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Abstract. Precise detection and quantification of white matter hyper-
intensities (WMH) is of great interest in studies of neurodegenerative
diseases (NDs). In this work, we propose a novel semi-supervised large
margin algorithm for the segmentation of WMH. The proposed algorith-
m optimizes a kernel based max-margin objective function which aims to
maximize the margin averaged over inliers and outliers while exploiting
a limited amount of available labelled data. We show that the learn-
ing problem can be formulated as a joint framework learning a classifier
and a label assignment simultaneously, which can be solved efficiently
by an iterative algorithm. We evaluate our method on a database of 280
brain Magnetic Resonance (MR) images from subjects that either suf-
fered from subjective memory complaints or were diagnosed with NDs.
The segmented WMH volumes correlate well with the standard clini-
cal measurement (Fazekas score), and both the qualitative visualization
results and quantitative correlation scores of the proposed algorithm out-
perform other well known methods for WMH segmentation.

1 Introduction

White matter hyperintensities (WMH) are areas of the brain in cerebral white
matter (WM) that appear bright on T2-weighted fluid attenuated inversion re-
covery (FLAIR) magnetic resonance (MR) images due to localized, pathological
changes in tissue composition [12]. WMH are commonly observed in elderly
subjects and subjects with neurodegenerative diseases (NDs), such as vascu-
lar dementia (VaD), Alzheimer’s disease (AD) and dementia with Lewy Bodies
(DLB). Current research [2, 5] indicates that the WMH volume in subjects with
dementia is significantly higher than that of a normal aging population, and the
presence, severity and distribution of WMH also vary between different disorder-
s. Clinically, the amount of WMH is usually characterized by the Fazekas score
[3], which is useful in the assessment of subjects with possible dementia. How-
ever, such visual rating scales show poor sensitivity to clinical group differences
and may also incur high intra- and inter-rater variability [2]. Thus, more reliable
and precise methods for quantifying and analyzing WMH are still desirable.



Recently, several techniques that seek to automatically and precisely seg-
ment and quantify WMH have been put forward [2]. In the supervised setting,
machine learning methods such as k-nearest neighbor (kNN) [1], support vector
machines (SVM) [7] and random forests [5] have been applied to the problem
of WMH segmentation. These approaches learn the characteristic features of le-
sions from training samples that have been manually segmented by an expert.
Such supervised methods can achieve good performance, however, they rely on
the manual segmentation which is costly, time consuming and inevitably con-
tains some mislabelled training data. In contrast, unsupervised segmentation
methods do not require labelled training data. Most approaches employ cluster-
ing techniques to group similar voxels, such as fuzzy C-means clustering [4] and
EM-based algorithms [6]. A different type of approach considers lesions as out-
liers to normal tissues [11, 14]. Recently, a lesion growth algorithm [10] has been
developed, which constructs a conservative lesion belief map with a pre-chosen
threshold (τ), followed by the initial map being grown along voxels that appear
hyperintense in the FLAIR image. However, such unsupervised approaches can
not always produce satisfactory results in subjects with NDs, since WMH in
those subjects are often small and irregular, and also heterogeneous within and
across subjects [5].

In this work, we propose a semi-supervised large margin approach for WMH
segmentation, which identifies WMH as outliers, i.e., patterns deviating from
normal data. Specifically, our method optimizes a kernel based max-margin ob-
jective function formulated by both the limited labelled information and a large
amount of unlabelled data. We show that the framework jointly learns a large
margin classifier and a label assignment, which is solved by updating the classifi-
er and the label indicator alternatingly. The main idea of the proposed approach
is to tackle the uncertainty of unlabelled input data with the help of a small
proportion of labelled ones, and to discover outliers by training a large margin
classifier which maximizes the average margins of judged inliers and outliers.
Instead of assuming that data is generated from a particular distribution as
most of other outlier detection methods do [11, 14], which may not hold true
for WMH segmentation, our method assumes that neighboring samples tend to
have consistent classifications that are guided by available labelled data. Quan-
titative and qualitative results indicate that the proposed method outperforms
the current well known methods on a large database of subjects with NDs.

