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Abstract
Internal models play a key role in cognitive agents by provid-
ing on the one hand predictions of sensory consequences of
motor commands (forward models), and on the other hand in-
verse mappings (inverse models) to realise tasks involving con-
trol loops, such as imitation tasks. The ability to predict and
generate new actions in continuously evolving environments
intrinsically requiring the use of different sensory modalities
is particularly relevant for autonomous robots, which must also
be able to adapt their models online. We present a learning ar-
chitecture based on self-learned multimodal sensorimotor rep-
resentations. To attain accurate forward models, we propose
an online heterogeneous ensemble learning method that allows
us to improve the prediction accuracy by leveraging differences
of multiple diverse predictors. We further propose a method
to learn inverse models on-the-fly to equip a robot with multi-
modal learning skills to perform imitation tasks using multiple
sensory modalities. We have evaluated the proposed methods
on an iCub humanoid robot. Since no assumptions are made on
the robot kinematic/dynamic structure, the method can be ap-
plied to different robotic platforms. Keywords: Sensorimotor
contingencies, online learning, ensemble learning, multimodal
imitation learning.

1 Introduction
Complex robots rely on internal models describing the kinemat-
ics and dynamics for controlling and planning actions; however,
constructing analytical models of complex robotic platforms
often presents critical difficulties and costs. In particular, an-
alytical models might be inaccurate because they are based on
assumptions that are not realistic, such as the complete rigidity
of the links. Also nonlinearities and uncertainties of the system
are often difficult to include. Another critical problem related to
the use of analytical models is that they are highly specific for a
particular robotic platform. This does not only limit their use to
that particular platform, but also requires that the model must
be completely revised in case of modifications of the platform,
thus adding time, computational and economical costs.

These observations motivate the interest in endowing robots
with learning capabilities, in order to enable them to build their
internal models through learning processes [1–3] in which re-

Figure 1: The iCub robot learns to interact with a piano keyboard
through babbling and imitation. The top-left pictures show the view
from the robot’s left eye camera and the hand taxels activated when
keys are pressed.

lations between actions and associated changes in sensory in-
put, are involved. Through autonomous learning, robots can
develop autonomous behaviours and formulation of decisions.
Another benefit of self-learned models is that, in principle, they
can update during the life-time of the robot, avoiding re-modelling
in case, for example, of damaged parts or hardware failures.
Because the internal models are learned by the robot contin-
uously, they can handle changes in the robot morphology or
in the robot sensory system, while eliminating the need for
explicit analytical model formulation and dealing with model
drifts [4]. Contrary to more classical control approaches based
on hand-crafted kinematic and dynamic models, methods based
on self-learning of sensorimotor representations can achieve
complex behaviours, such as imitation tasks, without the need
of explicit model formulation and without solving inverse kine-
matics problems, while giving the flexibility and adaptability
of learned models, as well as the possibility to apply the same
method on different robotic platforms.

Some autonomous learning approaches to build internal mod-
els take inspiration from neuroscientific studies arguing that
infants use self-exploration and self-stimulation to “calibrate”
their sensorimotor and body representations [5]. Analogously,
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a robot can explore its sensorimotor capabilities through self-
exploration, or motor babbling [6]. The role of actions is con-
stitutive in this learning process [7,8]. No internal represen-
tations of the world are designed ad hoc to generate sensory
awareness. Instead, robots can learn internal models to predict
sensorimotor representations, given the current sensory states
and the motor commands; these are also known as forward
models. These models have been related to the central ner-
vous system that internally simulates the motor system in plan-
ning, control and learning [9]. The other type of internal model,
commonly coupled with forward models, is the inverse model,
which is a mapping in the opposite direction: given a target
(goal) state and the current state, it provides the motor com-
mands needed to reach the goal. Forward and inverse models
have been employed to build biologically inspired control ar-
chitectures [10–13].

Complex robots are usually equipped with multiple differ-
ent sensors and require accurate sensorimotor representations
to perform many tasks which often involve multiple sensory
modalities. It is thus desirable to learn accurate forward mod-
els which can adapt to potential new conditions, and also to
leverage the information available to the robot from multiple
sensor modalities. Motivated by these observations, we focus
on the one hand on online learning of forward models where
the accuracy of predictions is improved by using multiple dif-
ferent predictors to form an ensemble learning structure. On
the other hand, we develop a new method to achieve multi-
modal imitation learning on robots, using self-learned senso-
rimotor representations from visual, proprioceptive, tactile and
auditory stimuli. This method is the generalisation of our pre-
viously presented approach to multimodal imitation [14]. This
method is based on the construction of multimodal sensorimo-
tor representations, does not require multiple demonstrations,
nor training complex learning structures, and allows to perform
on-the-fly multimodal imitation by combining self-learned sen-
sorimotor representations.

The main contributions of this paper can be summarised as
follows: (i) an online heterogeneous ensemble learning method
is presented to achieve accurate predictions and learn accurate
forward models, which are able to generalise on new data tra-
jectories; (ii) a generalisation of the method proposed in [14]
for learning inverse models based on multimodal self-learned
sensorimotor representations is presented to achieve multimodal
imitation learning tasks; (iii) a control architecture to learn and
use sensorimotor representations is illustrated, where forward
and inverse models can work in parallel; (iv) evaluation of the
proposed architecture on a multimodal imitation task using an
iCub humanoid robot [15] and a piano keyboard; since no as-
sumptions on the morphology nor on the kinematics/dynamics
of the robot are made, the proposed framework can be applied
to different robotic platforms.

2 Background
Online learning of internal models: A real challenge in
robot learning is devising algorithms that allow online adapta-
tion. The importance of online learning in robotic applications
is related to the fact that robots are required to interact in a

continuously evolving environment; also, changing of contexts,
such as tools being used or human to interact with, make on-
line strategies attractive [16–18]; another motivation for online
model learning is that it is difficult if not impossible to cover
the complete state space with data beforehand [19]. Although
many state-of-the-art learning paradigms still require batch pro-
cessing, some works have proposed online strategies in the field
of humanoid robot learning. A biologically inspired model for
online and continuous learning of visuo-motor coordination has
been proposed in [20], where dynamic self-organising maps as-
sociated through Hebbian links have been adopted for learning
the visuo-motor coordination online on a Nao humanoid robot.
An online learning approach to achieve reaching behaviour in a
humanoid robot has been proposed in [16], where the receptive
field weighted regression algorithm has been employed to learn
online a representation of the robot’s reachable space. In [17]
an online strategy has been implemented to learn the kinematic
structure of a humanoid robot, yielding the position of each seg-
ment and computing the associated Jacobians. However, these
studies rely on learning structures which are not parameter free,
and they are either goal/task-directed or aim at identifying spe-
cific kinematic parameters.

