
THE INFLUENCE OF DIMENSIONAL AND

DIMENSIONLESS PARAMETERS ON THE DYNAMICS OF

THE HORSESHOE VORTEX UPSTREAM OF A CIRCULAR

CYLINDER

By:

Manar Safar Alyas Al-Saffar

A thesis submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

The University of Sheffield

Faculty of Engineering

Department of Civil and Structural Engineering

August, 2016



“Turbulence was probably invented by the Devil on the seventh

day of Creation when the Good Lord was not looking”

Peter Bradshaw-1994

i



Abstract

Previous studies characterising horseshoe vortices upstream of circular cylinders in open

channels have focused on changes in the Reynolds number. This study investigates the

effect of the Froude number and other flow and geometrical parameters on the nature

of the horseshoe vortex system that develops in front of a circular cylinder. The results

show horseshoe vortex dynamics dominated by cylinder diameter, Froude number and

flow depth. Instantaneous vorticity fields were classified into either two or three groups

of vortex formations based on their turbulence stress magnitudes with a high dependence

shown upon the Froude number and cylinder diameter. The peak stress properties of the

horseshoe vortex system was found to be controlled within a certain threshold of Froude

numbers (Fr . 0.3 and Fr & 1.7). It was also found that a single point under the horseshoe

vortex can represent the vortices better than the whole field that encompasses the whole

system. The characteristics of the horseshoe vortex formed upstream of a wall-mounted

circular cylinder in an open channel were studied using two dimensional Particle Image

Velocimetry. Experiments were conducted for different flow conditions and focused on

Froude numbers, cylinder diameters, flow depths and bulk flow velocities. Two groups

of experiments were conducted. The first consisted of twenty five experiments with a

wide range of Froude numbers, including sub-critical, critical and super-critical flow con-

ditions. This group was analysed as a whole and then the lower sub-critical experiments

followed by the upper sub-critical to super-critical experiments. Another set of nine sub-

critical experiments were conducted focusing on the experimental design to segregate flow

and geometrical parameters. Quadrant analysis was used to analyse the contribution of

near-bed turbulent stresses in the region upstream of the cylinder. Applying multivariate

statistical techniques, the relationship between geometrical parameters, flow conditions

and the changes in the location and magnitude of the turbulent stresses under the horse-

shoe vortex were examined.

This study, introduces the Froude number as a new governing parameter of the horse-

shoe vortex system, which can be important for fluvial systems with change of hydraulics

regimes as mountainous rivers.
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Chapter 1

Introduction

1.1 Background

The formation and dynamics of the horseshoe vortex (HV) system in front of a wall-

mounted obstacle is of practical relevance due to its impact on the stability of real world

structures, e.g. bridge piers and offshore wind-farm foundations. These vortex systems

sometimes denoted as necklace vortex (Kirkil and Constantinescu, 2012) due to the three-

dimensional shape it forms around a bluff body, where there are two primary types:

laminar and turbulent. These may be discriminated based on the dimensionless Reynolds

number (Re) that characterises the ratio of inertial forces to viscous forces. It is written

as Re = ρUl
µ

, where, ρ is the fluid density (kg/m3), U is the bulk velocity of flow (m/s),

l is the characteristics length (m), µ is the dynamic viscosity of the fluid (kg/m.s). The

bulk flow velocity, U = Q
bh

, Q is the discharge (m3/s), b is the flume width (m), and h is

the flow depth (m).

According to Dargahi (1989), the HV formation is produced by the separation of the

three-dimensional boundary layer, and this is induced by the adverse pressure caused by

the presence of a wall-mounted bluff-body. The flow detaches from the boundary layer at

the so-called separation lines. After the flow separates, it rolls up to form a vortex which

then moves downstream (Sumer et al., 1997). A primary vortex is developed as a conse-

quence of the largest flow separation and attached to it, immediately in the upstream near

the wall region, a secondary vortex is also formed, as shown in Figure 1.1. The formation

1
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of these flow structures govern the amplification of the magnitude of the turbulent and

wall stresses in front of the obstacle. The characteristics of the flow around cylinders

have been extensively studied by different researchers (Baker, 1979, 1980; Dargahi, 1989;

Sahin et al., 2007) and the common conclusion of these studies has been that the horse-

shoe vortex system is very complex. The formation process of the HV begins when the

incoming flow rotates downwards as a result of encountering an obstacle. According to

(Kirkil et al., 2008, p. 572) “a difficult aspect of local scour, is the complex, highly 3D and

unsteady character of the flow field producing scour. Turbulence structures over a wide

range of turbulent scales are present around the cylinder, and control the entrainment

and transport of sediment from the scour hole”.

Flume bed 

C
y
l
i
n
d
e
r Flow 

Primary vortex 
Secondary vortex 

Figure 1.1: An instantaneous streamlines of horseshoe vortex system in the plane of
symmetry upstream of a circular cylinder for one of the experiments of this study
(dimensions are not to scale).

The problem of local scour around bridge piers and abutments is still a major factor

for bridge failure due to hydraulic deficiencies (Yanmaz and Ustun, 2001), as opposed to

structural deficiencies. According to Briaud et al. (1999) an accurate prediction of the

scour depth and pattern is essential for the safe and economic design of bridge foundations,

while (Kirkil et al., 2005a, p. 1) state that: A clear understanding of the scour mechanism

and in particular of the structure of the horseshoe vortex system that forms at the base of

the piers or abutments, is still lacking. According to Dargahi (1989) the horseshoe vortex
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system is the main factor that causes scouring upstream of bridge piers.

The studies above showed that the scour around cylinders is caused by the HV system

which has a very complex nature that needs to be understood for better understanding of

the scour mechanism. I believe that an important part of understanding this mechanism

is defining the parameters that control it. Hence, this study is conducted to separate

the effect of different dimensional and dimensionless parameters (Froude number Fr, Q,

U , cylinder diameter D, h, cylinder diameter Reynolds number ReD, and flow depth

Reynolds number Reh) on the near wall flow dynamics under the HV system. It is

the hypothesis of this work that Fr has a significant supplementary control on the HV

geometry and dynamics. Therefore, the experimental design of this study segregates the

effect of flow and geometrical parameters on the turbulent stresses for two regions, under

the HV system and across the flow field for a wide range of Fr numbers. The independent

and dependent parameters of the experiments were analysed using multivariate statistical

techniques (stepwise regression, Press (2012) and K -Means classification, Everitt et al.

(2011)). While, the former was used to find the effect of the controlling parameters on

the dynamics of the HV system, the latter was used to explore the effect of the same

parameters on the geometry of the system.

1.1.1 Coherent Structures

Coherent structures (CSs) exist in most turbulent flows, including the wakes and boundary-

layers found in nature (Ashworth et al., 1996; Venditti et al., 2013). They are regions

of large-scale organised motion that have a relatively long lifetime with respect to intrin-

sic flow timescales. Coherent structures were first experimentally investigated by Grant

(1958); Keffer (1965) and then Kline et al. (1967) using visualisation methods. At the

same time, the presence of CSs was confirmed by the analytical study of Bakewell Jr and

Lumley (1967). The recent developments in experimental techniques and computational

power have permitted better investigation and understanding of the dynamics of these

structures. So far, there is no clear definition for what a CS is, but Hussain (1983) said

“coherent structure is a connected, large-scale turbulent fluid mass with a phase-correlated

vorticity over its spatial extent”. Vortices, as examples for CSs, are common formations
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in turbulent flows. The existence of vortices is an old idea, however more criteria needs

to be available for the identification of a vortex. Horseshoe vortices, and cylinder wake

vortices are a few of many examples of a vortex formation. Following from this definition,

there have been a large number of attempts to formulate local and non-local definitions

of CSs from the properties of the velocity gradient tensor. Local methods (Hunt et al.,

1988; Hussain, 1983; Chakraborty et al., 2005, e.g.) are typically based on the eigenvalues

of this velocity gradient tensor, or tensors derived from it. Given that the vorticity field

may be obtained from the velocity gradient tensor, there are clear formal connections to

the notion of vorticity, although the nonlocality of the action of the pressure field and the

vorticity field add an additional complexity (Chevillard et al., 2011).

1.1.2 Froude Number (Fr)

The Froude Number is a dimensionless parameter measuring the ratio of the inertia force

on an element of fluid to the weight of the fluid element, in other words, it is the ratio

between the inertia forces and the gravitational forces. It is a fundamental fluid dynamics

quantity that is of immense importance in channel flows and river studies where wave and

surface behaviour need to be characterised. It is typically defined as:

Fr =
U√
gh

(1.1)

where, g is the acceleration due to gravity. The flow in open channel is classified as sub-

critical, critical or super-critical if (Fr . 1, Fr ∼ 1, or Fr & 1) respectively. For flows

where Fr < 0.5, an instability that develops on the free surface can be dissipated. For

super-critical flow, standing waves develop that perturb the free surface and the water

column beneath, affecting the formation of bedforms in mobile bed channels. For example,

Simons and Richardson (1961) classified the flow in open channels with movable beds to

be either lower flow regime for Fr < 1 where the bedforms of lower stage plane beds,

ripples, and dunes exist, or upper flow regime for Fr > 1 with the existence of upper

stage plane beds, in-phase wave, chutes, and pools. Although, Froude number is one of

the crucial flow characteristics of open channels, no study has been conducted to show
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if there is any change in the characteristics of the horseshoe vortex around a cylinder

as a function of Froude number. This is important because bridges or similar structures

that affect flow in-channel will not be located where the Froude number remains constant

for all times. Consequently, changes to scour potential as a function of horseshoe vortex

modification need to be understood. Froude number is an important factor in scour depth

prediction equations around bridge piers and imprecise prediction leads to a weakening

of the bridge foundation during flood events, which causes bridge failure. The Colorado

State University (CSU) equation 1.2 and Froehlich equation 1.3 are examples for pier

scour depth prediction:

ys = 2 .0k1k2k3k4 (a)0 .65 (y3 )0 .35 (Fr3 )0 .43 (1.2)

Where, ys is scour depth, k1 is correction factor for pier nose shape, k2 is correction factor

for angle of attack of flow, k3 is correction factor for bed condition, k4 is correction factor

for armouring of bed material, a is pier width, y3 is flow depth directly upstream of pier,

and Fr3 is Froude number directly upstream of the pier.

ys = 0 .32φf (a
′
)0 .62 (y3 )0 .47 (Fr3 )0 .22 (D50 )−0 .09 + a (1.3)

where, a
′
=a(cosθp ) is projected pier width with respect to the direction of flow, θp is the

angle of attack, φF=1.3 for square-nosed piers, φF=1.0 for round-nosed piers, and φF=0.7

for sharp-nosed piers (Akan, 2011).

1.2 Thesis Aims

In this study, the main concern is with the behaviour of the horseshoe vortex system

upstream of a circular cylinder, and the general aim of this work is three-fold:

1. To explore the effect of seven control parameters ( Fr, Q, U , D, h, ReD, and Reh)

on the dynamics and geometry of the HV system, in different flow conditions with

Fr as a reference, and isolating the controls according to the significance of their
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effect.

2. Finding to what extent the Froude number has a direct or indirect effect on the HV

dynamics. The parameters are shown in Table 1.1 with the reason for including

each of the parameters in this study.

3. Compare the characteristics of the HV system for very low Fr (lower sub-critical

flow conditions) and high Fr (upper sub-critical and super-critical flow conditions)

with that of more typical natural flow conditions.

The first two aims above are strongly connected, and the answer to the second should

emerge from the first. To fulfil the aims, the study has to be divided into two phases

represented by two groups of experiments.

Table 1.1: The dimensional and dimensionless parameters used in the study

Parameter The reasons for including the parameter

Fr It is hypothesised that free-surface deformation and vortex
suppression as a function of Fr will affect the HV system.

Q To explore the combined effect of flow velocity and flow
depth, which affect vertical pressures (head) acting on the
HV system, as well as the momentum flux into the HV re-
gion.

U To explore the effect of incoming momentum on the HV
system.

D A parameter found to have effect on the HV system (Dar-
gahi, 1989) that influences the geometry of the system as a
consequence of lateral momentum flux.

h To explore the independent effect of the remaining param-
eters in Fr, under constant gravity, and to examine how
pressure head affects the geometry of the HV system.

ReD Previous work highlights its importance: (Baker, 1979, 1980;
Dargahi, 1989; Rodŕıguez y Domı́nguez et al., 2006). This is
because of the combined effect of incoming momentum (U)
and the control exerted by diameter on lateral momentum
flux, assuming constant viscosity.

Reh Previous studies included it (Dargahi, 1989), and it focuses
attention on vertical momentum transport down the front
of the cylinder rather than lateral fluxes.
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1.3 Methodology and Experimental Approach

To fulfil the above mentioned objectives, the study has been divided into two phases of

experimental design which provide a control on the various flow variables, allowing us to

determine the factors affecting the near wall flow dynamics with some confidence.

Firstly, in phase one, a group of experiments has been conducted with a wide range of Fr,

from low sub-critical flow conditions to high super-critical flow conditions. In some cases,

the Froude number was kept constant while changing the cylinder Reynolds number by

varying the cylinder diameter and keeping the flow velocity constant, the results have

been analysed in Chapter 3.

The second phase was the investigation of the same dynamics with lower, sub-critical flow

conditions (Fr < 0.5), as the studies shown in the literature review section, Section 1.4,

are under this range of Fr. This work was divided into three groups of experiments, in

each of which different flow parameters were held constant or varied in order to provide a

thorough exploration of the controls on the HV dynamics so that statistically significant

effects could be elucidated, the results are presented in Chapter 4 .

The work is experimental but the approach spans the RANS and eddy-resolving frame-

works in that analyses of the vorticity field in the plane of symmetry upstream of a circular

cylinder are used to couple the observed flow topology (vortex formation) to the Reynolds

stresses (and the quadrant decomposition thereof). Two dimensional Particle Image Ve-

locimetry (PIV) is used to determine instantaneous flow fields for the longitudinal, u,

and vertical, w, velocity components, as well as the vorticity field, (Landreth and Adrian,

1990):

ω =
∂w

∂x
− ∂u

∂z
. (1.4)

where x and z are the horizontal and vertical coordinates, respectively. Identification

of the region affected by the HV system was performed using a Proper Orthogonal De-

composition (POD) of the PIV results, while classification of individual PIV frames was

undertaken using a K -Means classifier.
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1.4 Focused Literature Review

Horseshoe vortex system dynamics have been studied using experimental and numerical

techniques, but also using several geometrical configurations, such as flat plates, circu-

lar and square cylinders, and triangular cross-sections (Schwind, 1962; Seal et al., 1995;

Lin et al., 2002, 2003, 2008). According to Sahin et al. (2007) the circular cylinder has

attracted the interest of researchers, more than other shapes, because of its relevance

to industry. In addition, due to the combination between its simple geometry and the

unsteadiness in the flow field induced by oscillations of the separation region or in other

words of the HV system (Pattenden et al., 2005). Therefore, most of the fundamental

observations of the relevant fluid dynamics are mainly related to studies of this configu-

ration (Baker, 1979, 1980; Dargahi, 1989; Sahin et al., 2007).

In his review paper, Simpson (2001) presented important studies that have examined both

laminar and turbulent junction flows. As a consequence of the pressure drop around an

obstacle, a three-dimensional separation occurs, which is different for the laminar and

turbulent cases. In the latter case, this mechanism is responsible for the high turbulent

intensities, fluctuations of the surface pressure, and the scouring upstream of the obstacle

in case of movable beds.

Existing studies may be classified as experimental and numerical. The section on exper-

imental studies shows how research in the area has developed and how it relates to our

experimental study. The section on numerical studies highlights the limitations of current

numerical simulations when the Froude number is high.

1.4.1 Experimental Studies

Most of the previous studies that have examined various aspects of horseshoe vortex

systems are similar in their flow conditions and the range of Reynolds number used.

Thus, these experimental studies either do not refer to the Froude number, or have been

performed under sub-critical flow conditions. One of the first works that studied the

characteristics of flow around a circular cylinder was by Fage and Falkner (1931), where

they used a wind tunnel with three circular cylinders of 0.0744 m, 0.1496 m and 0.2261 m
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in diameter. They noticed that for a 0.0744 m diameter cylinder, the flow characteristics

(boundary layer thickness, pressure coefficient, and surface friction), with the exception

of the surface friction, were not affected by the change in Reynolds number. However,

for the other two cylinder sizes the flow characteristics changed progressively with the

Reynolds number.

Roshko (1961) used a circular cylinder of 0.457 m diameter in a pressurised wind tunnel

and he tested the drag force coefficient for Reynolds numbers between 106 and 107 noticing

that the drag coefficient increased with the Reynolds number to reach 0.7 at Re = 3.5×

106, where upon it remained constant. At this same threshold, obvious vortex shedding

occurred at a Strouhal number (Sr) of 0.27 (Sr = fD
U

, where, f is the frequency). Baker

(1979, 1980) noticed from flow visualisations and pressure measurements, upstream of a

circular cylinder of diameter D, that up to six vortices were generated from the oscillation

of the HV system. From laminar flow measurements, he found that the oscillations of

the HV system become irregular as the Reynolds number based on cylinder diameter

ReD = UD/ν, where ν is the kinematic viscosity, increased and concluded that these

oscillations were not a result of cylinder wake vortex shedding. From his study under

turbulent conditions, Baker (1980) studied the flow around different circular cylinders

with diameters of 0.025 m to 0.101 m using oil and smoke visualisation technique. His

study was undertaken for a range of cylinder diameter Reynolds numbers (4000 to 90

000). He noticed from his oil-flow visualisation that only four vortices exist (0,1,1‘, and

2) as shown in Figure 1.2.

Thomas (1987) found from his experimental study that the vortex shedding in front of a

cylinder is controlled by the convection and stretching of the mean flow near the cylinder,

which is a function of cylinder diameter.

Dargahi (1989) studied the HV system around a cylinder of D = 0.15 m in a flume

with a fully turbulent flow with flow depth Reynolds number, Reh, ranging from 6600 to

65000 and Froude number ranging from 0.05-0.21. He found that while the number of

vortices was a function of Reh, the size of the vortices was dependent only on the cylinder

diameter. He also noticed that the HV system was shedding in a quasi-periodically way,

independently of the wake vortices. Figure 1.3 shows a vertical plane at the line of

symmetry (a) and a horizontal plane view for the formation of the HV system (b).
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Figure 1.2: The four vortices of HV system (Baker, 1980).

Greater detail on the relevant process mechanics have emerged in subsequent studies

working at greater spatial and temporal resolution.

Figure 1.3: a- Vertical plane view for the HV system at the line of symmetry upstream
of the cylinder, b- Horizontal plane view close to the bed (Dargahi, 1989).

For example, Devenport and Simpson (1990) investigated the turbulent boundary layer

in front of a cylindrical wing mounted normally to a flat surface. Their objective was to

explore the time-dependent and time-averaged turbulent structure in the region. Close
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to the cylinder they found turbulent stresses with values many times larger than the ones

observed in normal turbulent flows.

Baker (1991) re-analysed existing experimental data from different sources (Roper (1967);

Norman (1972); Baker (1979, 1980); Sharma (1988)) and mainly focused on the phe-

nomenon of the oscillatory behaviour of the HV when it is undergoing a transition from

low Reynolds number, where the steady laminar HV exists, to higher Reynolds number

where fully turbulent HV occur. In his study, Baker re-analysed the data according to

two hypotheses: the HV oscillations are either because of the whole vortex system os-

cillations; or, because of the instabilities of the HV core. Both types of oscillation were

found to exist as a function of spatial position and effective cylinder width. Roulund

et al. (2005) investigated numerically and experimentally the influence of the flow depth,

Reynolds number, and bed roughness on the HV system, Fr ranged between 0.2 and 0.5

in the study. They found the influence of ReD on HV to be significant. In the laminar

regime, the HV size and bed shear stress under the system were found to increase with

higher ReD, but the situation was the opposite in turbulent flows where the HV size and

bed shear stress decreased with increasing ReD. Also, the results showed an increase in

the size of the HV and bed shear stress with an increasing ratio between the thickness of

the boundary layer and cylinder diameter h/D. Above a certain threshold, no changes

on the size and bed stresses were found and no significant effects of the bed roughness on

the HV size and the bed shear stress were found. Roulund et al. (2005) also found that

the scour depth was influenced by the Froude number.

An experimental study by Rodŕıguez y Domı́nguez et al. (2006) used a laser illumina-

tion of seeded particles to visualise the horseshoe vortices in front of a circular cylinder

(D = 0.05 m) between two parallel plates, using different ReD and different height to

width ratios. Four regimes of the HV system were shown: (i) steady vortex systems with

variation of the number of vortices present; (ii) oscillatory vortex system; (iii) amalga-

mating vortex system; and, (iv) the breakaway vortex system. The frequency of periodic

vortices (which scaled with the Strouhal number) was also studied, and as the Reynolds

number was increased, a systematic growth of the dimensionless frequency was observed.

The study showed that height to diameter ratio has a significant effect on the behaviour

of the vortex system for a dimensionless height of the cylinder is less than or equal to 1.
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The number of vortices and their strength was increased with a greater height to diameter

ratio, until a threshold, at which the vortex system properties remained constant. This

showed that for tall cylinders the flow became independent of the height to diameter ratio.

