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ABSTRACT: We report measurements of the diffusion coefficients of CO2 and
N2 in pure water at temperatures between (298.15 and 423.15) K and pressures
between (15 and 45) MPa. The measurements were made by the Taylor dispersion
method and have a standard relative uncertainty of 2.3 %. The results were found
to be essentially independent of pressure over the range investigated and a simple
relation, based on the Stokes−Einstein equation, is proposed to correlate the
experimental data. Some experimental difficulties arising in the measurement of the
diffusivities of slightly soluble acid-gas solutes such as CO2 in water are also
discussed.

1. INTRODUCTION

The transport properties for (CO2 + brine) systems are of
special interest in the field of carbon capture, utilization, and
sequestration (CCUS). Of the various sequestration sinks being
considered, saline aquifers are believed to have the greatest
capacity for storing CO2 worldwide. However, the thermo-
physical properties of mixtures relevant to these systems are still
subject to uncertainty, and diffusion coefficients, the subject of
this investigation, are among the least-well studied.1,2

Diffusion processes in multicomponent mixtures are
described by standard flow equations involving, in principle, a
N × N diffusion matrix, where N + 1 is the number of species.
Additionally, the elements of the diffusion matrix are generally
dependent upon composition, as well as temperature and
pressure. In the case of CO2 diffusion in brine, it may be useful
to approximate the brine itself as a pseudo-one-component
solvent and, noting that CO2 is only sparingly soluble, to treat
the resulting single mutual diffusion coefficient as independent
of CO2 concentration in the accessible limited range. In that
approximation, the dispersion of the sequestered CO2 in the
brine-saturated heterogeneous porous media can be described
as a function of the Peclet number,3 Pe. The Peclet number is
defined as the ratio of advection, L·v, to the mutual diffusion
coefficient, D, where L is a characteristic length and v is the
appropriate average velocity.4 For flow in a capillary of radius R,
Pe = 2Rv/D and v is the linear flow velocity averaged over the
cross-section of the capillary. According to Sahimi,5 diffusion is
the dominant mechanism of dispersion in porous media when
Pe ≤ 5, and is significant up to Pe ≈ 300. This corresponds to
fluid velocities on the order of cm·s−1 in microporous media
with R of order 10−6 m and D of order 10−9 m2·s−1. Except
close to points of injection, the Pe is typically low and the
transport of solute molecules is strongly influenced by diffusion.
Reliable knowledge of the diffusion coefficients, and other
thermophysical properties, in systems comprising carbon
dioxide, brines, and hydrocarbons is therefore necessary for

the rational design, control, and optimization of CCUS
processes.
The Taylor dispersion method has been used widely in the

last 30 years for the measurement of diffusion coefficients. This
technique exploits the dispersion experienced by a solute plug
when injected into a laminar flow. Axial dispersion, primarily
resulting from the parabolic flow profile, acts to spread the
solute pulse out longitudinally, while radial diffusion acts to
keep the pulse confined. The combined result of these two
phenomena is to produce an essentially Gaussian distribution
after a sufficient amount of time has passed for the flow to
become fully developed. The dispersion coefficient which
described this Gaussian distribution has been related to the
mutual diffusion coefficient by Taylor6 and Aris.7 Several
authors have published widely on this technique, in particular
Leaist8,9 has considered multicomponent systems, and
Funazukuri et al.10 studied supercritical systems. There has
also been extensive work carried out to gauge the influence of
practical parameters on the accuracy of the technique, for
example, the work of Alizadeh et al.11

Despite the frequent use of Taylor dispersion as a method for
measuring diffusion coefficients, only a few workers have
employed this technique to measure the diffusion coefficients
for gases dissolved in liquids. Ferrell and Himmleblau12 have
used the Taylor dispersion method to measure the tracer
diffusion coefficients of CO2, and N2 in water, as did Snijder et
al.13 and Frank et al.14 for CO2 in water as part of a study of the
diffusion of various gases in nonaqueous solvents. Additionally,
Han and Bartels15 have reported on diffusion coefficients of O2

in water and D2O, and Hamborg et al. have used the Taylor
dispersion technique for N2O in aqueous piperazine.16
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The main aim of the present work was to extend previous
measurements of the tracer diffusion coefficient of CO2 in pure
H2O to high pressures and high temperatures. The Taylor
dispersion apparatus described previously17 was used for this
purpose, and several issues regarding the accurate determi-
nation of diffusion coefficients for gases in liquids are
highlighted in this paper. The effect of dissolved salts is a
topic for future work.