Sensorimotor exploration and learning: Inspired by neu-
roscientific studies arguing that infants use self-exploration and
self-stimulation to “calibrate” their sensorimotor and body rep-
resentations [5], autonomous learning approaches have been
implemented on robots based on random self-exploration, or
motor babbling [6]. Other studies claim that early movements
are already goal-directed [21], and a number of approaches in
robotic learning follow this approach [22,23]. In this study, we
will follow the first approach and ground the learning methods
on random motor-babbling.

Ensemble learning: Many ensemble learning algorithms have
been used in robotics to solve problems such as localization, de-
tection, recognition, decision making [24,25]. Ensemble meth-
ods have been shown effective in different learning frameworks
to achieve high accuracy of predictions [26–28]. However, the
use of combinations of different predictors has rarely been de-
ployed to build internal models or to learn and produce motion
behaviours on robots. In ensemble learning systems, multiple
models, such as classifiers or experts, are strategically gener-
ated and combined to solve a particular problem. The key for
the success of an ensemble system and its ability to correct
the errors of some of its members is the diversity among the
classifiers of the ensemble. The intuition is that if each model
makes different errors, then a strategic combination can reduce
the total error. Several approaches exist to solve offline regres-
sion problems [28]. Online ensemble learning algorithms for
regression have received less attention, although recent works
have presented advances in this field [29,30].

Inverse model learning: While forward models are uniquely
determined, inverse models are generally not and do not always
exist. Direct inverse modelling treats the problem of learning an
inverse model as a classical supervised learning problem, how-
ever the main problem of these methods is in learning control
of redundant robots because of the existence of a one-to-many
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inverse kinematics problem [31]. Recent approaches have been
proposed in which the inverse model is directly learned from
data, by adopting machine learning techniques. For example,
to learn the inverse kinematics of a humanoid robot, the Lo-
cally Weighted Projection Regression (LWPR) algorithm has
been used in [32], while the Infinite Mixture of Linear Experts
(IMLE) algorithm has been used in [33]. Both these approaches
allow to learn the model while performing the task, similarly to
the case in our study. However, these approaches are based
on finding an approximation for the Jacobian, not considering
different types of sensory modalities. A broadly used class of
methods to learn inverse models is the Learning by Demon-
stration, or Programming by Demonstration framework. Semi-
nal works on this class of approaches are for example [34–38].
One possibility to acquire a target trajectory and to learn inverse
models from data is to collect multiple demonstrations of each
task. This approach has been explored for example in [39–43],
where statistical methods have been proposed to infer models
from multiple demonstrated trajectory. However, this approach
requires multiple demonstrations, which might be difficult to
obtain. Other methods are based on a single demonstration in-
stead, e.g. in [44–47]. In this case, however, it is assumed
that all input features are observable. A diverse approach was
proposed in [48,49], where context free grammars were used
in order to learn sequences of demonstrated actions. A con-
siderable number of works has recently addressed the problem
of task learning and policy search [50–56], adopting reinforce-
ment learning algorithms to learn complex movement tasks in
robotics. However, these studies present a common limitation,
that is they are usually task specific.

Multimodal Imitation learning: Whereas a variety of dif-
ferent sensors has become available on complex robots, most
of the approaches to imitation learning are based on the use of
data from a single modality, such as vision [46,57,58]. How-
ever, there exist studies that have taken into consideration mul-
tiple modalities for learning, e.g. [59,60]. A combination of
sound and movements has been adopted in [59] to imitate hu-
man drumming behaviours, while motion and force data have
been used to teach grasping gestures to a simulated manipulator
in [60]. Other studies, e.g. [61–64], have presented solutions
for merging different sensors’ data to address classification-
type problems, such as object/gesture recognition or speaker
identification/spatial localisation, rather than imitating demon-
strated behaviours. Different approaches have been used to
solve imitation learning using different sensor informations, such
as hierarchical architectures based on multiple internal mod-
els [46,57–59], and Gaussian Mixture Regression together with
Hidden Markov Model [60]. With the goal of reproducing a
human trajectory, motion capture systems, kinesthetic and tele-
operation are often used [59,60], although manual design of the
system and usually a certain number of demonstrations are re-
quired by these approaches. Motor babbling and self-exploration,
as opposite, are bottom-up approaches [57,65], which require
less prior design and leverage the advantages of a developmen-
tal approach to learning, such as more autonomy, incremental
learning and adaptability to new conditions.
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Figure 2: Architecture summary: forward models produce predictions
of the sensory state given the current state and a motor command. This
motor command can be the efferent copy of the signal calculated by the
inverse model, which produces a new motor command given a target
state. (Upper part) Online ensemble learning of sensorimotor repre-
sentations from motor babbling. Data from multiple sensors are avail-
able from the robot, such as vision, proprioception, touch and sound
data. The proposed approach allows to learn forward models online by
building an ensemble of multiple different learning algorithms, namely
Echo State Networks (ESNs), Online Echo State Gaussian Processes
(OESGPs), Recursive ARX (RARX) and Locally Weighted Projec-
tion Regression (LWPR) models. (Lower part) Imitation targets are
demonstrated by a human. The multimodal inverse model generates a
new motor command to meet concurrent multimodal task constraints
using multimodal sensorimotor representations.

3 Learning Sensorimotor Representation
Models from Self-exploration

Studies in the area of child development and neuroscience on
motor behaviour of infants have shown that mobility at early
age is characterised by variations in movement trajectories, in
temporal and quantitative aspects, that are not neatly tuned to
environmental conditions [66]. In a first phase, infants per-
form movements characterised by this variability, also known
as general movements, consisting of series of gross movements
of variable speed and amplitude, which involve all parts of the
body but lack distinctive sequencing. Only in a second phase,
general movements are gradually replaced by goal-directed move-
ments. Taking inspiration from these observations and from
motor babbling approaches [5,6,57,65], the structure of the pro-
posed learning architecture is based on a first self-exploration
phase when sensorimotor representations are learned, and on a
second phase where goal-directed movements are performed to
imitate actions.

During the exploration phase, the robot performs pseudo-
random movements in order to collect data from its sensori-
motor system, so that relationships between motor commands
and sensory effects can be learned. A forward model mapping
is learned online, that is in parallel to the execution of the ex-
ploration movements. The forward model allows to predict the
next sensory state given the current state and an action. The in-
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formation accumulated during the self-exploration can be used
to learn inverse models. This allows to generate on-the-fly a
new desired motor command given a target state and the cur-
rent state of the robot. This is necessary, for instance, to achieve
imitation tasks where the robot needs to imitate a demonstrator
behaviour.

