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ABSTRACT 
 
 
 
Unlike other sensory cortices, the auditory cortex receives inputs that have 
undergone extensive processing from the periphery and a number of subcortical 
nuclei.  While sub-cortical auditory nuclei are well described, modelled and 
understood, the auditory cortex is relatively under-researched.  Our understanding of 
the processing of simple and complex stimuli is incomplete.  In addition, cortical 
connectivity and anatomy is still only sparsely described.  This thesis aims to address 
some of the gaps in our understanding of auditory cortical processing.  I first sought 
to investigate responses to pure tone stimuli (a fundamental building block of 
complex auditory stimuli) to understand how basic information is represented sub-
threshold in auditory cortex.  This involved performing in vivo whole cell recordings 
on neurons in mouse AI and quantifying responses to pure tone stimuli. My results 
demonstrate that AI neurons can exhibit complex frequency response profiles, where 
there is some indication that certain responses may be restricted to specific 
electrophysiological cell types. 
 
In order to understand in more detail how cortical responses are formed and also the 
transformations that occur, we need to understand how thalamic inputs are 
integrated and subsequent outputs computed.  mGRASP is an exciting new 
technique that enables identification of synaptic contacts between spatially distinct 
but connected neuronal populations.  I employed mGRASP to: 1) test it’s efficacy as 
a tool for assessing connectivity of disparate brain regions and subsequently 2) to 
measure and describe the spatial arrangement of synaptic inputs from thalamic 
projection cells onto cortical cells. Bulk viral labeling uncovered a somatocentric 
distribution of thalamic synapses onto neurons in AI, regardless of cell type and 
laminar location. In vivo whole cell transfection of individual cells was then 
performed, for the first time, in order to isolate the technique on a single cell level and 
correlate synaptic distributions with frequency response profiles. 
 
It has been suggested that cortex may play a critical role in the transformation of 
auditory responses from simple to complex representations.  Comodulation-masking 
release (CMR) is an auditory phenomenon that uses cues of speech perception (a 
complex auditory stimulus) to allow the segregation of one sound from another (and 
its subsequent detection).  It has been suggested that this high order processing 
occurs in auditory cortex.  To test this I first demonstrated the presence of CMR in 
auditory cortex.  I then applied optogenetics as a functional perturbation to measure 
the causal relationship between cortex and CMR processing.  My results show that 
signal detection thresholds were lowest in broadband coherently modulated maskers, 
indicating that a correlate of across-channel CMR exists at the level of cortex. 
Furthermore the presence of noise history significantly improved sensitivity. In order 
to determine if this mechanism relies on cortical circuitry, AI was silenced during the 
noise history by activating ChR2-PV+ interneurons. This disruption resulted in 
increased thresholds, suggesting that circuitry in auditory cortex plays an integral role 
in detecting salient sounds in complex background noise. 
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1 LITERATURE REVIEW 
 
 
The central goal of sensory neuroscience is to understand how neural networks 

generate perception from the information gathered from the world around us. In order 

to achieve this it is necessary to determine the roles that individual neurons perform 

within those circuits. Over the past 10 years genetic techniques have been 

developed offering researchers new tools with which to probe neural networks in new 

and exciting ways. Given that these advancements are highly developed in mus 
musculus, it is necessary to compare and confirm previous work dedicated to 

identifying the functional properties of auditory neurons in other animal models. 

Therefore in this thesis, I describe the functional responses of neurons in primary 

auditory cortex to simple and complex stimuli and attempt to correlate them with 

underlying anatomical features and circuits. In order to contextualise these focal 

points, it’s necessary to mention auditory scene analysis, how particular 

transformations are made along the ascending auditory pathway and finally provide a 

more in depth view of complex stimuli such as CMR.  

 
 
1.1 GENERAL PRINCIPLES OF SOUND 
 
The ability to understand our environment through our senses appears effortless, yet 

these processes remain crucial to survival. One such process involves perceiving 

sound. Sounds are pressure waves that propagate through a medium, most 

commonly air and given that they are waves, they are comprised of two crucial 

components that can vary with time: amplitude and frequency. If our brains and ears 

are in good order, we are able to distinguish a multitude of sounds ranging from 

falling rain, the rustling of leaves in the wind, the slamming of a door, the rumble of 

an engine, the click-clack of high heels or speech. But what is it about the physical 

properties of these sounds that enable us to distinguish them and build a perceptual 

experience? In order to understand how perception is created it is necessary to first 

look at how sounds are received. 

 
1.1.1 Auditory scene analysis  
 

Our auditory system has evolved to receive sensory input and build an accurate 

representation of it. How the auditory system extracts these components from the 

environment is best explained through the use of an analogy. In this example you 

have a lake and somewhere along its perimeter you dig two narrow channels and 

attach in the middle of each channel a handkerchief. As waves enter the channels 

they cause the handkerchiefs to move and based on their movement you must infer 
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the number of boats present in the lake, where they are located, which has the 

largest motor and determine if the wind is blowing (Bregman, 1994). That is in 

essence the type of crude information gathered from our sensory organs, from which 

the auditory system must decipher in order to answer these questions. 

 

Fortunately, instead of a handkerchief we have more intricate mechanisms that 

extract the components of sound from our environment. Sound is channeled through 

the ear canal by the pinna where it encounters the tympanic membrane, initiating the 

first stage of transduction. The auditory ossicles transfer the vibrations of the 

tympanic membrane to the oval window on the cochlea. This step not only acts as a 

relay point but also an amplifier The cochlea is a hard hollow snail-shell like structure 

that spirals inwards, comprised of three fluid filled channels. One of these channels is 

known as the organ of Corti where lined, on its inner wall, are receptors known as 

hair cells bathed in a potassium rich endolymph fluid. There are inner and outer hair 

cells, where the former is involved in the transduction of sound into electrical signals 

and the latter is involved in the mechanical feedback amplification of quiet sounds 

(Hudspeth, 2008). There is typically one row of inner hair cells and three rows of 

outer hair cells and they are arranged parallel to the length of the cochlea spreading 

from the base to the apex of the basilar membrane. The basilar membrane has a 

non-uniformal structure as it varies in width and stiffness, where it is widest and most 

flexible at the apex of the cochlea, and narrower and stiffer at the basal end (Bacon 

et al., 2004). Based on this structure, the maximal displacement of basilar membrane 

is dependent on the frequency of a sound.  

 

These factors contribute to the unique properties of the cochlea that enable it to act 

as a mechanical frequency analyser. The apical ends of the hair cells, as the name 

suggests, are stereo-cilia that are in contact with the tectoral membrane and at the 

basal end are synapses with cochlear nerve fibers (Takasaka & Smith, 1971). If the 

stapes (the auditory ossicle in contact with the oval window) transferred a low 

frequency vibration to the fluid in the cochlea, it would result in the vibration of the 

basilar membrane located at the apex of the cochlea, causing the microcilia on hair 

cells to push up against the tectoral membrane thus depolarizing them (Narayan et 

al., 1998). This results in frequency dependent displacement of microcillia on hair 

cells, with high frequencies effecting cells located at the base of the cochlea and low 

frequencies at the apex. Therefore this spatial arrangement of frequency-tuned hair 

cells along the basilar membrane generates a place code, otherwise known as 

cochleotopy or tonotopy.  

 

Therefore if we unwound the cochlea and recorded from the cochlear nerve fibres, 
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we would be able to produce a cochleogram. If we take the example of a recording of 

the spoken word “shoe” (Figure 1.1 A) we would expect to reproduce the same 

pattern of frequency and amplitude changes over time in a cochleogram.  Given that 

different sounds are comprised of different frequencies and amplitude changes over 

time, the cochlea will faithfully represent them in a neural pattern of firing. So it would 

be somewhat romantic to imagine that the auditory system provided the brain with a 

detailed pattern of neural excitation that reflected a spectrogram. However, like love, 

this neglects a fundamental feature of sounds in our environment, they’re messy. 

The ‘shoe’ spectrogram is produced in isolation with no contaminating noise. In 

reality a spectrogram recording of “shoe” in our environment would pick up 

overlapping sounds (Figure 1.1 B), making it almost impossible to distinguish the 

contributing components. The cochlea represents the most basic breakdown of the 

auditory environment; therefore the auditory system must employ complex 

mechanisms in order to overcome this inherent problem.  

 
 
 

 
 
 
 
 
1.2 TECHNIQUES FOR PROBING THE AUDITORY SYSTEM 
 
In the auditory system, like other sensory modalities, psychophysical studies 

generate interesting questions and functional and anatomical studies attempt to 

explain them. However there is great variability in their approach, where each 

technique serves a specific purpose; ranging from a macro- perspective, to 

identifying its individual components in circuits. The current bottleneck lies in our 

ability to identify the relationship between structure and function. In this section I 

describe common techniques applied to the auditory system, the type of functional 

information that can be gathered and the advent of new methodologies that can help 

further our understanding of stimulus representations and how they’re formed. 
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1.2.1 Electrophysiological 
 
In neuroscience the most commonly asked questions are; what aspects of a stimulus 

do neurons encode and is this information reliably encoded over time? How do 

populations of neurons work in concert to represent information and how does this 

neural activity eventually correlate with behaviour? At present there are multiple 

ways of investigating some of these questions, where they fall in to either of two 

categories; invasive or non-invasive. Noninvasive methods include 

electroencephalogram (EEG), Magnetoencephalography (MEG), diffuse optical 

tomography (DOT), functional magnetic resonance imaging (fMRI) and diffusion 

tensor imaging (DTI). These techniques offer the great advantage of being able to 

probe large-scale neural activity in humans and animal models without the need for 

surgery. These techniques however forego high spatial resolution in favour of 

increased temporal resolution and vice versa, this results in data that is often less 

informative than invasive techniques, as the activity that is measured is very indirect. 

Invasive techniques include; LFP, multi-electrode recordings, intracellular recordings, 

calcium imaging and viral techniques. These techniques allow for finer scale probing 

of neural circuits, acquiring functional data at faster timescales.  

 
1.2.1.1 Local field potential (LFP) recordings  
 

The local field potential (LFP) can be used, with relative ease, to identify synaptic 

responses across populations, where in the auditory system it is often used to map 

tonotopic organisation in auditory nuclei (Kayser et al., 2007), or identify correlates of 

mismatched negativity in animal models (Nelken & Ulanovsky, 2007). LFP recordings 

involve using a low impedance microelectrode to record the aggregated electric 

potential in extracellular space with respect to a reference electrode. These electrical 

fields are produced by any excitable membrane, whether it’s of somatic, dendritic or 

of axonal origin. As a result the overall field is composed of fast (action potential) and 

slow components (synaptic activity). The LFP waveform is thus dependent on 

multiple current sources, which must be temporally synchronized and spatially dense 

in order to have a significant impact on its amplitude and frequency.  Synaptic 

activity, appears to meet this criteria best and hence impacts the LFP significantly 

(Logothetis & Wandell, 2004; Niedermeyer & da Silva, 2005).  Na+ action potentials, 

calcium spikes, gap junctions, ephaptic effects and neuronal architecture also have 

an impact but to a lesser degree, where their contribution to the subtleties in 

waveform dynamics is still widely debated (Kamondi et al., 1998; d. N. Lorente, 1947; 

Niedermeyer & da Silva, 2005; Ozen et al., 2010; Ylinen et al., 1995). Overall, the 

spatial origin of current sources is difficult to determine and as a result the 

contribution of individual neurons cannot be established. 
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1.2.1.2 Extracellular multiunit recordings  
 

Unlike LFP recordings that measure a compound signal from a relatively large area 

of the brain, Microwire multielectrodes and silicon-based microelectrodes record 

spiking activity on a local level. By placing multiple electrodes close to neuron it is 

possible to isolate single unit activity due to variations in spike timing and waveforms 

(M. Sutter & Schreiner, 1995; M. A. Wilson & McNaughton, 1993). This process is 

otherwise known as spike sorting. This method has clear advantages, as it enables a 

user to perform long-term electrophysiological recordings of a population of neurons, 

which can be ideal for identifying correlates of plasticity and learning. However there 

are, as always, drawbacks. Sampling bias is an inherent issue with this technique, as 

neurons with high spontaneous firing rates are better represented than neurons with 

low spontaneous firing rates. Furthermore contamination of neighbouring spike 

activity will inevitably affect the recorded spike shape making it harder to definitively 

isolate single units.  

 
1.2.1.3 Intracellular recordings 
 

To overcome these issues it is necessary to physically isolate individual cells and 

record their responses in vivo. One such method utilizes sharp microelectrodes, 

where individual neurons are essentially ‘speared’ by micropipettes creating a very 

small pore (50-200 nm diameter). This results in minimal exchange between the 

intracellular fluid and the electrolytes in the pipette where electrical events generated 

by the neurons membrane can then be recorded (Eccles et al., 1967). The most 

obvious drawbacks; recordings suffer from high access resistance, are typically less 

stable than the patch-clamp technique (discussed later) and isolating small structures 

such as dendrites or even small inhibitory neurons can prove to be an extremely 

difficult task.  

 

The patch-clamp technique, developed by Bert Sakmann and Erwin Neher (Hamill et 

al., 1981; Neher & Sakmann, 1992; Sakmann & Neher, 1984), is a more versatile 

technique than sharp electrode recordings. The pipette typically has a larger pore 

(0.5 – 2 μm), where a positive pressure is applied to prevent blockage. When there is 

an increase in resistance, the pressure is released and contact is made with a 

portion of a single cell. In this mode, while attached to a neuron’s membrane (seal), it 

is possible to perform a cell-attached recording. The advantage of cell-attached 

recordings is that they minimize structural damage to a neuron whilst also enabling 

the recording of unambiguous single-cell spike activity, due to high resistance of the 

seal (>1GΩ). Upon the application of suction, it is possible to rupture the portion of 

membrane covering the pore of the pipette and therefore gain intracellular electrical 
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access. Depending on the size of the pore is it possible to obtain low resistances 

between the pipette and neuron (access resistance<40MΩ), enabling reliable 

manipulation of currents and voltages. This mode not only reveals the neural output, 

in terms of spike activity, but it also illuminates the subthreshold activity generated by 

the recorded neurons pre-synaptic partners. This therefore offers a unique insight 

into how neurons generate spike output and how individual neurons contribute to 

overall network responses (Ferster & Jagadeesh, 1992; Margrie et al., 2002). Given 

that under whole-cell patch clamp conditions a cell is essentially dialysed with the 

contents of the intracellular solution, it is possible to manipulate and trace neuronal 

circuits through the addition of a synthetic dye, protein or even genes. A recent 

advance has involved delivering genes to individual cells, in order to identify pre-

synaptic partners. By combining a functional and biophysical characterization with 

neuroanatomical information of presynaptic partners it is possible to understand one 

of the central goals in neuroscience, which is how neural circuits shape an individual 

cells response (Rancz et al., 2011). Although the whole-cell technique is far from 

‘high throughput’ it remains the gold standard for probing neural circuits.  

