
fpgaConvNet: A Framework for Mapping
Convolutional Neural Networks on FPGAs

Stylianos I. Venieris
Department of Electrical and Electronic Engineering

Imperial College London
Email: stylianos.venieris10@imperial.ac.uk

Christos-Savvas Bouganis
Department of Electrical and Electronic Engineering

Imperial College London
Email: christos-savvas.bouganis@imperial.ac.uk

Abstract—Convolutional Neural Networks (ConvNets) are a
powerful Deep Learning model, providing state-of-the-art accu-
racy to many emerging classification problems. However, ConvNet
classification is a computationally heavy task, suffering from
rapid complexity scaling. This paper presents fpgaConvNet, a
novel domain-specific modelling framework together with an
automated design methodology for the mapping of ConvNets onto
reconfigurable FPGA-based platforms. By interpreting ConvNet
classification as a streaming application, the proposed framework
employs the Synchronous Dataflow (SDF) model of computation
as its basis and proposes a set of transformations on the SDF
graph that explore the performance-resource design space, while
taking into account platform-specific resource constraints. A
comparison with existing ConvNet FPGA works shows that the
proposed fully-automated methodology yields hardware designs
that improve the performance density by up to 1.62× and reach
up to 90.75% of the raw performance of architectures that are
hand-tuned for particular ConvNets.

I. INTRODUCTION

The beginning of the 21st century sees the emergence of
the Big Data phenomenon. The ubiquity of devices that are
capable of generating and consuming information has led to
unprecedented volumes of unstructured data. In this context,
scientific fields such as Data Science aim to provide methods
for the automatic extraction of useful knowledge and patterns
from data. At the forefront of Data Science lies the emerging
field of Deep Learning [1]. Deep Learning focuses on using
the large amount of available data to learn a hierarchy of
intermediate representations by means of a sequence of train-
able feature extraction stages in order to facilitate the pattern
recognition task at hand. Apart from the abundance of available
data, computing power has been one of the primary driving
forces behind the success of Deep Learning [2]. With typical
Deep Learning models being computationally complex in both
their training and classification phase, the building of adequate
computing infrastructure constitutes a major challenge.

One candidate platform for building high-performance
Deep Learning systems is FPGAs. FPGA-based Deep Learning
systems could potentially provide tunable trade-offs between
critical system parameters such as performance, power con-
sumption and cost and serve as a useful component in a wide
range of settings, from an IP in low-power embedded systems
to an accelerator along the racks of a data center. Nevertheless,
there are many issues that increase the complexity of Deep
Learning system development on FPGAs. With FPGAs’ size
and resource specifications changing at a fast pace, there is
a need for tools that abstract the hardware resource details

of a particular FPGA-based platform and guarantee portability
and scalability. Portability would secure that a Deep Learning
model implementation can be modified to operate on FPGA
platforms with different characteristics. Scalability would en-
sure the ability to sustain or improve performance in case of
an increase in the amount of available resources.

This work focuses on the Design Space Exploration (DSE)
for the classification task of the Deep Learning model of
Convolutional Neural Networks (ConvNets) mapped onto re-
configurable FPGA-based platforms by means of a domain-
specific modelling framework. The proposed methodology
aims to provide the infrastructure and the analytical tools that
would allow a Deep Learning expert to obtain the hardware im-
plementation of a ConvNet onto a target FPGA-based platform
while complying with platform-specific resource restrictions.
The key contributions of this paper are the following:

• A Synchronous Dataflow (SDF) model for capturing
ConvNet workloads. The SDF theory allows us to
capture ConvNets as streaming computations and in
this way, represent ConvNet hardware implementa-
tions using linear algebra and graph theory. This
formulation enables us to explore the design space
by means of a set of algebraic transformations that
modify the performance-resource cost characteristics
of the implementation. Moreover, it enables us to
formally express the mapping of a ConvNet onto
an FPGA as an optimisation problem. Finally, this
work introduces for the first time the full FPGA
reconfiguration as a design option for the mapping of
ConvNets to FPGA designs.

• The fpgaConvNet framework for mapping a ConvNet
onto a particular FPGA-based platform. The devel-
oped framework first takes as input a ConvNet model
in our high-level, domain-specific scheme, then per-
forms fast design space exploration by manipulating
the SDF ConvNet model and finishes by generat-
ing a synthesizable Vivado HLS hardware design.
A quantitative comparison with existing FPGA and
GPU ConvNet designs yields performance density and
performance efficiency results that match and even
overperform the existing works.

The rest of the paper is organised as follows. Section II gives
an overview of ConvNets and the SDF paradigm. Section III
reviews related work on FPGAs. Section IV presents the devel-
oped modelling framework that is the basis of fpgaConvNet.

Section V describes the proposed design space exploration
approach. Finally, in Section VI we present the evaluation of
our framework and Section VII concludes the paper.