2 Unsupervised One-Class Learning

Let X =
{
xi ∈ Rd

}n
i=1

denote a set of n unlabelled input samples, and yi rep-
resent the corresponding soft label that assigns normal samples a positive value
(c+) while a negative value (c−) for outliers. Additionally, let H be a reproduc-
ing kernel Hilbert space (RKHS) of the function: f(x) =

∑n
i=1 κ(x,xi)αi, with

associated kernel κ as the functional base and the expansion coefficient α. The
unsupervised one-class learning (UOCL) proposed by Liu et al. [9] is an unsuper-
vised algorithm that uses a self-guided labelling procedure to discover potential



outliers in the data. This method aims to separate the positive samples from
outliers by training a large margin classifier, which is obtained from minimizing
the following objective function:

min
f∈H,{yi}

n∑
i=1

(f(xi)− yi)2 + γ1 ‖f‖2M −
2γ2
n+

∑
i,yi>0

f(xi)

s.t. yi ∈ {c+, c−} , ∀i ∈ [1 : n], 0 < n+ = |{i|yi > 0}| < n.
(1)

Here, the first term in function (1) uses the squared loss to make the clas-
sification function consistent with the label assignment. The second term is a
manifold regularizer, which endows f with the smoothness along the intrinsic
manifold structure M underlying the data. Here ‖f‖2M can be formulated as

fTLf , in which f =
[
f(x1), · · · , f(xn)

]T
, and L is the graph Laplacian matrix.

The last term represents the margin averaged over the judged positive samples,
which aims to push the majority of the inliers as far away as possible from the
decision boundary f(x) = 0. The importance of all three terms are balanced by
the trade-off parameters γ1 and γ2. For more details, please refer to [9].

This minimization problem is solved by an alternating optimization scheme,
with the continuous function f and discrete label assignment yi being optimized
iteratively. The method has been shown to be robust to high outlier proportion,
which is a highly desirable trait in WMH segmentation of subjects with NDs.

3 Semi-supervised Large Margin Algorithm

When it comes to the WMH segmentation, the classification results of UOCL are
not always satisfactory. Since outliers originate from low-density samples and are
later separated from high-density regions without guidance from labelled infor-
mation, the UOCL method can produce many false positives when segmenting
WMH, such as identifying edges and partial volume as outliers. To address this
problem, we extend the UOCL method to a semi-supervised large margin algo-
rithm (SSLM). A limited amount of labelled data is introduced to provide some
guidance for unlabelled samples, with the aim of improving its performance over
unsupervised methods as well as reducing the need of expensive labelled data
required in fully supervised learning.

3.1 Learning Model

Following the notations defined in Section 2, we define L as a labelled data set
and U as the unlabelled data set, which, in WMH segmentation case, repre-
sent sets of voxels with known and unknown labels respectively. The objective
function of our proposed model is formulated as:

min
f∈H,{yi}

∑
xi∈U

(f(xi)− yi)2 + λ
∑

xj∈L
(f(xj)− yj)2 + γ1 ‖f‖2M

− 2γ2
n+

∑
k,yk>0

f(xk) + 2γ3
n−

∑
k,yk<0

f(xk),

s.t. yi ∈ {c+, c−} , n+ = |{i|yi > 0}| , n− = |{i|yi < 0}| ,

(2)



where xk ∈ L∪U , λ, γ1, γ2 and γ3 are trade-off parameters controlling the model,
and n+ and n− are numbers of positive and negative samples respectively dur-
ing the learning. In this model, we introduce a new term

∑
xj∈L (f(xj)− yj)2

that represents squared loss for labelled data. This enables the classification to
be informed by the available labels, thereby allowing it to better discriminate
between inliers and outliers. Additionally, motivated by [13], we also introduce a
new term

∑
k,yk<0 f(xk)/n− into the objective function (2), which aims to max-

imize the average margin between the judged outliers and the decision boundary.
The last two terms in objective function (2) work together to push the positive
samples and outliers far away from the decision boundary, thus enabling these
two groups of data to be far away from each other.