 
1.2.1.4 Imaging neural activity  
 

The imaging of neural activity is relatively non-invasive. The most commonly used 

indicator for imaging neural activity is calcium. Calcium is the universal secondary 

messenger involved in synaptic transmission. Originally this imaging technique 

involved the use of synthetic calcium indicators (OGB) that fluoresce when they 

encounter calcium. Therefore action potentials can be imaged in vivo at the single 

cell level as they trigger changes in cytoplasmic free calcium (Fetcho et al., 1998; 

Stosiek et al., 2003). However synthetic indicators are difficult to target to specific cell 

classes and subcellular compartments. This resulted in a shift to the least invasive 

option, a genetically encoded calcium indicator (GCaMP). Recent GCaMP variants 

have comparable kinetics and sensitivity to OGB, however its main advantages are 

that it is far less invasive, it has a minimal cytotoxic effect and can be targeted to 

subcellular locations (Grutzendler et al., 2002; L. Tian et al., 2009). In the auditory 

system, when combined with two-photon imaging it is possible to acquire detailed 

spatial and temporal cellular responses to tonal stimuli (Bandyopadhyay et al., 2010; 

Chen et al., 2011; Issa et al., 2014). Intrinsic fluorescence imaging is also commonly 

used in the auditory system, especially when determining tonotopic maps (Versnel et 

al., 2002), however the low spatial and temporal resolution limits its function to an 

ancillary role.  
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1.2.2 Relating structure to function  
 

Classical cell staining techniques (horseradish peroxidase and biocytin) and gross 

viral labeling methods (AAV, Rabies and Lentiviral) can be used to elucidate detailed 

neuronal morphologies, allowing end users to classify cell classes and infer basic 

principles regarding the origin of their inputs. However this coarse structural 

perspective of circuits cannot inform us of its underlying neuronal activity. By 

combining electrophysiology with certain genetic tools it can enable researchers to 

more directly test the relationship that exists between structure and function. The 

eventual goal is to identify and manipulate functional sub-cellular compartments, 

specific neuronal types and entire circuits, in order to determine how they contribute 

to the functional underpinnings of individual neurons, the dynamics of a circuit and 

the resulting behaviour of an organism (Scanziani & Häusser, 2009).  

 
1.2.2.1 Optogenetics 
 
Optogenetics, a significant advancement from the stimulation electrode, is a powerful 

tool now widely used for the mapping of functional circuits. It involves the transfection 

of targeted neurons with light activated ion channels such as channelrhodopsin 

(ChR2), archaerhodopsin (Arch), light-gated ionotropic glutamate receptors or 

halorhodopsin (NpHR) (Boyden et al., 2005; X. Li et al., 2005; Szobota et al., 2007). 

These neurons can then be stimulated or suppressed on a millisecond timescale, 

therefore allowing researchers to perturb neural circuits with extraordinary temporal 

precision whilst monitoring neural activity and behaviour. Currently in the auditory 

system this technique has been used to understand the unique roles of certain cell 

classes in the structuring of receptive field properties (A. K. Moore & Wehr, 2013). 

When combining this technique with calcium imaging it enables users to record from 

a large population of neurons and directly assess functional impact of altering circuit 

dynamics. The eventual goal is to improve this technique by restricting neuronal 

manipulation so that it becomes more acute. This can be achieved in two ways; 

firstly, advancing protein engineering so that it becomes possible to synthesize 

channels that are more ion selective (ie between Na+ and K+), and secondly restrict 

the control of light-gated channels to dendritic compartments (Scanziani & Häusser, 

2009). However currently the most acute way of probing circuits involves performing 

whole cell recordings while simultaneously controlling the activity of neural 

populations that may contribute to specific stimulus representations.  

 
1.2.2.2 mGRASP 
 
Even with all the advances in identifying neuronal circuits and manipulating them, 

mapping their synaptic connectivity has proved a cumbersome task, where it is either 
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time consuming or inaccurate (Bock et al., 2011; Mishchenko et al., 2010; Sotelo, 

2003). However recently the GFP reconstitution across synaptic partners (GRASP) 

technique has offered a unique breakthrough, where the location of synapses can be 

detected at high resolution, accurately and quickly (Feinberg et al., 2008). The 

GRASP technique was initially developed in C.elegans, where GFP is split into two 

nonfluorescent portions (GFP1-10 and GFP11), with each portion tethered to the 

membranes of two separate neuronal populations (pre-synaptic and postsynaptic). 

Only when two neurons are close enough in a synaptic cleft, is it possible for the 

portions to reconstitute and form GFP and therefore fluoresce. Due to species 

dependent variations in synaptic architecture, this technique had to be modified in 

order for it to be successfully applied in the mammalian brain (Zhai & Bellen, 2004).   

 

 Two different genetic constructs must be made, one for the presynaptic source (pre-

mGRASP) and the other for the postsynaptic source (post-mGRASP). Both 

constructs contain one portion of the split GFP, an N-terminal signal peptide, a 

transmembrane domain, an extracellular domain, an intracellular domain and a 

fluorescent protein for neuronal visualisation. For pre-mGRASP, the nematode β-

integrin is used as the signal peptide, where it is subsequently fused to the 16 

residue GFP11. This section is then linked via a spacer to the extracellular and 

transmembrane domain of human CD-42 (Feinberg et al., 2008). So far for the most 

part it is almost structurally identical to the nematode GRASP, however the 

intracellular domain is significantly altered through the inclusion of rat neurexin-1β 

containing a PDZ-binding motif.  

 

This binding motif is necessary for the trafficking through the endoplasmic reticulum 

and golgi, to synaptic clefts (Fairless et al., 2008). Finally to visualise neuronal 

processes monomeric (m)Cerulean are included in the construct. For post-mGRASP, 

a modified mouse neuroligin-1 are used to provide a frame, where certain residues 

are removed in order to prevent binding to endogenous neurexin and hence avoid 

nonspecific synaptogensis (Dean & Dresbach, 2006). The GFP1-10 portion is 

included however the signal peptide, transmembrane and extracellular domain 

residues are not altered from mouse neuroligin-1. To visualise post-mGRASP 

infected cells, dimeric (d)Tomato is included in the construct, where it is attached to 

the cytosolic end of post-mGRASP. These constructs are then packaged into the 

rAAV virus, allowing for precise gene delivery to small populations of neurons. The 

success of this method does rely on the two neuronal populations being relatively 

spatially distinct, otherwise infection of both viruses will occur. By using Cre-

recombinase dependent viral vectors it is possible to isolate expression in a cell type 

specific manner. This overcomes the inherent issues previously described, allowing 
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for mapping of local synaptic connectivity within neuronal populations (Kim et al., 

2012). Overall these two recent advancements will enable us to break down cortical 

neuronal classes that are responsible for shaping functional representations of 

stimuli and also how they might contribute to the integrative mechanisms that dictate 

how a neuron responds.  

 
 
 
1.3 THE ASCENDING AUDITORY PATHWAY 
 
In order to fully appreciate how perception is developed it is necessary to break down 

the components of a stimulus and observe how they are encoded and transformed in 

the auditory system. The auditory system is comprised of a number of nuclei that 

essentially act as processing stations (Figure 1.2), however our understanding of the 

exact processing strategies employed at each nucleus varies, as at each step along 

the ascending auditory pathway neuronal diversity and innervation patterns become 

more complex.  

 

 

 

Figure 1.2  
Ascending auditory pathway A Ascending auditory pathway in rodents (adapted from Mueller et al 2012) B 
Monaural and binaural flow of auditory information from left and right ears through the ascending auditory 
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pathway. CN-cochlear nucleus, SO-superior olive, LL-lateral lemniscus, IC-inferior colliculus, MGB-medial 
geniculate body, AI-primary auditory cortex. 
1.3.1 Cochlear nerve  
 

The cochlear nerve is responsible for relaying frequency driven depolarization of hair 

cells to the cochlear nuclear complex. It is comprised of type I and II spiral ganglion 

neurons and that innervate the inner and outer hair cells respectively (Nadol et al., 

1990; Spoendlin, 1972). Tracer studies using horse radish peroxidase identified that 

a majority of cochlear nerve fibres are type I where they associate in a one-to-one 

fashion with inner hair cells (Liberman, 1982). Due to this one-to-one connection 

individual fibres are very frequency selective. Electrophysiological recordings from 

individual fibres confirm this, as responses to pure tones evoked very narrow 

frequency response areas. Furthermore by tracing the fibre, these threshold 

responses or characteristic frequencies (CF) corresponded to the location of a hair 

cell along the cochleotopic map (Russell et al., 1986). However this form of ‘place 

code’ isn’t the only transmission in the auditory nerve used to discriminate frequency. 

A temporal code is also transmitted which relies on phase locking. In this instance 

neurons will fire in time with the peaks of sinusoidal stimuli. However this high fidelity 

phase locking is limited to frequencies below 4 kHz across most species (Crawford & 

Fettiplace, 1980; Galambos & Davis, 1943; Pfeiffer & Molnar, 1970), with Owls 

exhibiting the highest limit of about 9 kHz (Sullivan & Konishi, 1984). This indicates 

that at low frequencies both place and temporal code is employed whereas for high 

frequencies the place code is preferred. Type II spiral ganglion neurons appear to 

perform a mechanical role correcting the position of the tectorial membrane, where 

knockout studies in mice lead to an increase of 40-60 dB in hearing thresholds, 

suggesting a possible role in amplification (Liberman et al., 2002).  

 
1.3.2 Cochlear nuclear complex 
 
The cochlear nuclear complex is the first stage in the abstraction process. It is 

located between the medulla and pons, where distinct cell classes are involved in 

encoding different aspects of sound. The cochlear nuclear complex is comprised of 

roughly five neuronal classes. Each auditory nerve fiber maintains the tonotopic 

spatial arrangement with other neighboring fibers as they synapse in the cochlear 

nucleus. Low frequency information lies in the ventro-lateral plain and high frequency 

information in the dorso-medial plain (Sando, 1965). However each ipsilateral fibre 

that enters the nuclear complex bifurcates, essentially creating a ‘sheet’ of neurons 

with the same CF as the fibre. This results in an isofrequency domain (Sando, 1965). 

The ascending branch terminates in the anterior ventral portion (AVCN) and a 

descending branch in posterior ventral (PVCN) and dorsal cochlear nucleus (DCN) 

(D. LORENTE, 1949). The AVCN is comprised of several neuronal types. Bushy 
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cells make up the majority in this division where they receive input from type I spiral 

ganglion neurons, where the synapses formed are one the largest in the central 

nervous system (15-30 µm), known as the endbulb of Held (Ryugo & Fekete, 1982). 

The large amount of neurotransmitter released at these synapses evokes 

postsynaptic firing of the bushy cells ensuring that frequency information is retained.  

 

The PVCN, is composed most prominently of octopus cells (Brawer et al., 1974; 

Osen, 1969). These neurons receive multiple inputs from both type I and type II 

spiral ganglion fibres resulting in broader frequency tuning. Interestingly they only 

respond to the onset of broadband stimuli with some of the highest temporal 

precision observed (Golding et al., 1999). Dotted throughout both divisions are 

multipolar cells, which have slightly broader tuning than bushy cells (Brawer et al., 

1974; Osen, 1969; P. H. Smith & Rhode, 1989). These neurons appear to adapt their 

firing rate depending on the strength of auditory input and not the frequency 

(Ferragamo et al., 1998).  The DCN is a laminated structure comprised of fusiform 

cells and stellate neurons (Osen, 1969). DCN neurons not only receive input from 

descending spiral ganglion axons but also from other brain regions, where recent 

work has suggested that the DCN could play a prominent role in the binaural 

processing of sound (Davis, 2005). In conclusion all neuronal classes in the cochlear 

nucleus receive the same input, yet interestingly their output represents a different 

feature of the sound. This represents the first indication that morphology and unique 

synaptic arrangements play a critical role in the processing of sound in the ascending 

auditory pathway.  

 
1.3.3 Superior olivary complex 
 
The superior olivary complex is predominantly responsible for extracting cues of 

localization.. It is comprised of three major nuclei; the lateral superior olivary nucleus 

(LSO), the medial superior olivary nucleus (MSO) and the medial nucleus of the 

trapezoid body (MNTB), where the cells located in these nuclei have some of the 

most complex functional responses and anatomical structures along the ascending 

auditory pathway.  It receives the vast majority of its input from the AVCN via the 

ventral acoustic stria and trapezoid body. The MSO is widely regarded as the stage 

that horizontal sound localization is first encoded (Masterton et al., 1975). Multipolar 

cells receive bilateral input from low frequency spherical bushy cells located in the 

left and right AVCN, thus allowing for convergent binaural processing of auditory 

stimuli. These neurons encode the horizontal location of low frequency sounds as 

they are diffracted and not reflected resulting in a time difference between when a 

sound is detected in the left ear and when it detected in the right ear. These 

differences in time and hence phase are known as, interaural time differences (ITD).  
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This represents one of two methods employed to determined sound source location. 

The MNTB is comprised of larger multipolar cells that receive input from contralateral 

globular bushy cells of the dorso-medial part of AVCN (Jean‐ Baptiste & Morest, 

1975), this results in a majority of input coming from high frequency representations. 

Axons from MNTB innervate the third olivary nucleus the LSO. The LSO is also 

comprised of bushy cells, albeit smaller than MSO, where they receive input from 

ipsilateral input from AVCN and contralateral inhibitory (glycine) input MNTB. This 

results in LSO receiving more high frequency representations. The LSO can also 

encode horizontal localization but via a different method (Erulkar, 1972). Given that 

high frequencies are reflected from the head, there exists an intensity difference 

between the left and right ear, otherwise known as interaural level difference (ILD) 

(Boudreau & Tsuchitani, 1969).  The LSO and MSO therefore form crude maps of 

space in the horizontal plane. These ILDs and ITDs are then transferred upstream to 

the inferior colliculus, however some LSO bushy cells send bilateral projections 

upstream to the lateral lemniscus.  