II. BACKGROUND

A. Basic ConvNet Components

Several variations of ConvNet architectures have been pro-
posed in the Deep Learning literature. A ConvNet architecture
consists of a sequence of layers [1]. The three most commonly
used types of layers are the convolutional layer, the nonlinear
layer and the pooling layer. The convolutional layer aims to
extract useful features from its inputs. Each input feature map
is convolved with a kernel of weights that have been learned in
the training phase. By applying a set of different kernels, sev-
eral feature maps are produced at the convolutional layer. The
nonlinear layer operates by applying an activation function in a
per-pixel basis, where typical activation functions are sigmoid,
tanh or ReLU. The pooling layer is responsible for replacing
the value of a feature map at a particular location with a
summary statistic around a predefined neighbourhood and in
this way achieving spatial invariance. The two most common
pooling operations are average pooling and max pooling. After
a succession of convolutional, nonlinear and pooling layers,
one or more classification layers may be present, typically
either in the form of conventional fully-connected layers or
in the form of a Support Vector Machine classifier.

B. Synchronous Dataflow

The basis of our framework is the Synchronous Dataflow
(SDF) paradigm [3]. Introduced in 1987, SDF is a special
case of dataflow and constitutes a widespread model of paral-
lel computation both for hardware and software. Under this
paradigm, a computing system is represented as a directed
graph, named SDF graph (SDFG), where the nodes represent
computations and the arcs indicate the data streams. The
fundamental principle of SDF is that any node fires whenever
data are available at its input arcs, leading to a data-driven
model of concurrency. Compared to generic dataflow, SDF has
the restriction that it is not possible to express conditional firing
of nodes. Despite this restriction, it provides the possibility to
produce static schedules of execution as well as the ability
to obtain a finite and predictable amount of buffer memory
between the computing units. Moreover, the use of SDF theory
allows us to exploit its mathematical properties to enhance the
analytical strength of our modelling.

III. RELATED WORK

Several research groups have proposed FPGA-based archi-
tectures for the acceleration of ConvNets. A common element
of all these works is the assumption that the training phase has
been performed offline by software and hence they concentrate
on the classification task, similarly to fpgaConvNet. One of
the earliest works is the one which started under the name
CNP [4]. The proposed design consists of a systolic 2D array
of programmable processing tiles which operates under the
control of a CPU. The original work [4] achieved an average
throughput of around 4 GOp/s at 15W on a Xilinx Spartan-3A
DSP 3400 FPGA. An improved version of this architecture was
presented in [5], named NeuFlow. By targeting the larger Xil-
inx Virtex-6 VLX240T FPGA, NeuFlow achieved 147 GOp/s
at 10W. Finally, in 2014, the design was ported to Xilinx Zynq

XC7045 SoC under the name nn-X [6] where it achieved 200
GOp/s at 4W. Nevertheless, systolic implementations suffer
from complex routing logic and can support convolutions only
up to the maximum implemented kernel size, e.g. 7x7 and
10x10 convolutions in CNP and nn-X respectively.

In 2013, M. Peemen et al. [7] focused on reducing the
effects of the external memory bottleneck on the performance
of ConvNet accelerators by means of memory hierarchies.
However, the main compute engine is a cluster of SIMD-type
MACC PEs without a tunable performance-resource trade-off.
In 2015, Zhang et al. [8] presented a design space exploration
methodology tailored to ConvNets. The proposed method is
based on an adaptation of the roofline model and explores
the trade-off between computation and communication in
order to perform hardware implementation optimisations. This
methodology focuses only on the optimised mapping of the
convolutional layers of the ConvNet. Our work uses SDF as its
modelling basis and holds a more holistic view of ConvNets by
taking into account the nonlinear and pooling layers together
with the convolutional layer. In our framework, computing
units can be tuned to exploit different degrees of parallelism
and therefore move around the performance-resource space.
Finally, fpgaConvNet introduces for the first time the full
FPGA reconfiguration as a design option for the mapping of
ConvNets to FPGA designs.

IV. MODELLING FRAMEWORK

In this section, we present the modelling framework
which is the backbone of fpgaConvNet (Fig. 1). A high-level
overview of fpgaConvNet’s processing flow is as follows. As
a first step, the Deep Learning specialist provides as inputs
a high-level description of a ConvNet architecture together
with information about the target FPGA-based platform by
means of a domain-specific language that we designed. Next,
the structure of the input ConvNet is captured by means
of a DAG-based application model and information about
the platform-specific resource constraints is extracted. The
ConvNet DAG is then transformed into an SDF hardware
intermediate representation that corresponds to a fully parallel
hardware implementation. Each node of the SDFG corresponds
to a hardware building block and the arcs indicate the intercon-
nections between them. By applying a set of transformations
on the SDF hardware model of the ConvNet, the design space
is searched and this process yields a succession of hardware
mappings of the ConvNet onto the particular FPGA-based
platform.

A. ConvNet Application Model

A ConvNet is represented as a sequence of layers that form
a directed acyclic graph (DAG) where each layer corresponds
to a node. The set of layers with their connections and
parameters are supplied by means of a high-level domain-
specific description scheme, similar to the one used in [9],
which is used to populate the semantic model of the ConvNet.
Fig. 2 illustrates how a typical ConvNet would be described
following our scheme. The high-level ConvNet description is
passed through our DSL1 processor which parses the input
script and populates the semantic model of the ConvNet in the
form of a DAG by means of code generation. The ConvNet

1Domain-Specific Language

Fig. 1: Outline of fpgaConvNet’s Processing Flow

semantic model comprises a sequence of layers where each
layer is instantiated with the supplied parameters.

