeded 80% of its
maximum activity and illustrate place cell activity that is specific to the locations
encoded. However, this response profile is unique to the units encoding the final
location: units encoding the location in the second epoch fire maximally at both
the target location and the preceding (cue) location (lower right panel). The left
panel reproduces the neural activity in raster format for two trials to indicate
expectations about hidden states that are plotted.

Mathematically, both encoding schemes are viable and can be expressed
following equation 2.8 (where 	t
 is the floor function that returns epoch as
a function of time):
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sπ
τ (t + �t) = σ (

�

sπ
τ (t) − �t · (

�

sπ
τ (t) − . . . − �

B(π(τ )) · sπ
τ+1(t))),

sπ
τ (t + �t) = σ (
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sπ
τ (t) − �t · (

�

sπ
τ (t) − . . . − �

B(π(	t
 + τ )) · sπ
τ+1(t))).

(3.1)

The key difference between these formulations is that in the moving frame
of reference, the connectivity changes from epoch to epoch, whereas in a
fixed frame of reference, the connectivity remains the same. In light of this,
we have elected to simulate responses assuming a fixed frame of reference,
which suggests that a subset of hippocampal (or parietal) units should
show extraclassical place cell activity, encoding trajectories over multiple
locations (Grosmark & Buzsaki, 2016).

4 Context Learning

Having established that the Bayesian updates of expected hidden states
and parameters have a degree of biological plausibility, we now turn to
the correlates of parameter learning. In this article, the only parameters
that are updated are those encoding prior beliefs about the initial state or
context. These are the concentration parameters d. In what follows, we look
at the effects of context learning on electrophysiological responses and what
would happen if we removed prior preferences to reveal purely epistemic
behavior.

4.1 Repetition Suppression and Dopamine Transfer. Figure 8 uses the
same format as Figure 6; however, here we compare two identical trials that
differ only in terms of the agent’s prior beliefs about context. These trials are
indicated by the arrows on the insert from Figure 4 (upper right in Figure
8) and have been associated with oddball and standard trials, respectively.
The only difference is that the agent has become familiar with the context in
which it enacts its epistemic policy. The increased efficiency and confidence
afforded by context learning are expressed in terms of a faster encoding of
hidden states and the emergence of a phasic dopamine (precision) response
to the CS. In other words, the familiarity effects of repetitions of standard
trials suppress evoked responses in units encoding the first state in the
second epoch (blue circles). This can be seen clearly if we subtract the
evoked response during the standard trial from the equivalent response
during the oddball trial at the point of anticipation, in the second epoch.
The result is shown in the right panel as a negative difference waveform
that peaks at around 80 ms (or 180 ms allowing 100 ms conduction delays to
occipital cortex). This is exactly the form of difference elicited in empirical
oddball studies using sequences of repeating stimuli, where it is known as
the mismatch negativity (Bendixen et al., 2012).
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Figure 8: Repetition suppression and transfer of dopamine responses. This
figure uses the same format as Figure 6; however, here we compare two (oddball
and standard) trials that are indicated by the arrows on the insert from Figure
4 (upper right). The only difference between these trials is that the agent has
become familiar with the context. This means it is more efficient and confident in
its inference. This is expressed in terms of a slightly faster and lower-amplitude
belief updating about hidden states and increases in expected precision when
sampling the cue. The familiarity effects due to repetitions of the standard trials
suppress evoked responses in units encoding the first state (cyan circles). This
can be seen clearly in the right panel, when we subtract the responses during the
standard trial from the equivalent updates during the oddball trial (at the point
of anticipation, in the second epoch). The result is a negative difference wave
that peaks at around 80 ms (or 180 ms, allowing 400 ms conduction delays).
Inspection of the (simulated) phasic dopamine responses shows that the large-
amplitude responses to the reward (US) in the first trial are transferred to the
cue (CS) after the context has been learned. This pattern corresponds to the
transfer of dopamine responses observed in reinforcement learning paradigms.

This repetition suppression is accompanied by profound changes in
simulated dopamine responses that effectively reproduce the transfer of
phasic dopamine responses from unconditioned to conditioned stimuli
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during learning (Schultz, Apicella, & Ljungberg, 1993; Bromberg-Martin
& Hikosaka, 2009). In this instance, the learning corresponds to increasing
confidence about the context in which choices are made (Fiorillo et al., 2003).
This translates into a higher precision of beliefs about competing policies
once the CS has resolved residual uncertainty. Note that this transfer from
the US to the CS is direct and does not require any representation of inter-
vening states (see (FitzGerald, Dolan et al., 2015) for a fuller discussion).
The differences in responses in these two trials can be explained only by
differences in prior beliefs about context, because the actions and outcomes
were identical. But what about responses when outcomes are unpredicted?