 
1.3.4 Inferior colliculus 
 
The inferior colliculus (IC) is the main auditory processing station in the midbrain, 

where it receives convergent input from the feature extracting brainstem-processing 

stations. One of its tasks involves integrating ILD and ITD information and sending it 

to the superior colliculus for reflex orientation to a sound source. Neurons involved in 

this startle reflex appear exhibit GABAergic control where they appear to receive 

dopaminergic input (Nobre et al., 2003). The largest body in the IC is the central 

nucleus (CNIC) followed by the dorsal cortex (DCIC) and external cortex (ECIC). The 

CNIC is composed of multipolar fusiform cells with their dendrites orientated 

obliquely where it receives most of its input from the lateral lemniscus and minor 

connections from commissure of Probst. A peculiar gradient is maintained whereby 

low frequency representation comes from the ipsilateral ear however high frequency 

representation comes from the contralateral ear. Neurons in the IC not only preserve 

the information from the sensory epithelia (tonotopy) but have also shown tuning to 

sound intensity, duration, the rate of amplitude and frequency changes (modulation 

rate), direction of change in sound frequency (frequency sweep direction) (Fuzessery 

& Hall, 1996; Rees & Møller, 1983; Sivaramakrishnan et al., 2004). It is really here in 

the IC, that we see some more complicated computational mechanisms arising and 

as a result they exhibit complex tuning curves, reflecting the convergent input they 

receive where complexity in this regard refers to an array of tuning curve shapes 

such as to I, O, V, U and multipeaked. 

 
1.3.5 Medial geniculate body 
 



 23 
The medial geniculate body (MGB) is the major thalamic nucleus in the auditory 

pathway. It is comprised of three divisions; the dorsal (MGBd), ventral (MGBv) and 

medial (MGBm). The ventral division is composed of bitufted neurons where they 

receive input from the brachium of the IC, therefore maintaining the ordered 

tonotopic arrangement seen in subthalamic nuclei. MGBv mostly innervates layer IV 

of cortex via the lemniscal pathway imparting this smooth tonotopic organisation (J. 

A. Winer, 1984). It is known to be involved in frequency and level integration (Bartlett 

& Smith, 1999; Miller et al., 2001). MGBd is a more complex structure, with 10 known 

subdivisions, no clear tonotopic gradient and 8 neuronal types (J. A. Winer, 1984). It 

receives input from the peripheral portion of IC and MGBv. It appears to have a 

multimodal role, modulating cortex. MGBm doesn’t appear to have a clear auditory 

role, as it receives sparse input from the lateral lemniscus and the superior olivary 

complex.  

 
1.3.6 Auditory cortex 
 
There is a basic anatomical and physiological understanding of the neurons in cortex 

but how they relate to the type of stimulus representations they encode is poorly 

understood. Therefore I split this section into 1) the types of neurons found in cortex 

and their physiology and 2) a general holistic view of what functional tasks primary 

auditory cortex might be performing.  
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1.3.6.1 Structure and anatomy of primary auditory cortex 
 
In all mammals the auditory cortex is located in the temporal lobe. The primary 

auditory cortex (AI) is the major recipient of innervation from auditory thalamus, and it 

represents the first stage of higher order cortical processing of sound. The standard 

model for auditory cortex is the cat, where cytoachitecture and physiology in each 

field has been described in much detail. Broadly speaking, auditory cortex is 

comprised of six layers, with a ‘canonical’ flow of information throughout the 

microcircuit; thalamic input recipient layer IV, sends projections to layer II/III which in 

turn drives the output layers V and VI.  

 
1.3.6.2 Layer I 
 

The molecular layer, or more commonly layer I, is comprised of very few neurons 

and predominantly neuropil. In the rat, roughly 90% of the neurons located in this 

layer are GABAergic (J. Winer & Larue, 1989). These neurons most likely play a role 

in inhibiting distal dendritic arbors emanating from layers II-V. Some of these neurons 

have surprisingly unique morphologies, with dendritic branches running parallel to 

the surface of the pia for vast distances (J. Winer & Larue, 1989; J. A. Winer, 1984).  

Excitatory and thalamic axons from auditory and other brain regions terminate in this 

layer, although the functional role of this layer still remains unclear it has been 

suggested that it could play a role in critical feed-forward and feedback processes 

(Matsubara & Phillips, 1988).  

 
1.3.6.3 Layer II/III  
 

The external granular layer or Layer II has multiple morphological cell classes that 

can be broadly distinguished as either pyramidal or nonpyramidal, where these 

neurons typically synapse onto other interlaminar layer I-III neurons. Layer II is 

mainly comprised of medium sized nonpyramidal neurons located closer to the pia 

and large pyramidal cells located at the border of layer III. One of the nonpyramidal 

neurons that appear unique to layer II, is the extraverted multipolar cell. It has large 

dendritic arbors that span a large area in the lateral domain, and it is often used to 

identify this somewhat difficult layer (Code & Winer, 1985). The external pyramidal 

cell layer (layer III) has the most diverse group of morphological cell classes in AI. Of 

the nonpyramidal cell class, spinous stellate cells have been reported where they 

appear to exhibit their influence within layer III. Interestingly small granule cells and 

multiple neurogliaform are also reported (Meyer et al., 1984). Small pyramidal cells 

appear to be located deep in layer III, with their apical dendrites barely reaching layer 

II. Large pyramidal cells however, appear to extend their dendritic arbors to layer I. 
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Layer II/III neurons have been shown to exhibit narrow frequency responses areas 

(FRA) and have lower threshold responses to tones in comparison to deeper layers 

(except layer IV) (Wallace & Palmer, 2008). However two-photon calcium imaging 

revealed that the tuning of local spines could be highly heterogeneous most likely 

explaining the diverse response properties of individual neurons (Bandyopadhyay et 

al., 2010; Castro & Kandler, 2010; Chen et al., 2011; Rothschild et al., 2010). 

Furthermore, multi-unit studies also identified that neurons in Layer II/III exhibited 

sparse and spatially confined responses under both spontaneous and evoked 

conditions (i.e. tonal responses are encoded by few neurons)(Sakata & Harris, 

2009). This highlights that even though layer II/III has relatively narrow tuning curves 

in comparison to other cortical layers, responses are still highly heterogeneous. 

 

1.3.6.4 Layer IV  
 

The relatively thin internal granule cell layer is almost entirely comprised of pyramidal 

cells. The dominant pyramidal cell classes are either tufted or multipolar, with smooth 

aspinous dendrites. It receives predominant input from thalamic projections, however 

it also receives corticocoritcal, intrinsic and commissural input. Large pyramidal cells 

have multipolar dendrites that innervate large areas whereas the smaller pyramidal 

neurons, usually located in the superficial internal granular layer, have more 

restricted dendritic arbors that are tufted. This apparent morphological dichotomy 

suggests that they might represent different spatial domains in layer IV. Layer IV 

axons appear to project to infragranular and supragranular layers (J. A. Winer, 1984). 

Superficially located nonpyramidal cells in this layer appear to project intrinsically 

whereas deeper cells project to distant corticocortical targets (Games & Winer, 

1988). Superficial neurons in Layer IV exhibit the narrowest frequency tuning in 

cortex (Wallace & Palmer, 2008), whereas deeper Layer IV neurons have broader 

frequency tuning similar to Layer V.   

 
1.3.6.5 Layer V 
 

Unlike layer IV, the internal pyramidal cell layer contains a wide variety of 

morphologically distinct pyramidal and nonpyramidal cell classes. Its projections 

include, the medial geniculate body, nonprimary auditory fields, brain stem targets, 

the inferior colliculus and the contralateral AI. In turn it receives a significant number 

of corticocortical and commissural axonal innervation, predominantly stemming form 

layer II/III. It comprised of roughly one quarter of the total cortical thickness, where 

neurons are glutamate, aspartate and GABA immunoreactive. The pyramidal 

neurons located in this layer are known for their large size and dendritic complexity 

(thick and thin tufted), where their apical dendrites typically extend to layer I and II/III. 
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Amongst the nonpyramidal cell classes there are large and small multipolar cells, 

with oval somata and poorly branched dendrites. Their targets however remain 

unknown. Whole cell recordings in the somatosensory cortex suggest that thick and 

thin tufted pyramidal neurons exhibited stereotyped physiological responses (Hattox 

& Nelson, 2007), given that they represent cortical output it would suggest that these 

nonoverlapping populations provide unique readouts to their targets. Layer V 

neurons typically exhibit broader frequency tuning than superficial layers and higher 

threshold responses (Wallace & Palmer, 2008). They have also been shown, unlike 

layer II/III, that under evoked conditions they respond with densely distributed activity 

(ie tonal responses are encoded by changes in the firing rates of large numbers of 

neurons) (Sakata & Harris, 2009).    

 

1.3.6.6 Layer VI  
 

The deepest layer in cortex, sometimes called the multiform layer or spindle cell layer 

(Brodmann, 1909; Campbell, 1905). This layer is known to contain the most diverse 

neuronal population in AI, where currently nine distinct morphological cell classes 

have been identified. While there is a sharp border between it and the white matter 

its upper boundary is usually determined by decreasing pyramidal cell size and 

sparsity. Nonpyramidal cell classes mainly innervate subcortical nuclei where their 

role, unlike infragranular layers, appears to be excitatory (Prieto et al., 1994; Prieto & 

Winer, 1999). Probably the most identifiable feature of layer VI, that is also unique to 

AI, is the giant multipolar cell. Its dendritic arbors can span 600 μm, suggesting that it 

could encode vast isofrequency or aural representations (Merzenich et al., 1975; 

Middlebrooks et al., 1980). The pyramidal cell morphologies appear somewhat 

unorthodox, calling into question whether they are truly pyramidal cells. The small 

pyramidal cells have simple dendritic arbors and less polarized branching, where the 

apical dendrite is also titled obliquely with respect to the surface of the pia. Some 

larger pyramidal cells are classified as inverted, where interestingly it has been 

suggested that they are GABAergic (Prieto et al., 1994).  Population recordings 

identified that Layer VI neurons, like Layer V, also had broader frequency tuning than 

superficial layers and higher threshold responses (Wallace & Palmer, 2008). A recent 

study in primary visual cortex, identified that neurons that send cortico-cortical 

projections had broader stimulus selectivity as they were predominantly innervated 

by deep layer VI neurons. On the other hand, cortico-thalamic-projecting cells had 

narrow stimulus selectivity and received long-range input (Vélez-Fort et al., 2014). 

This is an interesting discovery, which could suggest that a similar functional 

microcircuit exists in auditory cortex. 
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1.3.7 Primary auditory cortex and the development of perception 
 
Unlike subcortical nuclei, our understanding of how primary auditory cortex 

contributes to the perception of sound remains a topic of ongoing research and 

debate.  Although a crude method, lesion studies have been highly informative.  AI 

appears to be involved in frequency processing and pitch perception (Heffner & 

Heffner, 1986; Tramo et al., 2002). Furthermore patients with permanent temporal 

lobe damage, that encompassed AI, had impaired spatial localization (Clarke et al., 

2000; Zatorre & Penhune, 2001). Recently reversible impairment studies using 

GABAA receptor agonist muscimol in behaving ferrets confirmed these deficits in 

sound localisation; however, interestingly over time there was a recovery of 

performance most likely as a result of plasticity (A. L. Smith et al., 2004). However 

lesion studies and other cortical silencing techniques typically damage axons en 
passant and any other connections that are shared with the lesion site, making it 

harder to definitively identify contributions of specific fields. Based on fMRI and single 

unit studies it has been suggested that a hierarchical processing stream exists for 

extracting ‘what’ and ‘where’ components of sound (Rauschecker & Tian, 2000). 

These two components are segregated in primary areas and emanate outwards to 

parabelt regions via dorsal and ventral pathways for further specialisation (Bizley & 

Cohen, 2013; Kaas & Hackett, 2000). Interestingly unlike other sensory cortices, the 

interconnectivity of core areas underlies this process, suggesting that they may have 

an influence on one another (Kaas & Hackett, 2000).  

 
1.3.7.1 Tonotopy in cortex 
 
As previously mentioned the cochlea encodes frequency, in a relatively linear 

manner, where it imparts this organisation onto other nuclei in the ascending auditory 

pathway. This tonotopic organisation is widely identified as the most prominent 

feature in AI. Multiple attempts have been made to establish whether other 

responses occur in AI along the isofrequency contours or parallel to the tonotopic 

organisation. Other than frequency tuning, investigators attempted to construct other 

maps based on a neurons level response function, threshold, dynamic range, tuning 

curve shape, binaural interaction and frequency modulation however they showed no 

clear topographic order (Schreiner & Winer, 2007). Furthermore unlike in VI, our 

knowledge of receptive field organisation across cortical depth in AI remains unclear 

(Linden & Schreiner, 2003).  

 

1.3.7.2 Emergent properties of AI 
 

Out of all the sensory modalities the visual system is the most extensively explored 

where researchers constantly compare and contrast visual and auditory systems in 
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the hope of finding a common pattern in sensory processing.  However there are 

some fundamental differences between VI and AI that may suggest that it is not an 

ideal model for comparison. Neurons in VI encode line orientation and binocular 

disparity, an ability imparted on them by converging thalamic input and the structure 

of VI cortical circuitry (Hirsch & Martinez, 2006). In contrast in the auditory system 

frequency selectivity, level sensitivity, duration, pitch and binaural coding are already 

encoded in subcortical processing stations. This led some authors to suggest that the 

equivalent of VI in the auditory system is actually IC (Nelken et al., 2003). It is most 

likely due to fact that inputs into cortex are already highly processed, that it has 

proved difficult to ascertain its precise functional contribution. Even the most 

elemental aspects of sound such as frequency and location, can evoke highly 

variable responses in AI (Read et al., 2001). So far there doesn’t appear to be a 

particular stimulus that allows for receptive field discrimination in the same way as 

orientation bars and bar patches do for VI neurons (King & Nelken, 2009).   

 
1.3.7.3 Complex stimuli 
 

Most studies that attempt to identify spatial maps in AI are based on pure tones, as it 

represents the most basic component of sound. However pure tones rarely exists in 

the natural world, whereas broadband sounds do. Therefore an alternative approach 

for assessing frequency-tuning profiles of neurons, used by some researchers, are 

spectrotemporal receptive fields (STRFs). Frequency tuning is derived this way by 

taking into account across frequency interactions that occur in broadband stimuli and 

determining which ones are weighted more heavily, reflecting the type of processing 

undertaken by auditory neurons. Several authors report complex receptive fields 

where they attributed this effect to the detection of edges in frequency or time 

(Christopher deCharms et al., 1998) and other studies reported simple receptive 

fields, with strong excitatory regions at the neurons best frequency flanked by 

inhibitory side bands, like in pure tone receptive fields (Fritz et al., 2005). This led 

some investigators to believe that STRFs in AI are indeed equivalent to orientation 

and direction selectivity in VI neurons. However these receptive fields were not 

predictive of responses to more complex, naturalist sounds (Bar-Yosef & Nelken, 

2007; Machens et al., 2004). As AI could be considered a higher order-processing 

centre when compared to V1, in order to understand its true function it may be 

necessary to adopt more complex naturalistic stimuli. Studies that used species-

specific vocalisation revealed that AI neurons exhibited a broad range of responses 

to the stimulus (Kozlov & Gentner, 2014; Wollberg & Newman, 1972). However how 

these responses correlate with stimulus identity remains unclear (Chechik et al., 

2006).  
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1.3.7.4 Auditory objects 
 

One proposal is that neurons in AI contribute to behaviourally relevant 

spectrotemporal patterns, or ‘auditory objects’ (Nelken et al., 2003). Such a process 

most likely relies on combination sensitivity and feature selectivity (Suga, 1989). 