Fig. 2: ConvNet High-Level Description

Each node in the ConvNet DAG represents a layer of the
ConvNet architecture and is associated with a tuple of param-
eters. Currently, the following types of layers are supported,
which are the ones that have been most commonly used in the
ConvNet literature:

• Convolutional Layer

< Kh,Kw, S,N >

where
◦ Kh and Kw are the height and width of

each filter in the convolutional layer, assuming
kernels of dimensions (Kh ×Kw).

◦ S is the stride which defines the step between
successive convolution windows.

◦ N is the number of filters that constitute the
filter bank of the convolutional layer.

• Nonlinear Layer

< N, T >

where
◦ N is the number of nonlinear units of the

nonlinear layer.
◦ T is the type of nonlinear function to be

applied, e.g. sigmoid, tanh or ReLU.

• Pooling Layer

< P, S,N, T >

where
◦ P is the pooling size which defines a (P ×P)

pooling neighbourhood.
◦ S is the stride which defines the step between

successive pooling windows.
◦ N is the number of pooling units in the pooling

layer.
◦ T is the type of pooling operation to be ap-

plied, i.e. either max or average.

B. FPGA-based Platform Model

The FPGA-based platform model comprises a set of pa-
rameters describing the available on-chip resources and the
off-chip memory characteristics. The resources of such an
abstract FPGA-based platform are described using a resource
set, R, which is the union of sets Rfpga and Rmem, and a
vector, rscAvail., storing the available amount for each of the
elements in R:

Rfpga = {DSP,LUT,Reg,BRAM}
Rmem = {Bmem, Cmem}

R = Rfpga ∪Rmem

(1)

rscAvail. = [DSPAvail., RegsAvail., LUTAvail.,

BRAMAvail., Bmem, Cmem]⊤
(2)

where Bmem is the off-chip memory bandwidth and Cmem is
the off-chip memory capacity. The off-chip memory bandwidth
is modelled as:

Bmem = ηBnom (3)

where Bnom is the nominal bandwidth of the off-chip memory
module and η ∈ [0, 1] is the efficiency factor which captures
SDRAM and memory controller inefficiencies.

C. Hardware Intermediate Representation

The DAG model of the ConvNet is transformed into
an SDF graph that represents a hardware mapping of the
ConvNet. The structure of an SDFG can be represented in
a compact form by the topology matrix, Γ. Each row of Γ
corresponds to an arc and each column corresponds to a node
in the SDFG. In conventional SDF, an element Γ(a, n) in the
matrix specifies the rate of the data that flows from node n
along arc a. In the case of data production, the rate of produced
data is a positive integer while in the case of data consumption
the rate of consumed data is a negative integer.

In the proposed framework, we adopt the SDF paradigm
[3] which is extended in two ways. First, the topology matrix
is decomposed into the Hadamard product2 of three matrices
that allows for a richer structural interpretation of its elements.

2The Hadamard product, here denoted as ⊙, is defined as the elementwise
multiplication between two matrices.

The first matrix is the channels matrix, denoted by C. Each
element of C holds the width of a data stream, measured in
words. Element C(a, n) holds the number of words that are
present in parallel in outgoing or incoming arc a of node n.
If the data are consumed by node n, the value is a negative
integer, while if they are produced, it is a positive integer.

The second matrix is the streams matrix, denoted by S.
Each element of S indicates how many parallel streams are
present on the particular arch on the side of the specified node.
For instance, S(a, n) represents the number of streams, each
of width C(a, n), that are present at arc a on the side of node
n. All elements of S are non-negative integers.

Finally, the third matrix is the rates matrix, denoted by
R. Each element of R is a real number in the interval [0, 1]
which specifies the normalised rate of data consumption or
production by each node on each arc per cycle. 0 indicates
no data flow and 1 shows a rate of 1 firing/cycle. A rate of
0.5 can be interpreted as 1 firing per 2 cycles or equivalently
a firing period of 2 cycles. In addition, the rate of a node n
is equivalent to the inverse of its initiation interval3, IIn. The
original topology matrix can be reconstructed by:

Γ = S ⊙C ⊙R

which can be interpreted as the overall data rate on all arcs
and nodes of the graph. Our second extension of the SDF
is that the final topology matrix is allowed to contain real
values in its elements, because of the real-valued rates matrix.
All four matrices are upper bidiagonal with non-zero elements
only along the main diagonal and the diagonal above it.

D. ConvNet Hardware Building Blocks

To convert the ConvNet DAG into an SDF graph that
corresponds to a hardware implementation, each node of
the ConvNet DAG is to be mapped to a set of hardware
building blocks that implement its functionality. The hardware
building blocks are then interconnected to form the final SDF
graph, with each building block occupying a column (i.e. a
node of the SDFG) of Γ. In this way, the whole structure
initially corresponds to a fully parallel mapping of the original
ConvNet. In our prototype, the SDFG is used to generate
synthesisable Vivado HLS code which is ready to be compiled
by the Xilinx Vivado HLS tool. In the hardware intermediate
representation, each building block is represented by a tuple
of the following form:

< param, sin, sout, cin, cout, rin, rout >

where
◦ param is a set of configuration parameters,

specific to each unit.
◦ sin and sout are the number of parallel streams

at the input and output of the unit respectively.
◦ cin and cout are the number of words per

stream at the input and output of the unit
respectively.