A preview of the learning architecture underlying the learn-
ing and update of the internal models is shown in Fig. 2. The
learning architecture proposed in this study retraces well-known
learning architectures proposed for example in [2,3], in which
coupled forward and inverse models are used to achieve learn-
ing and motion behaviour on robots. In particular, studies in
the neuroscientific field have shown the existence of forward
models in the human brain, that allow us to make predictions
from sensorimotor stimula. A more comprehensive discussion
on the biological plausibility of this general learning scheme
has been presented in [67]. Although the learning architecture
and the learning strategy, based on self-exploration and motor
babbling, are biologically inspired, the implementation of the
proposed methods are engineered solutions that resort machine
learning approaches to build forward and inverse models.

3.1 Forward Model Learning
The formalisation of our method is general and not confined
to specific modalities nor robotic platforms. Therefore we de-
fine the following general notation. We denote the sensory state
vector containing different modalities (note that some modali-
ties can be multidimensional) as x = [x1 x2 . . . xN]T and the
motor commands applied to the M motors of the body part as
the vector m = [m1 m2 . . . mM]T .

Following seminal works such as [31,68] and [8], we for-
mulate a sensorimotor representations model as a system that
can be described by the equation

x′ = f(x,m) (1)

where x′ is the sensory state after applying the motor command
m from state x. The unknown map f represents the sensorimotor
representations model; in our work, this map is learned incre-
mentally throughout the experience accumulated by the robot
itself. The sets where x and m take values are denoted as X and
M, respectively.

Exploration steps are performed to acquire a set of data
points used to learn online an estimate of the sensorimotor rep-
resentation model f. This is used as forward model to predict
the next sensory data x′, given the current state x and a mo-
tor command m. To learn the forward mapping, we propose
a new method based on an online ensemble of different online
regression algorithms. This method allows to obtain accurate
predictions by leveraging the properties of the ensemble strat-
egy adopted.

The ensemble learning strategy: Main ingredients in en-
semble learning methods are ensemble generation and ensem-
ble integration. The generation of base models is referred to
as ensemble generation. The objective is to build a set of Nbm

base models, also called pool of models FNbm = {f̂h, h =
1, . . . , Nbm}, to approximate a true function f . If the models
in FNbm are all generated using the same induction algorithm,
the ensemble is called homogeneous, while if more than one al-
gorithm is used to build FNbm , the ensemble is heterogeneous.
Less work exists on heterogeneous ensembles than in homoge-
neous ones [28]; however, combining different algorithms is a
promising strategy to obtain diversity, which has been shown of
great importance in enhancing prediction accuracy [69].

The ensemble integration step can be realised in a number
of different ways. A common solution is to take the weighted
average of the base models: f̂F =

∑Nbm
h=1 whf̂h, where wh ∈

[0, 1],
∑Nbm
h=1 wh=1, are the weights assigned to each base model

f̂h. The weights state the importance of the single base mod-
els in building the ensemble, according to some application-
dependent or optimality criterion. The weights can be constant
or dynamically calculated according to each data sample. Pop-
ular algorithms to obtain ensemble weights are stacked regres-
sion [70] and dynamic weighting [71]. Given a learning set
L with K data samples, the stacked regression approach calcu-
lates the weights by minimising

∑K
k=1

[
f(xk)−

∑Nbm
h=1 whf̂h(xk)

]2
,

while the dynamic weighting method sets the weights accord-
ing to performance measurement of the predictors.

The proposed online heterogeneous ensemble: We pro-
pose a heterogeneous online ensemble learning algorithm which
combines predictors of different natures in an online manner.

Among the set of online learning methods, we consider
four algorithms that have been shown effective in a number
of diverse applications: the Echo State Networks (ESN) [72],
which are a class of recurrent neural networks; the Online Echo
State Gaussian Processes (OESGPs) [73], which combine ESN
with sparse Gaussian Processes; the Locally Weighted Projec-
tion Regression (LWPR) [74], which exploits piecewise linear
models to realise an incremental learning algorithm; and recur-
sive ARX models (RARX) identified using the recursive least
square method [75,76] (see Fig. 2).

These four algorithms differ from each other in several as-
pects: firstly, while the ESN, OESGP and LWPR are non-parametric
approaches, the RARX is parametric and fits the data by finding
polynomial coefficients. Also, the chosen algorithms rely on
different structures, i.e. neural networks, Gaussian processes,
piecewise linear models, polynomial transfer functions. Con-
trary to a large number of other learning algorithms, these are
online algorithms, which are able to update as new data is avail-
able, iteratively or recursively. Moreover, an advantage of using
these different state-of-the-art algorithms is that their dissimi-
larities guarantee the necessary diversity between the base mod-
els that constitute the ensemble; in particular different types of
prediction errors (e.g. overshoot vs. undershoot, offsets) are
given by the different algorithms.

The base models are trained separately and in parallel, and
the update step is different for each of the diverse models. In
the ESN model, only the output weights (wout) of the recur-
rent neural network are updated; the prediction is then obtained
by tanh(woutx(t)), [72]. In the OESGP model, the prediction
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is made through the Gaussian predictive distributionN (µ, σ2),
where the mean µ and the variance σ2 are estimated incremen-
tally during training, [73]. The RARX model updates the pa-
rameter estimates θ̂ at each iteration, while the prediction is
calculated as ψT (t)θ̂(t) where ψ represents the gradient of the
predicted model output [76]. The LWPR model updates local
models parameters by minimising a predicted residual sums of
squares function and then produces an estimated f̂ as a weighted
combination of local models, [74].

We instantiate five models for each learning algorithm by
using different initialisation parameters: for example different
numbers of internal units in the ESNs, different length scales
for the Gaussian distributions in the OESGPs, different orders
for the polynomials of the RARX models and different weight
activation thresholds for new local models to be generated for
LWPR. Each base model provides an estimate f̂i of the true
function f, that can be used to compute predicted values of
x̂′i. The ensemble prediction is obtained by combining the base
models’ estimates through the ensemble integration. The sub-
script E will be used to indicate the ensemble estimates in the
following. The ensemble estimate x̂E is computed online at
each time step t as:

x̂E(t) =
∑

i
wi(t)x̂i(t) (2)

where wi(t) are the normalised ensemble weights (
∑
iwi(t)=1);

the aim is to calculate the ensemble weights so that the combi-
nation of models gives the closest estimate to the true value to
be predicted.

We propose a new method to update the ensemble weights
that combines the ideas of both dynamic weighting methods
and stacked regression approaches. The proposed method also
takes into account both the cumulative and current base models’
performance, so that both the overall behaviour and the accu-
racy at the last data point available are used to evaluate the base
models.