These processes are heavily reliant on the temporal structure of competing sounds, 

that is if they becomes blurred in time, they will be perceived as one object (Micheyl 

et al., 2005). It has been suggested that auditory cortex is critical to object formation 

as it is only at this stage of the auditory pathway that we see a match between neural 

responses and a listener’s ability to distinguish objects (Bizley & Cohen, 2013). 

Some evidence does suggest that AI neurons ability to lock to the temporal structure 

of stimuli could play a role in object formation. They are known to have slower 

responses than subcortical nuclei, with most unable to lock to stimuli above ~ 20Hz 

(Joris et al., 2004), whereas they show a remarkable sensitivity to stimuli below this 

rate, where these slow modulation rates are more reflective of natural sounds, such 

as speech (Chi et al., 2005). However in order to understand how object formation is 

achieved in the auditory system, as has been done in the visual system, it is 

necessary to identify if and which neural ensembles are responsible at the level of 

auditory cortex (Bizley & Cohen, 2013).  

 

1.3.7.5 AI and plasticity 
 

The temporal characteristics of sound effect neuronal responses at all levels of the 

ascending pathway, but its effect is most prominent in cortex. AI neurons display 

incredible frequency dependent adaptive plasticity at low rates of repetition. This 

effect is otherwise known as stimulus specific adaption (Ulanovsky et al., 2003). 

Multiple studies confirm the remarkable plasticity of AI, where neuronal responses 

can change rapidly over short timescales (Fritz et al., 2005). It has been suggested 

that this could serve a purpose in improving performance during perceptual learning 

(Polley et al., 2006; Schnupp et al., 2006). This dynamic model of AI is in contrast 

with VI, which doesn’t appear to display plasticity on the same timescale, at least in 

the post-developmental brain. This could be related to a greater influence that AI has 

on subcortical processing, where it sends considerable feedback connections to 

earlier subcortical stations, a feature somewhat unique to auditory cortices (King et 

al., 2007; Suga, 2008).  

 

In conclusion we have a general appreciation for the type of neural responses 

expected, and a coarse anatomical perspective of the macro structure at the level of 

auditory cortex. Our knowledge of function and how it is achieved isn’t as detailed 
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and defined as other nuclei in the ascending auditory pathway. Therefore if we are 

ever to understand how perception is built it is necessary to identify cortical circuits 

via perturbation, and perform functional and anatomical characterizations of their 

components. 

 

 
1. 4 COMPLEX NEURAL MECHANISMS FOR DETECTING PERCEPTUAL 
FEATURES 
 

A model for how the auditory system processes more complex, broadband 

naturalistic sounds is co-modulated masking release (CMR). Psychophysical studies 

identify that the auditory system is unlikely to be just processing spectral information 

in separate channels, but instead suggest that there are across frequency 

computations taking place. Some of these computations are likely to be occurring in 

auditory cortex. 

 
1.4.1 Auditory filters and masking 
 
As previously mentioned, the cochlea is essentially made up of a bank of auditory 

filters, where they have been shown to act as a row of non-linear, level dependent 

overlapping band-pass filters (Baumgarte, 1997). Our ability to discriminate different 

frequencies, otherwise known as frequency resolution, is dependent on the 

bandwidth of the filters. Over the past 70 years the bandwidth and overall shape of 

auditory filters has been widely debated where a multitude of different physical and 

pyschoacoustical measurements have been used to investigate them (Dubno & 

Dirks, 1989; Glasberg & Moore, 1990; B. C. Moore & Glasberg, 1983). If two sounds 

are far enough apart in frequency that they fall into different auditory filters, they can 

be discriminated and detected with relative ease. However if the sounds fall into the 

same auditory filter, the auditory system encounters a problem known as ‘masking’.  

 

Auditory masking is in effect, the reduction in detectability (threshold) of a sound due 

to the presence of two or more sounds within the same auditory filter. The 

mechanism through which masking occurs was initially explained by the ‘power 

spectrum model’. This model is based on three assumptions 1) sound is filtered by 

an overlapping bank of auditory filters 2) threshold is determined by the filter with the 

largest signal to masking noise ratio and 3) the temporal characteristics of a signal 

are ignored (Verhey et al., 2003). Under this model only noise that falls within an 

auditory filter of interest can contribute to the masking of a sound, other auditory 

filters that filter frequencies outside of that region do not contribute (Figure 1.4 B). 

The importance of auditory filter bandwidths is best represented in individuals with 

sensorineural hearing loss (SNHL). Due to deficient hair cell function, the bandwidth 
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of auditory filters in effected individuals is subsequently broader resulting in 

increased masking.  

 
 

1.4.2 CMR 
 
However the power spectrum model relies on negating the effect of the temporal 

characteristic of presented stimuli. This is an interesting assumption as broadband 

stimuli or white noise without any amplitude modulation rarely occur in nature. 

Studies identified that if you amplitude modulate the additional sound energy 
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masking a signal, thresholds in fact decrease (Hall et al., 1984). This effect was 

termed ‘co-modulation masking release’ (CMR) (Figure 1.4 C). There are two types 

of proposed CMR that violate the power spectrum model. The first is known as 

within-channel CMR which suggests that the temporal structure of a masker can 

greatly influence the reduction of signal thresholds. The second model of CMR is 

referred to as across channel and it violates the power spectrum in two ways; firstly it 

proposes that auditory filters that lie outside of the embedded signal do not remain 

idle but contribute in some way and secondly the temporal properties of a sound, as 

in within channel CMR, contribute to the reduction in signal detection thresholds. 

These discoveries led to multiple physiological and psychophysical studies that have 

attempted to determine the physiological underpinning of both types of CMR. 

 
1.4.3 Different masker types 
 

There are two types of masker employed in CMR experiments. The first masker type 

involves one co-modulated band-pass noise masker centered on the signal 

frequency. It was this masker type that originally identified that by modulating the 

additional noise energy it was possible to reduce signal detection thresholds (Hall et 

al., 1984; Verhey et al., 1999). The second type of masker type is comprised of 

multiple narrowband maskers, one centered on the signal and the others spaced 

above and below it, otherwise known as flanking bands (Schooneveldt & Moore, 

1987). Schooneveldt and Morre 1987 proposed three different flanking band setups 

to assess their impact on CMR. The first utilizes two independent narrow band 

conditions, one masker is centered on the signal and the other is centered away 

(DV). The second condition instead of being centered away the flanking bands are 

centered either side of the on frequency masker (CM). The final condition is the on 

frequency masker alone (RF). They discovered that thresholds were lower in the CM 

condition compared to DV and RF. However interestingly they also discovered that 

the DV condition reduced thresholds compared to the RF condition.  It is in this case 

that the power spectrum model cannot explain the reduction in thresholds beyond the 

bandwidth of the auditory filter (Schooneveldt & Moore, 1987). These different 

responses have been attributed to ‘within channel’ and ‘across channel’ effects of 

CMR. There is still some debate as to whether across channel CMR does exist, as it 

is predication is dependent on the shape of an auditory filter. By altering the shapes 

of auditory filters from rectangular to gamma tone filters it is possible to predict CMR 

without accounting for an across channel process (Verhey et al., 1999).  However 

other studies have observed CMR as a result of including flanking bands at spectral 

distance of 3 octaves from the on frequency flanking band, where this result can only 

be accounted for by an across channel process (Cohen, 1991). In conclusion these 

studies identified that the effect of a masker can be reduced mostly by increasing its 



 33 
bandwidth, amplitude modulating the noise, modulating this noise at a low frequency, 

and finally modulating the noise synchronously.  

 

1.4.4 Underlying neural mechanisms 
 

Multiple models have been proposed that attempt to explain CMR, such as the ‘dip-

listening model’ which suggests that the temporal minima of a masker is utilised to 

enhance detection of the signal (Buus, 1985) or ‘the equalization cancellation model’ 

(EC) where the output produced at off-frequency filters is subtracted from the 

auditory filter where the signal is centered, thus reducing the masking effect (Buus, 

1985; Durlach, 1963). The precise neural networks that are involved in CMR are not 

currently known, however there are a handful of physiological studies that have 

identified correlates of CMR in the auditory pathway and proposed mechanisms. 

Some research has indicated that narrowband units are influenced by wideband 

inhibition from onset units (Figure 1.5), and that this inhibition plays a role in CMR 

(Pressnitzer et al., 2001). There is some data that suggests that this proposal could 

be accounted for via the interaction of subtypes of stellate cells in the CN. Onset 

units (D-type stellate cells) in the CN usually have precise spike timing locked to the 

onset of sound but little or not sustained responses. They typically have broad 

frequency response areas that lack an indication of inhibitory side bands (Jiang et al., 

1996; Rhode & Greenberg, 1994).  However there is one subtype of stellate cell, T-

type, which exhibits an initial regular burst in response to onset that decays and 

becomes more irregular and displays inhibitory side-bands (Blackburn & Sachs, 

1990). It has been proposed that this response occurs as a result of axonal 

innervation from D-type cells traversing VCN and providing inhibitory input onto T-

type stellates cells (Arnott et al., 2004; Ferragamo et al., 1998; Pressnitzer et al., 

2001). These cell types most likely account for within channel CMR in the CN 

however recent work has suggested that correlates of CMR might exist at higher 

order processing stations along the ascending auditory pathway. Extracellular 

studies performed in the cat under band-widening conditions identified that phase 

locking plays an important role in signal detection at the single cell level.  The 

authors observed that a vast majority of neurons phase locked to the stimulus in the 

absence of an embedded signal, where interestingly upon its addition their ability to 

phase lock was diminished.  It was this suppression of phase locking that was 

presented as the mechanism for the reduction of threshold (Nelken et al., 1999). 

Alternatively other authors have suggested that a higher order processing strategy, 

such as object formation (previously mentioned) could be responsible for this effect 

(Grose & Hall III, 1993; McFadden & Wright, 1992). The exact mechanism through 

which a masker and a signal can be separated to form separate perceptual objects is 
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not currently known. Regardless both phase locking suppression and object 

formation most likely involves complex neural inhibition, forward suppression and 

adaptation mechanisms (M. Calford & Semple, 1995; Ulanovsky et al., 2004; Wehr & 

Zador, 2005). 
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1.5 AIMS OF THIS STUDY  
 
 
1.5.1 Outline of thesis  
 
In this study, in vivo whole cell patch clamp recordings were performed on neurons in 

the primary auditory cortex, enabling both synaptic and spiking activity to be 

monitored. Sensory evoked activity in AI was recorded from the left hemisphere of 

anaesthetized mice. This thesis is divided into three experimental chapters, with 

each one followed by a separate discussion section: 

 
The first results chapter deals with characterizing the response properties of AI 

neurons to pure tones. This was carried out in order to determine if response 

properties with regard to pure tones observed in other animal models also exist in the 

mouse. Electrophysiological characterization was also performed in order to correlate 

patterns of responses with identifiable cell classes. 

 

The second results chapter addresses the role of synapse location on synaptic 

integration. This question was restricted to thalamocortical synapses in AI.  The 

novel mGRASP technique was tested as a means to establish thalamocortical 

synaptic distribution patterns in AI. Whole cell transfection recordings were then 

made in order to identify any correlates between synaptic distribution and functional 

responses. 

 

The third results chapter deals with identifying whether neural correlates of across 

channel CMR exist at the level of primary auditory cortex. Four different masker 

conditions were employed to truly make this assessment. Given that correlates of 

CMR have been shown to exist in different auditory nuclei, it was necessary to 

determine if any observation at the level of cortex occurred as a result of passive 

inheritance.  By utilising optogenetic techniques cortex can be manipulated in order 

to identify if its circuitry plays an active role.  

 
The thesis concludes with a general discussion of results and with a primary focus on 

the potential avenues for future work.  
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2 MATERIALS AND METHODS 
 
 
2.1 SURGICAL PROCEDURES 
 
All experiments were carried out in accordance with the U.K. Home Office Animals 
(Scientific Procedures) Act (1986). 
 

2.1.1 Non-recovery  
 

Both male and female young adult CBA/CA (28-42 day old) mice (Charles River 

Laboratories or Harlan) were anaesthetized with a mixture of Midazolam (5 mg kg-1) 

Medetomidin (0.5 mg kg-1) and Fentanyl citrate (0.05 mg kg-1) via intraperitoneal 

injection, where the depth of anaesthesia was assessed via pedal reflex. Throughout 

all experiments a rectal probe was inserted to monitor and maintain the animal at 37 

± 0.5°C through the use of a homothermic blanket (FHC, USA). The depth of 

anaesthesia was tested every 10 minutes using a pinch to the hindlimb. When 

animals were areflexive, a sagittal cut was made through the skin to expose the 

cranium and haemostatic clips were used to secure the skin. A light-weight head 

plate was fixed to the surface of the skull using Histoacrylamide (Braun Corporation, 

USA). The head plate was then fixed and positioned using an articulated arm (Thor 

labs, UK). Connective tissue was removed covering the left ecto-sylvian plate and a 

dental drill (Osada, Japan) was used to make a small craniotomy (1 mm x 1 mm) in 

order expose the left hemisphere of auditory cortex (2.54 mm caudal of Bregma and 

4.2 mm lateral of the midline). The dura was pierced using a fine needle (30 G, 

Harvard Apparatus, UK), and removed with dural forceps (Inox forceps: tip size = 

0.05 x 0.01 mm; Fine Science Tools, Germany). Artificial cerebrospinal fluid (aCSF) 

was applied every few minutes to the exposed area of cortex in order to keep the 

area moist.  

 

2.1.2 Recovery  
 
For recovery surgeries, the same method as above was used with minor additions. 

