
A Three-Phase State Estimation in Unbalanced
Distribution Networks with Switch Modelling

Ankur Majumdar
Student Member, IEEE

Dept of Electrical and Electronic Engineering
Imperial College London

London, U.K.
ankur.majumdar@imperial.ac.uk

Bikash C. Pal
Fellow, IEEE

Dept of Electrical and Electronic Engineering
Imperial College London

London, U.K.
b.pal@imperial.ac.uk

Abstract—State estimation has become an important task in
modern energy/ distribution management systems. However, the
state estimation is not very popular in modern unbalanced three-
phase distribution systems. This paper proposes a method for
three-phase state estimation with detailed three-phase modelling
of system components including switches and star and delta
connected loads. This method is then tested on a standard IEEE
13-bus system and the results are compared with load flow results.
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I. I NTRODUCTION

With the influx of phasor measurement units (PMUs),
intelligent metering etc. in transmission systems and smart
meters with information and communication technology (ICT)
infrastructure in distribution systems, power systems now-a-
days need to be monitored and controlled efficiently [1]. To
enable this, the states of the system need to be observed
properly. This would help to influence the operational deci-
sions and thus, to avoid contingency and cascaded tripping.
It is done through an energy/ distribution management system
(EMS/DMS) function- the state estimation (SE) [2], [3]. This
function estimates the bus voltages and angles based on the
available measurements, network data and topology informa-
tion. Figure I shows a typical DMS architecture.

In transmission systems, the state estimation concept is well
established but in distribution systems due to the absence
of sufficient measurements and unbalanced and asymmetric
nature of the system, it was not mandatory to have a state
estimation function. But with growing number of controllable
devices and the incorporation of smart meters in the system,
state estimation is becoming important in distribution network
operation.

As a starting point, the solution methodology mainly fo-
cuses on weighted least squares (WLS) estimation technique
[4]. But the majority of distribution systems operate under
varying degrees of unbalance. Moreover, unlike the trans-
mission system, the distribution system is radial in nature
and has a higherR/X ratio. Therefore, the fast decoupled
method causes numerical instability when applied to distribu-
tion systems [5]. Hence, this has paved the way for the need

of unbalanced three-phase state estimation rather than single-
phase state estimation.

Over the years, there have been research on three-phase
load flow in distribution systems [6]. However, most of the
operational i.e., control and contingency, decisions based on
state estimation have been applied to distribution system
considering to be balanced [7]. Moreover, the loads considered
are constant power and Y-connected loads and the different
status (closed/open) of the switches are not considered [8],
[9].
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Figure 1. A typical distribution management system architecture

To achieve the accurate estimates of the state variables, this
paper presents a weighted least squares based estimator with
the detailed modelling of the system components and different
types of loads and also considering the different operational
status of the switches. The paper is organized as follows.
Section II describes the formulation of the problem. Section
III discusses the modelling of different components of the
distribution system and Section IV demonstrates the results
and discussions of the technique applied to 13-bus system.
Section V concludes the paper.

II. PROBLEM FORMULATION

The state estimation is a process which estimates real-
time states of the system (voltage magnitudes and angles).



The problem can be looked at as a constrained non-linear
optimization problem with the following objective function

J = [zmeas − hfunc(x)]
TR−1[zmeas − hfunc(x)] (1)

Subject to:

ceq (x) = 0 (2a)

cineq (x) ≤ 0 (2b)

Where,

x State variables such as voltage magnitudes and
angles.

m Number of measurements per phase.
R Measurement error covariance matrix,
zmeas =

[

za1 zb1 zc1 . . . zai zbi zci . . . zam zbm zcm
]

.
zi Measured value ofith measurement.
hfunc(x) vector of measurement as a function of statex
ceq(x) vector of zero injection measurements.
cineq(x) vector of inequality constraints.

In three phase system

x =
[

δph1 · · · δphi · · · δphn V ph
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i · · ·V ph
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are the three-phase voltage magnitude and voltage angle at
bus i respectively.

The measurements are usually considered to be with random
errors due to biases, drifts or wrong connections of the
measurement devices, i.e. meters. It is assumed that the mea-
surement errors are identically and independently distributed.
Hence, the covariance matrix of the errors are given by
R=Cov(e)=E(eeT)=diag(σ2

1 , . . . σ
2
i , . . . , σ

2
m), whereσi =

[

σa
i σb

i σc
i

]⊤
and σ2

i is the variance of theith measurement
error.