At each time step t, that is for each new data point available,
each base model i produces an estimate x̂′i. The performance
scores obtained are evaluated through the following two values:

ec,i(t) =

t∑
τ=1

E (x′(τ)− x̂′i(τ))
2
,

es,i(t) = E (x′(t)− x̂′i(t))
2

which are the cumulative mean squared error and the mean
squared error at current time step, respectively, for all the base
models i = 1, ..., Nbm. Note that since the algorithm calculates
estimates online, the value x′, which will be observed at t+1, is
not yet available when the ensemble prediction x̂′E is calculated.

A convex combination of the current and cumulative errors
is then used to compute the score

βcs,i(t) = αec,i(t)
−1 + (1− α)es,i(t)

−1,

where α is a parameter chosen so that more importance is given
to the inverse of the cumulative error than to the inverse of the
current error (α>0.5).

Then, meta-weights γi are calculated in order to minimise
the prediction error that would be obtained by the ensemble of
base models weighted with weights βcs,i(t), that is solving

min
γi

t∑
τ=1

[
x−

∑
i
γi(τ)βcs,i(τ)x̂i(τ)

]2
(3)

The final ensemble weights are then computed as

wi(t) =
γi(t)βcs,i(t)∑
i γi(t)βcs,i(t)

. (4)

Note that at each time step the quality of each base model is
reassessed and the ensemble weights change dynamically.

3.2 Inverse Model Learning
Learning the motor commands required to achieve a target point
x∗ given the current state is also known as inverse model learn-
ing. We present here the generalisation of the work we first
proposed in [14]. Consider multiple modalities, yielding a state
space of dimension N. The data collected during n self-exploration
movements can be juxtaposed to form a N×n multimodal sen-
sory matrix

S =

S1...
SN

 =

∆x1,1 · · · ∆x1,n

... · · ·
...

∆xN,1 · · · ∆xN,n

 , (5)

where ∆xν ,i represents the change of the sensory state ν that
has been observed during the execution of the exploration move-
ment i; more specifically ∆xν ,i encodes the change of the sen-
sory state relative to the starting position. Analogously the mo-
tor commands issued to the joints of the robot’s arm used to
perform the n self-exploration movements can be juxtaposed to
form a M× n actuation primitives matrix

A =

A1

...
AM

 =

v1,1 · · · v1,n
...

...
...

vM,1 · · · vM,n

 . (6)

Target trajectories defining an imitation task can be expressed
as reference trajectories (functions of time) r1(t), r2(t), ..., rN(t).
At each time, the imitation error ε, defined as the difference be-
tween the reference rν(t) and the current state xν(t), on each
modality space, is defined as

ε(t) =

ε1(t)...
εN(t)

 =

 r1(t)− x1(t)
...

rN(t)− xN(t)

 . (7)

At each step during the execution of the imitation task, the
robot moves towards the next reference point, using a combi-
nation of the primitives explored. The velocity commands to
apply to the motors in order to achieve the multimodal target,
defined as the vector v∗ =

[
v∗1 , v

∗
2 , · · · , v∗M

]T
, is obtained as a

combination of the those primitives that led to sensory results

5

Preprint version; final version available at http://ieeexplore.ieee.org/document/7731167/
IEEE Transactions on Cognitive and Developmental Systems (2016)
DOI: 10.1109/TCDS.2016.2624705



which are close to the current target. The experience accumu-
lated during the exploration and the learned sensorimotor rep-
resentations can then be scanned to search for those states that
are closest to the vector ε. This corresponds to a search on
the multimodal space which includes at the same time all the
modalities’ constraints.

A range search strategy is implemented using a kd-tree [77]
created from the multimodal sensory matrix S in order to op-
timize the search. The kd-tree algorithm partitions the mul-
timodal sensory matrix S by recursively splitting points in k-
dimensional space into a binary tree. The nearest neighbours of
the query observation (ε) is then found by restricting the data
space to the observations in the leaf node that the query obser-
vation belongs to. The kd-tree algorithm is particularly useful
when k is relatively small; in our case k always remain limited,
for example if one joint is constrained, and visual and tactile
trajectories are defined, k = 4, while the number of samples in
the exploration dataset can always satisfy n � k. The range
search gives as result the column vectors containing the clos-
est neighbours of the query point (ε) in the multimodal sensory
matrix. The indices of those columns are then used to select the
corresponding columns in the actuation primitives matrix. We
denote the matrices obtained by selecting the indexed columns
of S and A as S̃ and Ã, respectively. Sensory states contained
in S̃ can now be associated to the current state. A least square
regression problem can be defined as follows:

S̃w = ε, (8)

where w is a weighting vector. The solution of this equation
gives the solution for the control problem in the task (sensory)
space. The best approximate solution, also the minimum norm
solution of equation (8), is given by w = S̃†ε, where S̃† de-
notes the Moore-Penrose pseudo-inverse of the matrix S̃. Since
each column in S̃ is directly related to a particular column in
Ã, the same vector w can be used to build new primitives as
combinations of the primitives recorded during exploration:

v∗ = Ãw. (9)

Equation (9) defines the desired motor command vector as a
combination of the nearest motion primitives previously ob-
served through the weight vector w. Note that the desired motor
command vector v∗ is found without requiring access to the Ja-
cobian or any kinematic model of the robot.

3.3 Models Update
When a new control command m∗ is applied, the new reached
state xr can be observed and used to calculate ∆x = xr − x,
that is the state update caused by the new experienced motor
commands. The new data m∗ and ∆x can then be added to the
robot experience, that is toM and X , respectively. If the error
er = x∗ − xr obtained at the reached position exceeds a prede-
fined tolerance threshold, then more exploration is required for
the robot to refine its internal models.

In parallel to the execution of the calculated motor com-
mand m∗, an efferent copy of the same command is sent to the
forward model, which performs an internal simulation of the

Algorithm 1: Internal models update.
Initialise: κr = 0, κp = 0
Update :
if Cr < c̄ then κr = κr + 1
if Cp < c̄ then κp = κp + 1
Execute m∗

Update FM and IM
if κr ≥ κ̄ or κp ≥ κ̄ then

Explore and update FM
Set κr = 0 and κp = 0
Update IM

action taken. The error ep = x′ − xr between the prediction
obtained by the forward model and the actual reached position
is then evaluated. If the prediction error ep exceeds a tolerance
threshold, then the forward model needs to be refined.