Prior to the initiation of any surgical implementation a non-steroidal anti-inflammatory 

drug (Carprofen; 5 mg/kg) was provided via intra-peritoneal administration in order to 

provide post-operative analgesia and aid recovery. Post-experimentation, the cranial 

window was covered with aCSF – agarose and then kept in place with a silicone-

based elastomer (Kwik-Cast; World Precision Instruments, USA), in order to prevent 
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damage. Acrylic dental cement (Kemdent, UK) and a layer of nail varnish were 

applied to reinforce the window. The mice were then injected intraperitonealy with a 

mixture of Naloxon (5 mg kg-1) Flumazenil (0.5 mg kg-1) and Atipamezol (0.05 mg 

kg-1), in order to counteract the effect of the anaesthesia. The animals were then 

transferred to a heated incubation chamber (~ 36°C) where they were given sufficient 

time to recover. Analgesia was maintained using Buprenorphine (0.8 mg/kg) jelly for 

1-7 days. 
 

2.1.2.1 Optogenetic viral injection 
 

Aseptic procedures and post-operative care was maintained as previously 

mentioned. Six week old PV-cre (B6;129P2-Pvalbtm1(cre)Arbr, Jax stock no. 8069) 

mice were anaesthetized and held using ear bars on a stereotaxic mount (Angle 2, 

Leica). A small craniotomy was made with a dental drill ~1.9mm lateral from midline 

and ~2.7mm caudal to bregma. Mice were then injected with ChR2/AAV (pAAV-

EF1a-double floxed-hChR2(H134R)-EYFP-WPRE-HGHpA, www.addgene.org). A 

thin glass pipette holding the virus was positioned in auditory cortex and the viral titre 

(0.5µl) was then slowly injected over a period of 20 minutes.  The pipette was then 

slowly retracted and the craniotomy sealed with Kwik-Cast and an additional layer of 

acrylic dental cement was placed over the top forming a hard seal. Mice were then 

sutured and recovered as previously mentioned. 
 

2.1.2.2 mGRASP  
 

The same injection protocol and recovery procedure was maintained however. Wild 

type mice were anaesthetized and held using ear bars on a stereotaxic mount. A 

small craniotomy was made above auditory cortex (~ 4 mm lateral from midline and 

~2.7 mm caudal to bregma) and second craniotomy above medial geniculate body 

(~1.9 mm lateral from midline and ~ 3.5 mm caudal to bregma). Auditory cortex was 

injected with post-mGRASP (post; paavCAG-post-mGRASP-2A-dTomato; Addgene, 

cat. no. 34912) and the medial geniculate body with pre-mGRASP (pre; paavCAG-

pre-mGRASP-mCerulean; Addgene, cat. no. 34910).  Each thin glass pipette holding 

the corresponding virus was positioned and the viral titre (0.3µl) for the pre-virus and 

50 nl of the post virus was slowly injected over a period of 5 minutes.  The pipettes 

were then slowly retracted and each craniotomy sealed with Kwik-Cast and acrylic 

dental cement. Mice were then sutured and recovered as previously mentioned. 

 

http://www.addgene.org/
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2.2 STIMULUS PRESENTATION 
 
Auditory stimuli were generated and calibrated using Matlab and stored as files to be 

used later, all signal levels were calibrated (5-100kHz flat spectrum ±1.5dB SPL). 

The following stimuli were saved in their structures as a single file and presented 

during neural recordings. All sound files were also presented using Matlab to 

interface with RPvdsEX (Tucker Davis Technologies; TDT, USA), which ran on an 

RZ6 (TDT) driving a free-field speaker (ES1, TDT). 

 

2.2.1 Pure tone stimuli 
 

During recordings, mice were situated in the center of a sound-attenuating anechoic 

chamber (Industrial Acoustic Company, UK), and stimuli were presented from 1 

calibrated speaker, positioned at a distance of 5 cm from the right ear (contralateral). 

To determine the frequency response area (FRA) of a recorded neuron an array of 

117 tones were presented in a pseudo-random order, each lasting 100ms. The array 

consisted of thirteen logarithmically spaced frequencies (1/3 octave steps) spanning 

3–48 kHz, and nine tone intensities (10–90 dB SPL at 10 dB steps) with a 1 second 

inter-stimulus interval.  

 

2.2.2 CMR stimuli and laser stimulation 
 
Stimuli were sinusoidally amplitude-modulated (SAM) tone maskers presented in the 

presence of a pure tone signal.  Three bandwidth configurations were used: two 

broadband conditions (IM and CM) and a narrowband condition. The signal 

frequency was selected as the characteristic frequency (as determined from a 

neurons FRA). In the narrowband condition this involved a 10Hz SAM at CF. The 

broadband conditions consisted of an on-frequency band (10Hz SAM at CF), a low 

off-frequency band (3 x 0.125 octave spaced 10Hz SAM pure tones centered at 0.5 

octaves below CF) and a high off-frequency band (3 x 0.125 octave spaced 10Hz 

SAM pure tones centered at 0.5 octaves above CF).  These off-frequency bands 

were designed so that the additional sound energy lies outside of the mouse auditory 

filter centered at CF. The phase of the envelope of the on-frequency band remained 

identical for all conditions. For the IM condition the envelope of the off-frequency 

bands was selected at random between 0-180° whereas the off-frequency bands in 

the CM condition had identical envelope phases with the on frequency band.  The 

masker portion for all three conditions lasted 500ms with a pre-cursor of 400ms 

positioned 100ms before.  A short-CM condition was also included where it is almost 
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identical to the Long-CM condition except it lacked a pre-cursor. Long conditions 

were preceded and followed by 500 ms of silence and the short condition was 

preceded by 1000 ms and followed by 500ms of silence (inter-stimulus interval of 2 

s). The embedded pure tone signal was comprised of three 50ms SAM tone pips 

(10Hz modulator) positioned in the 3-5th troughs of the masker. In total there were 8 

different signal conditions were used for each masker condition, a noise alone (i.e. 

no signal) condition and seven SNR conditions (-10 to 20dB SNR in 5 dB steps).  For 

mice expressing ChR2 exclusively in PV cells, an optical fibre attached to laser 

(473nm; SLOC, China), was positioned ~1mm from the cortical surface.  The laser 

was controlled via TTL signals generated by a digital processor (RZ6, TDT). The 

laser power was calibrated to have an effective fibre tip power of 5 mW, which is 

more than sufficient for in vivo stimulation (Cardin et al., 2010). I conducted 

preparatory controls using multi-site electrodes at different depths and observed no 

observable difference in optogenetic perturbation across depth. Finally in addition the 

same control was performed using a patch electrode, recording from deep layers and 

again there was no observable difference in optogenetic perturbation. Successful 

PV-ChR2 transfection was determined based on PV+ YFP+ co expression. Previous 

immunohistochemistry experiments confirmed that 96.7% of ChR2-mCherry neurons 

expressed PV (Cardin et al., 2009). Furthermore during optogenetic stimulation I 

observed significant cortical silencing that was also in line with PV+ neuronal 

activation (time course), therefore I can assume that there was minimal 

contamination in other cell types.  

 
 
2.3 ELECTROPHYSIOLOGY 
 
2.3.1 Internal solution 
                   

Table 2.1 Internal solution 

 
Internal solution was adjusted to pH 7.28 with KOH, and had an 
osmolality in the range of 280-290 mOsm.  
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2.3.2 In vivo patch clamp recordings  
 
Low-resistance patch pipettes (4-7 MΩ) (Sakmann & Neher, 1983; Pei et al., 1991) 

were used to achieve whole-cell recordings in vivo. Pipettes were made from 

filamentous borosilicate glass capillaries (inner diameter: 0.86 mm, outer diameter: 

1.5 mm; Harvard Apparatus, UK), using a Narishige PC10 vertical puller (Narishige, 

Japan). Pipette tips were initially calibrated using a scanning electron microscope, 

where tips had to be smooth and targeted resistances typically correlated with a size 

was 0.5-1 μm (Figure 2.1).  

 

 

Figure 2.1  
SEM image of Pipette tip. Gold-coated pipette tip imaged using SEM. The observed pipette had a resistance of 
7 MΩ.  
 

Cells were ‘hunted’ in vivo in voltage-clamp mode using a Multiclamp 700A amplifier 

(Axon Instruments, USA), controlled via Multiclamp Commander software (Margrie et 
al., 2002). A positive pressure of ~200 mbar was applied across the pipette in order 

to prevent blockage. Using a square voltage step (+10 mV, 10 ms steps at 100 Hz), 

evoked current was monitored, as it acts as an indicator of resistance, where an 

increased resistance most often indicated a cell membrane in close proximity. 

Pipettes were rapidly advanced through the brain to a depth of interest. In order to 

increase sensitivity the positive pressure was reduced to ~30 mbar and the pipette 

advanced in 1.8 μm steps. When a cell membrane is deemed to be near, a ‘three 

step rule’ is applied and pressure was rapidly released. This rapid release would 

often lead to adherence of a cell to the tip of the pipette, where a strong seal was 
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identified by a large increase in resistance ~1-10 GΩ. However in the eventually of a 

poor seal, mild negative pressure was applied to facilitate seal formation. Following 

successful seal formation, commonly referred to as a cell-attached configuration, the 

electrode capacitance was cancelled semi-automatically (Multiclamp Commander 

Software; Axon Instruments, USA) prior to gaining electrical access to the cell. Rapid 

suction was applied in order to break the cell membrane and establish the whole-cell 

configuration. Upon gaining whole-cell access, the amplifier was switched to current-

clamp mode followed by subsequent bridge-balancing. The angle of approach was 

always 45 degrees and assuming a flat cortical surface, cortical depth can be 

estimated.  

 
 
2.4 IMAGING 
 

2.4.1 Tissue processing and imaging of labelled synapses 
 

For gross viral labelling, brains were analyzed 14 d after recording. Deeply 

anaesthetized mice were transcardially perfused with cold PBS (0.1 M) followed by 

fixation with cooled 4% paraformaldehyde (wt/wt) in PBS (0.1 M) and stored at 4 °C 

for 1 hour. Brains were then washed in PB (0.1 M) and mounted in agarose to 

provide support. Coronal brain sections (50–70 μm) were cut using a vibrating 

microtome (VT1000 S) and rinsed in PB in order to remove PBS whose 

crystallisation can cause autofluoresence. Fluorescence images were acquired on a 

Leica SP5 laser-scanning confocal microscope. Multi-tile scanned images were 

performed on a x40 oil objective with a variable zoom (x 2-10) depending on the size 

of the cell of interest. The power of each laser and the breadth of the PMTs were 

adjusted accordingly in order to avoid photobleaching and image saturation.  

 

 

Table 2.2 PMT and Laser settings 
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2.4.2  Plasmid amplification and In vivo whole cell transfection  
 
A small sample of pCAG-post-mGRASP-2A-dTomato was kindly provided by Dr Kim 

laboratory (KIST, Korea). In order to amplify the sample, plasmids were transformed 

and grown in Escherichia coli Stbl3 (Invitrogen) cells to avoid recombination. The 

cells were lysed and plasmid extracted and purified using an endotoxin-free 

Gigaprep kit (Qiagen) with the final titre (10mg) aliquoted and suspended in ultrapure 

H2O (Qiagen). Correct plasmid sequences were digested and verified by subsequent 

DNA sequencing. Plasmid aliquots (10 μl) were firstly diluted in H2O and added to a 

concentrated standard intracellular solution (~600 mmol/kg). This yielded a final 

plasmid concentration of ~50–350 ng μl−1 and internal solution osmolality of 280 

mmol/kg.   In vivo whole cell transfection is achieved via passive diffusion of plasmid 

from the internal solution to the cytosolic space of a cell (Rancz et al., 2011). After 

electrophysiological recordings have been performed the patch pipette was slowly 

withdrawn (~2 μm s−1) whilst simultaneously monitoring the seal test pulse in voltage-

clamp mode to determine access resistance. Typically once the pipette is far enough 

from the cell, the nanotube that represents the connection between the two 

eventually pulls an outside-out patch of membrane, a criterion that is considered 

important but not crucial to cell survival. A successful outside-out patch was 

confirmed by applying a brief negative pressure pulse in order to break the seal 

where no indication of action currents indicated that it was successful. 

 
 

2.5 DATA ACQUISITION AND ANALYSIS 
 
2.5.1 Electrophysiology 
 
Data were low-pass filtered at 3 - 10 kHz and acquired at 25 kHz via an ITC- 18 

interface (Instrutech, USA) using Axograph X software (Axon Instruments, USA). 

Data were analysed offline using Axograph X and Matlab. The junction potential 

difference between the internal and extracellular solutions was not measured and 

corrected for. Resting membrane potential (Vm) was measured immediately after 

formation of the whole-cell configuration (‘break-in’).  

 

2.5.2 Pure tone responses and intrinsic properties  
 

Upon successful break-in, intrinsic properties were determined (input resistance, 

membrane time constant, rheobase) using 400 ms step current injections ranging 
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from –200 pA to 200 pA (25 or 50 pA current steps). This ensured sufficient 

amplitude to induce saturating firing rates in order to determine spike half-width, 

rheobase and inter-spike intervals. Events were rejected if access resistance 

exceeded 70MΩ. These intrinsic properties were measured using Axograph X (Mac). 

Tone evoked responses were analyzed using Matlab. A mean baseline is taken prior 

to the presentation of the tone and PSP amplitudes greater than 0.5 mV were 

calculated at stated time windows. Peak times were determined as the time taken 

from the initiation of a time window to the peak amplitude. Frequency responses 

arrays were then smoothed using a pyramidal 3 x 3 window. Characteristic frequency 

was taken as the frequency yielding a defined response at the lowest signal level. 

Best frequency was taken as the frequency yielding the largest response. 

 
2.5.3 CMR analysis 
 

The mean membrane potential across all repeats (x10) was determined using 

Matlab. The noise alone condition was then subtracted from each of seven SNR 

conditions in order to isolate signal responses (1.2 -1.45 s).  The peak amplitude and 

time of the signal-evoked response was calculated in this time window. For cortical 

inactivation experiments the preceding laser stimulation did not influence subsequent 

signal-evoked responses, as there was no significant difference between the CM-

short and CM-short opto condition.  

 

2.5.4 mGRASP analysis 
 

The three channels (red, blue and green) were separated and using imageJ or Fiji. A 

tiled image encompassing postsynaptic neurons (red channel) was stitched into a z-

stack image and exported in .tiff format. Postsynaptic morphologies were 

reconstructed using Neutube (www.neutube.com). I developed a custom Matlab 

code in order to identify axonal density, neuronal area and puncta. A 1x1 μm grid 

was set in order to define the overlap of all three channels, and a rolling ball radius of 

0.25 μm was applied to the green channel in order to quantify the number of 

synapses. This automated procedure was verified by manually inspecting stack 

images in Fiji or imageJ to confirm the correct detection of puncta. 