In three-phase system, the real power injectionP ph
i and

reactive power injectionQph
i equations at busi for phaseph

can be written as:
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n
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(4)

WhereG+jB is the system admittance matrix,n is number
of buses andl is the number of phases that can be 1, 2 or 3
phase. The branch real power flowP ph

ij and reactive power
flow Qph

ij equations from busi to busj for phaseph can be

written as follows:
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Where,
V l
i Voltage magnitude of phasel at busi.

δli Angle of phasel in bus i.

A. Equality constraints ceq (x)

The equality constraints are the set of equations correspond-
ing to virtual measurements.

0 = P ph
Gi − P ph

Di − P ph
i (7)

0 = Qph
Gi −Qph

Di −Qph
i (8)

WhereP ph
Gi andQph

Gi are the real and reactive power injected
at bus i respectively, the load demand at the same bus is
represented byP ph

Di andQph
Di. Indicesn is number of buses

and l is the number of phases which can be 1, 2 or 3 phase.

B. Inequality constraints cineq (x)

These are the set of constraints of state variables that
represent the system operational and security limits, such
as setting upper and lower limits for control variables. The
constraints are as follows:

• Bus voltage - Voltage magnitudes at each bus in the
network:

V ph
min,i ≤V ph

i ≤ V ph
max,i

• Bus angle- The bus angle at each bus in the network:

−δphmin,i ≤δphi ≤ δphmax,i

Eq. (1) and (2) can be solved by Newton’s method, which
translates into solving the following equation at each iteration

[G(xk)]∆xk+1 = HTR−1[z − h(xk)] (9)

where,n is the total number of buses in the system.
∆xk+1 = xk+1 − xk and H(xk) = [∂h

∂x
] is the Jacobian

matrix andG(xk) = HT (xk)R−1H(xk) is the Gain matrix
in the kth iteration.



III. T HREE-PHASE DISTRIBUTION SYSTEM MODELLING

The distribution system consists of unsymmetrical network
components and unbalanced load. Hence, the single line repre-
sentation for an unbalanced distribution system does not work.
Therefore, the exact three-phase modelling of the network
components is necessary.

The following subsections describe the three phase mod-
elling of various components of the network such as line,
transformers and switches.

A. Line Modelling

The distribution system consists of untransposed overhead
lines and underground cables which can be three-phase or
single and/or two-phase laterals. This combined with the un-
balanced loads (single, two or three-phase loads) contribute to
the unbalanced nature of the system. Due to the untransposed
nature of the lines, it is essential to compute the impedanceof
the lines accurately. A modified Carson’s equation is applied
to compute the self and mutual impedance of the lines [10].

Zii = ri + 0.095 + j0.121×
(

Ln
1

GMRi

+ 7.934

)

Ω/mile

(10)

Zij = 0.095 + j0.121×
(

Ln
1

Dij

+ 7.934

)

Ω/mile (11)

Where,

Zii Self-impedance of conductori in Ω/mile.
Zij Mutual impedance between conductorsi and j in

Ω/mile.
ri Resistance of conductori in Ω/mile.
GMRi Geometric mean radius of conductori in feet.
Dij Distance between conductorsi and j in feet.

The modified Carson’s equation also takes into the ground
return path (neutral conductor) for the unbalanced currents.

The modified Carson’s equations (10) and (11) for a three
phase overhead or underground circuit which consists of
neut neutral conductors makes the resulting impedance matrix
(3 + neut) × (3 + neut). However, for most applications,
it is necessary to have the3 × 3 phase impedance matrix.
Therefore,(3+neut)×(3+neut) impedance matrix is broken
down to3× 3 matrix by Kron’s reduction as given in (12). In
this approach, all the lines will be modelled by3 × 3 phase
impedance matrix and for two phase and single phase lines the
missing phases are modelled by setting the impedance element
to zero.

Zij = Zij −
Zin × Znj

Znn

(12)

Therefore, for each line between two nodes, there will be a
3 × 3 matrix instead of a single element for a single phase
balanced system. Hence, the resultantY -bus matrix of the
system will be of(n × 3) × (n × 3). The structure of the

Y -bus matrix is shown in (13).

Y =























Y aa
11 Y ab

11 Y ac
11 · · · Y aa

1n Y ab
1n Y ac

1n

Y ba
11 Y bb

11 Y bc
11 · · · Y ba

1n Y bb
1n Y bc

1n

Y ca
11 Y cb

11 Y cc
11 · · · Y ca

1n Y cb
1n Y cc

1n

...
...

...
.. .

...
...