In order to refine the internal models, more data points need
to be acquired, either through some exploration steps or from
other query points. The tracking error er and the prediction er-
ror ep can be used to define confidence measures for the inverse
and forward models, respectively. The confidence values, Cr

and Cp for er and ep respectively, can be calculated as a func-
tion of the corresponding errors. Note that, since the sensory
data is normalised, then x, xr, x

′, x∗ take values in [0, 1], and
er, ep ∈ [−1, 1]. We design the confidence as a normal distri-
bution over the error, C ∼ N (µ, σ2), with µ = 0 and σ = 0.4,
so that when the error is close to zero, the confidence is ap-
proximately equal to 1 and when the error increases (symmet-
rically towards 1 or −1) the confidence values tend to zero. A
threshold c̄ for the confidence is set to 0.6, corresponding to a
deviation of approximately 1σ.

According to the confidence value, more exploration might
be required. For every new query point, the inverse model pro-
duces a new motor command m∗, which can be passed as ef-
ferent copy to the forward model. After the execution of m∗

and after the prediction x′ is obtained, both the forward and the
inverse model are updated with the new data point. Meanwhile,
counters κr and κp are kept to check how many times the con-
ditions Cr > c̄ and Cp > c̄ are violated. If κr or κp overstep
a predetermined limit, κ̄, then more data points are required to
refine the internal models and exploration steps are triggered.
The procedure is summarised in Algorithm 1.

The state predictions provided by the forward models can
be used to support the robot behaviour during imitation by giv-
ing the robot an anticipation of the tracking performance. If
both the forward and inverse models are accurate enough, then
the forward model can represent a considerable support to the
imitation behaviour. For this reason an important contribution
to the overall behaviour performance is given by the prediction
error and by the tracking error (see Fig. 3 for a schematic rep-
resentation). In the preliminary implementation presented in
this paper, these measurements are used to trigger model re-
finement, according to the procedure described in Algorithm 1.
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4 Experimental Setup: Exploration and
Data

As infants in their first months perform series of gross move-
ments of variable speed and amplitude, which involve all parts
of the body but lack distinctive sequencing [66], analogously a
robot can explore its sensorimotor representations through self-
generated movements. In this study, we have used an iCub hu-
manoid robot and a MIDI keyboard as exploration environment.
Our approach is based on a self-exploratory phase where for-
ward models are learned. Pseudo-random control signals, also
referred to as actuation primitives (see also [78]), are issued to
the robot’s arm joints to generate exploratory movements. In
this work, the control signals are velocity commands v(t), de-
fined for each joint as

vj,i(t) =

{
vj,i if t ∈ [t0i , t0i + D/2)

−vj,i if t ∈ [t0i + D/2, t0i +D]
(10)

where vj,i is the magnitude of the i-th primitive applied to joint
j (i ∈ {1, 2, ..., n}, j ∈ {1, 2, ...,M}), the value of which is
sampled from a uniform distribution vj,i ∼ U(vmin,j , vmax,j)
in order to generate pseudo-random exploratory movements.
The other parameters are the starting time t0i of the i-th primi-
tive, and the durationD of the primitives. By adopting the same
duration time D for all the primitives, and splitting in half each
primitive movement, opposite movements are performed in the
first and second part of the primitive execution (see Fig. 4).

Data from multiple modalities are acquired during the exe-
cution of the exploratory movements, including the joints posi-
tions from the motor encoders, the position of the hand in the
vision field through one of the robot’s eye cameras, the tactile
information through the tactile sensors placed on the robot’s
skin, and the sound data from a MIDI keyboard.

Proprioception data: Proprioception information is acquired
from the motor encoders. The positions q1, . . . , qM of the M
joints are acquired and normalised according to each joint’s

Figure 3: Learning architecture scheme: the inverse model is respon-
sible for producing new motor commands m∗ given a reference x∗.
Motor commands are sent to the robot (characterised by the multi-
modal state x), and, as an efferent copy, to the forward model, which
produces a prediction x′ of the next state. The prediction error (ep) and
the tracking error (er) are then computed and used to refine the internal
models.
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Figure 4: (Top-left) Velocity command signals for two of the actuators
of the iCub arm (representative examples). Trajectories of the hand
positions in the 2D image space (top-right - different colours corre-
spond to different primitives), touch and MIDI feedback (bottom-left),
and proprioception of the two degrees of freedom of the arm (bottom-
right), during the execution of the generated primitives. This figure is
best viewed in colour.

limits. A M× n matrix

SP =

∆q1,1 · · · ∆q1,n

... · · ·
...

∆qM,1 · · · ∆qM,n

 , (11)

is then built, where ∆qj ,i = qj(t0i +D/2)− qj(t0i) denotes the
relative position of joint j from the starting point of execution
of primitive i.

Vision data: One of the robot’s eye cameras is used to ac-
quire visual data. The position of the hand in the visual space
is represented by the two-dimensional vector [x, y]T of the co-
ordinates of the centre of the hand in the 2D image frames,
computed as the average of the feature points detected by using
the OpenCV optical flow algorithm [79], and then normalised
according to the frame dimensions. A 2× n matrix

SV =

[
∆x,1 · · · ∆x,n

∆y,1 · · · ∆y,n

]
, (12)

is then built, where the relative displacements of the hand co-
ordinates from the starting point of execution of primitive i is
contained in ∆x,i = x(t0i + D/2)− x(t0i) and ∆y,i = y(t0i +
D/2)− y(t0i).

Touch data: The iCub robot’s skin consists of a network
of tactile sensors (taxels), from which tactile information is
recorded. In our experiments, we mainly focus on the hand
skin, which contains 60 taxels, including the fingertips. For
each taxel l of the hand (l = {1, 2, ..., 60}), a binarised pressure
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output can be read. We then normalise each signal and calculate
the average pressure sensed on the hand as p = 1

60

∑60
l=1 pl, A

1× n vector

ST =
[
∆p,1 · · · ∆p,n

]
(13)

is then built, where ∆p,i = pi(t0i +D/2)− pi(t0i) contains the
tactile feedback (on/off) during the execution of primitive i.

Sound data: Sound information is acquired using a MIDI
keyboard. MIDI is a symbolic representation of musical in-
formation incorporating both timing and velocity for each note
played. In this work, we have used the information encoding
the note played only, so that each key pressed is associated to
a specific integer number. In Fig. 4 it is possible to note that
only certain touch events are actually associated with a note.
Similarly to the touch case, a single value is associated to each
primitive execution, which is the code of the note if a note was
played or zeros if not. A 1× n vector

SK =
[
s1 · · · sn

]
(14)

is then built, where s1, . . . , sn are normalised integer numbers
coding the note played or zeros.