 

2.5.5 Statistics 
 

Datasets were deemed to be significantly different if p < 0.05, unless stated 

otherwise. Results are presented as mean ± SEM. Normal distributions were 

http://www.neutube.com/
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determined by plotting a histogram and applying a Gaussian fit. For identifying 

statistical differences in parametric datasets student t-test or ANOVA were used. In 

order to determine if changes in the independent variables significantly affect 

dependent variables, a one way Multivariate Analysis of Variance (MANOVA) was 

used. When identifying significant associations between datasets a quantile-quantile 

(Q-Q) plot was used. If the data was normally distributed a Pearson's correlation 

coefficient was used to determine the strength of the relationship. Conversely if the 

data was non-parametric a Spearman Rank correlation was used. All data are 

presented as mean ± SEM unless otherwise stated. 
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3 SYSTEMATIC CHARACTERISATION OF 
NEURAL RESPONSES IN PRIMARY AUDITORY 
CORTEX 
 
3.1 INTRODUCTION 
 

One of the most fundamental tasks that the brain performs regarding the perception of 

sound is the segregation and integration of spectral and temporal information. Neurons 

tuned to specific frequencies transmit stimulus information along the ascending auditory 

pathway, from the cochlea to auditory cortex (Kaas et al., 1999). Frequency tuning in 

auditory cortical areas has been characterised in many different species including cat, 

rat, monkey and ferret (Bartlett et al., 2011; Gaese & Ostwald, 2001; M. L. Sutter, 

2000).  Advances in the genetic manipulation of neurons have enabled researchers to 

probe and elucidate the functioning of individual cells and circuits, furthering our 

understanding of how neurons encode stimuli in the brain. This powerful new tool 

however has been largely restricted to the mouse (Mus Musculus), resulting in a shift to 

using the mouse as a critical model for auditory research. As a result our understanding 

of how frequency information is transmitted through the auditory system must be re-

examined/quantified and compared to other species to determine how analogous it is. 

Work has already begun with the systematic quantification/comparison between cortical 

fields in the mouse using extracellular techniques. This approach has already identified 

systematic differences in auditory cortical fields in the mouse (Joachimsthaler et al., 

2014; Linden & Schreiner, 2003), however, remarkably little is known about 

subthreshold properties. 

 

Beyond encoding the frequency components of a sound, the auditory system must also 

unravel its temporal properties. Previous studies have shown that temporal resolution is 

degraded, to varying degrees, at the level of auditory cortex when compared to 

peripheral sub-stations along the ascending pathway (Creutzfeldt et al., 1980; Evans & 

Whitfield, 1964; Merzenich et al., 1975; Whitfield & Evans, 1965). This effect is 

characterised by a reduction in on-going phasic responses, such as peaks and troughs 

of the signal, driven by this loss of temporal precision. While there is loss in high fidelity 

temporal coding, it is replaced by strong responses to the initiation of a sound (onset) 

and its termination (offset) (Volkov & Galazjuk, 1991). How this mechanism emerges 

and fits into an overall coding strategy at the level of cortex remains a mystery. Most 

work, has suggested that at the level of cortex, somewhat unsurprisingly, that the offset 

response simply encodes the termination of a sound allowing the auditory system to 
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potentially group objects not only based on their initiation but their cessation (Brand et 

al., 2000; N. Xu et al., 2014). Early studies failed to report the existence of offset 

responses, likely due to the suppressive effects of certain anaesthesia (barbiturates), 

however recent reports of significant offset responses were performed, either in awake 

or ketamine/halothane anaesthetised preparations (Moshitch et al., 2006; Volkov & 

Galazjuk, 1991). The physiological observation of offsets responses was initially 

attributed to post-inhibitory rebound firing (M. Calford & Webster, 1981; He et al., 1997; 

Heil et al., 1992; Volkov & Galazjuk, 1991), however, recent work has described a non-

overlapping synaptic mechanism driving responses to sound onsets separate to that of 

offsets (Scholl et al., 2010). Furthermore a few studies confirm that onset and offset 

tuning is distinct at both sub and suprathreshold levels with highly variable frequency 

response profiles (Moshitch et al., 2006; Scholl et al., 2010). The potential functional 

significance of the offset response warrants further investigate into its mechanistic 

evolution through the auditory system and its potential impact on behaviour.  

 

Another aspect that remains poorly understood is the relationship between auditory 

processing properties of neuronal classes across cortical layer. Until recently depth 

dependent changes in the breadth of frequency tuning was attributed to non-preferential 

input onto cells in thalamo-recipient layers. More specifically this effect resulted in Layer 

IV neurons exhibiting narrower tuning than Layer V and Layer II/III. A recent study has 

identified that there is a non-uniformal distribution of intrinsic burst firing (IB) pyramidal 

cell class across depth (Nowak et al., 2003). In addition, other studies in the rat have 

identified that different pyramidal cell classes in layer V respond to frequency 

presentation differently, with intrinsic burst-like (IB) cells exhibiting broad frequency 

tuning and regular spiking (RS) cells showing narrow frequency tuning (Sun et al., 

2013). This observation combined with the fact that they have distinct long-range 

targets, could suggest that neuronal classes play different roles in the transfer of 

auditory information (Gao & Zheng, 2004; Le Bé et al., 2007; Schubert et al., 2001). 

Given that depth dependent changes in the breadth of frequency tuning were 

determined via extracellular recordings it is difficult to ascertain whether separate 

classes of cells contribute more to this effect. Therefore in this chapter I performed 

intracellular recordings in order to acquire intrinsic membrane properties to classify cell 

classes and group functional responses accordingly, in an attempt to further our 

understanding of the processing of pure tones in AI of the mouse. 
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3.2 RESULTS 
 

3.2.1 Quantification of onset and offset responses to pure tones in AI 
 

Whole cell recordings were performed in primary auditory cortex of the anaesthetised 

mouse (Figure 3.1 A). Upon achieving a successful seal and break in, neurons were 

presented with an array of 13 frequencies at 9 levels in a pseudo-random order. Post-

synaptic potentials were recorded (Figure 3.1 B) and mapped to their corresponding 

pure tone, allowing for the construction of a neurons frequency response area (FRA) 

(Figure 3.1 C). Each trace in the example cell represents a repeat (grey line) with its 

average response indicated (black line) for each stimulus pairing. The number of 

repeats was set to maximise cell viability for further experimentation. Onset responses 

were classified as post-synaptic potentials that occur throughout the duration of the 

stimulus (100ms) and offset responses are classified as post-synaptic potentials from 

the point of its cessation, lasting 100 ms beyond.  

 

3.2.2 Onset responses are more sensitive to sound level than offset responses.  
 

The sensitivity of neurons was compared to perceptual sound detection thresholds in 

the mouse (Koay et al., 2002). Cells were first categorised by their frequency tuning 

properties where the frequency evoking responses at the lowest sound level (the 

Threshold) was deemed that cells Characteristic Frequency (CF).  Cells were grouped 

according to their CF (3-48kHz at 1/3 octave bins) and the mean threshold calculated.  

Demonstrating the mean sensitivity of cells tuned at those frequencies.  This was then 

compared to behavioural responses in the same species  (Figure 3.2A). The data 

confirms previously reported audiogram trends, where thresholds decrease significantly 

(ANOVA, F=1.4, p<0.05) up to ~20kHz (Figure 3.2 B). This trend was reflected in offset 

responses where there was also a significant decrease (ANOVA, F=2.1, p<0.05), 

however interestingly thresholds were on average 5.3 dB higher than onset responses 

(Figure 3.2 C).   

 

3.2.3 Comparison of frequency tuning between onset and offset responses.  
 

Previous studies failed to acknowledge the existence of offset responses (Heil, 1997; D. 

Phillips et al., 1994; M. Sutter & Schreiner, 1995; M. L. Sutter & Schreiner, 1991). It was 

only until recently that awake or non-barbiturate anaesthetised experiments highlighted 

that responses to offsets are actually quite common (Moshitch et al., 2006; Volkov & 

Galazjuk, 1991). Until now this effect has not been observed in the mouse. In addition 
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these previous reports identified responses to sound onset and offset using extracellular 

recordings, as a result no subthreshold information has been provided. Therefore, using 

whole cell recordings I measured postsynaptic potentials at sound onset and offset in 

the mouse under nonbarbiturate -anaesthesia. Of the 201 cells recorded 7% had pure 

onset responses (n=14), 2% had pure offset responses (n=5) and with the vast majority, 

91% responding to both sound onset and offset (n=182). These data confirm the 

presence of offset responses in mouse AI; I next examined frequency tuning properties 

in more detail. One way of characterising auditory neurons is to determine the breadth 

of frequency information it receives. This is most commonly referred to as bandwidth, 

where neurons with small bandwidths are considered more frequency selective than 

those with broader bandwidths. Two bandwidth measures were selected, one at 10dB 

(BW10) above the each neurons threshold and the other at 40dB (BW40, Figure 3.2B). 

Onset responses at 10dB were narrower (1.16±0.4 oct) on average than 40dB (1.9±0.05 

oct) (Figure 3.3 C). This trend was also reflected in offset responses where 10dB 

bandwidths were narrower (1.3±0.05 oct) than 40dB (2.1±0.04 oct)  (Figure 3.2D). 

Interestingly offset bandwidths at 10db and 40dB were broader than onset bandwidths 

(ANOVA, 10dB, F=3.4 p <0.05. ANOVA, 40dB F=3.8 p <0.05). These results indicate 

two things: firstly, that most neurons recorded exhibited V-shaped tuning in both onset 

and offset responses. Secondly, subthreshold offset responses have larger bandwidths.  

 

The frequency response area of a neuron is typically determined using extracellular 

recordings. Previous studies in the rat identified that suprathreshold tuning curves 

underestimate the breadth of inputs onto cortical neurons, where subthreshold tuning 

curves are shown to expand significantly beyond them (de Ribaupierre et al., 1972; 

Kaur et al., 2004; Volkov & Galazjuk, 1991; Wehr & Zador, 2005). I, therefore, 

confirmed this observation in the mouse (n=48). Onset subthreshold tuning at 10dB was 

on average 0.7±0.2 octaves wider than suprathreshold tuning (two-sided sign test, 

p<<0.01). Onset subthreshold tuning at 40dB was on average 1.3±0.3 octaves wider 

than suprathreshold tuning (two-sided sign test, p<<0.01) (Figure 3.4 A). Offset 

subthreshold tuning at 10dB was on average 1.3±0.3 octaves wider than suprathreshold 

tuning (two-sided sign test, p<<0.01). Offset subthreshold tuning at 40dB was on 

average 1.3±0.5 octaves wider than suprathreshold tuning (two-sided sign test, 

p<<0.01) (Figure 3.4 B). This data reaffirms previous findings, which show that 

subthreshold frequency tuning widths are larger than suprathreshold tuning widths. I 

then examined suprathreshold differences in onset and offset bandwidth to see if this 

subthreshold dichotomy is also observed in their suprathreshold activity. Suprathreshold 

onset bandwidth at both BW10 (0.63±0.4 oct) and BW40 (0.68±0.04 oct) were slightly 
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larger than their offset counter parts at BW10 (0.61±0.4 oct) and BW40 (0.64±0.03 oct), 

however they were not significantly different (Figure 3.5 A). This result directly 

contradicts the subthreshold trend, as there was no significant difference in bandwidth 

between onset and offset responses. I quantified spike latencies and the total number of 

spikes at onset and offset. There was no significant difference between total number of 

spikes elicited during onset and offset. Interestingly spikes generated during offset had 

slower (37.4±16.5 ms) latencies than onset (31.8±17.4 ms) on average. However again 

the result falls short of significance, suggesting that the sample size (n=48) is too small 

or that the overall bandwidth is the same (unpaired t-test, p = 0.2). Therefore at this 

point no firm conclusions regarding onset and offset suprathreshold bandwidth can be 

made  

 

3.2.4 Onset responses have shorter peak latencies than offset responses  
 

Spikes are generated based on three key parameters; EPSP peak amplitude, time 

course and distance to threshold (Jack et al., 1975; Rall et al., 1967). Therefore given 

that there is no significant difference between onset and offset suprathreshold 

bandwidths, one would assume that onset and offset EPSP dynamics are similar. 

However, a recent study demonstrated offset responses, in the awake cat, have longer 

decay times and lower peak amplitudes than onset responses (Qin et al., 2007). I 

therefore quantified tone evoked EPSPs across the FRA, in terms of peak amplitude 

(mV) and peak latency (ms) for onset and offset responses (n=182) (Figure 3.6 A). 

Interestingly the mean peak amplitude of onset responses (6.51±0.2 mV) were larger 

than offset responses (4.4±0.4 mV), however the difference was no statistically 

significant (Figure 3.6 B). On the other hand, peak latencies were significantly different 

(unpaired t-test, p<<0.01), as onset tone evoked EPSP’s were on average faster 

(23.3±1 ms) than offsets (45.6±1.6 ms) (unpaired t-test, p<<0.01) (Figure 3.6 B). This 

would indicate that based on the magnitude of input both onset and offset responses 

are just as likely to reach threshold and evoke a spike.   

 

3.2.5 Frequency tuning of both Onset and Offset responses is complex 
 

The most common way of characterising frequency response is by identifying a neurons 

BF, the frequency which elicits the largest EPSP and its CF, the frequency that evokes 

the threshold response. A recent study in the rat found that onset and offset BF tuning 

were usually located at different frequencies in a given cell (Qin et al., 2007).  In this 

data set receptive field processing also appears complex, where in a given cell BF and 
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CF weren’t always the same in both onset and offset responses (Figure 3.7A). In onset 

responses, on average 60% of neurons (n=120) had BFs that were different from their 

CFs, where 40% (n=81) showed identical BF and CF tuning (Figure 3.7 B). This trend 

was reflected in the offset tuning where 52% of cells had BFs that differed from their CF, 

and 48% having BF tuning identical to CF. This shows that for both onset and offset 

responses the shape/structure of FRAs isn’t always symmetrical and more likely 

complex. I then compared BF and CF tuning between onset and offsets to see if 

frequency tuning represented in each response matched. BF tuning between onset and 

offset differed, with 60% (n=109) of cells showing identical tuning and 40% (n=73) with 

mismatched tuning, however the distribution was not statistically significant (Figure 3.7 

D). CF in contrast varied significantly between onset and offset (ANOVA, F=0.38, 

p<0.05) with 30% (n=55) of cells with identical tuning and 70% (n=127)  with a wide 

range of different frequencies.  