...
Y aa
n1 Y ab

n1 Y ac
n1 · · · Y aa

nn Y ab
nn Y ac

nn

Y ba
n1 Y bb

n1 Y bc
n1 · · · Y ba

nn Y bb
nn Y bc

nn

Y ca
n1 Y cb

n1 Y cc
n1 · · · Y ca

nn Y cb
nn Y cc

nn























(13)

B. Transformer Modelling

The distribution system generally consists of feeder and
distribution transformers which provide the final voltage trans-
formation to the loads. The three phase transformers are
modeled by admittance matrix which depends on the con-
nection type. A transformer can be Y-Y, Y-∆, ∆-∆ etc. In
the analysis of the distribution feeder, it is required to model
the various three phase transformer connections correctly. The
comprehensive calculations of three phase transformers and
their various connections can be found in reference [10], [11].
While forming theY -bus, a transformer can be considered as
one element between two nodes of the system. Therefore, the
transformer contributes to6× 6 block in theY -matrix.

C. Switch Modelling

Switches are considered as branches with zero impedance.
It is assumed that the status of the switches, i.e. closed or
open, are known beforehand. The operational constraints for
the switches are considered as equality constraints as given by
ceq = 0 in equation (2) of the original problem formulation.

• When the switch between busi and busj is assumed
closed for branchi-j, the voltages and angles for busi
and busj and phaseph for all the three phases are equal.

V ph
i − V ph

j = 0

δphi − δphj = 0 (14)

• When the switch is assumed open between busi and bus
j, the active and reactive power flow to the switch will
be zero.

P ph
ij = 0

Qph
ij = 0 (15)

D. Load Modelling

The loads in distribution systems are generally unbalanced.
The loads are three-phase, two-phase or single-phase. Theycan
be connected in grounded Y or ungrounded∆ configuration.
from the point of view of electricity usage, loads can be
broadly classified as constant power, constant impedance or
constant current loads. They are commonly represented as
power consumed per phase and considered to be L-N for Y-
loads and L-L for∆-loads. The typical ZIP models for wye
and∆ loads are shown in (16) and (18).



P ph
L = P ph

n

[

cP1 + cP2

(

V ph

Vn

)

+ cP3

(

V ph

Vn

)2
]

(16)

Qph
L = Qph

n

[

cQ1 + cQ2

(

V ph

Vn

)

+ cQ3

(

V ph

Vn

)2
]

(17)

P ph12
L = P ph12

n

[

cP1 + cP2

(

V ph12

√
3Vn

)

+ cP3

(

V ph12

√
3Vn

)2
]

(18)

Qph12
L = Qph12

n

[

cQ1 + cQ2

(

V ph12

√
3Vn

)

+ cQ3

(

V ph12

√
3Vn

)2
]

(19)

Where,ph12 = ab, bc, ca.
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Figure 2. Delta-connected three-phase load

Figure 2 shows a typical∆-connected three phase load. The
voltage magnitudes are line-to-neutral for the state estimation
formulation given in Section II. Therefore, in case of delta
loads, the equivalent wye powers are calculated at each itera-
tion in order to calculate the active and reactive power at each
node. This is illustrated in the following steps.

• Calculate line-to-neutral voltage for delta loads




V ab
i

V bc
i

V ca
i



 =





V a
i ∠δ

a
i − V b

i ∠δ
b
i

V b
i ∠δ

b
i − V c

i ∠δ
c
i

V c
i ∠δ

c
i − V a

i ∠δ
a
i



 (20)

• Read the active and reactive power of delta loads
• Calculate the line currents of delta loads

Iab =

(

Pab + jQab

Vab∠δab

)∗

(21)

• Calculate the current at each phase




Ia
Ib
Ic



 =





1 0 −1
−1 1 0
0 −1 1









Iab
Ibc
Ica



 (22)

• Calculate the equivalent line-to-neutral active and reactive
powers

VaI
∗

a = Pa + jQa

VbI
∗

b = Pb + jQb (23)

VcI
∗

c = Pc + jQc

For the phases where the loads are non-existent, the active
and reactive power values are set to zero for those particular
phases.

E. Measurements

The distribution system normally covers a large geographi-
cal area. Hence, it is not possible to place meters at every node
and lines. Hence, the redundancy of distribution systems are
usually far less than that of transmission systems. However, it
is required to make the system observable in order to solve the
state estimation. Therefore, the load data taken from historical
load data profiles are taken as pseudo measurements and zero-
injection buses are considered as virtual measurements.