2. EXPERIMENTAL SECTION
2.1. Methodology. Figure 1 is a schematic diagram of the

Taylor dispersion apparatus used in this work. With the

exception of the solution preparation system, the apparatus was
as described by Secuianu et al.17 It comprised four modules: a
solvent delivery system with a solution injection valve; a
solution preparation vessel; a thermostatic oil bath housing the
diffusion capillary; and a differential refractive-index detector.
The solution preparation vessel, fabricated from titanium, had
an internal volume of 100 mL and was fitted with a PTFE-
coated magnetic stirrer bar. This vessel was used, first, to degas
a quantity of solvent and then to saturate it with gas at ambient
temperature and a pressure of up to 0.7 MPa. Prior to an
injection, the gas-saturated solution was passed under pressure,
via a dip tube in the vessel, through a 5 μL sample loop on the
6-port injection valve, and via a back pressure regulator to
waste. This back pressure regulator served to prevent the solute
from coming out of solution prior to injection into the diffusion
column. A syringe pump (Teledyne ISCO model 100DM) was
used to provide a continuous flow of solvent through, in turn,
the 6-port injection valve, a coiled diffusion column, housed in
a thermostatic oil bath (Fluke model 6022), a PEEK-
reinforced-silica restriction tube, a differential refractive index
detector (RID, Agilent 1200 series), and finally a second back-
pressure regulator. The purpose of the restriction tube was to
permit high pressures in the diffusion column, up to 50 MPa,
while allowing the refractive index detector to operate at a low
pressure (typically 0.45 MPa) set by the back-pressure

regulator. Several restriction tubes were used in this work to
allow measurements to be performed at different pressures and
flow rates. The syringe pump was operated in flow-control
mode at various flow rates consistent with the desired operating
pressure and the avoidance of secondary flow. The pressure was
measured in the pump head, and the calculated pressure drop
across the diffusion tube was found to be negligible. With the
exception of the restriction tubes, all the tubing prior to the
detector was made from Hastelloy C-276. The diffusion column
had a length of 4.518 m, as measured with an ordinary tape
measure, and an internal radius of 0.5398 mm, as determined
gravimetrically. Interconnecting tubing outside the thermostatic
oil bath was of small diameter to minimize the dispersion in
these sections.17

The temperature of the oil bath was measured with a
secondary-standard platinum resistance thermometer (Fluke
Hart Scientific model 5615) and readout unit (Fluke Hart
Scientific, model 1502A). The thermometer was calibrated on
ITS-90 at the temperature of the triple point of water and by
comparison in a constant temperature bath with a standard
platinum resistance thermometer at nominal temperatures of
(323, 373, 423, and 473) K. The standard uncertainty of the
temperature measurements was 0.01 K. The solvent delivery
pressure was measured at the outflow of the pump by means of
the pressure transducer integrated into the pump. According to
the manufacturer, the relative uncertainty of the pressure was
0.5 % of the reading, and we take this figure to be the expanded
relative uncertainty with a coverage factor of 2.
The solvent used in this study was pure deionized water with

an electrical resistivity of >18.2 MΩ·cm at T = 298.15 K. The
solvent was degassed before entering the pump via an in-line
degasser (Knauer model A5328). CO2 and N2, both of 99.995%
purity, were supplied by BOC. The pump was maintained at T
= 293 K by passing water from a chiller (Huber Minichiller)
through a jacket around the syringe. The chiller also supplied a
flow of water to a coldfinger inserted in the thermostatic bath
to permit operation at temperatures below about 313 K at
which temperature natural heat loss was insufficient.
Solutions of the gas under study in pure water were typically

prepared at a pressure of 0.7 MPa, giving a solute concentration
of about 0.2 mol·L−1 for CO2 and 0.005 mol·L−1 for N2.