4.2 Violation Responses and Simulated P300 Waveforms. Figure 9
uses the same format as Figure 6 but focuses on consecutive trials after
a degree of context learning (the trials indicated by the arrows above the
insert from Figure 4). The first trial is a standard one in which the agent
interrogates the cue location and then acquires the reward from the appro-
priate arm. In the subsequent trial, we forced the agent to stay at the cue
location (by preventing it from moving), thereby inducing protracted be-
lief updating about hidden states. This is most evident in the hidden state
encoding the true location in the third (final) epoch (blue circles). These
violation responses reach peak amplitude at about 100 ms—or 200 ms in
peristimulus time (allowing for 100 ms conduction delays). Although earlier
than classical P300 and N400 responses, this protracted and late response is
reminiscent of violation responses in event-related potential (ERP) studies
when the outcome is inconsistent with the preceding succession of states,
such as semantic violations in sentence processing and action observation
(Friederici, 2005; Maffongelli et al., 2015). These late violation responses
contrast with the early mismatch responses in the previous figure. Finally,
note that the phasic dopamine response to the unexpected outcome is at-
tenuated although not abolished. This may reflect the fact that the agent
finds it difficult to believe it has not secured its reward. In other words, the
agent partly believes it has pursued the epistemic policy despite evidence
to the contrary (see upper panel).

4.3 Foraging for Information. One might ask what would happen if
rewards were devalued by setting their (relative) utility to zero. Figure 10
shows the results of a simulation, using the same setup as in Figure 4.
The only difference here was that there were no explicit preferences or
utilities. However, the resulting behavior is still structured and purposeful
because it is driven by epistemic value. In every trial, the agent moves to
the cue location to resolve ambiguity about the context (see lower panels).
After the cue is sampled, uncertainty cannot be reduced further, and the
agent either stays where it is or returns to the central location, avoiding the
baited arms. It avoids the baited arms because they are mildly ambiguous
(given our partial reinforcement schedule). This sort of simulation can, in



34 K. Friston et al.

Figure 9: Violation responses and simulated P300 waveforms. This figure uses
the same format as the previous figure but focuses on consecutive trials in-
dicated by the arrows above the insert. The first trial is an epistemic trial in
which the agent interrogates the cue location and then acquires the reward. In
the subsequent trial, we forced the agent to stay where it was, thereby induc-
ing protracted and high-amplitude belief updating about hidden states. This is
most evident in the hidden states encoding the (cue) location in the third (final)
epoch (cyan circles). Assuming each epoch lasts 250 ms, these responses reach
peak amplitude at about 150 ms—or 250 ms in peristimulus time (allowing for
100 ms conduction delays).

principle, be used to simulate foraging for information using saccadic eye
movements.

This simulation illustrates the fact that behavior can still be purposeful
even in the absence of extrinsic value or prior preferences about outcomes.
In other words, epistemic value can, on its own, specify behavior even
if there are no explicit or extrinsic goals. The implication here is that the
balance between purely exploratory and exploitative behavior rests on the
precision of prior preferences. In the simulations, the removal of preferences
corresponds to making every outcome equally plausible, thereby setting
the precision of prior preferences to zero. Having said this, outcomes are



Active Inference 35

Figure 10: Epistemic foraging. This figure reports the (behavioral and physio-
logical) responses over the 32 trials as in Figure 4. However, in this simulation,
all outcomes were assigned the same utility. This means there is no extrinsic
value, and the agent maximizes epistemic value by first resolving its uncertainty
about the context (by going to the cue location) and then avoiding (the mildly
ambiguous) upper arms. This behavior is shown schematically, and in terms of
place cell firing, in the lower panels.



36 K. Friston et al.

still limited to those entertained by an agent’s beliefs about the world.
The set of outcomes entailed by a particular generative model could be
construed as preferred outcomes, where all other possible outcomes have
been eliminated and, effectively, have a large negative utility. This means
that in one sense, explorative or epistemic behavior is always restricted
to outcomes that, a priori, an agent prefers or, equivalently, outcomes that
characterise an agent.