In this study sufficiently tall cylinders will be used to ensure the independence from cylin-

der height effects. Sahin et al. (2007) studied the behaviour of the horseshoe vortex

system around a circular cylinder using high-image density particle image velocimetry by

generating the laser plane at four different elevations. The measurements were under a

constant diameter Reynolds number of ReD= 4000. The results showed that the dimen-

sionless Reynolds stress covariances u′v′/U2, where u′ and v′ are the velocity fluctuations

in the stream-wise and span-wise directions respectively. It was found that studying the

behaviour of the HV system at all elevations is important as the turbulence quantities

varied with elevation.

1.4.2 Numerical Studies

In the 1990s, numerical studies of flow around circular bodies started to emerge when

Richardson and Panchang (1998) and Olsen and Kjellesvig (1998) used a hydrodynamic

model for modelling three dimensional flow and scour around a circular cylinder mounted

in a sand bed flume. The former used a k-ε turbulence model, and for the latter a

computational fluid dynamics model named FLOW-3Dr was used. The results were

compared with the laboratory observations as well as with empirical formulae for local

scour. In studies by Song and Yuan (1990), Tseng et al. (2000), Travin et al. (2000),

Wang and Moin (2002), Salaheldin et al. (2004), Roulund et al. (2005), Kirkil et al.

(2005a,b, 2006, 2008, 2009), Paik et al. (2007, 2010), Escauriaza and Sotiropoulos (2011)

Khosronejad et al. (2012), the Navier-Stokes equation was used and different numerical

simulation methods conducted, like Reynolds Average Navier-Stokes equations (RANS),

Large Eddy Simulation (LES), Detached Eddy Simulation (DES) and Direct Numerical

Simulation (DNS), to simulate different flow conditions.

Recently many more numerical studies have been conducted to characterise the HV sys-

tem. Kirkil et al. (2005b) studied the structure of HV system around wall mounted circular

cylinders, in a shallow open channel with a fixed bed, using LES with a fully turbulent



Chapter 1. Introduction 13

inflow boundary conditions and ReD of 18000. The main finding of their study was that

the structure of the HV system changes with time in a non-linear manner, and the turbu-

lent kinetic energy and pressure fluctuations near the bed and the bed shear stress values

increased beneath the HV system. In their study, Constantinescu and Koken (2005) also

used LES to study the physical behaviour of the HV system, and they found that in a

laminar boundary layer case, the HV system structure is organised and periodic, while in

the case of a turbulent boundary layer, a broad range of coherent structures exist inside

the HV system and its velocity and pressure power spectra contains a wide range of ener-

getic frequencies. Also they found in their study that the maximum values of bed shear

stress exist under the HV system.

Kirkil et al. (2005a) found from their study that the bed shear stress, turbulent kinetic

energy, and pressure fluctuation levels close to the bed increased as a result of the gen-

eral effect of the HV system, and the effect of this in mobile bed conditions is to scour

the bed material away from the area where the HV is developed. Although the study

of Chang et al. (2011) using DES was for a non-circular cylinder, it is a very important

study because it showed the importance of instantaneous flow fields rather than the mean

flow field on the scour dynamics. Comparing their study results with others based on

RANS, they found that the sediment entrainment from around the cylinder was increased

by 50%.

Escauriaza and Sotiropoulos (2011) studied a configuration based on the experimental

results of (Dargahi, 1989) using DES at two different Reynolds numbers. The researchers

found that the HV dynamics were different for the smaller Reynolds number than in the

larger one. From the comparison of the instantaneous flow fields for ReD=20000 with

ReD=39000, they found that the flow separation happens earlier and that five vortical

structures formed the HV system, which are more periodic and more organised for the

higher Reynolds number. In addition, the shedding of the vortex is more frequent, and the

mode of hairpin instability is weaker, with smaller magnitude eruptions of the wall vortic-

ity occurring. The same is also the case for the pockets of concentrated high instantaneous

shear stress upstream of the cylinder.

However, there was either no reference to the Froude number or it was less than 0.5, the

only numerical study so far that has used a high Froude number was by Kawamura et al.
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(2002) for three different Froude numbers of 0.2, 0.5 and 0.8. They used LES to investi-

gate the interaction between the surface waves and the viscous wakes underneath them in

a turbulent flow around a free surface circular cylinder. From the computational results,

the researchers found that periodic vortex shedding weakened close to the free surface at

high Froude number. However, the region where the periodic wake vortex shedding atten-

uated extended to about one cylinder diameter below the mean flow level, implying that

near the wall, Froude number effects are not significant, except for particularly shallow

flows.

1.5 Conclusion

The experimental and numerical studies, that have been conducted to characterise the

horseshoe vortex system refer in many cases to the dimensional parameters as effective

factors on the dynamics of the HV system, hence, in this work every single parameter is

taken into consideration to find out which of these factors are the most effective. The

hypothesis of this work is based on that Fr plays a significant role, alongside other pa-

rameters on the HV geometry and dynamics. Therefore, the experimental design of this

study is done to segregate the effect of flow and geometrical parameters on the turbulent

stresses for both regions under the HV system and across the flow field for a wide range

of Fr, including the lower part of sub-critical flow conditions (Fr < 0.2) and the upper

part of the sub-critical, as well as critical, and super-critical flow (Fr > 0.6), in which

the literature shows a clear lack of studies. To find out which of the flow and geometry

parameters in the experiments are affecting the HV system, various analysis of ten pa-

rameters with a physical meaning have been done. Those parameters have been extracted

from the near-bed turbulent stresses in the region where the HV system exists. The idea

of analysing the near-wall turbulent stresses is due to the fact that they are characteristics

of the HV system and as a consequence, they define the scouring potential.



Chapter 1. Introduction 15

1.6 Thesis Structure

The thesis consists of five chapters:

Chapter one has outlined an introduction to the study area and the aim and objectives of

the study. Also, a focused literature review has been presented on the studies that have

been conducted in this area of research, both experimentally and numerically. This has

highlighted the lack of work on Froude number effects. This will provide a justification

for the approach taken in this study.

Chapter two will focus on the experimental work and methods, in particular the apparatus

used in the study, specific details of the laboratory work will be explained, and the research

design details will be provided. Data pre-processing and analysis methods will also be

discussed. In Chapters three and four the results on the HV system and the near-bed

turbulent stresses upstream of the cylinders for different groups of experiments will be

presented with discussion section at the end of each chapter. In the former, a full range

of flow conditions from sub-critical, critical to super-critical will be considered. The

latter chapter focuses on a group of 9 experiments designed under lower sub-critical flow

conditions to permit the various potential controls on the dynamics to be isolated. Finally,

Chapter five will focus on the conclusions of the research, limitations and the future work

needed.



Chapter 2

Experimental Approach and

Methodology

2.1 Objectives and Structure of the Chapter

The main objectives of this chapter are:

1. Section 2.2 - To describe the water flume and the cylinder models used in the

experiments;

2. Section 2.3 - To explain the experimental design, which considers different flow

conditions (from sub-critical, through critical, to super-critical) and systematically

varies conditions for selected sub-critical Froude numbers;

3. Section 2.4 - To provide a technical description of the PIV system used to measure

the velocity of flow, which includes:

(a) Operation principles and system components;

(b) High quality PIV data;

4. Section 2.5 - To determine the necessary minimum sampling length of the experi-

ments, which ensures that the recorded data is enough to capture the dynamics of

the flow (hence, convergence based on cumulative summation and on integral time

scale statistics have been applied);

16
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5. Section 2.6 - To describe the data processing methodology;

(a) Defining the region affected by the horseshoe vortex system;

(b) Quadrant analysis;

(c) Stepwise regression;

(d) K -Means classification;

6. Section 2.7 - To give summary of this chapter and what is coming in the next

chapters;

2.2 Introduction

The experiments for this study were conducted in the fluid mechanics laboratory, at the

Civil and Structural Engineering Department, The University of Sheffield, in The United

Kingdom. The slope-adjustable recirculating flume is 16 m long, 0.5 m wide and 0.5 m

deep. The flume is made from a steel frame with fully glass walls and bottom, allowing

the laser sheet to be oriented at different angles, including illumination from the bottom

and imaging access from the side. The glass provides a smooth bed for the development

of the HV system, independent of roughness considerations. The flume glass roughness

is 0.0015 mm and that equates in all the experiments to 0.004% or less of the boundary

layer thickness, which according to Townsend (1976) and Castro (2009), can be considered

hydro-dynamically smooth.

The water was pumped into the flume by a recirculating pump with an inlet connected

to the water tank and an outlet to the upstream end of the flume. The discharge ranged

from 0.007−0.04 m3s−1 and was controlled by a mechanical valve that opened and closed

due to pressure supplied by an air compressor. This was in turn controlled from a desktop

computer using a LabView software. An electromagnetic flow meter was used to measure

the flow rate supplied to the flume. The flume was connected to a water tank with a

capacity of 14.5 m3 and dimensions of 5.0 m long, 1.1 m height and 2.65 m width. The

flow depth was controlled by a tail gate at the end of the flume. A honeycomb of 0.1 m

thick was installed at the inlet, along with a foam panel of 1 m length, 0.5 m width, and

0.07 m thickness with a 1 kg weight on top. These damped any water surface undulation
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and the impact of the pump on flow characteristics. The fully developed section was

found to be 7-9 m from the inlet and Fig. 2.1 shows a schematic diagram of the flume

with the relevant details.

There were 13 cylinder models made from circular cross-section acrylic tubes of different

diameters (Fig. 2.2). They were 0.5 m long and painted with a matte black paint to

avoid any reflection of the laser light. The cylinder needed to be heavy enough to remain

stable against the flowing water, so a stainless steel shaft of 0.25 m length was fixed inside

each cylinder. The cylinders were mounted vertically on the bed along the longitudinal

centre-line of the flume in the fully developed section, 8 m downstream the flume inlet.

A PIV system mounted adjacent to the flume was used to measure the two-dimensional

velocity fields in the plane of symmetry, upstream of the surface mounted cylinders, with

an acquisition frequency of 15 Hz. There are many studies about the HV system using

the plane of symmetry to represent its characteristics (Baker, 1979, 1980; Devenport

and Simpson, 1990; Lin et al., 2002, 2003; Rodŕıguez y Domı́nguez et al., 2006; Kirkil

et al., 2006; Sahin et al., 2007; Escauriaza and Sotiropoulos, 2011). The dynamics at

the plane of symmetry in front of the cylinder, showed a good representation of the HV

system (Escauriaza and Sotiropoulos, 2011). According to laser safety regulations, the

PIV system as well as the flume were encased by wooden panels. Figure 2.3 shows the

laser safety covering.

The experimental aim is to collect high quality data from the plane of symmetry just

upstream of the cylinder, very close to the bed, where the HV system is active and

upstream of that region, to provide a control case. Hence, using these data, it became

possible to analyse the controls on the dynamics and geometry of the HV system.

2.3 Experimental Design

Previous research has rarely adopted an experimental design that permits the separation

of the controls upon the geometry and dynamical properties of the HV system. For

example, Dargahi (1989) made use of a single cylinder diameter, making it difficult to
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Figure 2.2: The thirteen cylinders used in the study, each with a different diameter.
They scaled for the reference of the reader.

Enclosed box

Figure 2.3: Water flume covered by wooden panels for laser safety requirements as well
as the box enclosing the PIV system.
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separate out the effects due to ReD and Reh as the former was altered purely by changes

in U . Other studies Devenport and Simpson (1990); Simpson (2001); Escauriaza and

Sotiropoulos (2011) found a dependence upon ReD, but also adopted a single cylinder

diameter. It is clearly the case that the dynamics of the wake depend upon ReD because

diameter controls the size of the flow structures in the X−Y plane, while their advection

is controlled by U . However, in the plane-of-symmetry at the front of the cylinder, the

primary vorticity is oriented in the X − Z plane and, as a consequence, it does not

necessarily follow that in this region, the dynamics are a function of ReD.

The experiments of this study were designed so that the effect of the various flow variables

on the flow structure and stress distributions could be determined. There were two groups

of experiments designed as follows:

2.3.1 Sub-critical to Super-critical Flow Conditions (Fr ∈ {0.015−

2.46})

This part of the study was designed to cover a wide range of Froude numbers and then

divided into two parts of experiments. The first one covered the low Froude num-

bers ranging from 0.015 − 0.2, and listed as numbers 1 to 11 in Table 2.1. The sec-

ond part of experiments covered sub-critical, critical, and super-critical flow conditions

with Fr ranging from 0.6 − 2.46 and represented by experiments 15 to 25 in Table 2.1.

In addition, all twenty five experiments were also considered simultaneously; these ex-

periments permit us to understand the effect of a wide range of Fr with an opportu-

nity to discriminate between the various potential controls on the dynamics of HV sys-

tem. The twenty five experiments include seventeen choices of Froude number Fr ∈

{0.015, 0.02, 0.03, 0.04, 0.05, 0.059, 0.10, 0.15, 0.20, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.934, 2.46}.

Across these groups of experiments, there was control of:

• Q, D and Reh, (Group 1);

• Fr, Q, U , h, and Reh (Group 2);

• ReD (Group 3).
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• Fr, Q, U , h, and Reh (Group 4);

• Fr, Q, U , h, and Reh (Group 5); and,

• Fr, Q, U , h, and Reh (Group 6);

2.3.2 Selected Sub-critical Flows (Fr ∈ {0.2, 0.35, 0.5})

The experimental design for three selected sub-critical Froude numbers permitted us to

discriminate between the various potential controls on the HV system in addition to the

potential Froude number effect. Nine experiments were undertaken in total for three

choices of Froude number: Fr ∈ {0.20, 0.35, 0.50} (Table 2.2). Across these sets of exper-

iments, there was control of:

• Q, D and, Reh (Group 1);

• U , D, and, ReD (Group 2); and,

• h, and ReD (Group 3).

Although, there are a restricted number of cases considered, this experimental design was

useful for applying multivariate statistical techniques (stepwise regression and K -Means

in our case) to identify the controlling variables from a limited number of experiments by

systematically varying each of the variables.

2.4 Particle Image Velocimetry (PIV)

PIV was used to measure the flow velocity in all of the experiments of this study. The

technique was selected to obtain non-intrusive Synoptical time series, allowing the analy-

sis of spatial-temporal characteristics of the flow (Lin et al., 2002, 2003; Hill and Younkin,

2006; Rodŕıguez y Domı́nguez et al., 2006; Gurka et al., 2006; Sahin et al., 2007, 2010;

Adrian and Westerweel, 2011). PIV may be used for discovering flow physics and for

providing quantitative data for validating the computational simulation of complex flows
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Table 2.1: Flow conditions of sub-critical, critical and super-critical flow experiments
conducted in the laboratory.

Exp. Group Fr Q U h D ReD Reh

(m3s−1) (ms−1) (m) (m)
1 1 0.015 0.007 0.031 0.446 0.055 1705 13826
2 1 0.020 0.007 0.038 0.368 0.055 2090 13984
3 1 0.030 0.007 0.050 0.281 0.055 2750 14050
4 1 0.040 0.007 0.060 0.232 0.055 3300 13920
5 1 0.050 0.007 0.070 0.200 0.055 3850 14000
6 2 0.059 0.032 0.130 0.493 0.015 1950 64090
7 2 0.059 0.032 0.130 0.493 0.025 3250 64090
8 2 0.059 0.032 0.130 0.493 0.055 7150 64090
9 3 0.100 0.023 0.166 0.278 0.043 7138 46148
10 3 0.150 0.021 0.210 0.200 0.034 7140 42000
11 3 0.2 0.021 0.255 0.165 0.028 7140 42075
12 4 0.4 0.015 0.361 0.0.083 0.025 9025 29963
13 4 0.4 0.015 0.361 0.0.083 0.042 15162 29963
14 4 0.4 0.015 0.361 0.0.083 0.055 19855 29963
15 5 0.60 0.015 0.476 0.063 0.025 11900 29988
16 5 0.60 0.015 0.476 0.063 0.042 19992 29988
17 5 0.60 0.015 0.476 0.063 0.063 29988 29988
18 - 0.80 0.021 0.641 0.0655 0.032 20512 41986
19 6 1.00 0.021 0.75 0.056 0.027 20250 42000
20 6 1.00 0.021 0.75 0.056 0.045 33750 42000
21 6 1.00 0.021 0.75 0.056 0.063 47250 42000
22 - 1.20 0.021 0.84 0.050 0.025 21000 42000
23 - 1.40 0.016 0.853 0.0375 0.025 21325 31988
24 - 1.934 0.038 1.407 0.054 0.04 56280 75978
25 - 2.46 0.038 1.652 0.046 0.04 66080 75992
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Table 2.2: Flow conditions for the selected experiments at sub-critical Froude numbers
conducted in the laboratory.

Exp. Group Fr Q U h D ReD Reh

(m3s−1) (ms−1) (m) (m)
26 1 0.20 0.0075 0.181 0.083 0.060 10860 15023
27 1 0.35 0.0075 0.268 0.056 0.060 16080 15008
28 1 0.50 0.0075 0.326 0.046 0.060 19560 14996
29 2 0.20 0.0370 0.308 0.240 0.045 13860 73920
30 2 0.35 0.0120 0.308 0.078 0.045 13860 24024
31 2 0.50 0.0060 0.308 0.039 0.045 13860 12012
32 3 0.20 0.0130 0.211 0.123 0.070 14770 25953
33 3 0.35 0.0230 0.374 0.123 0.040 14960 46002
34 3 0.50 0.0330 0.537 0.123 0.028 15036 66051

(Christensen and Scarano, 2015).

The following sections cover the operation principles and hardware components of the

PIV system. Attention is also paid to the system settings and parameters, which may

be adjusted to acquire high quality images. The sections that follow, explain the pre-and

post-processing steps that were implemented in this study.

2.4.1 Operation Principles and System Components

In this study, a Dantec Dynamics commercial PIV system controlled by DynamicStudio

v3.31 was used to measure velocity field upstream of the wall-mounted cylinders. A typical

PIV system consists of four main parts: A laser source, camera(s), synchronizer and a

personal computer. A double pulse Nd:YAG laser operating at a maximum of 15 Hz (i.e.

fifteen pairs of frames a second) and manufactured by New Wave Research (model Solo

120 15 Hz) was used. The laser had a pulse width of 3-5 ns and a beam diameter of

4.5 mm, producing a green light of 532 nm wave length with maximum energy output

of 120 mJ . The aforementioned system was used to measure two velocity components

(stream-wise, u and vertical, w) within the plane of symmetry upstream of the cylinder.

Figure 2.4 shows the setup for the experiments; the laser sheet was kept to a width of

∼ 1 mm by using first a spherical lens, followed by a cylindrical lens with a negative

focal length. The horizontal laser plane was reflected by using a mirror tilted by 45◦,
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PIV laser head 

Front View 

45o mirror 
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Flume’s frame 
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Flow 
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Glass bed Glass bed 
Horseshoe Vortex 

Figure 2.4: Setup of the PIV system showing the laser plane upstream to the cylinder
with other system components.

as shown in Fig. 2.5. The water was seeded with d50 = 21 µ m diameter and density

1.016 g/cm3, natural colour, polyamide 12 particles. More information about the seeding

particles can be found in Adrian and Westerweel (2011). The images were recorded using

a Dantec Dynamics digital camera (FlowSenseEO 2M ) of 1200 by 1600 pixel resolution

with a maximum acquisition rate of 44 frames per second and a pixel depth of 8 − 14

bits/pixel. The lens adopted was a PC-E NIKKOR 24 mm f/3.5D ED wide-angle tilt-shift

adaptor from Nikon. DynamicStudio v3.31 software from Dantec was used to derive the

velocity fields.

The operation of the PIV system starts when a pulse of the laser illuminates the seeding

particles in the flow, and the camera records the scattered light. Then, after a very

short time, a second laser pulse is triggered and the second image in the pair is obtained.

The image pairs are divided into interrogation areas, where the initial interrogation areas

were 64 by 64 pixels, with a 50% relative overlap with the neighbouring interrogation

area in both horizontal and vertical directions. Using a multi-pass approach, this was
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subsequently reduced to 32×32 pixels interrogation areas with the same d egree of overlap.

For local neighbourhood validation a local median was used direct and with a low-pass

Gaussian filter (Westerweel and Scarano, 2005). The normalised cross-correlation between

two interrogation areas of two images is:

R(F1, F2) =
1

Na − 1

∑ (F1(i, j)− F 1)(F2(i, j)− F 2)

σ(F1)σ(F2)
(2.1)

where, Na = I × J and i = 1, . . . , I, j = 1, . . . , J , F1 and F2 are the Nai,j interrogation

areas for images 1 and 2, F 1 and F 2 are the pixel mean values for each interrogation area,

and σ(F1) and σ(F2) are the standard deviations of the pixels in each interrogation area.

Because convolution operations are implemented more rapidly in the Fourier domain,

the cross-correlation between each interrogation area is undertaken using the Fast Fourier

Transform. Peak matching gives the displacement distance, while the known time between

image pairs permits a velocity vector to be derived (Fig. 2.6). For each pair of frames, a

velocity field is created and Fig. 2.7 shows such a velocity field from one of the experiments

(Fr = 0.2, D = 0.06 m).