◦ rin is the consumption rate, which is inter-
preted as the inverse of the initiation interval
(II), in consumptions/cycle.

3The initiation interval, here denoted as II , is defined as the number of
cycles after which a new input can be fed to a pipelined unit.

◦ rout is the production rate in productions/cycle.

Such a parametrisation allows us to capture different im-
plementations for every hardware block, each with different
performance-resource cost characteristics. In this way, fgpa-
ConvNet is able to perform design space exploration by tuning
the implementation of each block and moving around the
design space. This process is further elaborated in Section
V. At the same time, the Γ matrix ensures the functional
correctness of each design point by propagating the data rates
of each block. The tuples for the current set of available
hardware building blocks that are used to map ConvNet layers
to hardware are shown below.

• Sliding Window Block

< {N,Kh,Kw, Sh, Sw}, N,N, 1,Kh ×Kw, 1,
1

Sw
>

where
◦ N is the number of sliding window units.
◦ (Kh ×Kw) is the specified window size.
◦ Sh and Sw are the strides that determine the

sliding step of the window along the feature
map’s height and width respectively.

A sliding window unit takes as input a stream of pixels
and outputs a stream of (Kh × Kw) windows with
strides of Sh and Sw along the input feature map’s
height and width respectively.

• Fork Unit

< {Nin, N}, Nin, N ×Nin, c, c, 1, 1 >

where
◦ Nin is the number of input streams.
◦ N is the size of the fork operation.
◦ c is the number of words per stream.

A fork unit takes as input a total of Nin streams with
c words each and copies them to N × Nin output
streams.

• Convolution and Pooling Banks

< {N,Kh,Kw, uimp.}, N,N,Kh×Kw, 1, uimp., uimp. >

where
◦ N is the number of computing units in the

bank.
◦ uimp. ∈ [1

Kh×Kw
, 1] is the folding factor of

the unit, normalised by the size of the input
window, (Kh ×Kw).

Each of the units in the bank performs an operation
which reduces a window of size (Kh×Kw) to a single
value. For convolution banks, the operation of each
of the N units is a dot product between the input
window and the corresponding weights. The input
and output rates depend on the folding factor of the
units, uimp.. If uimp. < 1, then the specified unit uses
time-multiplexing of its MACC resources to compute
a dot product. For pooling banks, we support two
pooling operations: average pooling and max pooling.
In the case of average pooling, dot product units are
used with averaging kernels and therefore the average

pooling banks are configured similarly to convolution
banks. On the other hand, in the case of max pooling
banks, finding the maximum is performed with a
comparator and uimp. is equal to 1

(Kh×Kw) with a
single pixel being consumed per cycle.

• Nonlinear Bank

< {N,T}, N,N, 1, 1, 1, 1 >

◦ N is the number of nonlinear units in the
nonlinear bank. A nonlinear unit passes a
stream of words through the specified nonlin-
ear function.

◦ T is the type of nonlinear function to be
applied, e.g. sigmoid, tanh or ReLU. Sigmoid
and tanh are implemented using the piecewise
linear approximation proposed in [10].

• Memory I/O Unit

< {N,W,Bnom, η}, N,N,W,W, η, η >

where
◦ N is the number of memory ports used.
◦ W is the width of the memory I/O subsystem

data bus, in words.
◦ Bnom is the theoretical maximum bandwidth

of the memory I/O subsystem.
◦ η is the normalised efficiency of the memory

I/O subsystem and lies in the interval [0,1].
Therefore, in this model, the average band-
width is estimated as Bmem. = ηBnom.

V. SEARCHING THE DESIGN SPACE

The exploration of the architectural design space is per-
formed by applying a set of legal graph transformations.
The legality of a transformation is defined as the functional
equivalence of the graph before and after the transformation
has been applied. We define three types of transformations:
graph partitioning, coarse- and fine-grained folding. The first
transformation includes the partitioning of the SDFG into
subgraphs along the ConvNet depth by means of full FPGA
reconfiguration. The second and third transformations include
the local folding of the SDFG so that the building blocks are
time-shared using time-multiplexing. These transformations
provide a tunable trade-off between resource utilisation and
performance.

A. Graph Partitioning

A fully parallel implementation of the ConvNet that follows
the initial SDFG assumes that the on-chip memory as well
as the compute resources of the target FPGA are able to
accommodate it. However, in practice the on-chip memory
requirements can scale rapidly with an increase either in the
ConvNet’s depth in terms of number of layers, or in a layer’s
width. The most common approach in the literature to deal
with this issue is by means of a flexible and powerful hardware
architecture that is time-shared across layers. Between two
layers, data are streamed in and out of the device and are
buffered in the off-chip memory. Although such a design
typically yields a non-optimised execution of each particular
layer, it enables the full evaluation of the ConvNet and exploits
up to a degree the parallelism in each layer.