Example: Learning inverse models using vision, touch and
proprioception: In the case vision, touch and propriocep-
tion are used, the multimodal sensory matrix and the imitation
error vector are defined as

S =

SPSV
ST

T , ε =

εPεV
εT

T ,
where εP, εV, εT are defined, respectively, as

εP=
[
qn(t)−q∗n(t)

]
, εV=

[
x(t)−x∗(t)
y(t)−y∗(t)

]
, εT=|p̃(t)−p̃∗(t)|;

the couple (x(t), y(t)) represents the current hand position, and
the couple (x∗(t), y∗(t)) the target position at time t; p(t) de-
notes the pressure signal at time t, and p∗(t) the target contact
pressure at time t; η is the number of the joint (multiple joints
can also be considered) on which a constraint (or reference) is
given. Note that all the variables concerning the touch modality,
that is both the state and the imitation error, are binary variables.

Experimental details: iCub and keyboard setup To demon-
strate the proposed methodology we have used a humanoid iCub
robot and a MIDI keyboard. Four of the robot’s arm joints have
been used for motor babbling and imitation, namely the shoul-
der pitch, roll and yaw, and the elbow.

The visual information has been extracted from feature points
found by using the OpenCV optical flow algorithm on the im-
age frames acquired from one of the robot’s onboard 2D RGB
cameras (with resolution 320× 240 pixel). The position of the

hand used to play the piano keyboard is computed as described
in the previous paragraphs. A visual trajectory is similarly ex-
tracted when the demonstrator shows the notes execution. Rep-
resentative trajectories are shown in Fig. 5. It is worth not-
ing that the experimental setup, mostly concentrated on the pi-
ano keyboard and the moving hand (an example is shown in
the top-left picture in Fig. 1), allows us to use the described
strategy without being affected by problems caused for exam-
ple by different amount of arm visible in the image, or moving
background. Also, the point of view of the robot and of the
teacher during the demonstrated execution is nearly the same
(see Fig. 6), although perspective taking [80] could also be em-
ployed.

Proprioceptive references (joint angle data) could be ac-
quired for example from motion capture systems, as in e.g.
[59,60], or using more elaborate vision processing, e.g. [81],
which are beyond the scope of this paper. For the purpose of
demonstrating the effectiveness of our method, we let the appli-
cation of these approaches as future work and input synthetic
target trajectories to be imitated instead.

The tactile reference is also synthetically provided, that is it
is not acquired from the human demonstrated but it is designed
as a piece-wise constant reference. More specifically, the target
tactile reference p∗ is defined as p∗ = 1 when a key should be
hit, and p∗ = 0 during transition movements. Regarding this
modality, as a matter of fact, humans can not directly observe
tactile sensations from others. On the other hand they are able
to infer the tactile sensation from watching others. Although
synthetic trajectories are used for the imitation experiments,
using the multimodal sensory matrices of the inverse models,
missing modalities can also be inferred by providing the avail-
able sensory information and searching for the nearest point in
the multimodal space.

The sound information collected during the imitation task
execution is compared with the demonstrator one, so to assess
if the completion of the task was successful. We have used the
integer numbers encoding each note, while the timing and the
velocity of the musical information were ignored.

The exploration part consisted of 80 primitives execution,
corresponding to 1600 data points, used to learn the forward
model and build the actuation primitives matrix and multimodal
sensory matrix. For the imitation part, 135 points were col-
lected for the visual target trajectory demonstrated, correspond-
ing to approximately 30 seconds demonstration.
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Figure 6: Demonstrating vi-
sual trajectories to the iCub
robot.
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5 Experiments and Discussion
We have demonstrated our approach to forward model learning
and multimodal imitation learning on an iCub humanoid robot.
The iCub first learns its sensorimotor representations models
while interacting with a piano keyboard engaging vision, touch,
proprioception and sound, while executing motor-babbling (see
Fig. 1).

After exploration, a demonstrator shows the robot how to
play a sequence of notes. The task assigned to the robot is to
imitate the demonstrator execution based on the visual trajec-
tory demonstrated. Touch and sound are fundamental in order
to successfully play the piano keys. The task is multimodal, that
is it forces constraints on different modalities, namely vision,
touch and sound. In order to demonstrate the method including
also the proprioception space, we add a constraint on proprio-
ception by fixing one degree of freedom of the arm, so that the
robot is forced to execute the imitation task without actually
exploiting one of the arm’s degrees of freedom. This constraint
can also be seen as simulating a faulty joint: the robot is re-
quired to complete the task nonetheless, while its operational
space is reduced.

We show that the robot is able first to make accurate predic-
tions through the learned forward model, and second to lever-
age the multimodal data acquisition and the self-learned multi-
modal sensorimotor representations to complete the multimodal
imitation task. The juxtaposition method used to build the mul-
timodal matrices benefits multimodal imitation tasks by concur-
rently meeting requirements defined on different sensory data.

5.1 Forward Models Learning using Heteroge-
neous Online Ensemble

In this section we present the prediction performance of the
proposed heterogeneous ensemble methods, showing that our
method outperforms single base models and homogeneous en-
sembles in prediction accuracy.

In Fig. 7 the root mean squared error (RMSE) scores over
the learning time steps are shown. The scores depicted in this
figure are the average scores obtained over all the sensory modal-
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Figure 7: Average root mean squared error (RMSE) scores over iter-
ations (logarithmic scale is used for the abscissal axis). The ensemble
predictions are more accurate than predictions obtained using all other
alternatives. The error also decreases monotonically as more data are
acquired over time.
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Figure 9: (a) RMSE scores (average over different multimodal dimen-
sions) obtained using single base modes (5 instances for each learn-
ing model), homogeneous ensembles (using the ensemble method on
models of the same type: in the order ESN ensemble, OESGP ensem-
ble, RARX ensemble and LWPR ensemble), and the proposed hetero-
geneous ensemble (light blue). The proposed heterogeneous ensem-
ble scores the best accuracy compared to the alternatives. (b) RMSE
scores on test data: the data for this test experiment consists of the
trajectories executed during the imitation task on the piano keyboard
(presented in section 5.2).

ity dimensions, that is averaging the results obtained for the vi-
sual coordinates, the encoders and the touch data. The ensem-
ble achieves the best accuracy, that is the lowest RMSE curve
outperforming all the other single predictors as well as other
homogeneous ensembles. Here, homogeneous ensembles have
been obtained by applying the same proposed ensemble method
on the 5 instances of models of the same type, thus obtaining 4
ensembles, one for each learning algorithm used.