 

3.2.6 Subthreshold tuning correlates with suprathreshold tuning in onsets 
 

In order to confirm whether this complexity correlates with suprathreshold tuning, onset 

and offset frequency tuning was compared for suprathreshold and subthreshold 

responses (Figure 3.8 A). This data suggests a strong linear correlation for both onset 

BF (Pearson’s correlation coefficient, r = 0.83, p<<0.01) and CF (Pearson’s correlation 

coefficient, r = 0.76, p<<0.01) tuning at sub and suprathreshold (Figure 3.8 B&D). This 

trend is less evident in offsets, where CF sub and suprathreshold tuning show a weaker 

correlation (Pearson’s correlation coefficient, r = 0.3, p=0.03) with no significant 

correlation between BF subthreshold and suprathreshold tuning (Figure 3.8 C&E). This 

result would suggest that BF and CF tuning in onset correlate best with suprathreshold 

tuning. Subthreshold BF offset doesn’t correlate with suprathreshold BF whereas CF 

tuning at sub and suprathreshold does correlate. This result does in part confirm 

previous extracellular observations whereby onset tuning differs from offset however CF 

appears to be the measure that best represents the difference in tuning.  

 

3.2.7 Onset FRAs are more compact than Offset FRAs 
 

Both awake and anaesthetised studies in cats and monkeys have revealed a large 

variety of shapes in frequency response areas (Abeles & Goldstein, 1972; Christopher 

deCharms et al., 1998; Moshitch et al., 2006; Pelleg-Toiba & Wollberg, 1989). This 

apparent heterogeneity in FRA shapes most likely explains the difference between BF 

and CF tuning in individual cells.  However a quantitative analysis of these shapes has 



 51 

never been performed in the mouse. Moshitch et al performed extracellular recordings 

on anaesthetised cats and compared FRA shapes in AI using a parameter called 

‘compactness’. This parameter involves measuring the area bounded by a tuning curve 

and comparing it to its perimeter. Units with high compactness are typically V-shaped 

FRAs, whereas units with low compactness were either diffuse FRAs with many weak 

responses distributed over a broad frequency range, or were very sharply tuned units 

(Figure 3.9 A&B). I therefore applied this analysis to the FRA structures of this neuronal 

population (n=182) in order to extract more information beyond the standard bandwidth 

measure.  On average onset FRAs were more compact (3.3±0.01) than offset FRAs 

(2.9±0.01). The low compactness seen in offset responses are due to diffuse/complex 

FRAs with many weak responses distributed over a broad frequency range (unpaired t-

test, p = 0.05) (Figure 3.9 C). 

 

3.2.8 FRAs become more diffuse with depth  
 

It is often reported that different layers in cortex show varying levels of complexity. 

These depth dependent changes in complexity were attributed to non-preferential input 

onto cells in thalamo-recipient layers. More specifically this effect resulted in Layer IV 

neurons exhibiting more compact tuning than Layer V and Layer II/III (Joachimsthaler et 

al., 2014; Linden & Schreiner, 2003; Rothschild et al., 2010). I compared for the first 

time onset and offset FRA shapes across depth to confirm if this trend is present in the 

mouse. Indeed, onset FRAs decreased in compactness with depth (unpaired t-test, p 

<0.05), whereas offset FRA shapes appeared uniformal across depth (Figure 3.9 D). 

This trend in onsets appears to agree with the commonly held belief that FRA 

complexity increases with depth, with the exception of Layer IV. I therefore investigated 

in greater detail the FRA shapes responsible for this significant trend. I concluded that 

92% of cells at the 600μm bin were very narrowly tuned FRAs, resulting in a low 

compactness value comparable to diffuse FRAs (Figure 3.9 B, left). Offset FRAs were 

instead extremely diffuse with 2% of all FRAs exhibiting narrow tuning (Figure 3.9 B, 

right). These results confirm that complexity does increase with depth. 

 

3.2.9 Intrinsic membrane characterisation of IB and RS cells 
 

Recent work in the rat identified distinct frequency responses between intrinsic burst-

like (IB) pyramidal cells and regular spiking (RS) cells. This result could suggest that 

neuronal classes play different roles in the transfer of auditory information (Gao & 

Zheng, 2004; Le Bé et al., 2007; Schubert et al., 2001). Given the nature of extracellular 
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recordings it is difficult to determine which particular cell class is responsible for depth 

dependent changes in frequency tuning. I recorded intrinsic membrane properties of 

individual cells and correlated them with frequency response profiles, in an attempt to; 

firstly, confirm that pyramidal cell classes can exhibit different frequency tuning in the 

mouse and secondly assess whether certain patterns of onset/offset responses can be 

attributed to a specific cell class. Membrane properties and dynamics of recorded cells 

were determined by presenting a series of current steps, ranging from -200pA to 200pA 

(Figure 3.10 A-C). In order to qualify for analysis, recordings must have low access 

resistance (n=54) (28.4 ± 3.3 MΩ) and spike shape stability. Responses were then 

placed in two electrophysiological classes; intrinsic bursters (IB) and regular spikers 

(RS) based on two qualities; 1st inter-spike intervals and spike half-widths. Intrinsic 

bursters are defined as having shorter 1st inter-spike intervals, higher frequency average 

inter-spike intervals and smaller spike half-widths than regular spiking pyramidal cells 

(ANOVA p < 0.05). Another discerning criteria that is usually determined via 

morphological recovery, is soma size. IB cells are known to have larger soma than RS 

cells (Nowak et al., 2003). Input resistance (Ri) has been previously used as a marker 

for cell size, where neurons with large input resistances tended to be smaller than those 

with larger input resistances (Dégenètais et al., 2002). Based on these criteria three 

types of neuronal cell class were established in this dataset, Regular spiking (RS), 

Intrinsic Burst (IB) and Fast-spiking (FS) (Figure 3.10 A-C). Based on these two distinct 

classes six other electrophysiological properties were compared (Fig 3.10 D); Spike 

height, Input resistance, membrane time constant, rheobase, 1st spike interval and 

halfwidth. Of these measures tau (ANOVA p = 0.04) and Ri (ANOVA p = 0.04) also 

showed significant differences between the two populations. RS cells have higher input 

resistance than IB cells (39.71± 9.5 MΩ), longer membrane time constants (3.41± 0.09 

ms), longer 1st spike intervals (14.36± 0.77 ms) and larger spike half-widths (0.49 ± 0.08 

ms). Therefore I can successfully distinguish between RS and IB cells based on 3 

parameters; input resistance, 1st ISI and spike-halfwidth (ANOVA, p <0.05).  

 

3.2.10 IB cells have more diffuse FRA tuning than RS cells  
 

Input resistance showed the most significant difference therefore it was selected as the 

measure through which to compare IB and RS cells to frequency tuning. Given that cell 

class has been previously correlated with the breadth of frequency tuning, I selected 

compactness as the best measure to quantify the difference between IB (n=4) and RS 

cells (n=11). I firstly confirmed that onset frequency tuning thresholds show a strong 

negative correlation with a neurons resting membrane potential (r=-0.5, p<0.05, Figure 



 53 

3.11 A). Interestingly the effect was not reflected in offset responses. I then compared 

the compactness of onset and offset FRAs between IB and RS cells. There appeared to 

be an overall mild positive linear correlation (r = 0.3, p = 0.15), between input resistance 

and compactness (Figure 3.10 B left) in onset responses. IB cells on average had more 

diffuse FRAs (3.3x10-2±3.5x10-3), than RS cells (3.8x10-2±1x10-3), however the 

difference between the two populations, given the small sample size was not significant 

(unpaired t-test, p = 0.12). Offsets were then compared (Figure 3.11 B, right), where IB 

cells on average had more compact FRAs (3.4x10-2± 4x10-3), than RS cells (3 x10-

2±3.6x10-3). This is interesting as the result suggests that indeed IB cells had broader, 

more diffuse FRAs than RS cells at onset, however for offset responses the trend is 

reversed. However both results fall short of significance therefore no conclusive remarks 

can be made. Given that the peak latency of EPSPs varied between onset and offset, 

could neuronal class be responsible for this observed trend? Interestingly for onset 

responses IB cells exhibited slower peak latencies (66 ± 4 ms) on average than RS cells 

(43.5 ± 8.5 ms) (Figure 3.11 C, left). This trend was also observed in the offset 

responses where IB cells exhibited slower peak latencies (82 ± 23 ms) on average than 

RS cells (77.5 ± 13 ms) (Figure 3.11 C, right). However these results, again due to the 

sample size, fall short of significance.   
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3.3 DISCUSSION 
 
This chapter has focused on performing a systematic quantification of frequency 

tuning in AI of the mouse, allowing for comparison and confirmation of previous 

observations in other species under anaesthetised or awake conditions.  

Remarkably little was known about subthreshold properties and their relationship 

with frequency tuning, therefore, these data provide valuable insight into 

subthreshold auditory processing. I also applied this analysis to an under 

researched phenomenon attributed to the detection of sound duration at the level 

of cortex, the offset response. Under anaesthesia, the mouse auditory cortex is as 

rich as awake preparations, with neurons exhibiting a broad range of subthreshold 

FRA bandwidths and frequency tuning. Interestingly onset and offset CF frequency 

tuning was highly heterogeneous in the same unit, suggestive of an important 

functional role in the processing of auditory stimuli. 

 
3.3.1 Onset responses had lower thresholds than offset 
 
This data identifies 24kHz to be the frequency that elicits the lowest response 

threshold in the anaesthetised mouse, where threshold was on average 21 dB 

SPL.  Single-unit studies in both anaesthetised mice (Linden & Schreiner, 2003), 

cats (Imaizumi et al., 2004; Schreiner & Cynader, 1984), ferrets (Bizley et al., 

2005), rats (Pandya et al., 2008; Polley et al., 2007) and awake monkeys 

(Recanzone et al., 2000; Scott et al., 2011) showed slightly lower thresholds (0-10 

dB SPL on average). This is an interesting discovery as anaesthesia has only been 

shown to impact threshold levels, by roughly 10 dB SPL (Linden & Schreiner, 

2003) when compared to awake preparations in the mouse (Koay et al., 2002). 

Given that the data I have presented is subthreshold, I would have expected lower 

threshold levels than those presented by extracellular recording and higher than 

awake preparations. I cannot rule out the possibility that the type of anaesthetic 

used in my preparation could effect threshold levels more than that reported in the 

literature, where all anaesthetised preparations mentioned are either 

Ketamine/xyalzine or inhalable halogenated ether. Interestingly it doesn’t appear to 

affect the overall shape of the audiogram where my data confirms a similar optimal 

hearing range of 15-25kHz (Koay et al., 2002; Linden & Schreiner, 2003). For the 

first time onset and offset responses were compared where two clear differences 

can be identified. Firstly, onset thresholds are on average 10 dB SPL lower than 

offsets and secondly the trend across frequency, although significant in both cases, 

is less prominent in offsets. The significance of this effect is unclear, however both 
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responses play a role in sound processing and perception as they contribute when 

tones are soft.  

3.3.2 Onset and Offset bandwidths 
 
One way of characterising auditory neurons is based on their bandwidths. We can 

infer two key pieces of data from the bandwidth; Firstly, larger bandwidths indicate 

input from a broad range of frequencies and secondly the ratio between bandwidth 

at 10 dB above threshold (BW10) and 40 dB above threshold (BW40) can allow for 

discrimination between I and U, V and O of FRA shapes i.e. its response across 

the frequency spectrum. I report subthreshold BW10 and BW40 (1-3 octaves) 

similar or larger than other studies using multi-unit recordings in AI of the 

anaesthetised cat (M. Kimura & Eggermont, 1999; Moshitch et al., 2006; Noreña & 

Eggermont, 2002; Schreiner & Sutter, 1992), rat (Pandya et al., 2008; Polley et al., 

2007), ferret (Bizley et al., 2005), bat (Hoffmann et al., 2008) and the mouse 

(Joachimsthaler et al., 2014). This result would suggest that the anaesthetic, 

although it may increase threshold, it does not appear to have a suppressive effect 

on the processing of auditory stimuli at the level of cortex. It also confirms that the 

breadth of subthreshold tuning curves expand significantly beyond those of 

suprathreshold tuning curves (de Ribaupierre et al., 1972; Kaur et al., 2004; Volkov 

& Galazjuk, 1991; Wehr & Zador, 2005).  In this regard offset tuning had a broader 

bandwidth at both BW10 and BW40 than onset responses.  This is an interesting 

discovery as it suggests that sound offset represent a broader frequency range 

than the frequency range that initiated the response in the first place.  

I then compared onset and offset subthreshold bandwidths to their suprathreshold 

counterparts, in order to determine how comparable they are. As expected, 

subthreshold bandwidths in both onset and offset were significantly larger that their 

suprathreshold tuning curves (Figure 3.4) (M. B. Calford et al., 1983; Eggermont, 

1996).  Interestingly although the subthreshold bandwidths in my dataset are 

similar or larger than those previously reported, the suprathreshold bandwidths 

were on average smaller (1 octave). This can most likely be accounted for by the 

fact that a smaller frequency range was used to acquire this data (4 octaves) than 

in previous studies (5-6 octaves) and the sample size (n=48) of spike data is 

significantly smaller than that obtained by extracellular recordings. Therefore if a 

larger frequency range was used I would expect both subthreshold and 

suprathreshold bandwidths to expand further. Further recordings must be done to 

confirm with confidence the bandwidths of suprathreshold onset and offset 
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responses.  

3.3.3 Suprathreshold bandwidths 
 
Although suprathreshold bandwidths between offset and onset responses appear 

to be the same there could be a translational difference between their subthreshold 

responses and spike activity. In other words, even though suprathreshold 

bandwidths are the same there could be a difference in the rate code and latency. 

Therefore spike latencies and the total number of spikes at onset and offset were 

quantified. The spike data implies that there is no significant difference between the 

total number of spikes at onset and offset. Regarding spike latency, onset 

responses appeared to exhibit shorter latencies than offset responses however the 

result was not significant. Therefore it is possible that there is no suprathreshold 

difference in bandwidth between onset and offset responses in the mouse. 

However given that spikes are generated based on EPSP peak amplitude and time 

course (Jack et al., 1975; Rall et al., 1967), we would expect to observe the same 

trend in subthreshold responses. Interestingly the mean peak amplitude of onset 

responses were larger than offset responses and onset peak latencies were faster 

than offsets (Figure 3.8 B). This result confirms previous extracellular observations 

in the anaesthetised cat (Qin et al., 2007). This would suggest that offset 

responses are less likely to elicit a spike than onset responses. However the 

suprathreshold data indicates that there is no difference, therefore this could 

suggest that although offset EPSPs are smaller, the baseline membrane potential 

is sufficiently elevated to still reach threshold. The elevated baseline membrane 

potential and subsequent offset PSP dynamics could be explained by membrane 

biophysical properties. The PSP caused by offset inputs appear to have smaller 

amplitudes and slower peak latencies, this could be explained in part by a 

decrease in input resistance caused by the onset inputs thus reducing the cells 

ability to store charge, which in effect attenuates the offset driving force. 