18,19

Once thermal equilibrium was established in the thermostatic
bath and steady-state flow was established, as evidenced by a
constant pressure upstream of the column, a series of solution
injections were made. Typically, 4 to 6 repeat measurements
were made at each temperature and pressure.
The differential refractive index signal s(t) was analyzed in

terms of the relation

α= + +s t a bt c t( ) ( ) (1)

where a and b are baseline coefficients, t is time, c is molar
solute concentration, and α = (∂s/∂c)T,p is the sensitivity of the
detector (assumed constant). The concentration profile was
given by the relation of Aris7

π π= − −c t n R Kt L vt Kt( ) { /( 4 )} exp[ ( ) /4 ]2 2
(2)

Here, n is the amount of solute injected, R is the radius, and L is
the effective length of the column, v is the linear flow rate of
solvent averaged over the cross-section of the tube, and K is the
dispersion coefficient, normally related to the diffusion
coefficient D by

= +K D R v D( /48 )2 2
(3)

Figure 1. Schematic of the Taylor dispersion apparatus: DG, vacuum
degasser; SP, syringe pump; PI1 and PI2, pressure transducers; F1 and
F2, filters; SV, sample valve; DC, diffusion column; HB, thermostatic
oil bath; TIC, temperature controller; RT, restriction tube; RID,
refractive index detector; BP1 and BP2, back pressure valves; SC,
saturation chamber; PRV; proportional relief valve; V01, V02, and
V03, gas and vacuum valves; V04; solution outlet valve.
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The effective length is given by

∑= +
=

L L D D R R L( / ) ( / )
i

i ic 0
1

3

c
4

(4)

where D is the diffusion coefficient at the column temperature,
D0 is the diffusion coefficient at the ambient temperature, and
subscript i = 1, 2, 3, c for the inlet, outlet, RID, and column
sections, respectively. This correction is small, with L typically
being less than 1.5 % greater than Lc.
The analysis consisted of adjusting the baseline coefficients,

the diffusion coefficient, and the product nα so as to best fit the
experimental signal.
In this work, the sensitivity coefficient α was estimated for

CO2 in water by flowing solution directly through the RID,
which was operated at T = 308.15 K. The composition of the
solution was calculated from the measured temperature and
pressure in the saturation chamber using the solubility model of
Duan and Sun.18 This gave α = −7.4 × 10−4 L·mol−1; the
negative sign indicates that the refractive index decreases with
increasing concentration of solute as also observed by
Watson.20 For N2 in water, α was calculated from the molar
refractivities and partial molar volume of N2 given by Harvey et
al.19 and was found to be −4.0 × 10−3 L·mol−1. The sensitivity
is not needed in the analysis to determine D but it was used to
verify that the peak concentration of solute was below the
solubility limit at the temperature and pressure prevailing in the
detector. The low concentrations of CO2 mean that it was
effectively the tracer diffusion coefficient that was measured in
these experiments.
2.2. Selection of Optimal Operating Conditions. The

optimal operating conditions for a Taylor Dispersion apparatus
have been discussed by several authors. The main criteria are
that the flow should be laminar and that secondary flow
induced by coiling of the capillary should be negligible. The
second criterion is often associated in the literature with an
upper limit on the product De2Sc, where De = Re(R/Rcoil)

1/2 is
the Dean number, Sc = η/(ρD) is the Schmidt number, Re =
(2Rvρ/η) is the Reynolds number, Rcoil is the coil radius, η is
the solvent viscosity, and ρ is the solvent density. In our
previous work, with the same apparatus, the system (KCl +
H2O) was studied at flow rates such that De2Sc was less than
about 20 and the measured signals s(t) conformed closely to
the working equation. In the present work with gaseous solutes
it proved necessary to reappraise the optimal flow-rate and to
consider corrections to eq 3 for the effects of secondary flow.
Such corrections have been developed by Erdogan and
Chatwin21 and by Nunge et al.;22 the latter’s formulation is
discussed further below.
Figure 2 is an example of the signal s(t) corresponding to an

injection of N2(aq) into pure water flowing at 0.08 mL·min−1 at
a pressure of 26.6 MPa with a column temperature of 423.15 K.
Also shown are the deviations of s(t) from the fit with eqs 1 and
2. The experimental data are seen to conform closely to the
working equation with deviations not worse than about ± 1 %
of the peak signal. In this case, De2Sc ≈ 5.
In contrast to the situation with nitrogen, injections of