Mirror

Cylinder

Laser sheet

Figure 2.5: The green laser sheet at the vertical plane of symmetry reflected by a
mirror upstream of a cylinder painted with matte black paint to reduce the reflections
of the laser light.
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Figure 2.6: A flow chart showing the steps applied to the raw PIV images to obtain a
velocity vector for each interrogation area in the image.
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Figure 2.7: Instantaneous u,w velocity field derived in the vertical plain of symmetry
upstream of a cylinder for one of the experiments (Fr = 0.2, D = 0.06 m). This
velocity field contains 4218 vectors with a spatial resolution of 1.23 mm by 1.23 mm.

2.4.2 High Quality PIV Data

The signal to noise ratio of the data from the PIV measurements mainly depends on

the quality of the images recorded. This is achieved, by using the following pre- and

post-processing steps:

1. Physical Design of Experiments

In order to obtain high quality imags, the camera should be focused exactly on

the laser plane. This has been achieved by focusing the camera on a calibration

target fixed exactly in the plane of symmetry before triggering the laser. After this,

the target was removed. According to Adrian and Westerweel (2011), best results

are obtained if each seeding particle, in each individual image, are distinct from the

particles surrounding. In addition to the very short time of laser light (nanoseconds)

and short exposure camera time (500 µs), the only light to be detected by the camera

should be the laser light, as any additional light tends to reduce image sharpness and

the cross-correlation between each pair of images. For this reason, and due to safety

regulations, the system was encased in an enclosed box, and the top, bottom, and
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sides of the flume were entirely covered with wooden panels. To minimise internal

light reflections, the test cylinders were painted with a matte black paint.

To ensure a homogeneous seeding density in all of the images throughout the du-

ration of the experiment, and especially for the experiments with a very low flow

velocity, a submerged pump was incorporated into the flume water tank. The water

jet from this increased the turbulence inside the tank and kept the seeding particles

always thoroughly mixed with the water. According to Guide (2012), each particle

should occupy 2-3 pixels in diameter, and that was achieved by selecting a suitable

particle size for a given distance of the camera from the laser sheet.

2. Pre-processing Procedure

The pre-processing procedures were applied to each set of image pairs for a given

experiment. The steps described in this section are numbers 1 to 3 in Fig. 2.6. The

first step is to define the area of interest within the PIV images. For this, the region

of the interest of the images was cropped. The cropped size was always kept as the

maximum available size to cover the region of HV system activity and enough of

the area upstream where no HV system existed. The third step was to remove the

noise from the images by calculating the mean of each pixel through time using the

full series of snapshots and then subtracting it from the series of images for each

experiment. The mean subtraction was performed after transforming the image

format from 8 bit integer to double format.

3. Processing the Images

The image processing consists of undertaking the cross-correlation over the inter-

rogation areas shown in steps 4 to 10 of Fig. 2.6. The images were uploaded to

DynamicStudio v3.31 and settings were chosen following the guidelines of the man-

ual. Two different interrogation areas of 64 × 64, and 32 × 32 pixels with 50%

overlap were chosen. The size of the interrogation area was based on the displace-

ment across the image pairs (about a quarter of the size of the interrogation area)

given the time between images in a pair. The Fast Fourier Transformation (FFT)

was used to perform the cross-correlations rapidly (steps 6 to 8 in Fig. 2.6). The

50% spatial overlap between the interrogation areas lessens the problem of particles
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moving out of the interrogation area between the two laser pulses.

According to the manual, in order to fulfil the Nyquist sampling criterion, each

particle in the image should occupy between 2-3 pixels in diameter. The Nyquist

sampling criterion is the maximum frequency at which we can get meaningful in-

formation from a set of data. According to this criterion, high quality data are

obtained when the sampling frequency is twice that of the maximum frequency of

interest in the phenomenon being measured. (Chatfield, 1996). In practice, it was

found that some particles occupied 1-2 pixels and because this could violate the

Nyquist criterion and produce pixel locking, a low-pass Gaussian filter was used to

remove such occurrences.

For each of the flow conditions, trial-and-error precursor experiments were con-

ducted to achieve the maximum signal to noise ratio and match the other criteria

mentioned above. This was mainly done by changing the time between two pulses

and then fixing it when the results were acceptable. To cover the very different flow

conditions, the time between pulses of the experiments that have been conducted

ranged from 100 - 12000 µ s, with the former for the fastest flow, and the latter for

the slowest flow.

4. Post-processing Procedure

After obtaining the vector maps from the previous steps, outliers were detected

spatially then removed from the images using an iterative variant of the median

filter proposed by (Westerweel and Scarano, 2005), where < 3% of the vectors were

removed as outliers in all of the cases. A 5 × 5 vector neighbourhood was used

for the median calculation. The local median filter threshold was set to 5, and the

normalisation level set to 0.1 pixels. Then, using DynamicStudio v3.31, each vector

map was transformed to two orthogonal velocity fields, which were corrected for the

error caused by lens distortion. This was done by creating two matrices: one with

the coordinates of the centres of spots of the calibration grid before imaging; another

with coordinates of the same positions recorded from an image of the calibration

grid installed in the same position as the laser plane, with the camera at an identical

position to the experiments. An empirical transformation was then formulated to

map from one matrix into the other and a linear interpolation between two points
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using a build-in Matlab function ”TriScattered”, (Brevis and Garćıa-Villalba, 2011).

The velocity signal for each component through time at each pixel was despiked

using a Matlab code based on a two step technique developed by Goring and Nikora

(2002). The first step is to detect the spike of the signal by using a three-dimensional

phase-space thresholding method, with the phase-space formed by the signal and

its first and second derivatives. The points that are outside an ellipsoid defined by

a universal thresholding criterion (Donoho and Johnstone, 1994) are considered as

spikes. These are replaced by interpolation (a third order polynomial is fitted to the

12 points on each side of the spike and used to re-estimate the value at the centre

of this 25 point time series). Figure 2.8 shows the despiked time series in red for

the two velocity components (u, and w), with the original data shown in black, <

1% of the points were considered as spikes in all of the cases.

Data analysis then consisted of two primary methods: Direct analysis of the pixel-

by-pixel time series for u and w, and transformation of the velocity fields, into a

vorticity field, ω, using equation 1.4, and then using a modal decomposition method

to extract the dominant spatio-temporal characteristics of the horseshoe vortex (HV)

system, as explained further below.
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Figure 2.8: The despiking of two time series. The top plot shows the results for the
longitudinal velocity component u, and the bottom shows the results for the vertical
velocity component, w. The black and red colours indicate the signal before and after
despiking, respectively.
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2.5 Sampling Duration

Two methods were used to ensure that the collected data was adequate for the

intended analysis. A statistical convergence was checked using a cumulative sum-

mation test for both the two velocity components and the Reynolds stress signal

for the all 34 experiments. Also, the integral time scale was checked using the

auto-correlation function of the two velocity components.

2.5.1 Convergence Based on Cumulative Summation

A technique for statistical quality control was used to analyse the time series called

cumulative summation and this technique is consists of a series of statistical tests

developed in 1940s for the purpose of quality control of the war materials production

lines, (Bolsin and Colson, 2000). This technique was applied to test the convergence

of the stream-wise velocity component, vertical velocity component, and Reynolds

stress for a point under HV system for all of the 34 experiments. The results showed

that 50 seconds is an acceptable time for the three quantities to converge. Figure

2.9 shows an example for experiment number 26 with Fr = 0.2 and D = 0.06 m.
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Figure 2.9: Cumulative summation of u, w, and u
′
w

′
at a location of peak turbulent

stresses under the HV system for experiment with Fr=0.2, and D = 0.06 m.
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2.5.2 Convergence in Terms of Integral Time Scales

The integral time scale, Ti, is a quantitative characterisation of the necessary time for a

signal, of a measured quantity in a turbulent flow, to de-correlate (Quadrio and Luchini,

2003). In this study it is considered to be the time on the x-axis of Fig. 2.10 where

each curve intersects the zero value of R(Ti). The blue lines of Fig. 2.10 are the auto-

correlation functions of the stream-wise velocity components of the 34 experiments. The

integral time scale of each experiment was found to be between 0.2-3 seconds. It was

found that the recording time provided a minimum case of 100 integral time scale in any

experiment.
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Figure 2.10: Auto-correlation for u velocity component at a location of peak turbulent
stresses under the HV system for experiments 1-34 conducted in this study.
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2.6 Data Processing Methodology

2.6.1 Defining the Region Affected by the Horseshoe Vortex

System

We employed the Proper Orthogonal Decomposition (POD) to identify the extent of

the HV system. This technique is commonly used to identify coherent structures in

experimental or numerical data sets (Lumley, 1967; Berkooz et al., 1993; Kurniawan and

Altinakar, 2002; Cai et al., 2009; Brevis and Garćıa-Villalba, 2011) and is based on the

linear decomposition of the flow signal. It extracts the best set of statistically uncorrelated

modes, permitting a lower order representation of the system dynamics (Berkooz et al.,

1993). The direct POD method was selected as it is used when the number of measurement

fields, T , is greater than the number of spatial locations in each field (XT ×ZT ). First, a

set of vorticity fields are defined as:

Ω(x, z, t), where x = 1, . . . , XT , z = 1, . . . , ZT , and t = 1, . . . , T , and form the length

YT = XT ×ZT column vector, Ω̃(y) for each field, Ω(x, z, t = const). The YT × T matrix,

B, is then produced from the sequential compilation of all T column vectors, Ω̃. B is

decomposed using a singular value decomposition (SVD):

B ≡WSVT (2.2)

and we obtain the eigenvalues, λi, from a renormalization of diag(S):

λ =
diag(S)2

YT − 1
(2.3)

where the eigenvalues are ordered such that λ1 ≥ λ2 ≥ . . . ≥ λN . The matrix W contains

information on the spatial structure of each mode, which may be recovered by reshaping

any of the T columns in W back into an XT × ZT image. The matrix V contains

information on the time evolution of each mode.

The decision on performing a POD decomposition of vorticity is supported by the results

of Kostas et al. (2005). They found that it was more efficient to capture the fluctuation of
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enstrophy using a vorticity-based POD rather than working with turbulent kinetic energy

variant, following a velocity-based POD. The mean vorticity field was not subtracted in

B, thus the first mode always correspond to the mean field. This was done to measure

and characterise the importance of the fluctuating field relative to the mean behaviour.

In this thesis, it was found that a POD decomposition for analysing the vorticity field

was a more effective means for vortex identification than adopting a criterion such as Q-

criterion (Dubief and Delcayre, 2000), λ2, (Jeong and Hussain, 1995), or swirling strenght

(Chakraborty et al., 2005). Furthermore, the POD of the vorticity field is easier to relate

to the physical quantities studied here using regression and clustering methods.

Figure 2.11 shows the second POD mode for the vorticity data for experiment 26 in Table

2.2 (Froude number of 0.2 and cylinder diameter of 0.06 m). That is, 4500 vorticity fields

were derived from the PIV data and the figure corresponds to the information in the

second column of W following a reshaping operation. The leading mode corresponded

to the mean flow, meaning that the second mode contains the dominant coherent flow

structure. Based on the eigenvalues, the first mode contained 32% of the total energy,

while the second mode represented about 2%. For this analysis, a region extending from

the cylinder to 48 mm upstream was selected in all experiments to limit the area affected

by the HV system. For more detailed analysis, Ns = 40 points were then regularly

sampled from within this region at Z = 1.23 mm from the bottom wall.

2.6.2 Quadrant Analysis

Quadrant analysis is used to identify the ejection-sweep cycle in turbulent boundary layers

(Lu and Willmarth, 1973; Rajagopalan and Antonia, 1982; Bogard and Tiederman, 1986)

based on the fluctuating values for u and w (Table 2.3). Because of potential confusion

with sign reversals occurring as a consequence of the direction of u varying locally in front

of the cylinder, we define all quadrants in a consistent frame relative to the bulk velocity

U to ease interpretation, i.e.:

u′ = u− u if u ≥ 0

u′ = u− u if u < 0 (2.4)
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Figure 2.11: The second mode from a POD of the vorticity field ω (s−1) showing the
horseshoe vortex system upstream of the cylinder with the 40 near-bed points. The
upstream edge of the cylinder is the origin for the horizontal axis used in this study.
The relevant parameters for this experiment are Fr = 0.2, D = 0.06 m.

where u is the time-mean longitudinal velocity at a given position, and u′ is the fluctuating

longitudinal velocity.

Table 2.3: Definition of quadrants used in flow event analysis

Quadrant name u′ w′

Q1 (outward interactions) (4) + +
Q2 (ejections) (©) - +
Q3 (inward interactions) (5) - -
Q4 (sweeps) (�) + -

The principal Reynolds stress in a wall-bounded flow, τRe = −ρu′w′ is decomposed, so

that the instantaneous contribution u′w′ to the velocity covariance, u′w′, and the absolute

velocity covariance, |u′w′|, may be evaluated per quadrant. This is necessary because, in

an examination of only τRe, contributions from quadrants 1 and 3 reduce the value for

u′w′ (Keylock, 2015), but may be important dynamically (Nakagawa and Nezu, 1977;

Heathershaw and Thorne, 1985; Nelson et al., 1995). Hence, the contribution of each

quadrant is studied relative to the absolute velocity covariance at the Ns = 40 points at

0 < X ≤ 48 mm, Z = 1.23 mm (0.018 − 0.044D) from the bed and relative to the 40

control points, shown in Fig. 2.11, to understand the manner in which the HV system

affects the near-wall stress states. For each position, n ∈ {1, . . . , Ns}, the local values

for u′ and w′ are used to form a i = 1, . . . , T -length data vector, qi, indicating quadrant
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membership (qi ∈ {1, 2, 3, 4}). The term δi is introduced for the quadrant of interest, Q:

δi = 0 , qi 6= Q

δi = 1 , qi = Q (2.5)

and we then calculate

α(Q, n) =
1

T

T∑
i=1

|u′iw′i|δi (2.6)

The quadrant contribution to the velocity covariance was calculated to determine the

contribution of the different quadrants in each of the 40 positions, either normalised by

the summation of all quadrants and all positions (n ∈ {1, . . . , Ns}),

β(Q1,2,3,4) =
1

T

Ns∑
n=1

T∑
i=1

|u′i,nw′i,n| (2.7)

or the summation of all quadrants at a specific position, n:

γ(Q1,2,3,4, n) =
1

T

T∑
i=1

|u′iw′i| (2.8)

or the summation of quadrants 1,3, and 4 at a specific position, n:

η(Q1,3,4, n) =
1

T

T∑
i=1

|u′iw′i| (2.9)

or the summation of quadrants 1,3, and 4 and all position, (n ∈ {1, . . . , Ns}),

ζ(Q1,3,4) =
1

T

Ns∑
n=1

T∑
i=1

|u′i,nw′i,n| (2.10)

We then studied γ, γ
U2 , γ

β
, α
U2 , α

β
, α
γ
, η, η

U2 , as well as η relative to the summation of the

stresses over all point, η
ζ
.
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2.6.3 Stepwise Regression

We make use of stepwise regression in this study as a means to determine statistically sig-

nificant relations between the observed vortex structure and the flow conditions. A generic

linear model for a single response variable, P , and a suite of G predictors, E1, . . . , EG,

may be written as:

P = θ0 + θ1E1 + θ2E2 + . . .+ θGEG (2.11)

where the θs are the fitted coefficients. In practice, only g ≤ G predictors are statistically

significant. Stepwise regression generates a model only containing the g significant pre-

dictors. The procedure is to compare an initial model with one containing new variables

and to add the variable with the greatest significance (smallest p-value) up to a maximum

acceptable p-value based on a F -test of significance. If after the inclusion of the new term,

it changes the p-value of any of the terms already in the model to p > 0.1 then the least

significant term is removed from the model. This process continues until further changes

do not improve the model.

2.6.4 K -Means Classification

One of the most popular data clustering algorithms is K -Means (Pham et al., 2005). This

classification scheme is employed as a way to find natural clusters in selected frames that

could represent the different forms of expression of coherent flow structure in front of

the cylinder. Clusters are defined by minimising the variance within the cluster sum-of-

squares differences, Ck. Hence, with K clusters and V data vectors (K ≤ V ), and a data

vector, u, indexed by j, one seeks to minimize

C =
K∑
k=1

∑
uj∈Ci

||uj − µk||2 (2.12)

where µk is the ‘true mean’ for data grouping k. From an initial guess of the K -Means,

m
(0)
1 , . . . ,m

(0)
K , the standard algorithm alternates between assignment and update steps.
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Thus, each datum is firstly assigned to a group, r:

C
(t)
k = {ur : ||ur −m(t)

j ||2 ≤ ||ur −m
(t)
k ||

2 ∀ 1 ≤ k ≤ K} (2.13)

Following the assignment of ur to just one group, the cluster means are updated:

m
(t+1)
k =

1

|C(t)
k |

∑
uj∈C

(t)
k

uj (2.14)

and the algorithm then proceeds until Eq. 2.12 is minimized.

2.7 Summary

This chapter has described the methodology and experimental design for the thesis. In

addition, a full technical description for the apparatus used in the study (the flume, the

cylinder models), as well as the PIV acquisition system and its positioning has been

provided. The pre- and post-processing methods for the data have also been introduced,

and results of preliminary experiments on the minimum necessary sampling length of

the data have been undertaken. Finally, a description of the quadrant analysis method,

Proper Orthogonal Decomposition (POD), and the statistical techniques used to analyse

the data were explained. The next step is the analysis of the experimental data. These are

considered in two separate chapters, reflecting the two groups of experiments proposed,

above.



Chapter 3

Results: HV Behaviour under a

Wide Range of Froude Numbers

3.1 Objectives and Structure of the Chapter

The main objective of this chapter is to explore the effect of Froude number and other flow

and geometrical parameters on the nature of the horseshoe vortex system by analysing

the experimental data collected. The primary focus is on the changes to the dynamics

and geometry of the HV system and by studying the changes in the near-bed turbulent

stresses and the entire region that contains the HV system. It has been chosen to focus

on the near-bed stresses because a clear effect of the HV system on the near-bed stresses

has been shown as a consequence of the link between vorticity and stress (Devenport

and Simpson, 1990; Sumer et al., 1997; Kirkil et al., 2005a,b; Constantinescu and Koken,

2005). Studies by Baker (1979, 1980); Dargahi (1989); Lin et al. (2002); Kirkil et al.

(2006); Sahin et al. (2010); Paik et al. (2010) showed that there is a spatial change in the

HV system for different flow conditions, meaning that to understand near-bed stresses, it

should be possible to relate the HV system to flow boundary conditions. The analyses of

the turbulent stresses from specific points near the wall, both under and upstream of the

HV system were divided into three sections:

In the first part of the chapter, the stresses at 40 points in near-bed locations were

analysed with respect to their local peak stresses; For the second part, the stresses were

40
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disaggregated by quadrants, Bogard and Tiederman (1986), and the peak stress (which

always arose in quadrant 2), from all locations, was used to normalise the turbulent

stresses at all the other selected locations. In the third section, the peak value of the

summation of the stresses of quadrants 1, 3, and 4 was used to represent the near-bed

locations.

For each of these analyses, three different groups of experiments were considered:

• The first set of experiments is for a wide range of different flow conditions represented

by 25 experiments ranging from low, sub-critical, to super-critical flow conditions

(Fr=0.015-2.46) as shown in Table 2.1;

• The second and third groups covered the low Froude numbers (Fr=0.015-0.2) and

upper sub-critical to super-critical Froude numbers (Fr=0.6-2.46) experiments, re-

spectively.

By treating these cases separately, it was possible to determine if different controls were in

operation for sub-critical and super-critical conditions. Multivariate statistical methods

were applied to find the significant parameters that controlled the dependent variables in

each group of experiments.

Experiments with Froude numbers ranging from 0.015 to 2.46 were used to explore the

effect of different flow and geometrical parameters on the structure of the HV system and,

thus, the impact on near-bed Reynolds stresses. The parameters that changed with the

reason of choosing them are shown in Table 1.1.

The structure of this chapter consists of five main sections. The objectives and structure

of the chapter are in Section 3.1. Section 3.2, explains the physical meaning of the

dependent parameters used in this study. Section 3.3 deals with the Reynolds stresses at

once. The following section, Section 3.4, based on partitioning the Reynolds stresses into

four quadrants. Section 3.5 deals with the summation of the stresses in quadrants 1, 3, and

4. Each of the Sections 3.3, 3.4 and 3.5 has been divided into three primary subsections;

The first section covers the 25 experiments ranging from low, sub-critical Froude numbers

to super-critical cases. The second section is based on 11 experiments with low sub-critical
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Fr, and the other one consisted of another group of eleven experiments covering the high

Fr cases.

3.2 The Dependent Parameters Analyses and Their

Physical Interpretation

The dependent parameters were chosen to isolate different aspects of the dynamics and

geometry of the HV system. Parameters that represent the near-bed turbulent stresses

upstream of the cylinders, where the system is active, have been formulated. These

parameters were derived from the five quantities, α, β, γ, η, and ζ which have been

calculated using equations, 2.6, 2.7, 2.8, 2.9, and 2.10 respectively. The parameters were

considered in three groups due to the way that the stresses were dealt with:

The first set arose when the turbulent stresses were analysed as a whole, as a function

of position number, n. These parameters were γ, γ/U2, and γ/β. In the second time,

α/U2, α/β, and α/γ were used when the stresses were partitioned into quadrants. The

third part was when the turbulent stresses were analysed as the summation of quadrants

1, 3, and 4, as a function of position number, n, and the parameters were η, η/U2, and

η/ζ. The peak stress locations have been measured from the front of the cylinder using

two forms of distance. Initially, the dimensional distance xpeak in mm was used, but this

was subsequently normalised by the cylinder diameter of each experiment to give a more

general set of results.