For a more concise notation, we further define the vectorial kernel mapping

k(x) =
[
κ(xi,x), · · · , κ(xn,x)

]T
, and the kernel matrix K = [κ(xi,xj)]1≤i,j≤n,

so the target function can be expressed as f(x) = αTk(x) and f = Kα, in which

α =
[
α1, · · · , αn

]T ∈ Rn. Then the objective function can be rewritten as

min
α,y

αTK(Λ + γ1L)Kα− 2αTKΛy + yTΛy − 2αTKỹ

s.t. y ∈ {c+, c−}n×1, Λ = diag(1, . . . 1, λ, . . . λ︸ ︷︷ ︸
xj∈L

, 1, . . . 1),

ỹi =

{
γ2
‖y‖+

, yi = c+,

− γ3
‖y‖−

, yi = c−,

(3)

in which ‖y‖+ = n+ and ‖y‖− = n−, standing for the number of positive ele-
ments and negative elements in vector y respectively. In our method, we adopt

the same soft label assignment for (c+, c−) as in [9], i.e. (
√

n−
n+
,−
√

n+

n−
).

3.2 Algorithm

Similar to the UOCL method, solving the proposed model involves a mixed
optimization of a continuous variable α and a discrete variable y. One key ob-
servation is that if one of the two components is fixed, the optimization problem
becomes easy to solve. Here we propose a procedure that alternatingly optimizes
α and y similar to the EM framework by updating α and y iteratively.

First, for a given label indicator y, computing the optimal α is equivalent to
minimization of the following sub-problem:

min
α

Q(α) := αTK(Λ + γ1L)Kα− 2αTKΛy − 2αTKỹ. (4)

The gradient of the objective function (4) with respect to α is δQ/δα = 2{[K(Λ+
γ1L)K]α−KΛy −Kỹ}. By using the gradient, problem (4) can be efficiently
solved by the conjugate gradient descent method.

When α is fixed, we need to deal with the y-subproblem, that is

max
y

H(y) := 2αTK(Λy + ỹ)− yTΛy

s.t. y ∈ {c+, c−}n×1, ỹi =

{
γ2
‖y‖+

, yi = c+,

− γ3
‖y‖−

, yi = c−.

(5)



Algorithm 1 SSLM

Input: The kernel and graph Laplacian matrices K, L, model parameters
λ, γ1, γ2, γ3 > 0, Λ and maxiter
Initialization
α0 = 1√

n
, m0 = arg max

m
H(q(Kα0,m)), y0 = q(Kα0,m0), ỹ0 = h(m0,y0), t = 0;

repeat
Update αt+1 by optimizing function (4) using conjugate gradient descent method;
Update mt+1: mt+1 = arg max

m
H(q(Kαt+1,m));

Update yt+1 and ỹt+1: yt+1 = q(Kαt+1,mt+1), ỹt+1 = h(mt+1,yt+1);
t = t+ 1;

until convergence or t > maxiter
Output: expansion coefficient α∗ = αt and the soft label assignment y∗ = yt.

Here a simpler case is shown to solve this discrete optimization problem. If
an integer m = ‖y‖+ is given, then yTΛy and the soft label assignment for
labelled data remain the same regardless of the label assignment for unlabelled
data. Thus this problem reduces to the same one as in UOCL, i.e., to maximize
(Kα)

T
(y+ỹ) in the unlabelled data set. It has been shown in [9] that an optimal

solution satisfies yi > 0 if and only if fi is among m largest elements of f .
One optimal solution to the equation (5) can be simply obtained by sorting

f for unlabelled data in a descending order. Then yi > 0 is assigned to samples
before and including the mU -th element, while yi < 0 to those after the mU -th
element. Here mU = m − mL, in which mU and mL stand for the number of
positive samples in the unlabelled and labelled data sets respectively, with mL

a fixed number. Therefore, the solution to the subproblem (5) can be expressed
as y∗(α) = q(Kα,m∗(α)), in which m∗(α) = arg max

m
H(q(Kα,m)). Note that

the known labels are kept unchanged when learning. For simplicity, we further
define ỹ as a function of m and y, i.e., ỹ = h(m,y). The summarization of this
method is shown in Algorithm 1.