CO2(aq) resulted in an anomalous peak shape at comparable
flow rates (roughly ≤0.12 mL·min−1) and T ≥ 348.15 K. Figure
3 is an example of such behavior and shows a pronounced
prepeak of reverse polarity. Despite exhaustive investigations,
the origin of this prepeak, which has a transit time up to 60 s
faster than the mean liquid residence time, has not been

determined. The fact that H+ and HCO3
− ions, formed by the

hydrolysis of CO2, would be present is an obvious factor
distinguishing this case from that of nitrogen. Since the fraction
ε of the CO2 hydrolyzed at equilibrium is approximately (K1/
c)1/2, where c is the concentration of dissolved CO2 and K1 is
the equilibrium constant of the hydrolysis reaction in
concentration units, the ionic species are expected to be
relatively more prevalent toward the edges of the main peak. At
the detector temperature of 308.15 K, K1 = 4.9·10−7 mol·L−1,23

so for the case illustrated in Figure 3 ε ≈ 2.2 % at the peak
concentration and about 7 % at one-tenth of the peak
concentration. Although ε is quite small, the sensitivity of the
RID to H+ + HCO3

−, estimated by combining refractive index

Figure 2. (top) Dispersion curve s(t) for N2 in water at T = 423 K, p =
26.6 MPa, and a flow rate of 0.08 mL·min−1: ○, refractive index signal;
, Aris model, eqs 1 to 3 fitted to the experimental data.
(bottom) Deviations Δs between the experimental data and the fitted
model.

Figure 3. (top) Dispersion curve s(t) for CO2 in water at T = 423 K, p
= 9.9 MPa, and a flow rate of 0.03 mL·min−1: ○, refractive index
signal; , Aris model, eqs 1 to 3 fitted to the experimental data.
(bottom) Deviations Δs between the experimental data and the fitted
model.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je401008s | J. Chem. Eng. Data 2014, 59, 519−525521



data of aqueous NaHCO3, HCl, and NaCl,24 is approximately
10 times that to molecular CO2 and of the opposite polarity.
Thus the presence of ions should make a significant
contribution to the RID signal in opposition to that of
molecular CO2. Consistent with a hydrolysis mechanism, it was
also found that the ratio of the prepeak to the main peak
increased in magnitude when more dilute solutions of CO2
were injected. However, we could find no reason why the
products of hydrolysis would accumulate on the leading edge
instead of being everywhere in local thermodynamic equili-
brium with CO2. Check runs in which the mobile phase was
acidified with HCl to a pH of about 4 to inhibit hydrolysis were
performed; however, the prepeaks were still present. Thus the
evidence does not prove a clear connection with hydrolysis.
Tests for possible interactions of the CO2 with the wall material
were also inconclusive: with stainless steel the situation was
unchanged but with a PEEK tube the CO2 was entirely
absorbed. The possibility that the CO2 was coming out of
solution in the detector was eliminated by comparing the
measured concentration with the solubility limit and also by
looking for bubbles in the solution flowing between the RID
and the back-pressure regulator at the outlet (transparent
tubing was installed for this purpose). It was observed that, with
solvent flowing continuously, the height of the prepeak (relative
to the main peak) decreased in magnitude over a series of
solute injections; however, it increased again after a period
without injections. It was also found that the prepeaks were
greatly diminished when the flow rate was increased.
To suppress the anomalous prepeak while limiting the effects

of secondary-flow effects, the measurements for CO2 in water
were made at flow rates of (0.305 to 0.325) mL·min−1,
corresponding to 80 < De2Sc < 100. Figure 4 shows and
example of the RID signal measured for CO2 in water at T =
423.15 K and a flow rate of 0.325 mL·min−1, under which
conditions no prepeak is evident, and the data conform to eqs 1
and 2. The amount of solute eluting, obtained from the area
under the peak, was found to agree within about 15% with the

calculated amount injected, based on the solubility model, the
temperature, and pressure in the solution preparation vessel
and the nominal volume of the sample loop. We note that the
value of D determined from the anomalous data shown in
Figure 3 was 20 % higher than the value obtained from the
“normal” dispersion curve shown in Figure 4. Although we
cannot rule out the persistence of some systematic errors in our
final results, we expect these to be much smaller than the
differences in the values of D obtained with low and high flow
rates. At the flow rates necessary to achieve acceptable peak
shapes, secondary flow effects are still small but not negligible.
To account for this, eq 3 for the dispersion coefficient K was
replaced by the more general expression derived by Nunge et
al.:22