Regarding the flow parameters: γ is used to reflect the strength of the HV system through

the mean of absolute values of the turbulent stresses at each point under and upstream

of the system, γ/U2 normalises the turbulent stress by the square of the incoming bulk

flow velocity. Hence, it describes the efficiency by which mean energy is transferred into

the energy of the HV system. The term γ/β gives the turbulence stress in each location

relative to the total turbulence of the 40 locations. In other words, it reflects the per-

centage of the local stress contribution to the region of the HV system, and is calculated

by dividing the mean turbulent stress at each location by the summations of the mean

of absolute turbulent stresses produced in the 40 locations. For the case of partitioned
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stresses by quadrants, α/U2 is for the relative contribution of the turbulent stress from

each quadrant and location to the bulk momentum represented by bulk flow velocity.

Similarly, α/β is the relative turbulence production at each quadrant and location com-

pared to the mean turbulent stresses in the region of the HV system. α/γ reflects the

percentage contribution of each quadrant to the mean of absolute turbulent stresses in the

same location and is used to detect changes that happen in different locations away from

the cylinder. Coming to the last parameters that have been used in this study, η, η/U2,

and η/ζ are having the same explanation of γ, γ/U2, and γ/β respectively. The only

difference is that the stress contribution from quadrant 2 is not included in calculations.

3.3 Turbulent Stresses in front of the Cylinder

The analysis in this section deals with the turbulent stresses from specific points under

and upstream of the HV system formed in front of a circular cylinder. The turbulent

stresses (expresses as velocity covariances) at each of the 40 near-wall locations (Ns=40)

are shown in Figures 3.1, 3.2 and 3.3, where the abscissa is the distance from the upstream

edge of the cylinder. These figures may be used to explore the behaviour of the HV system

through studying the magnitude and location of the peak value among the group of points

for the three quantities, γ, γ/U2, and γ/β respectively. The mean of the absolute turbulent

stresses at a single point has been chosen as a criterion for the HV system and the point

that has the maximum mean turbulent stress value among the group of 40 near-bed points

was selected as that identifying the maximal stress contribution near the wall from the

HV system. It is noted from Figure 3.1, that γ values are small in experiments 1-15

relative to the two bottom rows (experiments 16-25). The significantly large values of γ

occur in experiments 24 and 25 of Table 2.1, and arise for Fr=1.934 and Fr=2.46, with

D = 0.04 m. This initial result is suggestive of the potential importance of both ReD and

Froude number for the flow dynamics. The γ values are small in the first experimental

results due to the low flow velocities, ReD, or Fr. The γ values of experiments 6 to 8

shown in Table 3.1 related to the same experiments of Table 2.1 with constant Fr and

increased D, show very clearly that γ increases with D and that the peak value is driven

away from the cylinder as D increases. While, for experiments 9, 10, and 11, γ values
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have increased then decreased and the peak getting closer to the cylinder with decreasing

D, although Fr is increasing. This is showing that the effect of D dominates Fr. The

difference in γ values is quite obvious among the plots of Fig. 3.1, ranging from less than

0.06 × 10−4m2/s2 to about 200 × 10−4m2/s2 over experiments 1 to 25, respectively. The

trend for the different values no longer exists when γ values are normalised by the square

of approaching bulk flow velocity U2 as shown in Fig. 3.2, and this is due to the increased

values of U as the Fr increased. It is also noticed from Fig. 3.3 that the difference is at its

minimal values when γ is normalised by the summation of the absolute mean stresses of

the 40 points, β, in other words it is the relative contribution of |u′w′| from 4500 values

collected over 300 seconds at a single point to the summation of mean of the absolute

stresses in the forty sites γ/β and that is emphasising the role of relative γ/β in each of

the experiments. In the former case the difference between the different cases is reduced

due to the direct correlation between the value of γ and the U as a direct measure for

turbulence in each experiment. While in the latter the value of γ at the peak point is very

related to the other γ values in the surrounding near-bed points. Coming back to Fig. 3.2,

it can be seen that for low sub-critical flows, where U is held constant, the values of γ/U2

increase with increasing D. For example, this is clearly the case for experiments 6, 7 and

8. However, in the case of critical flow conditions (experiments 19, 20, and 21), there is

no significant change in the value of γ/U2 when D is increased. This could be one of the

characteristics of the HV system in critical flow conditions. For the first five experiments

(Fr=0.015-0.05) the mean absolute values of the near-bed stresses are plotting a flat line

at the lowest Fr then as the Fr increases, the curvature increases with a peak roughly in

the half way from the cylinder to the point where a significant rise in the curve happens.

When it comes to Fig. 3.3, then the differences between the different flow conditions is

reduced in magnitude. However, the location of the peaks remains in the same position,

regardless of the normalisation type adopted. The points underneath the HV system in

one experiment are having very similar basic geometry in most of the experiments.

There is a small increase observed in the values for γ, γ/U2, and γ/β in Figures 3.1, 3.2

and 3.3, respectively, as one approaches the HV region. This suggests that the effect of

the HV system is experienced further upstream than the region delimited in this study

to some degree. However, the increase in these values is very small for the majority of
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the 20 locations furthest from the cylinder, and this is particularly true for the first five

experiments. Figures 3.2 and 3.3 show that the mean of these values is approximately 2-7

times lower than the peaks experienced in the HV region, highlighting the significance of

the vortex system for near-wall stress generation (Devenport and Simpson, 1990; Sumer

et al., 1997). The values in Table 3.1 were then used in the stepwise regression analysis

to determine the controls on the HV system dynamics. The location of the peak values

for γ, γ/U2, and γ/β is always the same. The three following subsections will consider

the three groups of experiments mentioned above.

Two types of statistical analysis have been undertaken: a multivariate regression to de-

termine which of the flow variables is controlling particular aspects of the HV system by

separating the most significant flow parameters shown in Table 2.1 that affect the HV

system from others through their control on the dependent variables of Table 3.1; and, a

K -Means clustering of the individual frames of vorticity and comparison between these

groups and the variables altered in particular experiments.

3.3.1 Sub-critical to Super-critical Froude Numbers

(Fr ∈ {0.015− 2.46})

This section of the analyses includes data from 25 experiments that cover a wide range

of Froude numbers. The results represent the very different conditions that affect the

production of turbulent stresses by the HV system and that give an overview of the

parameters that are most effective for controlling the stresses.

3.3.1.1 Stepwise regression analysis of the turbulent stresses

The results of the stepwise regression analyses based on the data of Tables 2.1 and 3.1

are stated in Table 3.2, which shows that the only parameter which played a role in the

prediction of the maximum stress location is D when the distance is measured in mm

and h and ReD when the distance is normalised by D. In contrast, the peak values of the

mean absolute stresses were controlled by Fr and h for γ, D and h for γ/U2, and h and

Reh for γ/β. Hence, there would appear to be significant controls from both dimensional
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and dimensionless quantities. The bulk flow velocity, flow depth, and cylinder diameter

appear to act separately or in combination through the Froude number, obstacle Reynolds

number, or flow depth Reynolds number. The R2 and p-values showed a significant effect

of Fr in controlling the peak value of γ. It is noticed that the effect of Fr is removed when

normalising by U2 and β, where it is replaced with D in the former and with Reh in the

latter. The plots in Fig. 3.4 show a significant effect of D and Fr on the location and

the magnitude of the peak stress, in which both of them are responding positively to the

controlling parameters. This will be explored more in the next two sections to find out

if it applies on the whole group of experiments or it applies more on one group of the

experiments more than the other.

As explained in Chapter 2, the second mode from the POD analysis isolates the HV

system. As it is apparent from Figure 3.5, the geometry of the HV system is more clearly

distinguished as Fr and D increase from very low values. For example, the system with

a set of three well-defined vortices, with the central one rotating in an opposite sense to

its neighbours emerges at Fr = 0.4 for the D = 0.055 m cylinder, but it is not discerned

at Fr = 1.0 for the D = 0.027 m cylinder, and that is also clear from Table 3.3 when the

mean enstrophy for the former case is 35282 s−2 and for the latter is 26714 s−2. Enstrophy

(ε) is an important concept for turbulence in fluid dynamics, and it is used as a measure

for the kinetic energy. The enstrophy can be described as the integral of the square of

the vorticity (ω):

ε(ω) ≡ 1

2

∫
S

ω2 dS (3.1)

3.3.1.2 The controlling parameter during instances when high turbulent stresses

are exerted

The stepwise regression results showed an effect of different parameters including Fr.

However, the HV system dependency was further explored depending on the moments

of high stresses both in a single point under the HV system and from the maximum

stresses within the whole field of flow. The first approach considered the maximum mean

absolute stresses observed at a single point and its position for γ/β as a criterion for this

exploration.
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Table 3.2: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels and
the R2 associated with the regression equation for turbulent stresses for experiments
of Fr=0.015-2.46.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax(γ, γ/U2, γ/β) (mm) 0.833 D < 0.001 - -
xmax(γ, γ/U2, γ/β) (xmax

D ) 0.678 h < 0.001 ReD < 0.001
γmax 0.846 Fr < 0.001 h 0.0091
(γ/U2)max 0.617 D 0.0128 h 0.0144
(γ/β)max 0.725 h < 0.001 Reh 0.0028
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Figure 3.4: The relationship between the location and magnitude of the peak stresses
with the cylinder diameter and Froude number in the top and bottom plots, respec-
tively.

The hypothesis is that these high stresses represent the most effective instances that plays

a major role shaping the HV system. The high stress state frames, which must dominate

the values for |u′w′| were separated using the following methodology:
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Table 3.3: The parameters used to characterise POD mode 2 of the vorticity field for
experiments of Fr=0.015-2.46.

Exp. No. Fr D Mean Enstrophy s−2

1 0.015 0.055 342
2 0.02 0.055 567
3 0.03 0.055 678
4 0.04 0.055 1493
5 0.05 0.055 1591

6 0.059 0.015 1514
7 0.059 0.025 1637
8 0.059 0.055 2935

9 0.10 0.043 4053
10 0.15 0.034 4951
11 0.20 0.028 3805

12 0.40 0.025 7558
13 0.40 0.042 15763
14 0.40 0.055 35282

15 0.60 0.025 12151
16 0.60 0.042 37224
17 0.60 0.063 66917

18 0.80 0.032 34660

19 1.00 0.027 26714
20 1.00 0.045 48957
21 1.00 0.063 94215

22 1.20 0.025 51315

23 1.40 0.025 52196

24 1.934 0.04 309440

25 2.46 0.04 583770

• A hole size, H was introduced based on the time series statistics at the identified

point that had the dominant contribution to γ/β Bogard and Tiederman (1986);

Keylock (2007);

• Large stress states at this location were then isolated using a selected hole size of

H > 2. This value for H was chosen based on the results of Sarkar and Dey (2010)

who found that the extreme Reynolds shear stress contributions were identified with

H = 2;

• Hence, for this identified position, the velocity time series was extracted, the stan-

dard deviations of the velocity components, σ(. . .) were calculated and a high stress

state was defined as:
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|u′w′|Q = 1, 2, 3, 4 > Hσ(u)σ(w) (3.2)

For each experiment, the number of points (φ) for which H > 2 and their positions

in time were identified. The frames corresponding to these times were extracted and

the percentage of the total number of frames selected ranged from 4.98 to 6.82% over

the twenty five experiments. The summation of the stress magnitudes at the peak

stress locations for these frames contributed from 24.68 to 34.37% of the
∑
|u′w′|

over all frames of each of the experiments.

The vorticity fields for these frames were then automatically classified into three

groups (k1, k2, and k3) using the K -Means classifier and the number of frames in

each cluster (Ck1 , Ck2 and Ck3) was extracted. These results are shown in the second

to fourth columns of Table 3.4 under the ‘Single Point’ identifier. It is clear from

the results that experiments 1-11 may be grouped together with a clear first cluster

dominance, experiments 12-23 form the second cluster and experiments 24 and 25,

from the third cluster. Table 2.1 shows that the first group of experiments (1-11)

have the lowest Fr ranging from 0.015 to 0.2, experiments 12-23 having Fr of 0.4 to

1.4, and experiments 24 and 25 having the highest Fr of 1.934 and 2.46 respectively.

To ensure the results were consistent, in addition to the clustering of the vorticity

fields based on the single point hole size exceedance results, a whole frame approach

was employed. All the pixels in a frame were extracted and the stress magnitudes

|u′w′| were normalised by the product of the global standard deviations for u and

w for all x, y, t. Frames were then placed in descending rank order based on the

frame median value for the normalised stress magnitudes. Then for each experiment

the first Ck1 + Ck2 + Ck3 frames were extracted so that the total number of frames

analysed for each experiment using the single point and whole frame approaches

was identical. Again three groups were selected for the K -Means classification and

the number of frames corresponding to each cluster over the twenty five experi-

ments is shown in columns 5 to 7 of Table 3.4 under the ‘Whole Frame’ heading.

Results are very similar to the single point case, with experiments 1-11 belonging

to one group, followed by experiments 12-23, and experiments 24-25 to the other
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two groups respectively. Hence, the differences between the single point and whole

frame approaches are minor. Thus, the Froude number not only affects the near-bed

stresses exerted by the HV system, but also the stresses produced by the whole HV

system.

Table 3.4: The number of frames from each experiment allocated to the three clusters
found from the K -Means analysis (Ck1 , Ck2 and Ck3). The three groups of results
represent frames chosen using a single point near the bed on the one hand, and using the
whole frame points on the other hand for the case of turbulent stresses for experiments
of Fr=0.015-2.46.

Single Point Whole Frame

Experiment Ck1 Ck2 Ck3 Ck1 Ck2 Ck3
1 288 0 0 288 0 0
2 287 0 0 287 0 0
3 224 0 0 224 0 0
4 241 0 0 241 0 0
5 229 0 0 229 0 0

6 307 0 0 307 0 0
7 282 0 0 282 0 0
8 281 0 0 281 0 0

9 249 0 0 249 0 0
10 238 2 0 236 4 0
11 231 2 0 233 0 0

12 16 248 0 20 244 0
13 1 244 0 6 239 0
14 17 257 0 27 247 0

15 0 248 0 0 248 0
16 0 240 0 0 240 0
17 0 271 0 0 271 0

18 1 258 0 0 259 0

19 0 264 0 0 264 0
20 0 247 0 0 247 0
21 0 280 0 0 280 0

22 0 254 0 0 254 0

23 0 234 0 0 232 0

24 0 41 231 0 28 244

25 0 0 301 0 0 301

The plots shown in Figure 3.6, show from top to bottom the centroid frames for

clusters K1, K2 and K3, respectively. The results from the single point analysis

are shown in the left-hand panel, while those from the whole frame analysis appear

on the right. The HV system is defined more clearly in terms of both vorticity

magnitude and vortex size for all three clusters for the single point analysis. Hence,
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Figure 3.6: The centroids of the clusters extracted from the vorticity fields ω (s−1) over
the twenty five experiments for turbulent stresses from experiments of Fr=0.015-2.46.
Results on the left are for the single point analysis while those on the right are for the
whole frame method. Centroid of cluster 1 is shown at the top and of cluster 3 at the
bottom in each case. The origin for the horizontal axis is the upstream edge of the
cylinder.

the near-bed stresses are able to capture the most energetic vorticity fields better

than the stresses in the whole field. It is also clear that as the momentum flux

increases, the vorticity increases. Hence, the points near the wall are more relevant

for extracting a coherent HV structure than consideration of the whole frame.

3.3.2 Lower Sub-critical Froude Numbers (Fr ∈ {0.015−0.2})

This part of the study is to find out if the flow conditions for low Froude numbers

have a different control on the dynamics of the HV system upstream of the circular
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cylinder when analysed separately from the whole group of experiments studied in

Section 3.3.1. Experiments 1-11 shown in Table 2.1 are used in this part of the

study and cover a range of very low Froude numbers, up to Fr=0.2.

3.3.2.1 Stepwise regression analysis of the turbulent stresses

The stepwise regression analyses results are stated in Table 3.5 which shows that

D is the parameter which played the most significant role in the prediction of the

maximum stress location when the distance is measured in mm and h as the distance

is normalised by D, while the peak values were controlled by Fr for γ, h and D for

γ/U2, and ReD and Reh for γ/β. Further inspection of Table 3.5 shows that the

control variables are less effective at explaining the location of the peak stresses than

the peak magnitudes (R2 = 0.761, and 0.652 rather than R2 = 0.937, 0.903, and

0.872), where R2 is the coefficient of determination. This contrast is greater than

what seen in Table 3.2 where the R2 values are similar for location and magnitude

analyses.

This analysis of the low Froude numbers case also highlights similar primary control

parameters on the HV system to that found for all of the experiments, apart from

(γ/β)max, where ReD is controlling the system for a low Froude number instead of

h. This result has interesting implications: dimensional results for the location of

peak stresses are controlled by D and normalisation by D leads to a height control,

implying that momentum flux into the HV region is crucial for the spatial extent

of the system when one normalises by diameter. Conversely, the peaks value for γ,

whether dimensional or normalised by incoming magnitude, is controlled by h for

Table 3.5: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels
and the R2 associated with the regression equation for the turbulent stresses from
experiments of Fr=0.015-0.2.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax(γ, γ/U2, γ/β) (mm) 0.761 D 0.0016 - -
xmax(γ, γ/U2, γ/β) (xmax

D ) 0.652 h 0.0206 - -
γmax 0.937 Fr < 0.001 - -
(γ/U2)max 0.903 h < 0.001 D 0.0016
(γ/β)max 0.872 ReD 0.0018 Reh 0.308
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Fr, which is closely related to h. When normalising by β, the total stress exerted

at all positions, in the low Froude number case, a diameter-based control (ReD) has

been identified. However, this effect is not seen when all experiments are considered

en masse (Table 3.2). Hence, higher Froude numbers appear to lose any effect of

diameter at controlling peak stress values. In the low Froude number case, these

effects are secondary and indirect, only discernible when normalising over β.

3.3.2.2 The controlling parameter during instances when high turbulent

stresses are exerted

This section finds the control parameters for the stresses from a consideration of

the high stress state frames. More details about the methodology can be found in

paragraphs 2 and 3 of Section 3.3.1.2. The percentage of the selected total number

of frames ranged from 4.98 to 6.82% over the eleven experiments. The summation

of the stress magnitude exceedance at the peak stress locations of the single points

contributed from 27.33 to 34.13% of the
∑
|u′w′| for each of the different experi-

ment. The results of the classification are shown in the second to fourth columns

of Table 3.6 under the ‘Single Point’ identifier. The results are showing that exper-

iments 1, 2, 3, 4, 5 and 8 be grouped together with a clear first cluster dominance.

However, experiment 8 has no significant dominance of Ck1 over Ck2 . For the same

experiments, Fig. 3.3 shows that the values of γ/β for the 10-20 points with hollow

symbols closest to the cylinder are increasing dramatically. That is because the HV

system is further extended to the upstream of the cylinder, due to the fact that

these experiments have the biggest cylinder diameter.

Another method named the whole frame approach was employed to confirm the

consistency of the results of clustering of the vorticity fields based on the single

point hole size exceedance results. More details about the whole frame approach

can be found in paragraph 5 in Section 3.3.1.2. Again two groups were selected

for the K -Means classification, and the number of frames corresponding to each

cluster over the eleven experiments is shown in columns 5 to 7 of Table 3.6 under

the ‘Whole Frame’ heading. These results identify experiments 1, 2, 3, 4, 5 and 8

as belonging to one group. The results are not very different to those for the single
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point approaches. However, it is only slightly biased towards Ck2 . The results from

experiments 1-5 and 8 in Table 3.6, show that the cylinder diameter affects the

whole HV system in a similar way as it does the near-bed conditions only.
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Figure 3.7: The centroids of the clusters extracted from the vorticity fields ω (s−1)
over the first eleven experiments. Results on the left are for the single point analysis
while those on the right are for the whole frame method. Centroid of cluster 1 is shown
at the top and of cluster 2 at the bottom in each case. The origin for the horizontal
axis is the upstream edge of the cylinder. The plots are for turbulent stresses from
experiments of Fr=0.015-0.2.

The four centroids for clusters K1 and K2 are shown in Figure 3.7 where the right-

hand part shows the two centroids that belongs to the whole frame analysis. There-

fore, experiments 1-5, and 8 are identified mainly with the flow field seen in the top

right, which has a more spatially extensive HV system in the vertical plane and the

HV system is more defined. Cluster 2 field predominantly reflects the results for

experiments 6, 7, 9, 10 and 11. In these cases, diameters are smaller and the HV

system, although of a similar longitudinal extent, is less intensive and is confined to

a narrower vertical extent. However, the centroids of the two approaches are look-

ing different, when the HV system is better defined in the left hand side panels of

Figure 3.7 than in the right side, although they have very similar clustering results

in Table 3.6 and this reflects that they have similar physical interpretation. They

do not look similar because of the identical vorticity scale, in both of the identical

clusters, prevents the lower magnitude vorticity to manifest itself, as the single point
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Table 3.6: The number of frames from each experiment allocated to the two clusters
found from the K -Means analysis (Ck1 and Ck2), as well as the classifier used to define
cluster membership for each experiment (Ck1 − Ck2)/(Ck1 + Ck2). The two groups of
results represent frames chosen using a single point near the bed on the one hand, and
using the whole frame points on the other. Results with a strong positive value for
(Ck1 − Ck2)/(Ck1 + Ck2) are shown in bold, the results are for the turbulent stresses
from experiments of Fr=0.015-0.2.