Our proposed alternative to this problem exploits the recon-
figurability capabilities of FPGAs and suggests the partitioning
of the ConvNet along its depth and the mapping of each parti-
tion to a different bitstream. A partition includes the splitting
of the original SDFG into several subgraphs. Each subgraph
is mapped onto a distinct hardware architecture. In this way,
on-chip memory is used for data-reuse and intermediate results
and the communication with the off-chip memory is kept to
a minimum and limited to the subgraph’s required input and
output streams. Following this process, we end up with one
topology matrix and one hardware design per subgraph and
consequently with one bitstream per subgraph. This approach
requires the reconfiguration of the FPGA whenever data have
to enter a different subgraph which adds a reconfiguration
time overhead. By processing several input data streams in
a pipelined manner or by having large input data streams, the
reconfiguration time overhead is amortised. In this manner,
we manage to introduce for the first time in the literature
design points that require FPGA reconfiguration into the design
space and expand the design capabilities. An illustration of this
transformation is shown in Fig. 3.

Fig. 3: SDF Partitioning Example

B. Coarse- and Fine-grained Folding

A direct implementation of the original ConvNet SDFG, or
of one of its subgraphs, would yield the maximum theoretical
throughput. The high performance comes mainly as a result of
two factors. The first factor is the fully unrolled execution
of the coarse operations at each layer, such as the fully
parallel execution of all convolutions in a filter bank, pooling
operations in a pooling layer and nonlinearities in a nonlinear
layer. A parametrisation over the unroll factor of a layer’s
implementation offers a tunable design option. We define this
as the coarse-grained folding of a layer. The second factor
is the fully unrolled and pipelined implementation of the dot
product operations inside convolutional and average pooling
units. A fully parallel implementation of a dot product with
inputs of size N would require N multipliers operating in
parallel followed by an adder reduction tree with ⌈log2N⌉
stages and N − 1 adders. An additional adder can be included
to combine the output of the dot product with other results.
Such a fully unrolled implementation implies an initiation
interval of 1 cycle and consequently a throughput of 1 dot
product per cycle. On the other end of the spectrum, a dot
product unit can be implemented as a single MACC unit with
all the multiply-accumulate operations scheduled using time-
multiplexing. In this case, the initiation interval is equal to
the length of each input vector, i.e. N cycles, and hence the
throughput is decreased to 1

N dot products per cycle. Moreover,
the resource utilisation is also decreased by approximately the
same factor. A parametrisation over the unroll factor of dot

product units offers flexibility in the design options and another
degree of freedom. We define this as the fine-grained folding
of a layer.

Algorithm 1 Coarse-grained Folding Transformation
1: - Inputs: matrix Γ

Index i of the layer to be folded
Nominal size Nnom of the layer to be folded
Folding factor, f ∈ [1

Nnom
, 1]

2: - Initialise folding vector, fcoarse ∈ R#colsΓ: fcoarse = 1
3: - fcoarse(i) = f
4: - Form the folding matrix, F = diag(fcoarse)
5: - Apply the coarse-grained folding, S′ = ⌈S · F ⌉
6: - Form the folded topology matrix, Γ′ = S′ ⊙C ⊙R

Note: ⌈·⌉ is defined as the element-by-element ceiling operator

Algorithm 2 Fine-grained Folding Transformation
1: - Inputs: matrix Γ

Index i of the layer to be folded
Kernel size K or pooling size P
Folding factor, f ∈ [1

K2 , 1] or [1
P2 , 1]

2: - Initialise folding vector, ffine ∈ R#colsΓ: ffine = 1
3: - ffine(i) = f
4: - Form the folding matrix, F = diag(ffine)
5: - Apply the coarse-grained folding, R′ = ⌈R · F ⌉
6: - Apply the fine-grained folding, Γ′ = S ⊙ ⌈C ⊙R′⌉

Note: ⌈·⌉ is defined as the element-by-element ceiling operator

The control over the degree of exploitation of coarse-
and fine-grained parallelism corresponds to two degrees of
freedom that allows us to tune the performance-resource trade-
off and explore the design space. With reference to the building
block models presented in Section IV, a convolutional, pool-
ing or nonlinear layer of nominal size Nnom is mapped to
the corresponding bank block. The coarse-grained folding of
operators is controlled by parameter N of the bank model,
which corresponds to the actual number of units that will
perform the Nnom operations. The range of N is [1, Nnom]
which corresponds to a coarse folding factor in the range
[1
Nnom

, 1] with 1 mapping to a fully unrolled implementation
and 1

Nnom
to a single unit with time-multiplexing. Similarly,

the fine folding factor of convolutional and pooling units is
set by parameter uimp. ∈ [1

Kh×Kw
, 1] where 1 corresponds to

a fully unrolled implementation and 1
Kh×Kw

maps to a fully
folded implementation.

Our SDF modelling approach allows us to express these
transformations algebraically. In this way, the coarse- and fine-
grained transformations are applied directly to the topology
matrix Γ by means of a folding vector as described by
algorithms (1) and (2) respectively. The implications of our
approach are that we can explore the design space faster by us-
ing algebraic operations on our SDF model without the need to
synthesise or implement various different hardware designs to
get an estimate of their performance-resources characteristics
and at the same time ensure functional correctness. Moreover,
assigning values to the parameters of the transformations can
be formulated as a formal optimisation problem.