= + +

×
×
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The use of eq 5 in place of eq 3 to calculate D from K implies a
relative correction of between −1.4% and −1.7% in the present
work. We note that under typical operating conditions for a
Taylor Dispersion experiment, Sc ≫ 1, 10° ≤ Re ≤ 102, and K
≫ D, so that eq 5 reduces to the following simple expression in
which the correction for secondary flow is directly proportional
to (De2Sc)2:

≈ −
⎛
⎝⎜

⎞
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⎡
⎣
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⎛
⎝⎜

⎞
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⎤
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R v
D
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48

1
653

2 2 2 2

(6)

Having determined the optimal operating conditions, measure-
ments for CO2 in water, as well as N2 in water, were made over
the temperature range (298 to 423) K at pressures up to 45
MPa. In these measurements, dispersion curves like those seen
in Figure 4 were always observed and enable the diffusion
coefficient to be extracted with an estimated standard relative
uncertainty of 2.3 %.

2.3. Materials. Ultrapure deionized water with electrical
resistivity > 18 MΩ·cm was obtained from a Millipore system
(Direct-Q, Millipore UK Ltd.). The nitrogen and carbon
dioxide were supplied by BOC with claimed mole-fraction
purities of 0.99998 and 0.99995, respectively.

3. RESULTS

The values of the diffusion coefficient for N2 in water over the
temperature range (298 to 423) K and pressure range (12 to
46) MPa are given in Table 1. The mean linear flow speed v,
the maximum sum of squared deviation of s(t) from the fitted
Aris model for an accepted peak in an experiment, 102σs,max, and
standard deviation of D, σD, over N injections are also
tabulated. The dimensions of the restriction tube used for all
these experiments were 25 μm (inner diameter) × 250 mm
(length). The results are plotted as a function of temperature in
Figure 5.

Figure 4. (top) Dispersion curve s(t) for CO2 in water at T = 423 K, p
= 39 MPa, and a flow rate of 0.325 mL·min−1: ○, refractive index
signal; , Aris model, eqs 1 to 3 fitted to the experimental data.
(bottom) Deviations Δs between the experimental data and the fitted
model.
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The measured diffusion coefficients for CO2 in water over
the range (298 to 423) K and (14 to 50) MPa are given in
Table 2, together with the mean linear flow speed, the
maximum sum of squared deviation of the fitted s(t) for an
accepted peak in an experiment, and the standard deviation of
D over N injections. The results are plotted as a function of
temperature in Figure 6.
The standard relative uncertainty associated with these

measurements was calculated from the following equation:

= + +

+ ∂ ∂

+ ∂ ∂−

u D u K u R u v

p D D p u p

D D T u T

( ) ( ) 4 ( ) 4 ( )

[( / )( / ) ( )]

[ ( / ) ( )]
r

r
2

r
2

r
2

r
2

2

1 2
(7)

where ur(X) denotes standard relative uncertainty and u(X)
standard uncertainty of variable X. The standard relative
uncertainties appearing on the right of eq 7 were ur(K) = 2 %,
estimated from the repeatability of the dispersion measure-
ments, ur(R) = 0.2 %, ur(v) = 0.5 %, and ur(p) = 0.25 %, while
the standard uncertainty of temperature was 0.01 K. This led to
ur(D) = 2.3 % for both systems investigated. This figure is
dominated by the repeatability of K; the uncertainties of T and
p have negligible influence.