4.4 Summary. In summary, we have reviewed several simulated re-
sponses that bear a remarkable resemblance to empirical electrophysiolog-
ical responses in spatial navigation and classical ERP paradigms. We have
also seen responses characteristic of dopaminergic activity during instru-
mental learning, when examining the encoding of precision. Although the
similarity between simulated and empirical responses is at best metaphor-
ical, it is interesting to note that all of these behaviors emerged from a stan-
dard variational scheme that was applied to a generic state-space model.
In other words, there was no attempt to reproduce empirical findings by
hand-tuning the generative model or the inversion scheme. The only thing
we assumed was that outcomes are sampled every 250 ms. More specifi-
cally, the neuronal dynamics in equation 2.8 follow from a gradient descent
on variational free energy, where variational free energy is defined com-
pletely by the generative model, and the generative model is based on a
generic Markovian process. This is important because it provides a putative
variational principle for neural dynamics that can be described in terms of
a Lyapunov function (variational free energy) from a dynamical systems
perspective (Stam, 2005). Alternatively, we can think of neuronal activity
as conforming to Hamilton’s principle of least action, where action is the
path integral of free energy (Friston, 2013). In short, the simulations above
constitute a construct validation of the ensuing process theory in relation to
empirical electrophysiology and the numerous normative models inspired
by these empirical phenomena. Clearly, variational principles do not, in
and of themselves, prescribe the aspects of neurobiology we have consid-
ered, in the same sense that natural selection does not prescribe a particular
phenotype. However, they may offer a relatively straightforward and tele-
ological perspective on neuroanatomy and physiology (Friston & Buzsaki,
2016).

5 Conclusion

We have described an active inference scheme for discrete state-space mod-
els of choice behavior that is suitable for modeling a variety of paradigms
and phenomena. This generic scheme offers a process theory that is based
on a standard (gradient descent) minimization of variational free energy—
or approximate Bayesian inference. The ensuing process theory provides a
simple (perhaps oversimplified) account of many empirical phenomena
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that include repetition suppression, omission responses, violation re-
sponses, place cell activity, phase precession, theta sequences, theta-gamma
coupling, evidence accumulation, race-to-bound dynamics, and transfer of
dopamine responses. It is worth reiterating that these emergent proper-
ties follow from, and only from, the form of the underlying generative
model.

In this sense, the challenge is to identify the generative models that best
explain empirical responses. We have focused on a simple and generic form,
but there are clearly many alternatives and extensions. Key among these
are hierarchical models with deep temporal structure (George & Hawkins,
2009; Specht, 2014), and models in which prior preferences are absorbed
into beliefs about state transitions or contingencies. Appendix F touches
on further extensions that consider not the path integral of expected free
energy but the expected path integral of free energy and the distinction
between naive and sophisticated schemes. This distinction may be partic-
ularly important for understanding planning and metacognition and their
physiological correlates (Lisman & Redish, 2009; Penny et al., 2013; Pezzulo
et al., 2014).

In closing, one should acknowledge that good process theories ”should
explain what is already known more parsimoniously than any other theory
of comparable explanatory scope, but they should also stick their neck out
to specify what is forbidden, and what new phenomena have not been
observed yet but should be or could be” (personal communication from an
anonymous reviewer). We will not meet this challenge here; however, it is
interesting to note that the epistemic imperatives implied by minimizing
variational free energy lead to a parsimonious (minimally complex) yet
accurate description of observable outcomes or facts (see equation 2.4). In
this sense, active inference may offer a formal (metatheoretical) description
for the scientific process itself.

Appendix A: Belief Updating

Variational updates are a self-consistent set of equalities that minimize
variational free energy, which can be expressed as the (time-dependent)
free energy under each policy plus the complexity incurred by posterior
beliefs about (time-invariant) policies and parameters, where (ignoring
constants):

F = D[Q(x)||P(x)] − EQ[ln P(õ|x)]

=
∑

τ

EQ[F(π, τ )] + D[Q(π )||P(π )] + D[Q(γ )||P(γ )]

+ D[Q(A)||P(A)] + . . .
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=π · (
�
π + F + γ · G) + ln Z + βγ − ln γ +

∑
i

(ai − ai) · �

Ai

− ln B(ai) + . . .