C. Performance Model

Given an SDF representation of a hardware mapping, the
columns of the topology matrix Γ give the throughput of
each hardware block in consumptions/cycle at the input and

productions/cycle at the output, after the depth of the unit’s
pipeline has been filled. The amount of work, Wi, carried out
by the ith hardware block is equivalent to the total number of
pixels to be consumed by this block and can be expressed as
shown below.

Wi = F in
i · P in

i

where F in
i is the number of feature maps at the input of

the ith hardware block and P in
i is the number of pixels per

feature map. To propagate the work along the whole SDFG,
we introduce the feature maps matrix, Fmap, and the pixels
matrix, P , and form the work matrix, W as shown below.

W = Fmap ⊙ P

To find the initiation interval of each hardware block, it suffices
to divide W by Γ, element by element.

II = W ⊘ Γ

where II is the initiation interval matrix. Each element of II
gives the number of cycles required by each hardware block
along the processing pipeline to consume its workload. The
hardware block with the longest initiation interval determines
the initiation interval of the whole SDFG and is given by
the maximum element of II , denoted by IImax. Overall, the
execution time of all the computations needed for a total of
M images can be estimated by Eq. (4).

t(M,Γ) = D +
1

clock rate
· IImax · (M − 1) (4)

where D is the pipeline depth of the SDFG divided by the
operating clock rate. In the case where an SDFG is partitioned
into subgraphs that will be executed sequentially after FPGA
reconfiguration, the overall execution time can be estimated
by summing the execution times of all the subgraphs. For this
case, we extend the notation of Eq. (4) with ti to denote the
execution time of the ith partition. Whenever reconfiguration
takes place between the execution of consecutive subgraphs,
the reconfiguration time for the ith reconfiguration, ti,reconfig.,
has to be included. Eq. (5) gives the total execution time for
NP partitions.

ttotal(M,NP ,Γ) =
NP∑

i=1

ti(M,Γi) +
NP−1∑

i=1

ti,reconfig. (5)

where Γi is the topology matrix of the ith partition. In our
approach, we assume full reconfiguration of the FPGA device
and hence ti,reconfig. can be considered constant for all i. In
this case, Eq. (5) can be simplified as:

ttotal(M,NP ,Γ) =
NP∑

i=1

ti(M,Γi)+(NP −1) · treconfig. (6)

From Eq. (6), we observe that the reconfiguration overhead
is independent of the number of images that are processed.
Therefore, by either increasing the total number of input im-
ages or their sizes, the first term dominates the execution time
and the cost of reconfiguration is amortised. In practice, the
value of M is limited by the capacity, Cmem, of the available
off-chip memory. Finally, the throughput of an implementation
of a particular ConvNet in GOp/s which requires WConvNet

GOp/frame can be estimated as in Eq. (7).

T (M,NP ,Γ) =
WConvNet

ttotal(M,NP ,Γ)/M
(7)

D. Optimisation

Given the defined transformations, we pose the following
combinatorial optimisation problem:

max
Γ

T (Γ), s.t. rsc(Γ) ≤ rscAvail. (11)
where T and rsc return the throughput in GOp/s and resource
consumption of the current implementation and rscAvail. is
the vector with the available resources on the target platform.
The optimisation considers the partitioning, coarse- and fine-
grained folding transformations and aims to find partition
points and coarse- and fine-grained folding factors that max-
imise the throughput of a ConvNet hardware mapping onto the
target FPGA platform.

The partitioning transformation can be cast to a search
problem, where we aim to maximise the overall performance
by selecting adequate partition points. For a ConvNet with
NL layers, there are NL − 1 candidate partition points with a
minimum of one partition and a maximum of NL partitions.
The total number of design points that correspond to different
partitionings is 2NL−1. In our optimisation framework, we
form a partitioning vector p ∈ {0, 1}NL−1 where a value of 1
for the ith element indicates that the SDFG will be partitioned
at the ith layer.

Coarse-grained folding can be applied to any type of
layer. Therefore, the coarse-grained folding vector, fcoarse

has NL elements, where each element has a different range as
explained in Section V. Fine-grained folding can be applied
on convolutional and average pooling layers and the range
of candidate values for each folding factor depends on the
window size at each layer. Similarly to the coarse-grained
folding case, the fine-grained folding vector, ffine, has NL

elements. The overall number of design points to be explored
given all three transformations can be found as shown below:

DesignPointsTotal = 2NL−1 ·
NL∏

i=1

Ncoarse,i ·
NL∏

i=1

Nfine,i

where Ncoarse,i and Nfine,i are the number of possible coarse-
and fine-grained folding factors for the ith layer respectively.
With an increase in either the depth or the width of a ConvNet’s
layers, a brute-force enumeration approach quickly becomes
a computationally intractable problem. Therefore, a heuristic
method should be used instead to obtain an approximate
solution in the non-convex design space. Currently, we have
selected Simulated Annealing [11] as our heuristic method.