4. DISCUSSION
While the reproducibility found in the present experiments was
somewhat lower than obtained by Secuianu et al.17 for the (KCl
+ H2O) system using the same equipment, the results obtained
were generally consistent within ± 3 % at a given state point.
An important observation for both systems is that the diffusion
coefficients are not significantly dependent upon pressure in the
ranges of p and T investigated. Rutte has discussed the use of a
modified Stokes−Einstein equation to describe the temperature
dependence of the diffusion coefficients of gases in liquids:25

πη=D k T n a{ /( )}B SE (7a)

Here, kB is Boltzmann’s constant, T is temperature, nSE is the
Stokes−Einstein number, η is the solvent viscosity, and a is the

Table 1. Diffusion Coefficients D and Standard Deviations
σD for N2 in Water at Temperatures T and Pressure p
Determined from N Repeated Injections at Mean Solvent
Flow Speed v, Together with the Maximum Relative
Standard Deviation (σs/smax)max of the RID Signal s(t),
Where smax Is the Maximum Value of sa

T p v D

K MPa m·s−1 10−9 m2·s−1 N 102(σD/D) 102(σs/smax)max

298 12.0 0.035 1.989 7 0.6 0.8
298 25.0 0.075 2.000 3 0.6 1.1
298 44.6 0.140 1.979 4 5.7 1.9
323 14.6 0.045 3.278 4 0.6 0.9
323 25.1 0.075 3.468 3 1.0 0.9
323 45.0 0.140 3.203 5 3.0 1.7
373 14.8 0.035 6.619 6 2.7 0.6
373 45.0 0.115 6.425 6 3.3 1.5
423 26.9 0.080 10.73 4 0.7 0.6
423 45.9 0.140 10.42 5 1.6 0.6

aStandard uncertainties are u(T) = 0.01 K, u(p) = 0.0025·p and u(D)
= 0.023D.

Figure 5. Diffusion coefficients D of N2 in water as a function of
temperature T: ◇, p = (12.0 to 14.8) MPa; □, p = (25.0 to 26.9) MPa;
△, p = (44.6 to 45.9) MPa.

Table 2. Diffusion Coefficients D and Standard Deviations
σD for CO2 in Water at Temperatures T and Pressure p
Determined from N Repeated Injections at Mean Solvent
Flow Speed v, Together with the Maximum Relative
Standard Deviation (σs/smax)max of the RID Signal s(t),
Where smax Is the Maximum Value of sa

T p v D

K MPa m·s−1 10−9 m2·s−1 N 102(σD/D) 102(σs/smax)max

298 14.0 0.305b 2.233 4 1.8 1.3
298 31.6 0.305c 2.256 5 3.2 1.8
298 47.7 0.305d 2.218 5 1.4 0.8
323 14.2 0.315b 3.643 4 1.4 1.4
323 31.8 0.315c 3.718 6 1.6 2.0
323 48.6 0.315d 3.938 4 2.3 2.4
348 14.9 0.325b 5.391 4 1.3 1.8
348 31.8 0.325c 5.306 5 1.8 2.6
348 49.3 0.325d 5.366 6 2.0 2.3
373 14.9 0.325b 7.416 5 0.8 1.8
373 31.0 0.325c 7.521 5 4.0 2.3
373 48.5 0.325d 7.681 5 1.6 2.8
398 14.3 0.325b 9.949 5 3.3 1.7
398 30.9 0.325c 10.06 4 1.6 2.3
398 48.0 0.325d 10.17 6 3.1 2.3
423 14.3 0.325b 12.33 4 1.7 1.3
423 48.0 0.325d 12.21 5 1.6 2.4

aStandard uncertainties are u(T) = 0.01 K, u(p) = 0.0025·p and u(D)
= 0.023D. b50 μm i.d. × 500 mm long restriction tube used. c25 μm
i.d. × 50 mm long restriction tube used. d25 μm i.d. × 100 mm long
restriction tube used.