Fig. 8 shows the density distributions of the ensemble weights.
This figure represents how the ensemble weights are distributed
over the learning iterations. Recall that the ensemble weights
change their values at each iteration, since the update takes into
account not only the cumulative confidence of each base model,
but also the actual performance at each time step. Since the
weights change dynamically at every iteration, their temporal
profile evolution is hardly readable. The distributions shown in
Fig. 8 provide an overall view on the values of the ensemble
weights over the whole learning period shown. Higher weights
are assigned to the better performing base models. For exam-
ple, it can be note that all the four algorithms contribute to the
ensemble, as none of the distributions is concentrated around 0.
On the other hand, a difference can be observed among the pre-
dictors. For example, the LWPR weight distribution is centred
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Figure 10: Predicted (dashed) and executed (solid) trajectories during
the imitation task. The ensemble predictions are accurate on unfore-
seen data; in the touch space, predictions capture the overall behaviour
but are less accurate due to the binary nature of this data.

at a higher value (approximately 0.35) compared to the other
distributions; this translates into the fact that LWPR predictions
become more relevant in the composition of the ensemble. The
results in Fig. 8 also emerge in Fig. 9, where it can be noted
that LWPR achieves the lowest RMSE score.

We compared our heterogeneous online ensemble with other
ensemble combinations, as well as with the single base models.
Results are shown in Fig. 9. The proposed heterogeneous en-
semble scores the best accuracy compared to the alternatives
not only on training data, that is on the data collected during
self-exploration, but also on test datasets. Fig. 9b shows the
RMSE scores on a test dataset consisting of the trajectories ex-
ecuted during the imitation task on the piano keyboard (pre-
sented in section 5.2). These results not only confirm the trend
observed on training data, but also show that the learned for-
ward models are able to generalise on novel uncharted gesture
executions. Fig. 10 shows the predicted trajectories (dashed) in
the proprioception, vision and touch spaces. Accurate results
are achieved on all the multimodal dimensions. In the touch
space, predictions capture the overall behaviour but the accu-
racy is lower than the results achieved on the other modality
spaces due to the binary nature of this data.

We have observed that using multiple base model instead
of a single one does not affect our results in terms of computa-
tional timing. At each time step, all the base models produce a
prediction in less than 0.2 ms, which is under the rate used to
control the robot.

5.2 Multimodal Imitation on Piano Keyboard
In this section we show the results obtained by using the pro-
posed multimodal approach to learn inverse models in an imi-
tation learning task.

The task designed for this experiment is to follow a demon-
strated execution of a sequence of notes on the piano keyboard,
exploiting the trajectory demonstrated on the vision space, while
pressing the piano keys and without using one of the shoulder
joints (constrained to remain fixed in a certain position). Note
that the task can present some difficulties related to the extent to
which the robot explored its sensorimotor system in the first ex-
ploration phase. This reflects in the number of times the robot
touched the keyboard (for example in our experiments the key-

board was hit on 32 out of 80 executed primitives), in the ex-
tent of the region of the visual field where positions of the hand
were registered, and, related to this, in the possibility that the
demonstrated trajectory covers parts of the visual field that were
not explored. Furthermore, due to the constraint forced on the
proprioceptive space, the operational space of the robot’s arm
is effectively reduced: the robot needs to solve on-the-fly the
imitation task using less degrees of freedom than the degrees
available during the exploration.

Experimental results show that these issues can be effec-
tively handled by our method. The search on the multimodal
space, rather than on single modalities, plays a fundamental
role. We have run a total of 50 repetitions of the experiment,
where the iCub robot is required to imitate a demonstrator play-
ing consequentially two notes. The success achieved, that is the
successful execution of the two notes, was 45 over 50 (90%).
In the failed attempts the pressure applied in order to play the
piano keys was not sufficient, due to the fact that the tactile data
acquired from the robot’s fingertip were sometimes imprecise.

Fig. 11 shows the results of the multimodal imitation task
for 10 repetitions of the task. It is possible to note that the
robot aims at achieving a multimodal target: while following
the demonstrated visual trajectory, it also moves in order to sat-
isfy the touch modality requirement, that is actually touching
the piano keys, and also trying to avoid moving the constraint
joint.

Note also that the demonstration can include any number
of keys, at different positions on the keyboard that is contained
in the robot’s visual field. Since no prior information is as-
sumed, the information on the sensorimotor representations, the
learned models, and the data used to learn them, have a notable
impact on the imitation outcome; nonetheless, the experimen-
tal results show that the proposed method allows to effectively
combine previous information to achieve points in the multi-
modal space.

Another important feature to take into consideration is the
number of points defining the target trajectories (ntarget). This
reflects on the time taken to complete the imitation task and
on the quality of the imitation: the more points are acquired,
the more refined is the trajectory path, the more accurate is
the tracking result, the slower the execution. The imitation ob-
tained with increasing values of ntarget results in more accurate
outcomes.

Experimental results show that the range search is a robust
solution in our scenario. The width of the range used for the
search, denoted by a parameter r, effectively defines the num-
ber of column vectors used to build the matrices S̃ and Ã . It
can be noted that increasing values of r might potentially cause
higher computational complexity, since S̃ must be inverted to
find the weight vector w. However, in practice, the inversion
of S̃ is always easily computable, as the number of neighbours
found remains limited. Unlike a k-nearest-neighbour search,
with the range search it is possible to choose the maximum
distance allowed from the query points, without the need of a
prior designed specification of a certain number of neighbours,
which in turn could include vectors that are actually far from
the query point. Using the range search, the number of neigh-
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bours varies for every query point. Notably, if no neighbours
are found, this corresponds to a situation in which the robot has
never experienced anything sufficiently similar to the query. A
void search would then correspond to the robot staying still, as
no motor commands could be chosen among the column of the
matrix A. This behaviour should not be seen as a limitation,
instead it reflects directly the influence of the previous experi-
ence on the imitation learning. Therefore, either a larger r is
allowed, or more exploration should be performed. The first
case would push the robot to try and combine the learned sen-
sorimotor representations to reach for the target anyway. The
second case would instead lead the robot to collect more data
from self-exploration and thus refine the internal models. Also,
because the number of neighbours in fact depends on the num-
ber of samples n collected in the exploration phase and the por-
tion of the multimodal space actually explored, experimental
results show that if r is chosen so that there exist neighbours
almost at all times, the imitation performance does not improve
sensibly by increasing r (see Fig. 12a).

The parameter n determines the duration of the exploration
phase and the amount of sensorimotor samples gathered. In
Fig. 12b the performance obtained by using different amount
of exploration data, with ntarget = 135, for 10 repetitions,
is reported. It can be noted that a considerable improvement
is achieved by increasing the number of primitives used from
n = 20 to n = 50 especially in the vision and proprioception
space, while the touch space seams instead to be less influ-
enced. In particular, the movement performed using n= 50 is
more precise (see Fig. 11). Also, it is possible to note that the
most critical moment in the imitation can be identified around
time step 50, when the first key is reached and then the move-
ment to reach the second key starts. The temporal profile of the
vision error in Fig. 11 presents a maximum at this point, also
due to the constraint forced on the proprioception space: note

the pick of the proprioception error in correspondence of the
pick in the vision space.