Single Point Whole Frame

Experiment Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

1 288 0 +1.0 288 0 +1.0
2 287 0 +1.0 287 0 +1.0
3 224 0 +1.0 224 0 +1.0
4 241 0 +1.0 241 0 +1.0
5 229 0 +1.0 229 0 +1.0

6 128 179 -0.17 79 228 -0.49
7 125 157 -0.11 101 181 -0.28
8 237 44 +0.69 206 75 +0.47

9 2 247 -0.98 0 249 -1.0
10 0 240 -1.0 0 240 -1.0
11 0 233 -1.0 0 233 -1.0

approach is better in capturing the high vorticity events.

It is shown in Fig. 3.8, from the second mode from the POD of the vorticity fields,

that the geometry of the HV system is getting more distinguishable when both

Fr and D increase. Hence, for experiments 1-5 with increasing Fr and constant

D, the HV system became more defined and from Table 3.3 the enstrophy values

increased from 342 to 1591 s−2 for the same experiments. The case is also similar

for experiments 6, 7, and 8 when the cylinder diameter has increased from 0.015

m to 0.055 m while Fr remained constant at 0.059. However, in the last group of

experiments (experiments 9 to 11) the effect of diameter is dominant as the HV

system became less recognised as D decreased, while the Fr increased. Figure 3.8

explains how a clear recognition of the HV system couldn’t be achieved with very low

Fr. For instance, the cases when Fr=0.015, D = 0.055 m, and Fr=0.02, D = 0.055

m, did not yield a clear HV system and these two cases had the lowest enstrophy

values.
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3.3.3 Upper Sub-critical to Super-critical Froude Numbers

(Fr ∈ {0.6− 2.46})

In this section, the other part of the wide range of Froude numbers experiments

has been analysed to studying the effect of upper sub-critical to super-critical flow

conditions (Fr=0.6-2.46) on the dynamics of the HV system upstream of the circular

cylinder. Once more, two types of analysis have been undertaken to separate which

parameter is the most effective: stepwise regression and K -Means classification of

the high stress cases.

3.3.3.1 Stepwise regression analysis of the turbulent stresses

The conditional analysis in this section has been undertaken on experiments 15-25

shown in Table 3.1. The results of the stepwise regression analyses are shown in

Table 3.7. The cylinder diameter and Fr are controlling the location of the peak

value of the three quantities γ, γ/U2 and γ/β when the distance from the cylinder

edge is measured in mm while ReD is the only controller for the peak location if the

distance is normalised by cylinder diameter. The approaching bulk flow velocity was

the only parameter that controlled the value of γ, and there was no significant control

when γmax was normalised by U2 or β. These limited controls of the parameters on

the response variables underpin the results from Sections 3.3.1.1 and 3.3.2.1 which

show a share of most of the control variables. Therefore, the results from further

analyses are needed to gain a greater understanding of the controlling parameters

or more experiments needed in between of Fr=0.6 and 2.46.

Table 3.7: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels and
the R2 associated with the regression equation for turbulent stresses. The results are
for the case of experiments of Fr=0.6-2.46.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax(γ, γ/U2, γ/β) (mm) 0.977 D < 0.001 Fr < 0.001
xmax(γ, γ/U2, γ/β) (xmax

D ) 0.770 ReD 0.0013 - -
γmax 0.886 U < 0.001 - -
(γ/U2)max - - - - -
(γ/β)max - - - - -
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3.3.3.2 The controlling parameters during instances when high turbu-

lent stresses are exerted

In this section, the aim is to find out which parameters have a dominant control

on the dependent variables used to represent the HV system and if the results vary

depending on if a single point is studied or the whole vorticity field. The dependence

of the stresses was further explored by a consideration of the high stress state frames.

More details about the methodology can be found in paragraphs 2 and 3 in Section

3.3.1.2. The total number of selected frames ranged from 5.20 to 6.69% over the

eleven experiments. The summation of the stress magnitude exceedances at the

peak stress location of the single point contributed from 24.68 to 34.37% of the∑
|u′w′| for each of the different experiments.

Using the K -Means classifier, two groups of the vorticity fields for the selected

frames were classified automatically into two clusters (K1 and K2), and the number

of frames in each cluster (Ck1 and Ck2) was extracted using cross tabulation method.

These results are shown in the second to fourth columns of Table 3.8 under the

‘Single Point’ identifier. The results are showing that the experiments are divided

into two groups according to Fr, where experiments 15-23 grouped in one group and

experiments 24, and 25 in another group of highest Froude numbers.

The clustering of the vorticity fields based on the single point hole size exceedance

results was complemented by a whole frame approach. The method is explained

in the fifth paragraph of Section 3.3.1.2. Again two groups were selected for the

K -Means classification and the number of frames corresponding to each cluster over

the eleven experiments is shown in columns 5 to 7 of Table 3.8 under the ‘Whole

Frame’ heading. Also, these results identify experiments 15-23 as belonging to one

group and experiments 24 and 25 belong to another group. Table 2.1 shows that

this group of experiments share the smallest Fr. These results ensure that the single

point and whole frame approaches are very similar in terms of their grouping of the

frames.

The centroids for clusters K1 and K2 are shown in Figure 3.9 where the left-hand

part shows the two centroids that belongs to the single point analysis. Experiments
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Table 3.8: The number of frames from each experiment allocated to the two clusters
found from the K -Means analysis (Ck1 and Ck2), as well as the classifier used to define
cluster membership for each experiment (Ck1 − Ck2)/(Ck1 + Ck2). The two groups of
results represent frames chosen using a single point near the bed on the one hand, and
using the whole frame points on the other. Results with a strong positive value for
(Ck1−Ck2)/(Ck1 +Ck2) are shown in bold. The results are for the case of experiments
of Fr=0.6-2.46.

Single Point Whole Frame

Experiment Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

15 248 0 +1.0 248 0 +1.0
16 240 0 +1.0 240 0 +1.0
17 271 0 +1.0 271 0 +1.0

18 259 0 +1.0 259 0 +1.0

19 265 0 +1.0 265 0 +1.0
20 246 0 +1.0 246 0 +1.0
21 280 0 +1.0 280 0 +1.0

22 254 0 +1.0 254 0 +1.0

23 234 0 +1.0 234 0 +1.0

24 39 233 -0.71 41 231 -0.70

25 0 301 -1.0 0 301 -1.0
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Figure 3.9: The centroids of the clusters extracted from the vorticity fields ω (s−1)
over the eleven experiments. Results on the left are for the single point analysis while
those on the right are for the whole frame method. Centroid of cluster 1 is shown at
the top and of cluster 2 at the bottom in each case. The origin for the horizontal axis
is the upstream edge of the cylinder. The results are for the case of experiments of
Fr=0.6-2.46.

15-23 are identified mainly with the flow field seen in the top left, which has one main

vortex elongated in the upstream direction relative to the more compact vortex seen
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in cluster 2. In both cases, the vortex close to the cylinder is well defined, bigger in

size and with higher vorticity magnitude, while any secondary structure is smaller in

size and with a much reduced vorticity. The cluster 2 centroid reflects the results for

experiments 24 and 25; there are also two vortices with different sizes and intensities.

Results based on the single point approach exhibit little difference from the whole

frame approach, although the centroids have a reduced vorticity intensity for both

of the clusters.

3.4 Turbulent Stresses in front of the Cylinder

Disaggregated by Quadrants

In this section, there is examination of the stress distribution in greater detail by

partitioning the stresses by quadrants. The same points used in Section 3.3 are used

in these analyses, and the peak stress for each experiment (which always occurred

in quadrant 2) was used to summarise the measured turbulent stresses. The basic

data underpinning the analysis in the section is shown in Table 3.9.

A parameter denoted as α is calculated from equation 2.6 and normalised by three

quantities, the square of the approaching bulk flow velocity U2, summation of the

mean absolute stresses over all 40 positions β which is calculated from equation

2.7, and the mean of absolute stresses at a given position γ which is calculated

from equation 2.8. The results are shown in Figs. 3.10, 3.11, and 3.12 respectively.

These three quantities are calculated from 40 points near-bed and upstream of the

cylinder. The abscissa in each panel is the distance from the upstream edge of the

cylinder. Figure 3.10 shows the response of turbulence production to the HV system

while, Figure 3.11 shows the relative contribution of |u′w′| at each position to the

summation of the mean absolute values of all of the 40 sites α/β and it is noted that

there is a clear difference in the four curves (each representing a quadrant) in the 25

plots as one moves towards the cylinder. This change is clearly a consequence of the

HV system (Devenport and Simpson, 1990; Sumer et al., 1997). However, the nature

of these patterns varies for the different conditions of the experiments. Increases in
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the turbulent stresses are related to the cylinder diameter and constrained to the

non-dimensional distance of (X/D ≤ 0.45). It is also noted from Figures 3.10 and

3.11, how the magnitude of the two quantities is increasing with both the diameter

and Fr and the peak value for α/β is always between 1-2.6% in all of the cases.

Fig. 3.12 illustrates the contribution of turbulent stresses of each quadrant relative

to the total stresses in the same position that the contribution of the quadrants

is approximately equal in the region upstream to the HV formations, for (X/D >

0.5), for the cases of very lower part of sub-critical flow conditions (Fr=0.015-0.05,

D = 0.055 m), this is something interesting to be explored more as part of future

research. For the rest of the cases and for the same extension from the cylinder, the

contribution from quadrants 2 and 4 shown in red and blue respectively, is always

dominant.

From looking at the experiments of low Fr, it is noticed from the plots that represent

them in Figures 3.10 and 3.11, that there is a slight increase in α/U2 and α/β

respectively can be seen when moving from the furthest point towards the cylinder

and up to a point when the increase is more recognised and that is located at X/D ∼=

0.45, that is because of the further effect of cylinder diameter on the turbulent

stresses. This trend indicates the upstream extent of the HV system where its effect

is actually starts from those referred locations.

For the same experiments of (Fr=0.015-0.05) shown in Figure 3.10, the contribution

from the four quadrants is approximately similar for the majority of these points

except for the same indicated locations and cases closest to the cylinder (X/D <

0.45) where the contribution is greatest from quadrant 2 followed by quadrant 4

and then for quadrants 1 and 3. The mean values of the points upstream to the HV

system (X/D > 0.45) are approximately 1-4 times lower than the peaks experienced

in the HV region. For all of the experiments the peak of the absolute stress is coming

from quadrant 2 except for the three lowest Froude numbers Fr=0.015, 0.02, and

0.03 sharing a diameter D = 0.055 m where the stresses are from quadrant 3.

However, quadrant 2 peak mean absolute stresses value and its location were the

primary dependent variables used in the stepwise regression analysis (Table 3.9).

The peak locations are identical for α/U2 and α/β, but different form α/γ.
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From the furthest point under the HV system to approximately X/D > 0.2 quadrant

2 and quadrant 4 contribute the most to the stresses in the HV system, while for

approximately X/D = 0.05 − 0.2 from the cylinder, this pattern is found to be

reversed with greater stresses exerted by quadrant 1 and quadrant 3. This result is

clearer in Fig. 3.12 indicating that of the order of 70% of the total turbulent stresses

is from these quadrants in this region. The distance to this crossover position in

both mm and X/D for α/γ were also employed in the regression analysis. For

the case of high Fr that shown in plots of experiments 15-25 of Figure 3.10, the

behaviour of the points is not very different from the previous experiments apart

from the lowest values of α/U2 of the four quadrants outside of the area of the HV

activity, in which it is for locations at X/D > 0.4. The difference between the mean

values for the positions of slightly affected boundary layer and the peak values of the

same experiment varies significantly. For instance, the difference is about a double

in experiment 15, while it is 7 times in experiment 17. Hence it is an expression

for the relative importance of the stresses exerted by the HV system due to the

different flow conditions. Also, it is shown from figure 3.12 that the difference in the

contribution of the 4 quadrants is the smallest at the highest Froude number cases

(Fr=1.934 and 2.46) among the same group of high Fr experiments.

The peak of the mean absolute stresses value of quadrant 2 and its location were

used as the primary dependent variables in the stepwise regression analysis, and

they are shown is Table 3.9.

3.4.1 Sub-critical to Super-critical Froude Numbers

(Fr ∈ {0.015− 2.46})

In this section, the effect of control variables on the HV system in different flow

conditions is investigated. There are twenty five experiments used in these analyses.

This investigation commences by choosing the peak point out of the 40 locations

to represent the whole set of points near the bed. The stress effect is partitioned

into four quadrants and the magnitude of quadrant-based turbulent stresses, and

location of the peak point of the quadrant that contributes the most to the stresses,



Chapter 3. Results: HV Behaviour under a Wide Range of Froude Numbers 72

will be used as criteria to normalise the response at the other points. This was

quadrant 2 in all cases.

3.4.1.1 Stepwise regression analysis of the turbulent stresses

The stepwise regression results of Table 3.10 show the diameter, D, controls the

prediction of the quadrant 2 for maximum mean of the absolute stresses location

for both α/U2 and α/β when the distance from the cylinder edge is in mm. There-

fore it is an important factor in prediction of the location of the maximum stresses

exerted by the HV system. However, no control parameter is shown to be signifi-

cant when the distance is normalised by cylinder diameter, and that is the direct

effect of distance normlisation by D. Staying with the same dependent variables,

the peak value of α/U2 was controlled by h and D, while the peak value of α/β

was controlled by ReD. Hence, the two variables are responding to different control

parameters when peak magnitudes are investigated, even though the location of the

peak is controlled by the same variable. Cylinder diameter and flow depth swapped

the leading role in governing the quadrant 2 peak location for α/γ with D dominant

when the distance taken in mm and h leading when the distance was normalised by

D. ReD was important for controlling the peak value of α/γ.

The last dependent parameter in this table is the location of the cross-over between

the quadrants exerting maximal stresses, both in mm and X/D. This parameter

have been chosen to study the phenomenon of the change of the quadrants pat-

tern for the points close to the cylinder edge, which may be considered a direct

consequence of the action of the HV system. Cylinder diameter and ReD govern

the location when it is measured in mm, while the ReD is the unique control as

the distance is in X/D. Hence, there is clear evidence for the physical relevance

of non-dimensionalisation of distances by D. The multiple existence of ReD as a

control parameter is consistent with the literature, where ReD is often used to scale

these types of experiments (Baker, 1979, 1980; Dargahi, 1989; Baker, 1991; Simpson,

2001). Figure 3.13, shows the cases where the R2 values are of the highest, and in

all of the three cases represented by the three plots, cylinder diameter is the most

significant parameter that affects the location and magnitude of the peak stresses,
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as well as the quadrants cross-over for (α/γ).

Table 3.10: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels and
the R2 associated with the regression equation for turbulent stresses distributed by
quadrants. The results are for experiments of Fr=0.015-2.46.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax (α/U2 and α/β) (mm) 0.828 D < 0.001 - -
xmax(α/U2 and α/β) (xmax

D ) - - - - -
(α/U2)max 0.641 h 0.0045 D 0.0083
(α/β)max 0.607 ReD 0.0017 - -
xmax(α/γ) (mm) 0.822 D < 0.001 h 0.0059
xmax(α/γ) (xmax

D ) 0.632 h 0.0029 D 0.0288
(α/γ)max 0.694 ReD < 0.001 - -
Quadrant cross-over for α/γ (mm) 0.829 D < 0.001 ReD 0.0059

Quadrant cross-over for α/γ (XD ) 0.554 ReD 0.0267 - -

3.4.1.2 The controlling parameter during instances when high turbulent

stresses are exerted

In light of the results from the stepwise regression that showed a significant effect

of flow depth and cylinder diameter Reynolds number on the magnitude of the pre-

dictor parameters, the HV system dependency was further explored. The maximum

observed value and position for α/β at a single point for the dominant quadrant

(quadrant 2), have been chosen as a criterion for this exploration. The high stress

state frames, which must dominate the quadrant-dependent values for |u′w′| were

separated using the same methodology introduced in Section 3.3.1.2. The frames

corresponding to these instances were extracted and the percentage of the overall

number of frames selected ranged from 4.84 to 7.02% over the twenty five experi-

ments. The summation of the stress magnitudes at the peak mean stresses locations

for these frames contributed from 27.08 to 40.93% of
∑
|u′w′| over all frames in each

different experiment.

Using the K -Means classifier, three groups (k1, k2, and k3) of the vorticity fields

were automatically classified and the number of frames in each cluster (Ck1 , Ck2 and

Ck3) was extracted. The second to forth columns of Table 3.11 shown in the results

for the ‘Single Point’ identifier. The grouping of the results is clear for experiments
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Figure 3.13: The relationships between the location of the peak stresses with the
cylinder diameter.

1-11 with a clear first cluster dominance, experiments 12-23 were also clustered

together in the second cluster and experiments 24 and 25 in the third cluster. Table

2.1 showed that the first experiments 1-11 have the lowest Fr, ranging from 0.015

to 0.2, experiments 12-23 having Fr of 0.4 to 1.4, and experiments 24 and 25 having



Chapter 3. Results: HV Behaviour under a Wide Range of Froude Numbers 75

the highest Fr of 1.936 and 2.46. To ensure the consistency of the results, a whole

frame approach has been employed in addition to the clustering of the vorticity

fields based on the single point hole size exceedance results.

The methodology is explained in paragraph 5 of Section 3.3.1.2. This time again

three groups were selected for the K -Means classification and the number of frames

corresponding to each cluster over the twenty five experiments is shown in columns

5 to 7 of Table 3.11 under the ‘Whole Frame’ heading. Results are very similar

to the single point case, with experiments 1-11 belonging to one group, followed

by experiments 12-23, and experiments 24-25 to the other two groups. Hence, the

differences between the single point and whole frame approaches are minor. Thus,

the Froude number not only affects the near-bed stresses exerted by the HV system,

but also the stresses produced by the whole HV system.

The left-hand side part of Figure 3.14 shows the centroids for clusters K1, K2 and K3

for the single point analysis from top to bottom respectively where the HV system is

better defined in one case better than the other, more details are in Section 3.3.1.2.

Therefore, experiments 1-11 are identified with the flow field seen in the top left,

which has a clear vortex developed that is spatially extensive despite the relatively

low peak vorticities relative to those seen for the other cluster centroids.

The cluster 2 centroid reflects the results for experiments 12-23 shown in the middle

left hand side plot with higher magnitude of vorticity, the HV system is better

defined with a higher magnitude although its spatial extent is less than what is

seen in cluster 1. The vorticity magnitude is even higher in the third cluster where

enstrophy is the greatest. The spatial extent of this system also increases again

and the primary vortex is angled away from the wall due to the presence of an

underlying secondary structure. Again results based on the single point define the

HV in a better way than in the case of whole frame showing the significance of

near-bed peak over frame-mean stresses. However, for cluster 3 from the whole-

frame analysis, the existence of a set of vortices extending up to X/D = 0.7 from

the cylinder can be discriminated. There is some evidence for their existence in the

single-point analysis but they are less distinct. The extended spatial extent of the

HV system in this case explains the variation in the stresses by quadrant seen for
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Table 3.11: The number of frames from each experiment allocated to the three clusters
found from the K -Means analysis (Ck1 Ck2 and Ck3). The three groups of results
represent frames chosen using a single point near the bed on the one hand, and using
the whole frame points on the other. The results are for the case of turbulent stresses
distributed by quadrants for experiments of Fr=0.015-2.46.

Single Point Whole Frame

Experiment Ck1 Ck2 Ck3 Ck1 Ck2 Ck3
1 304 0 0 304 0 0
2 279 0 0 279 0 0
3 249 0 0 249 0 0
4 238 0 0 238 0 0
5 229 0 0 229 0 0

6 307 0 0 307 0 0
7 280 0 0 280 0 0
8 257 0 0 257 0 0

9 249 0 0 249 0 0
10 266 2 0 265 0 0
11 256 0 0 256 0 0

12 20 235 0 21 234 0
13 6 288 0 10 284 0
14 39 260 0 33 266 0

15 0 260 0 1 259 0
16 0 218 0 0 218 0
17 1 291 0 0 292 0

18 0 268 0 0 268 0

19 0 201 0 0 201 0
20 0 270 0 0 270 0
21 1 311 0 0 312 0

22 0 316 0 0 316 0

23 0 234 0 0 232 0

24 0 57 252 0 27 282

25 0 1 308 0 0 309
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Figure 3.14: The centroids of the clusters extracted from the vorticity fields ω (s−1)
over the twenty five experiments. Results on the left are for the single point analysis
while those on the right are for the whole frame method. Centroid of cluster 1 is shown
at the top and of cluster 3 at the bottom in each case. The origin for the horizontal
axis is the upstream edge of the cylinder. The results are for the case of turbulent
stresses distributed by quadrants for experiments of Fr=0.015-2.46.

X/D > 0.5 in Fig. 3.12.

3.4.2 Lower Sub-critical Froude Numbers (Fr ∈ {0.015−0.2})

These different flow conditions of low Froude numbers might change how different

parameters control the dynamics of HV system upstream of the circular cylinder.

Hence, the analyses in this part are applied on variables related to experiments

1-11 in Table 2.1. The eleven lowest values in the group of the experiments used

in the analysis are selected to explore the effect of the controlling parameters on

the characteristics of HV system in a range of lower sub-critical flow conditions,
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some measures are used to explore the HV system characteristics as in the following

sections.