IV. CASE STUDY AND DISCUSSIONS

A. Simulation Results

A standard IEEE-13 bus distribution system has been used
in this paper. The feeders are small yet they show some
interesting characteristics. The system represents a typical
distribution system with voltage magnitude measurements only
at the substation, with more branch current measurements than
power flow measurements, and all loads are considered as
pseudo measurements.
• Short and relatively high loaded for a 4.16 kV feeder.
• One substation voltage regulator consisting of three

single phase units connected in wye.
• Both overhead and underground lines are present

with a variety of phasing.
• It has shunt capacitors.
• It has one transformer: grounded wye-grounded wye
• Unbalanced spot and distributed loads are present.
• The loads are of constant power, constant current and

constant impedance type and are star and/or delta
connected.

Figure 3 shows a typical IEEE 13-bus system. A WLS state
estimator is coded in Matlab and tested on the standard IEEE-
13 bus system and run on a system with Intel Xeon processor
@3.33GHz and 12 GB RAM. The data for the system are
given in [12] and [13].
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Figure 3. IEEE-13 bus unbalanced distribution system

The overhead lines and underground cables are modelled
by modified Carson’s equations. The loads are modelled in
ZIP model and the three-phase transformer is configured as a
grounded Y-Y connection. Measurements have been generated
using normal distribution curve with load flow values as true
or mean values and standard deviation. Each measurement is
taken from the distribution curve randomly and this experiment



is performed a number of times in a Monte Carlo approach.
One such case has been shown here, in the results. It is
assumed that the measurement errors are independent and
identically distributed. The zero injections are considered as
equality constraints. The voltage magnitudes are set to operate
within 5% of the nominal values and the voltage angles within
−30◦ to +30◦. The switch between buses9 and10 is assumed
to be close. Therefore, the equation (14) are also equality
constraints in the state estimation formulation. The loadson
nodes2, 9 and 10 are delta-configured loads. The constant
impedance loads are on nodes2 and 10, while the nodes10
and7 have constant current loads.

TABLE I. STATE ESTIMATES

Angle estimates(in degrees) Voltage estimates(in pu)
Bus
No. ph a ph b ph c ph a ph b ph c

1 0 -120 120 1.0006 0.9980 1.0030
2 - -119.566 119.5905 - 0.9897 1.0068
3 - -119.6192 119.6037 - 0.9899 1.0070
4 -0.2794 -119.6875 119.6423 0.9944 0.9925 1.0076
5 -0.3005 -119.7033 119.6340 0.9920 0.9919 1.0057
6 -0.5364 -119.8673 119.4340 0.9940 0.9923 1.0064
7 - - 119.4432 - - 1.0053
8 -0.6496 - 119.4655 0.9867 - 1.0065
9 -0.6319 -119.2681 119.4736 0.9893 0.9930 1.0076
10 -0.6319 -119.2681 119.4736 0.9892 0.9930 1.0076
11 -0.6519 -119.2604 119.4922 0.9891 0.9936 1.0095
12 -0.6253 - - 0.9875 - -
13 -0.6323 -119.2676 119.4736 0.9900 0.9950 1.0116
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Figure 4. True and estimated voltages for IEEE 13 bus system

Table I present the estimated values of the state variables.
The error in real measurement is assumed to be 3% and the
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Figure 5. True and estimated voltages for phase a with20% 40% and50%
error

error in pseudo measurement is assumed to be 20%. Figure
4 shows the true and estimated voltage magnitudes of the
three phases for the IEEE-13 bus model. The missing phases
have been taken to be of voltage magnitude value equal to
1. However, the state estimation process is performed with
40% and 50% error in pseudo measurements as well. Figure
5 shows that for cases when the error in pseudo measurement
is large the state estimates are less accurate. The figure shows
that when the error is20% the estimates for phasea are closest
to the true value compared to other cases. In Table I, the
missing phases have been represented by dashes. There is a
closed switch between bus9 and10. Figure 4 and Table I show
that the voltage magnitude values and voltage angles remain
the same across the closed switch. The obtained results have
been found to satisfactory within the allowable tolerance.

V. CONCLUSIONS

This paper presents a WLS based three-phase state esti-
mation with detailed modelling of the different components
of three phase system considering both the star and delta-
configured loads. The method achieved a reliable solution
to the state estimation problem. Simulation results on IEEE
13-bus distribution system showed the effectiveness of the
approach and compared with the load flow results. The reliable
state estimation results provide the basis for control and
monitoring of modern distribution systems.
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