The free energy of hidden states and the expected free energy are given by

Fπ = F(π )

F(π )=
∑

τ

F(π, τ )

F(π, τ ) = EQ̃[D[Q(sτ |π)||P(sτ |sτ−1, π )]]︸ ︷︷ ︸
complexity

− EQ̃[ln P(oτ |sτ )]︸ ︷︷ ︸
accuracy

= sπ
τ · (
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τ − �

Bπ
τ−1sπ

τ−1 − �

A · oτ )

Gπ = G(π )

G(π ) =
∑
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G(π, τ )

G (π, τ )= D[Q(oτ |π)||P(oτ )]︸ ︷︷ ︸
expected cost

+ EQ̃[H[P(oτ |sτ )]]︸ ︷︷ ︸
expected ambiguity
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τ · (
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τ · H.
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D. Z = ∑
π exp(−γ · Gπ ) and

�

A = ψ(a) −
ψ(a0). The beta function of the column vector aiis denoted by B(ai). Us-
ing the standard result, ∂aB(a) = B(a)

�

A, we can differentiate the variational
free energy with respect to the sufficient statistics (with a slight abuse of
notation and using ∂sF := ∂F(π, τ )/∂sτ

π ):
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Bπ
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Bπ
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Z

∂γZ − β
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∂γZ = − exp(−γ · G) · G

π0 = σ (−γ · G)
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∂aF = ∂a
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�
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sτ =
∑
π

ππ · sπ
τ

Finally, the solutions to these equations give the variational updates in the
main text (see equation 2.7).

Appendix B: Generalized Coordinate Descent

Equation 2.8 follows in a straightforward fashion from a gradient ascent on
variational free energy:
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where the gradients (prediction errors) are derived in appendix A:
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τ = (

�

A · oτ + �

Bπ
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τ−1 + �

Bπ
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∂γF = εγ = (β − β) + (π − π0) · G.

Practically, one can solve these equations using the discrete updates:

sπ
τ (t + �t) ≈ σ (
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s
sπ
τ · επ

τ )
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β(t + �t)≈ β(t) + �t · εγ ,

In the simulations, we used �t = 1/4 but continued iterating for 16 (250 ms)
iterations.

Appendix C: Belief Propagation

The mean field assumption approximates the posterior with the product of
marginals over the current state, lending free energy the following form:

F(π )= D[Q(s1|π) . . . Q(sT |π)||P(s1, . . . , sT |π)]︸ ︷︷ ︸
Relative complexity

− EQ(st |π)...Q(sT |π)[P(õ|s1, . . . , sT )]︸ ︷︷ ︸
Accuracy

.

In practice, this leads to an overconfidence that can be finessed by explicitly
optimizing the marginal posterior for each time point. This corresponds
to belief propagation, which minimizes the following free energy (Yedidia,
Freeman, & Weiss, 2005):

F(π )=
∑

τ

F(π, τ )

F(π, τ ) = 1
2 D[Q(sτ |π)||PF(sτ |π)]︸ ︷︷ ︸

Forward complexity

+ 1
2 D[Q(sτ |π)||PF(sτ |π)]︸ ︷︷ ︸

Backward complexity

− EQ(st |π)[P(oτ |sτ )]︸ ︷︷ ︸
Accuracy

= sπ
τ ·

(
�

sπ
τ − 1

2 ln(B̄π
τ−1sπ

τ−1) − 1
2 ln(B̄π†

τ sπ
τ+1) − �

A · oτ

)
.

In this formulation, complexity is defined in relation to empirical priors
based on the approximate posterior expectations of the preceding (forward)
and subsequent (backward) states:

PF (sτ |π) = EQ(s
τ−1|π)[P(sτ |sτ−1, π )] ≈ P(sτ |oτ−1, oτ−2, . . . , π ),

PB(sτ |π) = EQ(s
τ+1|π)[P(sτ |sτ+1, π )] ≈ P(sτ |oτ+1, oτ+2, . . . , π ).

Free energy is minimized when Q(sτ |π) = P(sτ |oτ , oτ−1, . . . , π ) = P(sτ |oτ ,

oτ+1, . . . , π ), is the marginal posterior distribution, given past and future
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observations. In this case, free energy reduces to (negative) log evidence:

F(π, τ ) = 1
2 D[Q(sτ |π)||P(sτ |oτ , oτ−1, . . . , π )]︸ ︷︷ ︸

f orward divergence

+ 1
2 D[Q(sτ |π)||P(sτ |oτ , oτ+1, . . . , π )]︸ ︷︷ ︸

backward divergence

− ln P(oτ )︸ ︷︷ ︸
evidence

=− ln P(oτ )︸ ︷︷ ︸
evidence

.

Here, we have omitted (uniform) priors over hidden states P(sτ ). Note that
this marginal free energy retains the same form but uses the log of expec-
tations, as opposed to expectations of logs. Furthermore, it uses backward
transitions, B(u)† = Dir(b(u)T ), such that the free energy gradients become

∂sF(π, τ ) = �

sπ
τ − �

A · oτ − 1
2 ln(Bπ

τ−1sπ
τ−1) − 1

2 ln(Bπ†
τ sπ

τ+1).