3.4.2.1 Stepwise regression analysis of the turbulent stresses

It is shown from the results of stepwise regression analysis of Table 3.12 that a

control of D on the prediction of the location of quadrant 2 maximum mean stresses

for both α/U2 and α/β when the distance from the cylinder edge is in mm. At the

same time, the peak location of α/γ was controlled by U . The cylinder diameter

effect and approaching flow depth appear to control the peak value of α/U2 and

the location of quadrants cross-over for measurements of distances both in mm and

X/D. ReD effect is shown in governing the peak values for α/β and α/γ. The

latter parameter prediction is consistent with what is in the literature when ReD is

often used to scale these types of experiments. Now, when comparing these results

with the results from the whole range of flow conditions shown in Table 3.10, it is

noticed that D and h control of the peak location of α/γ in mm is replaced with U

and this is probably due to the effect of gentle bulk flow velocity and consequently

the gentle part of turbulence that keeps the balance between the contribution of the

different quadrants in a local measures. The other significant difference is when the

ReD control of quadrant cross-over for α/γ (X
D

) is replaced with h and D, and this

is anticipated to the effect of the adverse pressure in the region just upstream of the

edge of the cylinder where the incoming flow hits the cylinder and comes down and

then reflects back from the cylinder generating the circulation responsible for the

vortex formation.

3.4.2.2 The controlling parameter during instances when high turbulent

stresses are exerted

The frames corresponding to the high stress state times were extracted and the per-

centage of the number of frames selected ranged from 5.09 to 6.82% over the total

number of frames in each of the eleven experiments. The summation of the stress

magnitudes at the peak stresses locations for these frames contributed from 27.64
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Table 3.12: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels and
the R2 associated with the regression equation for turbulent stresses distributed by
quadrants. The results are for experiments of Fr=0.015-0.2.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax(α/U2 and α/β) (mm) 0.772 D 0.0012 - -
xmax(α/U2 and α/β) (xmax

D ) - - - - -
(α/U2)max 0.778 D 0.017 h 0.024
(α/β)max 0.685 ReD 0.01 - -
xmax(α/γ) (mm) 0.818 U < 0.001 - -
xmax(α/γ) (xmax

D ) - - - - -
(α/γ)max 0.791 ReD < 0.001 - -
Quadrant cross-over for α/γ (mm) 0.940 D < 0.001 h 0.028

Quadrant cross-over for α/γ (XD ) 0.941 h < 0.001 D < 0.001

to 34.13% of the
∑
|u′w′| for each different experiment.

Two groups of the vorticity fields for the selected frames were classified automati-

cally into (K1 and K2) using the K -Means classifier and the number of frames in

each cluster (Ck1 and Ck2) was extracted using cross tabulation method. Results

are shown for both single point and whole frame analyses as in Table 3.13. The

results show that experiments 1, 2, 3, 4, 5 and 8 may be grouped together with

a clear first cluster dominance in both single point and whole frame cases. Figure

3.10 shows that the values of α/U2 for these experiments are the highest among

low Fr experiments. That is because the bigger the cylinder diameter is, the more

turbulence is created in front of it and consequently the turbulent stresses of α are

grater in the experiments that share the biggest cylinder diameter.

Figure 3.15 shows the two cluster’s centroids for the single point and whole frame

analyses. The centroid of cluster 1 has better defined HV system. The cluster 2

centroid reflects the results for experiments 6, 7, 9, 10 and 11. In these latter cases,

diameters are smaller and the HV system is not defined and the region close to

the bed is less extended in the vertical plane. The HV is slightly better defined

in the centroids of K2 of single point approach field, bottom left, than in K2 of

whole frame approach, bottom right. From this section it is learnt that having

less number of experiments resulted in less number of clusters, as in Figs. 3.15

and 3.14, respectively. Also, it is noticed that the single point approach remained
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Table 3.13: The number of frames from each experiment allocated to the two clusters
found from the K -Means analysis (Ck1 and Ck2), as well as the classifier used to define
cluster membership for each experiment (Ck1 − Ck2)/(Ck1 + Ck2). The two groups of
results represent frames chosen using a single point near the bed on the one hand, and
using the whole frame points on the other. Results with a strong positive value for
(Ck1 − Ck2)/(Ck1 + Ck2) are shown in bold. The results are for the case of turbulent
stresses distributed by quadrants for experiments of Fr=0.015-0.2.

Single Point Whole Frame

Experiment Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

1 304 0 +1.0 304 0 +1.0
2 279 0 +1.0 279 0 +1.0
3 249 0 +1.0 249 0 +1.0
4 238 0 +1.0 238 0 +1.0
5 229 0 +1.0 229 0 +1.0

6 103 204 -0.33 81 226 -0.47
7 70 210 -0.50 105 175 -0.25
8 203 54 +0.58 191 66 +0.49

9 1 248 -0.99 0 249 -1.0
10 0 268 -1.0 0 268 -1.0
11 0 256 -1.0 0 256 -1.0

better in capturing the more significant moments of turbulence that leads to higher

magnitude of vorticity regardless of the flow conditions.
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Figure 3.15: The centroids of the clusters extracted from the vorticity fields ω (s−1)
over the eleven experiments. Results on the left are for the single point analysis while
those on the right are for the whole frame method. Centroid of cluster 1 is shown at
the top and of cluster 2 at the bottom in each case. The origin for the horizontal axis
is the upstream edge of the cylinder. The results are for the case of turbulent stresses
distributed by quadrants for experiments of Fr=0.015-0.2.
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3.4.3 Upper Sub-critical to Supper-critical Froude Num-

bers (Fr ∈ {0.6− 2.46})

The other part of the wide range of Froude numbers experiments is selected for this

section to studying the effect of the case of upper sub-critical to supper-critical flow

conditions (Fr=0.6-2.46) on the dynamics of the HV system upstream of the circular

cylinder which might have different response to the control parameters than in the

case of including whole range of flow conditions. The two following subsections are

for the conducted analyses.

3.4.3.1 Stepwise regression analysis of the turbulent stresses

It is shown from the results of the stepwise regression in Table 3.14 how the location

of quadrant 2 maximum stress measured for the cylinder edge in mm for α/U2 and

α/β is controlled by the cylinder diameter, while no control is shown when the

distance is normalised by D and that is an evidence for the significant effect of

normalisation by D. Also, the effect of the normalisation of the abscissa by D is

clear, not only in this case, but also when the peak location for α/γ is controlled

by D and Fr together before normalisation and with only the control of Fr hence

after. While, the peak value of α/U2 and α/β is not controlled by any parameter.

α/γ is only driven by D. For the quadrant cross-over location for α/γ, D and h

were the controlling variables in both cases, before and after normalisation and it

is back to effect of D in both cases for experiments 22-25 of Table 3.9. From these

results it is noticed that most of the predictor variables are controlled by different

parameters when testing the response with wider range of flow conditions. There

is no control parameter shown for both the peak of α/U2 and α/β, and that is due

to the relatively high turbulence production for the experiments in this group. The

high turbulence created a more chaotic values of α in which the normalisation by

neither U2 nor β helped to make it more predictable or controlled by any parameter.

This raise the issue for the need of more experiments to find out if it ends up with

any controlling parameters. The other interesting difference is when the effect of

Fr is obvious to control the location of the peak for α/γ and that came along with
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hypothesis that predicted an effect of Fr on the dynamics of the HV system.

Trying to explore qualitatively the effect of the flow parameters on the HV system,

mode 2 of the vorticity field was plotted in Fig. 3.16. It has been found that there

are vortices well recognised in experiments 16, 17, 20, and 21. From Table 2.1 these

experiments share the largest cylinder diameters of 0.042 m, 0.063 m, 0.045 m and

0.063 m respectively. The highest vorticity level was found in experiment 24 and

25 of Fr=1.934, and Fr=2.46 with D = 0.04 m, and that could be attributed to

the relatively high velocity of the flow at 1.407 and 1.652 m s−1 respectively. Also,

there is an evidence for the significant higher turbulence production for these two

experiments from their value of enstrophy shown in Table 3.3.

Table 3.14: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels and
the R2 associated with the regression equation for turbulent stresses distributed by
quadrants. The results are for experiments of Fr=0.6-2.46.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax (α/U2 and α/β) (mm) 0.907 D < 0.001 - -
xmax (α/U2 and α/β) (xmax

D ) - - - - -
(α/U2)max - - - - -
(α/β)max - - - - -
xmax(α/γ) (mm) 0.980 D < 0.001 Fr 0.001
xmax(α/γ) (xmax

D ) 0.739 Fr 0.0028 - -
(α/γ)max 0.765 D 0.0015 - -
Quadrant cross-over for α/γ (mm) 0.861 D 0.0021 h 0.0149

Quadrant cross-over for α/γ (XD ) 0.814 D 0.0012 h 0.0132

3.4.3.2 The controlling parameter during instances when high turbulent

stresses are exerted

The frames corresponding the high stress state instances were extracted and the

percentage of the total number of the selected frames ranged from 4.84 to 7.02%

over the eleven experiments. The summation of the stress magnitudes at the peak

stress locations for these frames contributed from 27.08 to 40.93% of the
∑
|u′w′|

for each different experiment.

Two clusters were extracted from the high stress state frames and the results in

Table 3.15 show that the experiments are divided into two groups according to the
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Fr values, where experiments 15-23 grouped in one group with the lowest Fr and

experiments 24, and 25 in another group of highest Fr. Froude number changed

from 1.4 to 1.936 when a sharp change of the clustering happened, anticipating that

more experiments are needed to cover this gap to predict more accurately what is

the threshold for the change to occur.

These results show that the single point and whole frame approaches are mainly

very similar in terms of grouping the frames into two groups. To find the effect

of clustering the frames from a high Fr experiments as a separate group, where

the frames mainly clustered into two groups, from comparing these results with

the results from clustering the frames in experiments 1-25 in Table 3.11, and it

has been found that they are mainly grouped into two groups rather than three

and that indicate the independence of the high Fr experiments from the rest of the

experiments under the K -Means clustering method. This is probably because the

direct influence of Fr that affect the geometry of the HV system to a big extend.

Table 3.15: The number of frames from each experiment allocated to the two clusters
found from the K -Means analysis (Ck1 and Ck2), as well as the classifier used to define
cluster membership for each experiment (Ck1 − Ck2)/(Ck1 + Ck2). The two groups of
results represent frames chosen using a single point near the bed on the one hand, and
using the whole frame points on the other. Results with a strong positive value for
(Ck1 − Ck2)/(Ck1 + Ck2) are shown in bold. The results are for the case of turbulent
stresses distributed by quadrants for experiments of Fr=0.6-2.46.

Single Point Whole Frame

Experiment Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

15 260 0 +1.0 260 0 +1.0
16 218 0 +1.0 218 0 +1.0
17 292 0 +1.0 292 0 +1.0

18 268 0 +1.0 268 0 +1.0

19 201 0 +1.0 201 0 +1.0
20 270 0 +1.0 270 0 +1.0
21 312 0 +1.0 312 0 +1.0

22 316 0 +1.0 316 0 +1.0

23 234 0 +1.0 234 0 +1.0

24 62 247 -0.60 44 265 -0.72

25 0 309 -1.0 0 309 -1.0

Figure 3.17 shows the centroids for the extracted clusters, and looking at the left-

hand side of the figure, the centroid of cluster 1 has two vortices with higher mag-

nitude of vorticity for the closer to the cylinder. In the second cluster, also two
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Figure 3.17: The centroids of the clusters extracted from the vorticity fields ω (s−1)
over the eleven experiments. Results on the left are for the single point analysis while
those on the right are for the whole frame method. Centroid of cluster 1 is shown at
the top and of cluster 2 at the bottom in each case. The origin for the horizontal axis
is the upstream edge of the cylinder. The results are for the case of turbulent stresses
distributed by quadrants for experiments of Fr=0.6-2.46.

vortices are defined, however, the second vortex from the cylinder edge is located

under the bigger vortex located near the cylinder. To understand the geometry of

the HV system it is needed to compare the clustering centroids of the high stress

state frames for a group of high Fr with the whole group of experiments. For a fair

comparison, centroids 1 and 2 from Figure 3.17 are compared with centroids 2 and

3 of Figure 3.14 respectively. It is shown from the two figures that the centroids are

similar and this confirm that there is a physical interpretation which leads to the

clustering of particular frames together in each time.

3.5 Summation of Turbulent Stresses of Quad-

rants 1, 3, and 4 in front of the Cylinder

This section was undertaken to determine controls on the behaviour of the other

quadrants (1, 3, and 4) that are non-dominant in terms of peak stress exerted.

The procedures are similar to Section 3.3 apart from that the effect of quadrant

2 is not taken into account. This time the peak stress for each experiment was
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calculated from the measured turbulent stresses in quadrants 1, 3, and 4. The basic

data underpinning the analysis of this section is shown in Table 3.16. Figures 3.18,

3.19, and 3.20 show the values of η, η/U2, and ζ respectively. The location and

magnitude of each of which used to test the dynamics of the HV system upstream

of the cylinder.

3.5.1 The Analysis of Sub-critical to Super-critical Froude

Numbers

(Fr ∈ {0.015− 2.46})

This section includes data from the 25 experiments of this chapter. Table 3.17

shows the results of the stepwise regression analyses based on the data of Tables

2.1 and 3.16 and they show that two parameters are in control of the location of

the maximum means of the absolute stresses when the distance is measured in mm.

These parameters are D and ReD. These results are similar to the equivalent cases

in Sections 3.3 and 3.4, which is a confirmation about the robustness of the results.

From the results of the magnitude of the controlling parameters, there is a clear

effect of h on the three quantities, η, η/U2, and η/ζ. This effect of h is either

direct or indirect through the other parameters, Fr and Reh. These results are very

similar to the ones in Section 3.3 and that gives indication that maybe the effect

of quadrant 2 is not important for the prediction of the magnitude of stresses for

near-bed locations under the HV system. The two plots in Fig. 3.21 show the effect

of Fr and h on the magnitude of the peak stresses. Hence, the trend of change for

Fr with η is positive, while the trend is negative for the relationship between η/ζ,

and that is because of the change of h from being in the denominator with Fr to the

numerator. In Sections 3.3 and 3.4, analyses the geometry of the HV system using

K -Means clustering algorithm were adopted. The patterns found in those sections

were same as those for quadrants 1, 3, and 4 and are not replicated here.
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Table 3.17: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels and
the R2 associated with the regression equation for the summation of turbulent stresses
of quadrants 1, 3, and 4 for experiments of Fr=0.015-2.46.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax(η, η/U2, η/ζ) (mm) 0.758 D < 0.001 ReD 0.0039
xmax(η, η/U2, η/ζ) (xmax

D ) 0.617 Q 0.0011 - -
ηmax 0.846 Fr < 0.001 h 0.0086
(η/U2)max 0.650 h < 0.001 D 0.0314
(η/ζ)max 0.835 h < 0.001 Reh < 0.001
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Figure 3.21: The relationship between the peak stresses magnitude with the Froude
number and flow depth for the top and bottom plots, respectively.

3.5.2 The Analysis of Lower Sub-critical Froude Numbers

(Fr ∈ {0.015− 0.2})

These analyses have been done to find the effect of the controlling parameters of

the stresses of quadrants 1,3, and 4 on the HV dynamics for 11 experiments from

the lower part of Fr values included in this study. The stepwise results in Table

3.18 revealed no control on the location of the peaks, and this is the first time the
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cylinder diameter is absent as a control on peak location. Obviously the removal

of quadrant 2 from the stresses caused to this result. Froude number stands out as

a main controlling parameter of the variable η as in Section 3.5.1 but this time as

a sole parameter. At the same time, parameters h and D for η/U2 remained the

same. For η/ζ both Reynolds numbers are controlling its magnitude, and that is

very consistent with the results for γ/β of the equivalent section shown in Table 3.5.

Table 3.18: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels and
the R2 associated with the regression equation for the summation of turbulent stresses
of quadrants 1, 3, and 4 for experiments of Fr=0.015-0.2.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax(η, η/U2, η/ζ) (mm) - - - - -
xmax(η, η/U2, η/ζ) (xmax

D ) - - - - -
ηmax 0.942 Fr < 0.001 - -
(η/U2)max 0.894 h 0.0010 D 0.0012
(η/ζ)max 0.945 ReD < 0.001 Reh 0.0130

3.5.3 The Analysis of Upper Sub-critical to Supper-critical

Froude Numbers (Fr ∈ {0.6− 2.46})

Table 3.19 shows the variables that control the location and magnitude of the pre-

dictor variables of a group of 11 experiments of the upper end of our 25 experiments.

The cylinder diameter and Froude number are having a combined control on the lo-

cation of peak values of η, η/U2, and η/ζ when the distances are in mm. The results

of the controlling parameters for this case are consistent with the results of Section

3.3.3.1 when the effect of quadrant 2 was considered. The effect of U was removed

when η was normalised by U2. The only difference is that D effect existed when

η normalised by ζ and that is attributed to the effect of the normalisation by the

summation of the stresses in all the near-bed 40 points included in the calculations.

3.6 Discussion

This research has been done in a different way from the previous research that

studied the HV behaviour (Baker, 1979, 1980; Dargahi, 1989; Sahin et al., 2007). It
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Table 3.19: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels and
the R2 associated with the regression equation for the summation of turbulent stresses
of quadrants 1, 3, and 4 for experiments of Fr=0.6-2.46.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax(η, η/U2, η/ζ) (mm) 0.975 D < 0.001 Fr 0.0015
xmax(η, η/U2, η/ζ) (xmax

D ) 0.716 ReD 0.0050 - -
ηmax 0.885 U < 0.001 - -
(η/U2)max - - - - -
(η/ζ)max 0.626 D 0.0363 - -

included different experiments with a wide range of flow conditions that focused on

separating the effect of the controlling parameters shown in Table 1.1. The three

different criteria used in choosing the peak stress values provide a refined view of how

near-bed stresses are manifest. There were very consistent results of the parameters

that control the geometry of the HV system for the three criteria in Sections, 3.3.1.2,

3.4.1.2, and 3.5.1, although the results were not shown in the latter section to avoid

replication. In addition, the results were also consistent when the whole group of

experiments were divided in the analyses into low sub-critical and super-critical

groups. For the dynamics of the HV, there was also a good match of the results

across the three different approaches, especially for the parameter that control the

location of the peak stresses, and that is because of its relevance to the geometry of

the HV system that showed a very good agreement among the different approaches.

The controls of the magnitude of the peaks showed similarity. These similarities

were obvious between Sections 3.3.1.1, and 3.5.1, and for Sections 3.3.2.1, 3.5.2, and

between Sections 3.3.3.1, and 3.5.3, these similarities are showing the importance of

quadrant 2 as a criterion in selection of the peak stress values.



Chapter 4

Results: HV Behaviour for

Sub-critical Froude Numbers

Given the results for the 25 experiments in Chapter 3, a refined experimental design

was adopted in an attempt to establish the controls on the HV system in a clearer

fashion for sub-critical Froude numbers for nine experiments. As with Chapter 3,

the three peak values of the mean of absolute stresses, quadrant-based analyses, and

the summation of quadrants 1, 3, and 4 were undertaken.

The structure of this chapter consists of two main sections. A brief introduction is

given in Section 4.1, and the results are presented in Section 4.2. Analysis follows

the framework established in Chapter 3.

4.1 Introduction

The flow conditions for the experiments in this chapter were mainly driven by the

Froude numbers used in many previous studies conducted to study the flow upstream

of the cylinders, e.g. Roulund et al. (2005), Paik et al. (2010), and Escauriaza and

Sotiropoulos (2011). These Froude numbers are in the lower part of the sub-critical

regime.

As before, a set of forty points (Ns=40) were chosen near-bed under the system

and just upstream to the HV. All of the points were at the same elevation from the

94
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bed and just at 1.23 mm from the bed that enabled the study of the wall turbulent

stresses. For each of the approaches, a stepwise regression method was used to find

out the flow parameters that control selected criteria of the HV system. Later on,

a hole size have been defined to separate the most effective vorticity fields among

the total number captured in each experiment based on the maximum value of the

mean absolute turbulent stresses of a single point. This single point representation

was deemed to represent the near wall stresses well, but the full frames were also

analysed. Finally, a K -Means technique was used to cluster the properties of the

frames in a given experiment.

4.2 Selected Flow Conditions with Sub-critical Froude

Numbers (Fr=0.2, 0.35, and 0.5)

These experiments were designed in such a way to explore in much more details the

flow conditions of the HV system for sub-critical Froude numbers. The dynamics

and geometry of the HV system were the characteristics studied through the near-

bed turbulent stresses in the region upstream to the cylinder. Table 2.2, which

listed the characteristics of these experiments is reproduced here for convenience.

See Section 2.3.2 for further information concerning the experimental design.

4.2.1 Turbulent Stresses in front of the Cylinder

In this section the value of the turbulent stress contribution is considered for the

analysis, where the mean of the absolute turbulent stresses at each point was chosen

as a criterion for the HV system and the point that attained the maximum value

was selected to represent the whole group of 40 points near the wall upstream of

the cylinder. The results of the velocity covariance from near-wall locations for the

turbulent stresses are shown in Figs. 4.1, 4.2 and 4.3. The abscissa for the forty

points shown, is the distance from the upstream edge of the cylinder. Figure 4.1

shows that magnitude of γ increased for all of the three groups of experiments in top,

middle, and bottom rows of plots when the Froude number increased. However, the
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location of the peak relative to the cylinder’s edge is shown to be driven by cylinder

diameter within each group, for experiments of similar Fr represented by the plots

in columns.