Figure 6. Diffusion coefficients D for CO2 in water as a function of
temperature T: ◇, p = (14.0 to 14.9) MPa; □, p = (30.9 to 31.8) MPa;
△, p = (47.7 to 49.3) MPa.
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hydrodynamic radius of the solute. Typically, the hydrodynamic
radius a is found to be a weak function of temperature and, in
the present work, we correlate this term as follows:

α= + −a a T[1 ( /K 298)]a298 (8)

The inclusion of a temperature dependence of the hydro-
dynamic radius is an alternative to introduction of an exponent
for the solvent viscosity in eq 7 as has been proposed by other
authors.15 The influence of temperature on the hydrodynamic
radius has been rationalized by Schultz and Solomon26 and
Krynicki et al.27

For consistency with previous work, we take the Stokes−
Einstein number to be 4.
4.1. N2 + H2O System. The results of the present

investigation are represented with a relative standard deviation
of 2.1 % by eqs 7 and 8 with a298 = 190 pm and αa = 2.2·10−3.
Figure 7 shows the present results and those of Ferrell and

Himmleblau,12 Wise and Houghton,28 and Verhallen et al.29 as
deviation from this correlation. There is considerable disagree-
ment between literature sources. Ferrell and Himmleblau12

used the Taylor dispersion method at four different temper-
atures and reported results with relative standard deviations
averaging 8 %. Their results are between (0 and 11) % higher
than the present correlation, which is reasonable in the light of
the claimed uncertainties. In contrast, Wise and Houghton28

used a method based on the rate of bubble collapse, with a
claimed relative uncertainty of 10 %, and report results that are
(34 to 41) % higher than the present correlation. Verhallen et
al.29 used a method based on the permeability of gas through a
stagnant layer of liquid in quasi-steady state, and claim a relative
uncertainty of 5 %; their results are (14 to 22) % higher than
the present correlation.
4.2. CO2 + H2O System. The results of the present

investigation are represented with a relative standard deviation
of 2.9 % by eqs 7 and 8 with a298 = 168 pm and αa = 2.0·10−3.
The point at T = 323 K and p near 48 MPa appears to be an
outlier but otherwise the results fall within ± 4 % of the
correlation, which is reasonable in the light of the 2.3 % relative
standard uncertainty. Figure 8 shows the present results and
data from the literature12,14,30−34 as deviation from this
correlation. There is a considerable amount of scatter in the

values reported in the literature; however most of the published
data for D are somewhat below the correlation of our results.
However, the values of D reported by Tamimi and Rinker,33

who chose a wetted-sphere apparatus for their measurements,
indicates a somewhat different trend. The majority of the values
reported were determined by measuring the rate of absorption
of CO2 into a geometrically well-defined body of water.30,32−34

The interpretation of these measurements relies on accurate
knowledge of the solubility of the gas in the water, and errors in
this quantity have a large influence on the value of D.

5. CONCLUSIONS
Despite the experimental difficulties encountered, diffusion
coefficients for (N2 + H2O) and (CO2 + H2O) systems have
been obtained over wide ranges of temperature and pressure
with standard uncertainties of about 2.3 %. Correlations, based
on the Stokes−Einstein equation, have been proposed for the
diffusion coefficient of both N2 and CO2 in water as a function
of temperature and solvent viscosity. The effect of pressure on
the diffusion coefficient was found to be negligible in the ranges
investigated. The non-Gaussian behavior observed at higher
temperatures and low flow rates during measurements on the
(CO2 + H2O) system remains unexplained.
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Figure 7. Deviations of experimental diffusion coefficients DExp from
the values DSE calculated from the modified Stokes−Einstein equation
for N2 in H2O: ⧫, this work at p = (14.0 and 14.9) MPa; ■, this work
at p = (30.9 to 31.8) MPa; ▲, this work at p = (47.7 to 49.3) MPa; ○,
Ferrell and Himmleblau;12 +, Verhallen et al.;29 ∗, Wise and
Houghton;28 ---, 95% confidence interval for the modified Stokes−
Einstein correlation.

Figure 8. Deviations of experimental diffusion coefficients DExp from
the values DSE calculated from the modified Stokes−Einstein equation
for CO2 in H2O: ⧫, this work at p = (14.0 to 14.9) MPa; ■, this work
at p = (30.9 to 31.8) MPa; ▲, this work at p = (47.7 to 49.3) MPa; ∗,
Frank et al.;14 ○, Thomas and Adams;30 △, Clarke;32 ×, Tamimi and
Rinker;33 +, Unver and Himmleblau;34 □, Tse and Sandall;35 ,
correlation of Thomas and Adams30 as used by Grogan and
Pinczewski;31 ---, 95% confidence interval for the modified Stokes−
Einstein correlation.
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