4 Results

Data used in the preparation of this work consisted of T1 and FLAIR MR images
from 280 subjects acquired on a 3T MR scanner. The cohort included 53 subjects
with subjective memory complaints (SMC), 155 subjects with probable AD, 34
subjects with fronto-temporal lobe dementia (FTD), 10 subjects with VaD, and
28 subjects with DLB. All images have been rated by an expert in terms of
WMH using the Fazekas score.

Here, multichannel information (T1 and FLAIR MR images) is used to iden-
tify WMH. To do this, we first applied an automated brain segmentation tool [8]
to the T1 scan to remove non-brain tissue and to extract a WM tissue probability
map. All T1 and white matter tissue maps were registered to the FLAIR space.
Additionally, bias correction and intensity normalization were also applied to
both T1 and FLAIR images. The WMH segmentation was then performed for



voxels with WM probability larger than 0.1. For each voxel of interest, a fea-
ture vector was constructed with intensities of a 3× 3 neighborhood from both
FLAIR and coregistered T1 images. Here we used 2D patches as FLAIR MR
images commonly have slices with low resolution in the through-plane direction.

We have evaluated the performance of the proposed method against the lesion
growth algorithm (LGA) [10] and lesion predict algorithm (LPA) as implement-
ed in Lesion Segmentation Toolbox (LST), which is a widely used tool for WM
lesion segmentation. LPA is a supervised method which was trained by a logistic
regression model with the data of 53 MS patients, and the pre-chosen threshold
τ in LGA was set to 0.3 as suggested by [10]. Preliminary experiments showed
that UOCL method failed on images with fewer lesions and thus its results were
omitted. For the proposed method, labelled data was automatically and con-
servatively determined based on the distribution of the WM intensities on each
subject, which took up a proportion of around 25%. Note that the number of
labelled voxels from normal tissues is much more than that of labelled WMH.
Gaussian kernel κ(x,x′) = exp(−‖x− x′‖2 /2σ2) was used in the classifica-

tion function in which σ2 =
∑n
i,j=1 ‖xi − xj‖2 /n2, and the model parameters

λ, γ1, γ2 and γ3 were determined empirically based on a subset of the data. A
comparison of the WMH segmentation visualization results is shown in Fig.1.

For a more quantitative assessment of the performance of our method, we
have computed the correlation between the segmented WMH volumes and their
Fazekas scores. The results are shown in Table 1. Here Corr denotes the corre-
lation coefficient between the Fazekas score and the percentage of WMH volume
relative to the WM volume, and Corr (1,2,3) is the same measure but excluding
subjects with Fazekas score of 0. From Table 1, it can be seen that our approach
achieved higher correlation score than LGA and LPA on both Corr and Cor-
r (1,2,3), which indicates that the segmentation results of the proposed model are
more consistent with the the standard clinical measurement. Furthermore, the
proposed method can better discriminate WMH voxels from non-WMH voxels
on subjects with relatively higher volume of lesions and thus can give a higher
correlation value when excluding subjects with lower Fazekas scores. This can
be further explained by Fig.2, which shows the distribution of the segmentation
results with Fazekas scores. It can also be seen that the proposed method is
able to better classify subjects according to Fazekas score. Overall, from both
the visualization results and the correlation score, it can be concluded that the
proposed method outperforms both LGA and LPA and has promising results.

5 Conclusion

In this work, we proposed a novel semi-supervised large margin algorithm. The
proposed model can better discover suspicious outliers under the supervision of
a limited amount of available labelled data. We have shown that the framework
jointly learns a large margin classifier and a label assignment, which can be solved
effectively by an iterative algorithm. Experiments for WMH segmentation were
implemented on a database of 280 MR images from subjects with SMC or NDs.
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Fig. 1. Example WMH segmentation results compared with LGA and LPA on three
different subjects with Fazekas score 1, 2 and 3 (from bottom to top) respectively.

Table 1. Correlation between WMH seg-
mentation results and Fazekas scores

Method Corr Corr (1,2,3)

LGA 0.5902 0.6532

LPA 0.6977 0.7661

SSLM 0.7540 0.8333 Fazekas score
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Fig. 2. Results of (WMH volume/WM
volume) corresponding to Fazekas scores.

Encouraging experimental results were obtained on the qualitative visualization
results and the quantitative correlation scores, showing the effectiveness and
competitiveness of the proposed model against other methods.
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