Although this formulation is slightly more complicated, it retains a biologi-
cal plausibility in the sense that the computations are local and are mediated
by connections that do not change with time. This computational simplic-
ity of the scheme should be contrasted with the exact inference scheme
described in appendix D.

Appendix D: Exact Bayesian Inference

An exact inference over sequences rests on using posterior distributions
over the current states, conditioned on the previous states. This leads to a
more complicated but exact scheme in which transitions (i.e., sequences)
are retained in the posterior. In this instance,

Q(x)= Q(sT |sT−1, π ) . . . Q(s1|π)Q(π ) . . .

Q
(
st |st−1, π

) =Cat(sπ
t ).

The free energy under any policy now becomes a tight or exact bound on
log evidence,

F(π )= D[Q(sT |sT−1, π ) . . . Q(s1|π)||P(sT |sT−1, π ) . . . P(s1|π)]︸ ︷︷ ︸
complexity

− EQ[ln P(o1, . . . , oT |s1, . . . , sT )]︸ ︷︷ ︸
accuracy
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=
T∑

τ=1

diag(sπ
τ · �π

τ )sπ
τ−1 . . . sπ

1 − oτ · �

Asπ
τ . . . sπ

1 ,

�π
τ = �

sπ
τ − �

Bπ
τ−1,

with the following gradients:

∂sF = �π
τ diag(sπ

τ−1 . . . sπ
1 )

+
T∑

ν=1

(diag(sπ
ν · �π

ν ) − oν · �

As
π

ν )(sπ
ν−1 . . . sπ

τ+1) ⊗ (sπ
τ−1 . . . sπ

1 ).

In the absence of observations, the solution requires the posterior tran-
sitions to be equal to the prior transitions: �π

τ = 0 ⇒ �

sπ
τ = �

Bπ
τ ⇒ ∂sF = 0.

Otherwise, the hidden states are updated on the basis of outcomes in the
past and the future (when they are available).

Appendix E: Simulating Dopamine Responses

To simulate dopamine discharges, we assume that the encoding of expected
precision γ is the postsynaptic response to dopaminergic input δ, modeled
with a first-order Taylor approximation:

.
γ = κ1 · δ − κ2 · γ ⇒

δ = 1
κ1

· .
γ + κ1

κ2
· δ.

In this article, κ1/κ1 = 1/64, which corresponds to a postsynaptic time con-
stant of about 1 s (Bengtson, Tozzi, Bernardi, & Mercuri, 2004), assuming
each iteration corresponds to 16 ms.

Appendix F: Sophisticated Schemes

The scheme described in this article is naive or unsophisticated in the sense
that policies are selected that minimize the path integral of expected free
energy, as opposed to the expected path integral of free energy. This means
that policies are selected to minimize uncertainty about hidden states as op-
posed to minimizing uncertainty about policies. Note that by construction,
the uncertainty about (or entropy of) beliefs about policies corresponds to
the expected (path integral of) free energy. In other words, minimizing the
expected path integral corresponds to resolving uncertainty about behav-
ior. One could consider more sophisticated agents whose prior beliefs are
based on the expected path integral—for example (omitting precision for
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simplicity):

ln P (π ) = −G(π |ot ) − G(π |ot+1) − . . .

G
(
π |ot+1

) = EQ(ot+1|π)P(πt+1 )[G(πt+1|ot+1)]

Q
(
ot+1|π

) = EQ(st+1|π)Q(ot+1|st+1) = Asπ
t+1

P
(
πt+1

) = σ (G(πt+1|ot+1))

In this case, the expected free energy after the next outcome G(πt+1|ot+1)

is evaluated in the same way as the expected free energy at the current time
G(πt |ot )

∧= G(π ) for each (fictive) outcome ot+1 by using the posterior over
current hidden states as the prior D = sπ

t+1. Clearly, this scheme is com-
putationally more involved than the naive scheme and calls on recursive
variational updating. This means that sophisticated agents are metacogni-
tive in some sense because they perform belief updating (based on fictive
outcomes) to optimize their belief updating.

Heuristically, the difference between naive and sophisticated schemes
can be seen in terms of the first choice in current paradigm. For the naive
agent, the best policy is to sample the cue location and stay there, because
moving to a baited arm has, on average, no extrinsic value (and provides
ambiguous outcomes). Conversely, the expected free energy of retrieving
a reward after observing the cue is low for both (fictive) outcomes. This
means the best policies are to behave epistemically on the first move and
then pragmatically on the second move. Note that the sophisticated agent,
unlike the naive agent, can entertain future switches between policies.
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