Experiments have been carried out using different constraint
setups in order to evaluate the behaviour of the robot on the im-
itation task when different constraints are forced on the propri-
oception space. By forcing a constant reference on the robot
joints we aimed to simulate the case of a faulty joint mentioned
in the Introduction. Qualitative results are reported in Fig. 13,
where four cases are represented: the first is obtained when
no constraints are forced, the second and third when forcing
constraints to one joint at time (the shoulder pitch q0 and the
shoulder yaw q2, respectively), and the fourth when two joints
(both q0 and q2) are forced to remain fixed. These results show
that despite the task becomes more difficult as more joints are
constrained (the tactile space presents increasing shifts in time),
the imitation task is successfully completed in all cases.

We have also compared our method for inverse modelling
against two well-known algorithms that have been broadly used
in the framework of model learning in robotics, namely arti-
ficial neural networks (ANN) and locally weighted projection
regression (LWPR). We have compared the methods on the be-
haviours obtained in the imitation task consisting in imitating
the visual trajectory to play two keys of the keyboard while sat-
isfying the tactile constraint (no restrictions are imposed to the
arm joints). We report in Table 1 the average mean squared er-
ror (MSE) and the standard deviation over 10 repetitions of the
task. For these experiments, we have trained a network with
10 hidden layers and a LWPR model to learn the mapping be-
tween the motor commands and the three dimensional target
space (consisting of the two visual coordinates and touch). The
results obtained show that the proposed method achieves the
smallest imitation errors on the target space.

One issue that can rise at different levels in the proposed
architecture is how to deal with lack of information or incom-
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Figure 11: Multimodal imitation: qualitative results on the vision, touch, proprioception and sound spaces, using n = 20 (top row) and n = 50
(bottom row). A constraint on the shoulder yaw is forced, so that the robot should complete the imitation while keeping it fixed to a certain
position. The temporal profile of the error, evaluated as the Euclidean distance of each point to the corresponding point in the target trajectory,
is depicted in the right most pictures. The improvement in the performance achieved using more exploration steps can be noted especially in
the vision and proprioception cases. All figures show the results of 10 repetitions. (Best viewed in colour).
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Table 1: Comparison with ANN and LWPR: MSE scores and standard
deviation obtained on the imitation task. Best results are shown in
bold.

Vision - x coord. Vision - y coord. Touch

ANN 0.0053± 0.0047 0.0116± 0.0064 0.55± 0.24
LWPR 0.0023± 0.0001 0.0087± 0.0022 0.48± 0.33
Proposed 0.00037± 0.00004 0.00050± 0.00017 0.121± 0.054

plete data. The hypothesis considered in our implementation
is that the sampling times for all the different sensors are syn-
chronised, that is all the information is gathered at a predefined
rate (i.e. approximately 5 Hz), which allows us to align the
data collected. Concerning the implementation of our inverse
model used to achieve imitation, the juxtaposition of unimodal
data allows us to include only the desired modality references
while letting others free. This type of solution thus directly in-
cludes the possibility of dealing with incomplete information in
terms of number of modalities considered for imitation. Finally,
the problem of making predictions with missing data points is
a well-known problem in many machine learning applications,
that can be resolved, for example, by data completion methods.
Solutions of this type could be included as future work in our
framework.

6 Conclusion and Future Work
In this study, we focused on the problem of learning accurate
sensorimotor representations models in an online manner, fol-
lowing a developmental approach.

We have presented a learning architecture where forward
and inverse models are coupled and updated as new data are
available. No prior information on the robot kinematic struc-
ture is needed, nor an explicit formulation of the robot’s kine-
matic and dynamic models. Taking inspiration from biological
and neuroscientific studies, the proposed architecture is based
on self-learned sensorimotor representations models, where the
multimodal nature of the sensory system of the robot interact-
ing with the environment is also taken into account.

We have proposed a heterogeneous online ensemble learn-
ing method which combines diverse parametric and non-para-
metric online algorithms. The sensorimotor representations mod-
els built through the ensemble learning process consist of pre-
dictors relating motor commands with effects on the robot sen-
sory system. We have demonstrated that the proposed hetero-
geneous ensemble outperforms alternatives that include homo-
geneous ensembles and single base models, and achieves the
best performance in generalising on novel uncharted datasets.
The heterogeneous ensemble guarantees the necessary differ-
ence between the base models that allows improving the model
prediction performance.

We have also presented a method to endow robots with
multimodal learning skills enabling imitation learning. Our
method, based on multimodal sensorimotor representations which
are learned during exploratory actions, has been shown effec-
tive in performing on-the-fly multimodal imitation by combin-
ing the knowledge acquired during the multimodal learning steps.

(a) Effect of r (b) Effect of n

Figure 12: (a) Effect of r on imitation performance (ntarget = 135)
and (b) effect of n on imitation performance (ntarget = 135 and
r = 0.3). Normalisation is applied to the error measures for better
comparison. Each modality is normalised separately in order to take
into account different scales (results obtained from 10 repetitions).
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Figure 13: Comparison between behaviours obtained forcing differ-
ent constraints on the proprioception space. These pictures show that
the imitation task is achieved when no constraints are forced (first row,
purple lines), as well as when forcing constraints to the shoulder pitch
q0 (second row, yellow lines), to the shoulder yaw q2 (third row, or-
ange lines), and to both (fourth row, blue lines). Proprioception trajec-
tories present significant changes. Although the results on the tactile
space present increasing delays when more joints are constrained, the
imitation task is fulfilled in all cases.
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Our approach to multimodal imitation benefits from learning
sensorimotor representations using data from multiple sensors
from self-exploration. The multimodal sensory matrices and
the range search on a multimodal space are key aspects of the
proposed method, that allow us to achieve successful imitation
of multimodal tasks.

The formulation of the proposed method is general and al-
lows to accommodate different modalities. We have demon-
strated our method on an iCub humanoid robot, but since no a
priori knowledge has been assumed on the kinematic and dy-
namic models of the robot, the proposed method can be applied
to different robotic platforms.

Finally, it is interesting to note that the proposed framework
presents some points of contact with the paradigm of predictive
coding [82], such as the key roles played by the prediction error
and the actions.

Future extensions of the presented work include demon-
strating the method on different robots. Curiosity driven be-
haviours [83] could be implemented in order to enhance the ex-
ploration strategy to acquire new multimodal data for updating
and refining the learned internal models.
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