For column 1, it is shown that the peak point moved towards the cylinder’s edge

when cylinder diameter decreased from 0.06 m to 0.045 m, and then it moved away

when the diameter increased to D = 0.07 m. In case of column 2, the peak moved

towards the cylinder when the diameter decreased from 0.06 m to 0.04 m. The

trend is similar in column 3 when D decreased from 0.06 m to 0.028 m. These

results indicate a clear correlation with D. Also, it is shown for group 1 and 2 of

the experiments, shown in table 4.1, represented by top and middle rows of plots,

shown in Fig. 4.1 that the peak location of γ is moving away from the cylinder

as Fr increased from 0.2 to 0.5, knowing that in these two cases, the diameter of

each group is constant. The three experiments in the bottom line are not following

the same trend of the other groups and that could be attributed to the decrease in

cylinder diameter. Figure 4.2 shows γ normalised by the square of the approaching

bulk flow velocity U2, and Fig. 4.3 is showing the relative contribution of |u′w′| to

the summation of all 40 sites γ/β.
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Figure 4.1: Mean of absolute velocity covariances γ. The abscissa indicates distance
upstream from the upstream edge of the cylinder. Fr=0.2-0.5.
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Figure 4.2: Mean of absolute velocity covariances normalized by the square of the
approaching bulk flow velocity γ

U2 . The abscissa indicates distance upstream from the
upstream edge of the cylinder. Fr=0.2-0.5.

00.20.40.60.8
0

5

10

%
γ β

Fr=0.2, D=0.06m

Exp.26

00.20.40.60.8
0

5

10

Fr=0.35, D=0.06m

Exp.27

00.20.40.60.8
0

5

10

Fr=0.5, D=0.06m

Exp.28

00.20.40.60.81
0

5

10

%
γ β

Fr=0.2, D=0.045m

Exp.29

00.20.40.60.81
0

5

10

Fr=0.35, D=0.045m

Exp.30

00.20.40.60.81
0

5

10

Fr=0.5, D=0.045m

Exp.31

00.20.40.6
0

5

10

X
D

%
γ β

Fr=0.2, D=0.07m

Exp.32

00.51
0

5

10

X
D

Fr=0.35, D=0.04m

Exp.33

00.511.5
0

5

10

X
D

Fr=0.5, D=0.028m

Exp.34

Figure 4.3: Mean of absolute velocity covariances normalized by the summation of the
means of absolute velocity covariances over all forty positions γ
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distance upstream from the upstream edge of the cylinder. Fr=0.2-0.5.
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There is small increase in γ, γ/U2, and γ/β in Figures 4.1, 4.2 and 4.3 respectively

for the upstream control locations when moving from the furthest point towards

the cylinder up to the point where a significant change in elevation happens and

that is due to the further upstream effect of the HV system. However, the difference

between the values is very small for the majority of these points when related to one

experiment. Figures 4.1, 4.2 and 4.3 show that the mean of these values is approxi-

mately 2-7 times lower than the peaks experienced in the HV region, demonstrating

the significance of the vortex system for near-wall stresses generation (Devenport

and Simpson, 1990). The peak of the mean absolute stresses and its location were

the primary dependent variables used in the stepwise regression analysis (Table 4.1).

The location of the peak is identical for γ, γ/U2, and γ/β. The following section

presents the results of the analysis.

Table 4.1: Dependent variables used in the stepwise regression for the turbulent
stresses. The predictor variables are given in Table 2.2.

Exp. xmax for γ, xmax/D for γ, γmax (γ/U2)max γ/βmax
No. γ/U2, and γ/U2, and %(γ/β) (×10−4m2s−2) (%)

(γ/β) (mm)

26 9.9 0.164 3.90 119.05 8.77
27 11.1 0.185 8.17 113.75 9.18
28 12.3 0.205 13.67 128.63 9.61

29 7.4 0.164 3.47 36.58 11.99
30 7.4 0.164 5.41 57.03 9.76
31 9.9 0.219 8.97 94.56 8.80

32 12.3 0.176 4.64 100.18 8.90
33 7.4 0.185 6.15 43.97 8.50
34 3.7 0.132 10.24 35.51 8.27

4.2.1.1 Stepwise regression analysis of the turbulent stresses

The stepwise regression analysis results are stated in Table 4.2. They show both

D and Fr played a role in the prediction of the maximum mean absolute stresses

location, measured in millimetres, shown in Figures 4.1, 4.2 and 4.3, with no control

parameter when the distance X was normalised by cylinder diameter, X
D

. The peak

values of γ were controlled by a combination of Fr and D, while γ/U2 is controlled

by Reh and D. For both of these cases the effect of the bulk momentum (U · h)

has been found when Fr is replaced by Reh. Hence, Reh, is a significant control on
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near-wall structure. No variable is shown to control γ/β.

Tables 2.2, 4.1 and 4.2 show how Fr and D control the location of the mean absolute

peak stresses, however the effect of D is much more than that of Fr and that is shown

from the magnitude of p-value. This is because D is constant for the experiments

in group 1 and then again for group 2, so that the increasing distance that the peak

mean absolute stresses is located from the cylinder highlights the Froude number

control as one moves towards the upper end of sub-critical, the HV system moves

upstream. However, the degree of variation in each of groups 1 and 2 is less than

that between the groups because of the dominant effect of D, which is clearly seen

in group 3. Hence, the Froude number effect is secondary to the diameter’s control

upon lateral momentum flux into the region, which acts to displace the HV system

away from the cylinder. This is confirmed in the regression analysis and it is shown

in Fig. 4.4, that shows the second mode from the POD of the vorticity fields for

the same group of nine experiments and highlights that the basic geometry of the

HV system is similar for the different experiments (except experiment 34 where the

relatively small D makes the whole system very small to be seen clearly). From this,

we know that the effect of D and Fr is the thing that cause of displacement when

additional momentum is pumped into the region, more than altering the vortex

system topology.

It is shown in this section of results that the overall control parameters are not

matching with any of the results of the three groups of analyses shown in Tables

3.2, 3.5, and 3.7 in Chapter 3. Although, D is a shared control parameter among

all cases which showed always a significant effect on controlling the location of the

maximum mean of stresses when distances measured in mm. This is shown in the

top plot of Fig. 4.5 with a very clear relationship between the cylinder diameter

and the location of the peak stress. These results recognise the cylinder diameter as

a main parameter that controls the point that it has the maximum bed turbulent

stresses, hence the expected location of the maximum depth of scour hole upstream

of the cylinder. Regarding the stresses magnitude control, there is a clear effect

of Fr in controlling the value of γ between the analyses of this section, shown in

bottom plot of Fig. 4.5 and the ones in Tables 3.2 and 3.5. With these findings, Fr
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control on the turbulent stresses is found to be more effective for the lower part of

sub-critical flow conditions. However, there is a presence of high Froude numbers

with the group of the experiments of Table 3.2, yet the effect is still dominated by

the experiments with Fr ≤ 0.5.

Table 4.2: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels and
the R2 associated with the regression equation for the total turbulent stresses.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax(γ, γ/U2, γ/β) (mm) 0.943 D < 0.001 Fr 0.0335
xmax(γ, γ/U2, γ/β) (xmax

D ) - - − - -
γmax 0.964 Fr 0.0021 D 0.0061
(γ/U2)max 0.886 Reh 0.0278 D 0.0434
(γ/β)max - - - - -

4.2.1.2 The controlling parameter during instances when high turbulent

stresses are exerted

The dependence of cylinder diameter for the turbulent stresses was further explored

from a consideration of the high stress state frames. More details can be found in

paragraphs 2 and 3 in Section 3.3.1.2.

The number of exceedance (φ) for which H > 2 and their positions in time were

identified for each experiment. These instances were used to extract the frames

corresponding to them in time. The percentage of the total number of frames

selected ranged from 4.91 to 6.87% over the nine experiments. The summation of

the stress magnitudes exceedance at the peak stress locations of the single points

contributed from 27.47 to 33.78% of the
∑
|u′w′| over all frames of each of the

different experiment.

The number of frames in each cluster (Ck1 and Ck2) was extracted using the K -

Means classifier and the results are shown in the second to fourth columns of Table

4.3 under the ‘Single Point’ identifier. It is clear from the results that experiments

26, 27, 28, 31 and 32 may be grouped together with a clear first cluster dominance,

although experiment 31 is not strongly belong to the group. Again from the whole

frame approach, details of this method are in paragraph 5 of Section 3.3.1.2, two



Chapter 4. Results: HV Behaviour for sub-critical Froude Numbers 101
Z
D

F
r=

0
.2

, 
D

=
0

.0
6

m

 

 

E
x
p
.2
6

0
0

.2
0

.4
0

.6
0

.8
0

0
.1

0
.2

0
.3

0
.4

−
5

0
0

05
0

0

F
r=

0
.3

5
, 

D
=

0
.0

6
m

 

 

E
x
p
.2
7

0
0

.2
0

.4
0

.6
0

.8
0

0
.1

0
.2

0
.3

0
.4

−
5

0
0

05
0

0

F
r=

0
.5

, 
D

=
0

.0
6

m

 

 

E
x
p
.2
8

0
0

.2
0

.4
0

.6
0

.8
0

0
.1

0
.2

0
.3

0
.4

−
5

0
0

05
0

0

Z
D

F
r=

0
.2

, 
D

=
0

.0
4

5
m

 

 

E
x
p
.2
9

0
0

.5
1

0

0
.2

0
.4

−
5

0
0

05
0

0

F
r=

0
.3

5
, 

D
=

0
.0

4
5

m

 

 

E
x
p
.3
0

0
0

.5
1

0

0
.2

0
.4

−
5

0
0

05
0

0

F
r=

0
.5

, 
D

=
0

.0
4

5
m

 

 

E
x
p
.3
1

0
0

.5
1

0

0
.2

0
.4

−
5

0
0

05
0

0

X D

Z
D

F
r=

0
.2

, 
D

=
0

.0
7

m

 

 

E
x
p
.3
2

0
0

.2
0

.4
0

.6
0

0
.1

0
.2

0
.3

−
5

0
0

05
0

0

X D

F
r=

0
.3

5
, 

D
=

0
.0

4
m

 

 

E
x
p
.3
3

0
0

.5
1

0

0
.2

0
.4

0
.6

−
5

0
0

05
0

0

X D

F
r=

0
.5

, 
D

=
0

.0
2

8
m

 

 

E
x
p
.3
4

0
0

.5
1

1
.5

0

0
.2

0
.4

0
.6

0
.8

−
5

0
0

05
0

0

F
ig

u
re

4
.4

:
M

o
d

e
2

fr
o
m

th
e

P
O

D
of

th
e

vo
rt

ic
it

y
fi

el
d

(u
n

it
s

of
s−

1
),

sh
ow

in
g

th
e

H
V

sy
st

em
fo

r
th

e
9

ex
p

er
im

en
ts

sh
ow

n
in

T
ab

le
2.

2.



Chapter 4. Results: HV Behaviour for sub-critical Froude Numbers 102

25 30 35 40 45 50 55 60 65 70
2

4

6

8

10

12

14

D (mm)

x
m
a
x
(γ
,γ

/
U

2
,γ

/
β
)(
m
m
)

0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

4

6

8

10

12

14

Fr

γ
m
a
x

Figure 4.5: The relationship between the peak stress location with the cylinder diam-
eter is shown in the top plot and the relationship between the magnitude of the peak
stress and the Froude number is shown in bottom plot.

clear groups were also extracted from the K -Means classification of the whole frame

fields. The number of frames corresponding to each cluster over the nine experiments

is shown in columns 5 to 7 of Table 4.3 under the ‘Whole Frame’ heading. These

results identify experiments 26, 27, 28, and 32 as belonging to one group. Table 2.2

shows that this group of experiments share the biggest cylinder diameters. Hence,

although the differences between the single point and whole frame approaches are

minor for experiements 26, 27, 28, and 32, it would seem that the cylinder diameter

affects the whole HV system to a greater extent than it does the near-bed conditions

only. It is the first case that we noticed the dominance of whole frame approach

over the single point effect and this attributed to the greater spatial extend of the

vortices in the vorticity field that affected by the cylinder diameter.

The right-hand part of Figure 4.6 shows the centroids for clusters K1 and K2 for
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Table 4.3: The number of frames from each experiment allocated to the two clusters
found from the K -Means analysis (Ck1 and Ck2), as well as the classifier used to define
cluster membership for each experiment (Ck1 − Ck2)/(Ck1 + Ck2). The two groups of
results represent frames chosen using a single point near the bed on the one hand, and
using the whole frame points on the other. Results with a strong positive value for
(Ck1 − Ck2)/(Ck1 + Ck2) are shown in bold.

Single Point Whole Frame

Experiment Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

26 225 84 +0.47 291 18 +0.88
27 226 58 +0.59 241 43 +0.70
28 227 62 +0.57 270 19 +0.87

29 3 239 -0.98 23 219 -0.81
30 36 224 -0.72 108 152 -0.17
31 183 108 +0.26 128 163 -0.12

32 261 29 +0.80 274 16 +0.89
33 22 265 -0.85 15 272 -0.90
34 0 221 -1.0 1 220 -0.99

the whole frame analysis. Therefore, experiments 26, 27, 28 and 32 are identified

predominantly with the flow field seen in the top right, which has a more spatially

extensive HV system in both the vertical and horizontal plane. The cluster 2 centroid

predominantly reflects the results for experiments 29, 30, 31, 33 and 34. In these

cases, diameters are smaller and the HV system is more intensive closer to the

cylinder and is confined to a narrower vertical extent. Results based on the single

point approach exhibit little difference, with a secondary vortex in the top left,

showing the general correspondence between near-bed peak stresses and frame-mean

peak stress states. From the comparison between these results and the results of the

three groups in Chapter 3 in Sections 3.3.1.2, 3.3.2.2, and 3.3.3.2, we found another

case of frame clustering based on the cylinder diameter and that is the case when Fr

ranged from 0.015-0.2. It is concluded that the cylinder diameter is an important

parameter that shapes the geometry of the HV system for the flow conditions that

have Fr ≤ 0.5.
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Figure 4.6: The centroids of the clusters extracted from the vorticity fields ω (s−1)
over the nine experiments. Results on the left are for the single point analysis while
those on the right are for the whole frame method. Centroid of cluster 1 is shown at
the top and the centroid of cluster 2 at the bottom in each case. The origin for the
horizontal axis is the upstream edge of the cylinder.

4.2.2 Turbulent Stresses Contributions in front of the Cylin-

der Distributed by Quadrants

In this section, the turbulent stresses were separated due to their contribution to

different quadrants and, as with the analysis in Chapter 3, quadrant 2 generated

the peak stress magnitude and contributed the most to the total stress magnitude.

Hence, it was selected as the focus for study. The results for the partitioning of

the velocity covariance from the near-wall locations across the four quadrants are

shown in Figs. 4.7, 4.8 and 4.9. For all the points with hollow symbols, which

are those under and upstream of the HV system, the abscissa is the distance from

the upstream edge of the cylinder. Figure 4.7 shows α normalized by the square

of the approaching bulk flow velocity U2. Hence, it illustrates the effect of the HV

system on turbulence production. The other figures show the relative contribution

of |u′w′| as a contribution to all forty sites (α/β, Fig. 4.8) and for each quadrant

on a site-by-site basis (α/γ, Fig. 4.9).

That there is a small increase in α/U2 in Fig. 4.7 and α/β in Fig. 4.8 for the
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Figure 4.7: Mean of absolute contributions of turbulent stresses of each quadrant
normalised by the square of the approaching bulk flow velocity α

U2 . The abscissa
indicates distance upstream from the upstream edge of the cylinder. As given in Table
2.3, 4, ©, 5, and � indicate the results for quadrants 1 to 4, respectively. The
results are for the case of turbulent stresses distributed by quadrants for experiments
of Fr=0.2-0.5.

upstream control locations up to X/D=0.45 closer to the cylinder indicates the

upstream extent of the effect of the HV system. However, the values are approx-

imately constant for the majority of these points, with similar contributions from

quadrants 1 and 3 (α/U2 ∼ 0.002, and then for quadrants 2 and 4 (α/U2 ∼ 0.007).

These values are approximately 2-7 times lower than the peaks experienced in the

HV region, highlighting the significance of the vortex system for near-wall stress

generation. Note also the spatial structure in the peaks for the maximal contribu-

tions from each quadrant, with a consistent order of Q1, Q3, Q4, and then Q2 as one

moves away from the cylinder. The quadrant peak absolute stress (which is always

for Q2) and its location were the primary dependent variables used in the stepwise

regression analysis (Table 4.4). The location of the peak is identical for α/U2 and

α/β, but differs for α/γ.

While Q2 and Q4 contribute the most to the stresses in the HV system, for approx-

imately X/D . 0.1 closest to the cylinder, this pattern is found to be reversed with
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Figure 4.8: Mean of absolute contributions of turbulent stresses of each quadrant nor-
malised by the summation of the means of absolute covariances over all forty positions,
α
β . The abscissa indicates distance upstream from the upstream edge of the cylinder.
As given in Table 2.3, 4, ©, 5, and � indicate the results for quadrants 1 to 4,
respectively. Fr=0.2-0.5.

greater stresses exerted by Q1 and Q3. This result is clearer in Fig. 4.8 and 4.9, with

the latter indicating that of the order of 70% of the total velocity covariance is from

these quadrants in this region, which is similar to that due to Q2 and Q4 further

from the cylinder. The distance to this crossover position both in mm and X/D for

α/γ was also employed in the regression analysis. These findings came consistant

with the results of Section 3.4 were 25 experiments analysed, confirming that is a

characteristic behaviour of the HV system upstream of the circular cylinder.

4.2.2.1 Stepwise regression analysis of the turbulent stresses

The results of the stepwise regression analyses are stated in Table 4.5 and while

D, and Fr played a role in the prediction of the location (the measured distance

from the cylinder edge is in mm) of the quadrant maximum stress for the following

quantities (D and Fr for α/U2 and α/β, D and h for α/γ, and D for quadrant

cross-over for α/γ) only h controls the location of the quadrant maximum stress
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Figure 4.9: Mean of absolute contributions of turbulent stresses of each quadrant
normalised by the summation of means of absolute covariance at each position, αγ . The
abscissa indicates distance upstream from the upstream edge of the cylinder. As given
in Table 2.3, 4, ©, 5, and � indicate the results for quadrants 1 to 4, respectively.
Fr=0.2-0.5.

for the same variables when the distance normalised by the cylinder diameter (h

for α/U2, α/β, and α/γ, and no significant control found for quadrant cross-over

for α/γ) and that is quite understandable when the effect of cylinder diameter is

removed from the controlling variables when the distance is normalised by it. The

peak stress values were controlled by two variables (D and Fr for α/U2, and D for

α/γ, with no control for α/β).

An inspection of Table 4.5 shows that the control variables are much more effective

at explaining the location of the mean absolute peak stresses when the distance

is in mm rather than when it is in X/D (R2 = 0.967, 0.947, and 0.869 rather

than R2 = 0.675, 0.761 and no significant result), where R2 is the coefficient of

determination. Regarding the magnitude of the peak stresses, it is in between of

the two cases with R2 = 0.886, and 0.749 for α/U2 and α/γ respectively, and no

significant result for α/β. Hence, the basic geometry of the HV system based on

distance in mm is a strong function of the control parameters, while the dynamic

properties are more weakly so. Tables 2.2 and 4.4 clearly show how Fr and D
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Table 4.5: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels
and the R2 associated with the regression equation for turbulent stresses contribution
distributed by quadrants.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax(α/U2 and α/β) (mm) 0.967 D < 0.001 Fr 0.0037
xmax(α/U2 and α/β) (xmax

D ) 0.675 h 0.0287 - -
(α/U2)max 0.886 D < 0.001 Fr 0.0278
(α/β)max - - - - -
xmax(α/γ) (mm) 0.947 D < 0.001 h 0.0057
xmax(α/γ) (xmax

D ) 0.761 h 0.0058 - -
(α/γ)max 0.749 D 0.0074 - -
Quadrant cross-over for α/γ (mm) 0.869 D < 0.001 - -

Quadrant cross-over for α/γ (XD ) - - - - -

interact to control the location of the quadrant peak stresses. The overall results of

this section showed a similar results in terms of finding D as a control parameter

on the location of the maximum of near-bed stresses (measured in mm) and that

came along with the results from the previous section in which they match with the

results obtained from the analyses of the three groups of experiments in Chapter

three. Also, cylinder diameter found to be the shared controlling parameter for the

quadrants cross-over when the distance measured in millimetres among this case

and the equivalent cases of Chapter 3. Regarding the magnitude of the predicting

variables, only few similarities have been found between the results in Table 4.5

and the results in the equivalent Tables 3.10, 3.12, and 3.14. The role of D is

very significant in controlling the dynamics of the HV system represented by the

magnitude and location of the peak values of the near-bed stresses as is shown in

Fig. 4.10.