VI. EVALUATION

The target platform is Zynq-7000 XC7Z020 FPGA with
an operating frequency of 100 MHz. Xilinx Vivado HLS
and Vivado Design Suite (v15.4) were used and all hardware
implementations were run on Avnet’s ZedBoard. fpgaConvNet
provides support for fixed-point as well as single- and double-
precision floating-point representation. In the evaluation phase,
Q8.8 fixed-point representation was used which is also used
in the FPGA works that we compare with and has been
extensively tested in the literature to give similar results to
neural networks implemented in 32-bit floating-point [6].

A. Benchmarks

For the evaluation of fpgaConvNet, we selected a set of
six ConvNet benchmarks. These include three well-known

TABLE I: FPGA Resource Utilisation for each Benchmark

Benchmarks

LUT
(Total

Available:
53200)

Flip-Flops
(Total

Available:
106400)

DSP Slices
(Total

Available:
220)

BRAM
(Total

Available:
630KB)

Name Partition Utilisations Utilisations Utilisations Utilisations
CFF [12] P1 34.78% 22.10% 24.09% 3.21%

LeNet-5 [13]
P1 16.11% 10.37% 1.82% 3.21%
P2 26.30% 21.53% 1.82% 6.78%
P3 12.23% 7.12% 0% 3.21%

MPCNN [14]

P1 59.00% 52.68% 3.63% 4.64%
P2 10.16% 5.83% 0% 3.21%
P3 11.20% 6.90% 0% 3.21%
P4 16.19% 10.35% 1.82% 6.07%

CNP [4]

P1 30.24% 21.39% 4.09% 8.57%
P2 29.74% 21.07% 22.72% 6.78%
P3 14.00% 7.94% 0% 3.21%
P4 20.96% 12.41% 0% 3.21%
P5 57.86% 39.27% 65.45% 6.07%
P1 23.82% 16.96% 12.27% 4.28%
P2 11.70% 7.14% 0% 3.21%

Sign
Recognition [7] P3 48.46% 35.58% 7.27% 6.07%

P4 12.09% 7.32% 0% 3.21%
P5 42.23% 30.46% 65.45% 6.43%
P1 35.20% 25.57% 85.45% 5.00%

Scene
Labelling [15] P2 66.64% 49.44% 94.54% 6.07%

P3 81.23% 34.72% 35.45% 8.57%

TABLE II: Predicted vs. Measured Performance

Benchmarks Predicted Performance Measured Performance Error
CFF [12] 10.14 GOp/s 9.10 GOp/s -11.76%

LeNet-5 [13] 0.49 GOp/s 0.48 GOp/s -2.08%
MPCNN [14] 0.79 GOp/s 0.74 GOp/s -6.04%

CNP [4] 3.63 GOp/s 3.53 GOp/s -2.83%
Sign Recognition [7] 6.36 GOp/s 6.03 GOp/s -5.47%
Scene Labelling [15] 12.95 GOp/s 12.73 GOp/s -1.73%

ConvNets for computer vision applications with different com-
putational loads, namely the Convolutional Face Finder (CFF)
[12], LeNet-5 [13] and MPCNN [14]. We also implemented
two ConvNets from existing FPGA works [4][7] for scene
labelling and sign recognition which we denote CNP and Sign
Recognition respectively, and one ConvNet for scene labelling
from an embedded GPU work [15].

B. Predictive Accuracy

To evaluate the quality of our model, we implemented all
six benchmarks and compared the predicted and the achieved
performance. We should note that for this task, the hardware
mappings for CFF, LeNet-5 and MPCNN are not the best ones
given by our framework, but only random instances without
using Simulated Annealing. For the CNP, Sign Recognition
and Scene Labelling ConvNets, we implemented the best de-
signs as selected by fpgaConvNet. Table II shows the predicted
versus the measured performance in GOp/s for each of the
benchmark applications together with the average errors in
the prediction. The model’s predictions are fairly close to the
measurements on the Zynq platform for all ConvNets, with
the predictions giving slightly optimistic throughputs. This is
due to the fact that our model assumes that the depth of each
SDF pipeline has been filled and hence does not include its
overhead in its predictions. Moreover, additional I/O delays,
reconfiguration time variations and software overhead also
contribute to the small error of the predictions. The average
error does not exceed 12% and manages to be as low as 1.73%.

CNP [4] Sign Recognition [7]
0

1

2

3

4

5

6
x 10−4

Pe
rfo

rm
an

ce
 D

en
si

ty
 (G

O
p/

s/
Sl

ic
e)

Existing Work GOp/s/Slice
fpgaConvNet GOp/s/Slice
fpgaConvNet Non−Amortised GOp/s/Slice

Fig. 4: Performance Density Comparison with existing works

C. Performance Comparison

To evaluate the quality in terms of performance of the
design point that is selected by our framework, we compare
fpgaConvNet with the FPGA works of [4] and [7] and the
embedded GPU work of [15]. Fig. 4 shows the the performance
density with respect to slices. In terms of performance density,
fpgaConvNet outperforms CNP by 1.62× and is slightly above
the performance density of [7]. In terms of raw performance,
when the overhead due to the FPGA reconfiguration is amor-
tised, fpgaConvNet reaches 90.75% of CNP’s throughput and
35% of the sign recognition ConvNet’s performance in [7]. An
important factor to take into account is that CNP runs at 1.5×
higher clock frequency while the device used in [7] has 3.5×
more DSPs compared to our platform and their design runs
at 1.5× higher clock frequency. Consequently, fpgaConvNet
manages to reach and in some cases outperform the two FPGA
designs in terms of performance density despite running at a
lower clock frequency and having fewer DSPs. All existing
FPGA works do not include full FPGA reconfiguration. To in-
vestigate the effect of FPGA reconfiguration on fpgaConvNet’s
performance, we also display in red the throughput when the
reconfiguration time is not amortised due to the limited number
of images. In this case, only 254 images are used on each Con-
vNet to compensate for the reconfiguration overhead and hence
the achieved performance is severely degraded. As a result, by
allowing reconfiguration as one of the transformations explored
by our framework, non-latency critical applications should be
targeted. Nevertheless, in applications that handle large size
images, a small number of images is required to fully amortise
the reconfiguration overhead. In these cases, large images
increase the computation-to-reconfiguration time ratio, but at
the expense of higher on-chip memory requirements for line
buffering inside sliding window units. Finally, we compared
the fpgaConvNet’s performance with the embedded GPU work
presented in [15] for the same scene labelling ConvNet. As
shown in table III, our framework reaches 16.75% of the Tegra
K1’s sustained performance as reported in [15], clocked at 1/8
of the frequency and overpasses its performance efficiency in
GOp/s/W by 1.05×.

VII. CONCLUSION

This paper presents fpgaConvNet, a framework for map-
ping Convolutional Neural Networks on FPGAs. The proposed
methodology captures ConvNets by means of an analytical
SDF model. We present a set of graph transformations and
introduce for the first time FPGA reconfiguration as a design
option for ConvNet FPGA implementations. This approach
allows the fast exploration of the design space by means

TABLE III: Performance Comparison with embedded GPU

Implementation Device Sustained
Performance

Performance
per Power

fgpaConvNet Zynq-7000 XC7Z020 12.73 GOp/s 7.27 GOp/s/W
Scene Labelling [15] Tegra K1 76.00 GOp/s 6.91 GOp/s/W

of algebraic operations and enables the formulation of a
ConvNet’s hardware mapping as an optimisation problem.
Experimental evaluation shows that fpgaConvNet gives fairly
accurate performance predictions and achieves improvements
in performance density and performance efficiency over ex-
isting FPGA and embedded GPU works. Potential future
work includes an investigation of how we can maximise the
performance of fpgaConvNet by introducing additional graph
transformations as well as its integration with TensorFlow [16].

REFERENCES

[1] Y. Bengio, “Learning Deep Architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, Jan. 2009.

[2] A. Coates, B. Huval, T. Wang, D. J. Wu, B. C. Catanzaro, and A. Y. Ng,
“Deep learning with COTS HPC systems,” in Proceedings of the 30th
International Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013, 2013, pp. 1337–1345.

[3] E. A. Lee and et al., “Synchronous Data Flow,” 1987.
[4] C. Farabet, C. Poulet, J. Y. Han, and Y. Lecun, “CNP: An FPGA-Based

Processor for Convolutional Networks,” in International Conference on
Field Programmable Logic and Applications. IEEE, 2009.

[5] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and
Y. LeCun, “Neuflow: A Runtime Reconfigurable Dataflow Processor
for Vision,” in CVPRW. IEEE, 2011, p. 109116.

[6] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240 g-
ops/s mobile coprocessor for deep neural networks,” in CVPRW. IEEE,
June 2014, pp. 696–701.

[7] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for Convolutional Neural Networks,” in
ICCD. IEEE Computer Society, 2013, pp. 13–19.

[8] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimiz-
ing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15. New
York, NY, USA: ACM, 2015, pp. 161–170.

[9] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” arXiv preprint arXiv:1408.5093, 2014.

[10] H. Amin, K. Curtis, and B. Hayes-Gill, “Piecewise Linear Approxi-
mation applied to Nonlinear Function of a Neural Network,” Circuits,
Devices and Systems, IEE Proceedings -, vol. 144, no. 6, pp. 313–317,
Dec 1997.

[11] C. R. Reeves, Ed., Modern Heuristic Techniques for Combinatorial
Problems. New York, NY, USA: John Wiley & Sons, Inc., 1993.

[12] C. Garcia and M. Delakis, “Convolutional Face Finder: a Neural
Architecture for Fast and Robust Face Detection,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 26, no. 11, pp. 1408–
1423, Nov 2004.

[13] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” in Proceedings of the
IEEE, 1998, pp. 2278–2324.

[14] J. Nagi, F. Ducatelle, G. Di Caro, D. Ciresan, U. Meier, A. Giusti,
F. Nagi, J. Schmidhuber, and L. Gambardella, “Max-Pooling Convolu-
tional Neural Networks for Vision-based Hand Gesture Recognition,”
in Signal and Image Processing Applications (ICSIPA), 2011 IEEE
International Conference on, Nov 2011, pp. 342–347.

[15] L. Cavigelli, M. Magno, and L. Benini, “Accelerating real-time embed-
ded scene labeling with convolutional networks,” in Design Automation
Conference (DAC), 2015 52nd ACM/EDAC/IEEE, June 2015, pp. 1–6.

[16] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