4.2.2.2 The controlling parameter during instances when high turbulent

stresses are exerted

The cylinder diameter dependence for the maximum observed value for α/β at a

single point, and its position, for the dominant quadrant (Q2) was explored fur-

ther from a consideration of the high stress state frames, which must dominate the

quadrant-dependent values for |u′w′|. The frames corresponding to these times were

extracted and the percentage of the total number of frames selected ranged from
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Figure 4.10: The relation between cylinder diameter, the peak stress locations, and
the position of the quadrant cross-over for the nine experiments.

5.5 to 7.2% over the nine experiments. The summation of the stress magnitudes

exceedance at the peak stress locations of the single points contributed from 27.25

to 32.04%
∑
|u′w′| over all frames of each of the different experiment.
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The vorticity fields for these frames were then automatically classified into two

groups (K1 and K2) using the K -Means classifier and the number of frames in each

cluster (Ck1 and Ck2) was extracted. It is clear from the results that experiments

26, 27, 28, and 32 may be grouped together with a clear first cluster dominance and

this is true for the single point and whole frame analysis. Fig. 4.8 shows that the

peak for Q2 is furthest from the cylinder for these same three experiments.

Table 4.4 shows that this group of experiments share the biggest cylinder diameters.

Again the cylinder diameter affects the whole HV system with a similar extent as

it does for the near-bed conditions only.

Figure 4.11 shows the centroids for clusters 1 and 2 for the whole frame analysis, and

no visual difference can be noticed in comparison with Figure 4.6, hence a relevant

explanation is available in relation to Fig. 4.6.

Table 4.6: The number of frames from each experiment allocated to the two clusters
found from the K -Means analysis (Ck1 and Ck2), as well as the classifier used to define
cluster membership for each experiment (Ck1 − Ck2)/(Ck1 + Ck2). The two groups of
results represent frames chosen using a single point near the bed on the one hand, and
using the whole frame points on the other. Results with a strong positive value for
(Ck1 − Ck2)/(Ck1 + Ck2) are shown in bold.

Single Point Whole Frame

Experiment Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

Ck1 Ck2
Ck1
−Ck2

Ck1
+Ck2

26 285 30 +0.81 282 33 +0.79
27 281 43 +0.74 258 66 +0.59
28 284 34 +0.79 294 24 +0.85

29 3 293 -0.98 16 280 -0.89
30 19 240 -0.85 88 171 -0.28
31 83 209 -0.43 116 176 -0.21

32 260 30 +0.79 266 24 +0.83
33 11 251 -0.92 13 249 -0.9
34 0 249 -1.00 0 249 -1.0

4.2.3 Summation of Turbulent Stresses in Quadrants 1, 3,

and 4 in front of the Cylinder

In this section the value of the turbulent stress contribution, of a group of 40 points

near the wall upstream of the cylinder based on three quadrants (Q1, Q3, and Q4),

is considered for the analysis, where the mean of the absolute turbulent stresses at
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Figure 4.11: The centroids of the clusters extracted from the vorticity fields ω (s−1)
over the nine experiments. Results on the left are for the single point analysis while
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each point was chosen as a criterion for the HV system and the point that attained

the maximum value was selected to represent the whole group of points. The results

of the velocity covariance are shown in Figs. 4.12, 4.13 and 4.14, the abscissa for

the points shown, is the distance from the upstream edge of the cylinder. These

figures are quite similar to Figures 4.1, 4.2 and 4.3. The only noticed difference is

that the magnitudes in the latter figures are less from the formers as the stresses

from quadrant 2 are not included.

This section has been added for the need of understanding the effect of quadrant 2

in a better way when its contribution to the stresses is removed. The procedures

are similar to Section 4.2.1. The basic data for the stepwise regression analysis are

shown in Table 4.7 and the results of the analysis are shown in Table 4.8, in which

it is shown that the highest values for the coefficient of determination are for the

location of the peak stress and the magnitude of η. These two relationships are

represented in the plots of Fig. 4.15 from top to bottom, respectively. There is a

primary cylinder diameter control on the location of the peak near-bed tresses with

a secondary effect from the flow depth as the predicting distance is in mm. Cylinder
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diameter Reynolds number is showing a controlling role when the same distance is

normalised by the diameter. Froude number control of the peak value of η came

matched with its control in the cases of low Fr analysed in Section 3.5.2 and Section

3.3.2.1. When η normalised by the square of the approaching bulk flow velocity,

η/U2, the control of Reh is the dominant. As in the previous equivalent cases, i.e.

the peak stresses normalised by the summation of the stresses in the 40 points, no

control parameter was shown. This is a clear evidence that the information that we

collected in this set of experiments are not enough to come out with a result about

the most effective parameter. So, to explore the normalisation effect for this range

of experiments, more data should be collected as part of future studies.
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Figure 4.12: Mean of absolute velocity covariances of the summation of the three quad-
rants (Q1+Q3+Q4) η. The abscissa indicates distance upstream from the upstream
edge of the cylinder. Fr=0.2-0.5.

4.3 Discussion

This study shows the importance of adopting an experimental design that permits

the separation of the controls upon the geometry and dynamical properties of the

HV system. Other studies, Dargahi (1989); Devenport and Simpson (1990); Simpson



Chapter 4. Results: HV Behaviour for sub-critical Froude Numbers 114

00.20.40.60.8
0

0.005

0.01

0.015

η U
2

Fr=0.2, D=0.06m

Exp.26

00.20.40.60.8
0

0.005

0.01

0.015

Fr=0.35, D=0.06m

Exp.27

00.20.40.60.8
0

0.005

0.01

0.015

Fr=0.5, D=0.06m

Exp.28

00.20.40.60.81
0

0.005

0.01

0.015

η U
2

Fr=0.2, D=0.045m

Exp.29

00.20.40.60.81
0

0.005

0.01

0.015

Fr=0.35, D=0.045m

Exp.30

00.20.40.60.81
0

0.005

0.01

0.015

Fr=0.5, D=0.045m

Exp.31

00.20.40.6
0

0.005

0.01

0.015

X
D

η U
2

Fr=0.2, D=0.07m

Exp.32

00.51
0

0.005

0.01

0.015

X
D

Fr=0.35, D=0.04m

Exp.33

00.511.5
0

0.005

0.01

0.015

X
D

Fr=0.5, D=0.028m

Exp.34

Figure 4.13: Mean of absolute velocity covariances of the summation of the three
quadrants (Q1+Q3+Q4) η normalized by the square of the approaching bulk flow
velocity η

U2 . The abscissa indicates distance upstream from the upstream edge of the
cylinder. Fr=0.2-0.5.

(2001); Escauriaza and Sotiropoulos (2011) found a dependence upon ReD, but they

adopted a single cylinder diameter. It is clearly the case that the dynamics of the

wake depend upon ReD because diameter controls the size of the flow structures in

the X−Y plane, while their advection is controlled by U . However, in the plane-of-

symmetry at the front of the cylinder, the primary vorticity is oriented in the X−Z

plane and, as a consequence, it does not necessarily follow that in this region, the

dynamics are a function of ReD.

On one hand, we observe from Section 4.2.1.1, where the summation of absolute

turbulent stresses of the four quadrants was considered as a criterion for representing

the HV characteristics, that D, and Fr control the near-bed stress conditions, in

particular the location of the peak stresses and their magnitude γ as shown in Table

4.2 and Fig. 4.5. From the results shown in Section 4.2.1.2 we found that the

geometry of the HV system in the plane-of-symmetry is a function of D (Table 4.3

and Fig. 4.6). The parameter D can be considered as a key factor that controls

the geometry of the HV system as it is shown similar results in the following two
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Figure 4.14: Mean of absolute velocity covariances of the summation of the three
quadrants (Q1+Q3+Q4) η normalized by the summation of the means of absolute
velocity covariances over all forty positions η

ζ . The abscissa indicates distance upstream
from the upstream edge of the cylinder. Fr=0.2-0.5.

sections when depending on the stresses of quadrant 2 as a representing criterion

and also when the summation of the stresses in quadrants 1,3, and 4 were considered

as a representative criterion.

On the other hand, the results of Section 4.2.2.1, where the absolute turbulent

stresses were partitioned into four quadrants and quadrant two was considered as

a criterion for representing the HV characteristics, are shown that D, h and Fr

control the near-bed stress conditions, including the location of peak stress value in

quadrant two and their magnitudes. Here, the effect of h came as a new contributor

particularly for the location of the peak stresses, and probably is because of the

response of quadrant 4 to the flow depth changes. The results from Section 4.2.2.2

represented in Table 4.6 and Fig. 4.11, showed quite similar results to the case when

representing the turbulent stresses by the summation values. However, we cannot

find evidence in our study that this is a ReD control. Instead, it would appear that

D and U affect different aspects of the near-wall stress distributions (Tables 4.5 and

4.2). These different findings rise the importance of a systematic investigation of
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Table 4.7: Dependent variables used in the stepwise regression for the turbulent
stresses. The predictor variables are given in Table 2.2.

Exp. xmax for η, xmax/D for η, ηmax (η/U2)max (η/ζ)max
No. η/U2, and η/U2, and η/ζ (×10−4m2s−2) (%)

(η/ζ) (mm)

26 9.9 0.164 2.16 65.98 8.12
27 11.1 0.185 4.81 67.01 9.01
28 11.1 0.185 8.03 75.52 9.37

29 6.2 0.137 2.10 22.13 11.00
30 7.4 0.164 3.45 36.36 9.70
31 8.6 0.192 5.63 59.38 9.01

32 11.1 0.158 2.81 63.22 8.92
33 6.2 0.154 4.21 30.11 9.18
34 3.7 0.132 7.22 25.02 9.05

Table 4.8: The predictor variables contributing significantly to a stepwise regression
equation for the selected response variables, together with their significance levels and
the R2 associated with the regression equation for the summation of turbulent stresses
of quadrants 1, 3, and 4.

Regression R2 Pred. 1 p-value Pred. 2 p-value

xmax(η, η/U2, η/ζ) (mm) 0.977 D < 0.001 h 0.0038
xmax(η, η/U2, η/ζ) (xmax

D ) 0.845 Reh < 0.001 - -
ηmax 0.886 Fr < 0.001 - -
(η/U2)max 0.812 Reh 0.0019 - -
(η/ζ)max - - - - -

the parameters that affect dynamics of hydraulic phenomena.
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Chapter 5

Conclusions and Future Work

5.1 Objectives and Structure of the Chapter

This chapter has three objectives:

1. To summarise the results of the study and present them in summary diagrams.

2. To present the conclusions of this study in both general and specific cases of

flow conditions.

3. To highlight and discuss the limitations of the current study and suggest some

future research directions.

5.2 Summary of Results

In this research, the adopted experimental design covered a wide range of different

flow conditions and permitted the separation of the controls upon the geometry

and dynamical properties of the HV system. The main goal of this research was

to explore the effect of Froude number and other parameters on the behaviour of

the horseshoe vortex system upstream of a circular cylinder compared to other

studies, we undertook our measurements over a range of flow conditions from low

sub-critical to super-critical Froude numbers. Because the applied context for this

118
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work was problems such as bed scouring, the attention was focused on the near-bed

turbulent stresses.

By systematically controlling Q, D, U and h, it has been possible to examine the

Froude number and Reynolds number dependencies more carefully. For the analysis

of the independent and dependent parameters of the experiments, multivariate sta-

tistical techniques (stepwise regression and K -Means classification) were used, the

first was used to find the effect of the controlling parameters on the dynamics of the

HV system, and the second was used to explore the effect of the same parameters

on its geometry.

It would appear that D, h and Fr affect different aspects of the near-wall stress

distributions in most of the cases analysed in this study rather than the ReD as

shown from the literature. This difference highlights the value of a systematic

investigation of the parameters influencing the dynamics of hydraulic phenomena.

In the following four Figures 5.1, 5.2, 5.3, and 5.4, the results from the analyses of

Chapters 3 and 4 are displayed. The three diagrams, shown in Figures 5.1, 5.2, and

5.3, concern the dynamics of the HV system from the stepwise regression analyses.

The fourth diagram, shown in Fig. 5.4, summarises the results of the K -Means

clustering analysis results referring to the geometry characteristics of the HV.

5.2.1 The Effect of Different Parameters on the Dynamics

of the HV System

The three diagrams shown in Figures 5.1, 5.2, and 5.3, represent the cases when the

peak values were chosen from the total stresses, quadrant 2 stresses, and the sum-

mation of the stresses in quadrants, 1, 3, and 4 respectively. The three diagrams,

include results from the four groups of experiments analysed before in Chapters 3

and 4. These groups of experiments are classified into two sub groups due to the

controlling parameters including the location and magnitude of the peak stresses.

Then for each case the parameters are sub-divided according to their influence into

primary and secondary parameters. For the location part of the diagram, the cylin-

der diameter was found to be the only parameter that always had an effect on the
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location of the peak stress values in all of the three selection criteria and the four

different groups of experiments, this gives D a fundamental importance as a con-

trolling parameter of the peak location. For the case of quadrant 2, the parameters

that affect the location of the peak stresses in all of the four groups are cylinder di-

ameter and flow depth. A cylinder diameter Reynolds number effect appeared when

the whole experiments were put together, while the Froude number effect existed

in both of the upper sub-critical and super-critical flow conditions as well as in the

case of the selected sub-critical flow conditions examined in Chapter 4.

For the magnitude parametrisation, Fr is the most influential parameter for both,

the total stresses case and the summation of stresses in quadrants 1, 3, and 4, where

it dominates all the groups of experiments except the one for Fr=0.6-2.46. For

quadrant 2 stresses criteria, cylinder diameter is the shared control parameter in all

ranges of experiments, and in addition to D, flow depth and the cylinder diameter

Reynolds number have influence in the case of all the experiments and the case of

very low sub-critical flow conditions. Froude number has a secondary effect in the

case of the selected sub-critical flow conditions.

5.2.2 The Effect of Different Parameters on the Geometry

of the HV System

The diagram in Fig. 5.4 shows the two approaches used in the analysis of data and it

is clear that there is no difference in results when using a single point under the HV

system or using the whole frame when representing the high stress instances, and

this confirms how the high stress instances in the flow field of the HV system can be

represented by the near-bed turbulent stresses rather than the need for snapshots

from the whole field. The four groups of experiments are classified into two groups

due to the parameter that the frames were clustered. The first set includes both

cases with a wide range of Fr (Fr=0.015-2.46) and the high Fr (Fr=0.6-2.46), where

the controlling parameter is Fr. For the rest of the experiments represented in

groups of Fr=0.015-0.2 and Fr=0.2-0.5, D is the only controlling parameter. It is

anticipated, that the effect of D is shown in cases of lower sub-critical flow conditions
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and reason this was replaced with Fr is attributed to the effect of high flow velocity

that pumped energy, and turbulence as a consequence, in the region and caused the

high stress instances.
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 Summary Results Diagram for Total Stress Analysis 
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Figure 5.1: The summary diagram of the results of different groups of experiments for
the location and magnitude of the peak stress values from the total stresses curve.
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Summary Results Diagram for Quadrant 2 Stress Analysis 
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Figure 5.2: The summary diagram of the results of different groups of experiments for
the location and magnitude of the peak stress values in quadrant 2 curves.
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 Summary Results Diagram for the Summation of Q1+Q3+Q4 Stress Analysis 
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Figure 5.3: The summary diagram of the results of different groups of experiments for
the location and magnitude of the peak stress values from the summation of quadrants
1, 3, and 4 curve.
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 Summary Results Diagram for K-means Analysis 
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Figure 5.4: The summary diagram of the results of different groups of experiments
for the vorticity fields with high instance of stress using the K -Means clustering
algorithm.
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5.3 Conclusions

An experimental study was carried out to investigate the controls on the vorticity

fields and contributions of the turbulent stresses, (in three different ways, where the

results are summarised in Figs. 5.1, 5.2, and 5.3), upstream of a vertically mounted

circular cylinder using Particle Image Velocimetry. Experiments under different sub-

critical, critical, and super-critical Froude numbers, cylinder diameters, flow depths

and flow velocities were analysed. The results revealed some parameters that control

the turbulent stresses under the HV system as well as the geometry of the system.

From the investigation of the results, it is possible to conclude the following:

1. It was found that the peak stress properties of the HV system are controlled

by Fr for the experiments with Fr . 0.3, and again for the experiments of

Fr & 1.7. There is no definite parameter control for the peak stresses in the

transitional region between these two thresholds. These thresholds can be used

as a benchmark for the future numerical studies.

2. The turbulent stresses have a greater magnitude beneath the HV system and,

consequently, make a major contribution to scour, as was anticipated. The

increase in the turbulent stresses under the HV system was quantified as being

a factor of ∼ 2 − 7 increase over the background near-wall stresses upstream

of the cylinder in the plane of symmetry for most of the dependent variables.

3. For all groups of experiments, the use of the three different criteria shows

that cylinder diameter is the main parameter that controls the location of the

near-bed peak of the mean stresses values under the HV system. Hence, pier

diameters could be used in the prediction of the maximum scour hole location

upstream of the circular cylinder. At the same time it confirms the importance

of studying dimensional parameters as well as dimensionless ones.

4. It was found that quadrant 2 dominates the stress contributions beneath the
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horseshoe vortex system. It is because the boundary layer in the region where

HV system exists, behaves like any turbulent boundary layer, where quadrant

two is dominant followed by quadrant 4.

5. There are two general topologies for the horseshoe vortex system in the range

of the experiments conducted in this study, one of two vortices and the other

with one weak vortex, and the extent to which one is expressed is a function of

either cylinder diameter, or Fr. There are no major differences in the results

when the criterion is either the total stresses, or only the stresses of quadrant

2, concluding that the contribution from quadrants 1, 3, and 4 is not dominant.

6. For the topological classification of the vorticity fields, it is shown that the cen-

troids extracted using a single point approach are more successful in defining

the vortices than the whole frame approach. This is because the HV system is

commonly attached to the bed and in the whole frame analysis there are other

effects arising such as vorticity away from the bed. This finding makes it easier

to represent the HV system by the near-bed turbulent stresses rather than the

need of the instances from the whole field.

7. The percentage of number of frames that exceeds a threshold of hole size H > 2

is between 4.84% and 7.02% in all cases and the contribution value of stresses

in these cases found to be between 24.68% and 40.93%, these values may be

considered for the validation of numerical studies within this range of flow con-

ditions. These results have been found from studying a region of X = 48 mm

and Z = 24 mm in the plane of symmetry just upstream of circular cylinders.

8. It has been found that the POD method captured more vorticity structures,

with three vortices found in most cases, while in K -Means clustering the cen-

troids of the clusters showed either one or two vortices. This may be attributed

to the differences between these methods, with frames with a greater number

of vortices located somewhere else in the clustering space and not well repre-
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sented by the centroids.

9. As different parameters have been found to affect the different aspects of the

near-wall turbulent stress distribution, and particularly D, Fr, and h, as the

most influential parameters, a systematic investigation of the parameters in-

fluencing the dynamics of hydraulic phenomena is a valuable thing to be done.

Overall, the results in Chapters 3 and 4 demonstrated that the study of the effect

of the dimensional and dimensionless parameters on the HV dynamics upstream

of a circular cylinder in a wide range of flow conditions has resulted in a better

understanding of the controlling parameters. The results are also encouraging and

suggest that the near-bed shear stresses are good measures for representing the HV

characteristics.

5.4 Future Work

There is a need for future work on this topic mainly for two reasons: to obtain addi-

tional validation using different instrumentation and analysis methods; To explore

additional features of the flow that could not be investigated at the time.

More experiments to be done : There is a need to conduct experiments in the

transitional region that we defined earlier in order to find the exact parameters that

affect the dynamics of the HV system and how the topology of the HV system varies

as a function of these parameters, particularly for the high Fr cases.

Velocity measurements : Repeating the same experiments and collecting long

duration time series at high temporal resolution using laser doppler velocimetry near

the bed to understand the oscillation of the system. From these measurements the

spectra of the velocity components can be found and the frequency of the vorticies

can be determined and added to the characteristics of the HV system for each flow

condition. In addition this will make studying the behaviour of the instantaneous

change of the horseshoe dynamics in both the horizontal and vertical planes possible,
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particularly for the high Froude number cases where numerical simulations are still

a challenge.

Numerical simulations: It is recommended to have numerical simulations for

the cases that we have in our experiments, using Detached Eddy Simulation as

used by Escauriaza and Sotiropoulos (2011). For the free surface modelling, which

is necessary for higher Froude numbers, Volume of Fluid methods can be used

in combination with a Navier Stokes solver to simulate free-surface deformations

(Löhner et al., 2007).

Downstream flow measurements: Due to the lack of information about the

behaviour of the HV system downstream of the cylinder in the range of flow condi-

tions of this study, there is a need to study the region downstream of the cylinder

and see if there is a correlation between the characteristics of the HV system in

both, the upstream and downstream regions, particularly for the shallow flow cases

where the wake vortex shedding is more effective, where Baker (1979, 1980) found

that the shedding frequency of the wake vortex is independent of the oscillation of

the HV system.

A real scale measurements: It will be of an interest to see how measurements

for the real scale flow field upstream of actual structures under natural boundary

conditions compare with the experimental work, and if vortex size still scales with

the size of the obstacle or if there are constraints that limit the nature of the scaling.

Monitoring of water surface fluctuations : A study is needed to explore if

there is any relationship between the water surface fluctuations and the oscillation

of the Horseshoe vortex system upstream of the obstacle. There is ambiguity about

the effect of the water surface fluctuations on the HV system where the literature

shows no study addressed this issue.
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