Interestingly the baseline membrane could also be sufficiently elevated making it 

easier for the incoming offset input to elevate the cells membrane potential to 

threshold. This would result in a false equivalence between onset inputs and offset 

inputs having dissimilar driving forces, as both produce similar spike output. 

Another factor to consider is that although subthreshold offset bandwidths are 

broader their responses are weakly distributed across frequency, which should 

result in narrower suprathreshold tuning. In order to confirm this hypothesis more 

suprathreshold data must be acquired 
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3.3.4 Frequency response areas are complex  
 
As mentioned previously bandwidth can be used to infer the shape of a neurons 

FRA. The data presented earlier in this chapter identified that bandwidths at 10dB 

above threshold are on average smaller than the bandwidths at 40dB for both 

onset and offset responses. This result strongly suggests that subthreshold 

bandwidths are not I-shaped. V-shaped tuning curves at the level of cortex are 

reported in abundance, with previous work in the mouse (Joachimsthaler et al., 

2014; Linden & Schreiner, 2003) and other species (Bizley et al., 2005; Hoffmann 

et al., 2008; M. Kimura & Eggermont, 1999; Moshitch et al., 2006; Noreña & 

Eggermont, 2002; Pandya et al., 2008; Polley et al., 2007; Schreiner & Sutter, 

1992) reporting their presence. There was no significant difference between onset 

and offset responses in this regard, as they had similar ratios between BW10 and 

BW40. However other studies also confirm the presence of more complex 

structures such as, multi-peaked and circular FRAs (Abeles & Goldstein, 1972; 

Christopher deCharms et al., 1998; Moshitch et al., 2006; Pelleg-Toiba & Wollberg, 

1989). It has been suggested that a single tone can evoke a large population 

response (Schreiner, 1998), most likely due to a variety of FRA shapes that likely 

overlap in non-identical populations (D. P. Phillips, 1995). I therefore employed a 

similar method to Moshitch et al, in order to go beyond the basic bandwidth ratio 

measure and identify how compact subthreshold FRAs are for the first time in 

Mouse AI. Surprisingly, offset responses were relatively more diffuse. Diffuse FRAs 

most likely occur as result of responses that were evoked across a broader range 

of frequencies, thresholds were lower and finally the perimeter of offset FRAs was 

larger as a result of multiple lobes. However, finely tuned FRAs could also be 

classified as diffuse based on this measure, as the perimeter is significantly larger 

than the bounded area. Interestingly, these types of diffuse FRA were found to be 

almost exclusive to onset responses.  

3.3.5 FRA shapes are depth dependent 
 
Depth dependent changes in complexity have been widely observed in auditory 

cortex (Joachimsthaler et al., 2014; Linden & Schreiner, 2003; Rothschild et al., 

2010). However the exact role it plays in at the network level and its potential 

impact on behaviour remains elusive (De Martino et al., 2015; Linden & Schreiner, 

2003). Recent work has shown that layer 2/3 neurons receptive fields are 

modulated by behaviour and cortical state, suggestive of context dependent 

processing of auditory input (De Martino et al., 2015; Petersen & Crochet, 2013). 
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Therefore it is necessary to identify different processing strategies employed 

across depth and eventually identify the cell types that may be responsible. For the 

first time onset and offset FRA shapes were compared across depth in the mouse, 

where depth dependent changes occurred in onset response FRAs but not offset 

responses. Finely tuned FRAs, were preferentially located at recording depths of 

600μm. Given that the suggested depth of these whole cell recordings can be 

extremely unreliable, as they are based solely on the coordinates of the 

manipulator, it is difficult to suggest which layer contributes to this effect. However, 

previously mentioned studies identified the thalamo-recipient layer IV as having 

more narrowly tuned FRAs with complexity increasing as you follow the canonical 

cortical circuit. Therefore it is likely that cells recorded at depths of 600μm 

correspond to Layer IV. In order to confirm this hypothesis it is necessary to 

perform a histological recovery of recorded neurons, and more accurately measure 

their cortical depth. Once this is performed it may be possible to answer how and 

why the cortex is organised in such a specific way and determine its relevance to 

behavioural output.  

 

3.3.6 Diffuse shapes are more likely to have divergent BF CF tuning 
 
The most common way of characterising frequency response is by identifying a 

neurons BF and CF. In this data set receptive field processing also appears complex, 

where in a given cell BF and CF weren’t always the same in both onset and offset 

responses (Figure 3.7 A). A majority of both onset and offset responses had different 

CF and BF tuning.  The phenomenon remains controversial as it has been reported in 

other species (Kaas, 2011; South & Weinberger, 1995) but not the mouse 

(Joachimsthaler et al., 2014). This apparent mismatch, could be attributed to the 

observed complexity in FRA shapes. If FRAs in AI commonly have multiple peaks, as 

has been suggested by the compactness measure and seen in other studies (Abeles 

& Goldstein, 1972; Christopher deCharms et al., 1998; Moshitch et al., 2006; Pelleg-

Toiba & Wollberg, 1989), then it would be expected that CF will differ from BF in the 

FRA. Given that both CF and BF elicit spike activity in onsets responses (Figure 3.8) 

we can assume that they encode relevant stimulus information. However in offset 

response the picture is less clear. Offset subthreshold CF did significantly correlate 

with suprathreshold CF, albeit to a lesser extent than onset responses, but offset 

subthreshold BF did not correlate with suprathreshold BF. As a majority of cells had 

CF tuned to a higher frequency than BF in both onset and offset responses, one 

possibility that could explain this effect relates to the mouse audiogram (Figure 3.2). 
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We have previously observed that threshold responses are lower between 15-25 kHz 

in onset and offset responses. Given that neurons in AI receive a variety of 

intracortical inputs resulting in more complex FRAs, it therefore wouldn’t be 

unreasonable to suggest that a consequence of this yields an interesting integrative 

process. In effect, regardless of subthreshold BF tuning, a neuron at the level of 

cortex is likely to receive intracortical input from cells tuned close to 20 kHz, resulting 

in shift in its CF to higher frequencies.  The exact functional relevance of this apparent 

asymmetry is unknown. 

 

3.3.7 Onset and offset tuning are different 
 

For the first time in the mouse AI, I compared the subthreshold tuning of onset and 

offset responses. My findings are in accordance with previous extracellular studies in 

the rat and monkey (Qin et al., 2007; B. Tian & Rauschecker, 2003), which described 

inconsistent tuning between onset and offset responses. Roughly 1/3 of neurons 

exhibited identical BF and CF tuning, with roughly 2/3 of neurons with inconsistent 

tuning. Given that both tuning paradigms evoke spiking this apparent diversity 

between tuning of onset and offset responses suggests a functional role. It has been 

proposed that they act as ‘dynamic filters’ for natural sounds, whereby the stimulus 

duration impacts a neurons filtering properties (Qin et al., 2007).  

 
3.3.8 Cell class and frequency tuning are likely correlated 
 

Recent work firstly identified that there is a non-uniformal distribution of cell class 

across depth (Nowak et al., 2003) and secondly, these cell classes displayed distinct 

frequency responses. These results could suggest that neuronal classes play different 

roles in the transfer of auditory information (Gao & Zheng, 2004; Le Bé et al., 2007; 

Schubert et al., 2001). Given that a non-overlapping synaptic mechanism drives 

responses to sound onsets separate to that of offsets (Scholl et al., 2010), it could be 

possible that the functional dichotomy of certain cell classes extends beyond onset 

frequency tuning. For the first time in the mouse I employed the whole cell technique 

to carry out two tasks: Identify cell classes and compare their onset and offset 

responses. Using current steps as the sole means through which cell class is 

identified can lead to ambiguous results, however based on the criteria previously set 

out in this chapter (Figure 3.10) I was able to successfully identify 3 separate cell 

classes. Assuming that cell size can be determined from input resistance, my data 

would suggest that cell size is positively correlated with compactness and negatively 

correlated with peak latency, where IB cells on average had more diffuse onset FRAs 
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and longer peak latencies than RS cells. These trends were not reflected in the offset 

responses. This is an interesting discovery, as it firstly could agree with a previous 

observation in the rat between IB and RS cells (Sun et al., 2013), but more importantly 

restricts this effect to onset responses, suggesting synaptic inputs responsible for  the 

offset responses are not class dependent. IB neurons have been shown to innervate 

higher order thalamic nuclei whereas RS cells mainly project intracortically and to the 

contralateral cortex (J. A. Winer, 2005). The spectrally and temporally broad 

responses of IB cells combined with its intrinsic burst like nature, most likely ensures 

the robust transfer of rich stimulus information to higher order cortices, which MGBd is 

known to innervate (Sun et al., 2013; J. A. Winer, 2005). The functional relevance of 

this circuitry could revolve around fine tuning where it has been previously suggested 

that this route contributes to the refinement of motor commands (S. M. Sherman, 

2007). RS cells and their ipsi and contralateral projections, on the other hand are 

more likely to be involved in inducing plasticity (Suga & Ma, 2003).  
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4 mGRASP: A UNIQUE TOOL FOR IDENTIFYING 
DEFINED SYNAPTIC INPUTS ONTO INDIVIDUAL 
NEURONS  
 
4.1 INTRODUCTION 
 

The main pathway responsible for the transfer of auditory information from lower 

order nuclei to cortex is between the ventral division of the medial geniculate body 

(MGBv) and primary auditory cortex (AI).  The classical view of thalamus is that it 

simply acts as a relay nucleus (Walker, 1938), targeting cortical neurons in layers IV 

and VI  (Sousa-Pinto, 1973) in a topographic manner, (Miller et al., 2001; Kahee 

Niimi & Matsuoka, 1979; Velenovsky et al., 2003) with minimal functional 

transformations (K Niimi & Kuwahara, 1973). However recent findings suggest a 

departure from these widely held conclusions.  

 

Studies involving the use of biotinylated dextran amine (BDA), revealed that 

thalamus projects to several layers other than the classic input layer IV, where 

interestingly the largest axons resided in Layer I (Burton & Jones, 1976; M. Wilson et 

al., 1969). This indicates that specific input to the superficial cortex could play a 

functional role, such as affecting temporal feedforward and feedback processes 

(Matsubara & Phillips, 1988; Mitani et al., 1985). Furthermore recent slice studies 

revealed that thalamic input to different layers of AI drives functionally distinct 

responses (Viaene et al., 2011a, 2011b), where stimulation of MGB evoked EPSPs 

of a different amplitude and time course depending on the cortical neurons laminar 

location. This apparent heterogeneous degree of thalamic input has been shown to 

extend beyond laminar distribution and include cortical cell class (Ji et al., 2015). 

Optogenetic stimulation of MGB identified varying degrees of excitation amongst 

cortical cell classes within the same layer. These results combined indicate a 

complex network of thalamic contributions to cortical processing which could suggest 

a greater functional transformation than previously thought.   

 

In order to generate a deeper understanding of thalamocortical transformations it is 

necessary to quantify thalamic inputs onto cortical neurons whilst simultaneously 

performing an electrophysiological and functional characterisation. Beyond simply 

quantifying the number of thalamic inputs a neuron receives an overlooked, yet 

extremely relevant factor that can influence the processing of spectral information 

and hence a receptive field, is their distribution. A simplistic view of a neuron’s role is 
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to translate incoming synaptic signals into an output, in the form of an action 

potential.  The process through which a neuron achieves this is synaptic integration 

(Jack et al., 1975; Mainen et al., 1996; Rall, 1967; Rall et al., 1967). Synaptic 

integration involves combining membrane potential changes caused by single or 

multiple pre-synaptic sources, and transforming them into an overall voltage 

deflection. More specifically, this process involves integrating the amplitude of the 

EPSP, its temporal characteristics (temporal summation) and finally the location 

along the dendritic arbor at which the depolarisation occurs (spatial summation). The 

relative impact of each component is still widely debated (Chadderton et al., 2014; 

London & Häusser, 2005; Rall, 1967). However previous studies have shown that 

spatially non-uniform distributions of synapses, such as clustering, influence dendritic 

summation and could be involved in plasticity (Harvey & Svoboda, 2007; Losonczy et 

al., 2008) or influence a neuron’s ability to selectively respond to spatiotemporal 

patterns (Branco et al., 2010; Gasparini & Magee, 2006; Poirazi et al., 2003; 

Spruston, 2008). These studies suggest that there could be an underlying causal role 

for synaptic distribution.    

 

The advent of a novel technique, mammalian GFP reconstitution across synaptic 

partners (mGRASP) (Kim et al., 2012), has made it possible to investigate, for the 

first time, the subcellular distribution of defined populations of synapses with 

standard fluorescent microscopy. The mGRASP technique involves the fusion of two 

complementary split-GFP fragments (called GFP1–10 and GFP11) where one 

portion is tethered to the presynaptic membrane and the other to the postsynaptic 

membrane of two synaptically linked neurons. To achieve this one spatially distinct 

brain region must be transfected with an aavCAG-pre-mGRASP-mCerulean and the 

other with transfected with post-mGRASP-2A-dTomato. Successfully labelled 

neurons AI will appear red and axons from thalamus will appear blue. Green 

fluorescence will only be visualised when a successful synaptic contact has been 

made. This technique is more efficient and accurate than EM methods, which involve 

identifying the degree of overlap between axonal and dendritic arbors in a small 

volume of tissue to infer the presence of a synapse (Braitenberg & Schüz, 2013; 

Peters & Feldman, 1976; Sotelo, 2003), where this has been shown to greatly 

overestimate the number of synaptic contacts (Mishchenko et al., 2010) (Bock et al., 

2011).  

 

Here I have applied this method to explore direct thalamic contributions to the 

processing of acoustic stimuli in primary auditory cortex. Utilising this powerful tool I 
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quantified and determined the distribution patterns of thalamic synaptic contacts on 

different cortical cell classes and layers in AI. I investigated for the first time how 

influential synaptic distributions are on spectral tuning, by performing whole cell 

recordings in vivo whilst simultaneously delivering the post-mGRASP-2A-dTomato 
plasmid (Rancz et al., 2011). This allowed for the identification and quantification of 

thalamic inputs on a single cell whilst also acquiring the labelled neurons spectral 

tuning and intrinsic electrophysiology. Its thalamic input profile could then be 

compared to other recovered single cells and the gross viral average, in order to 

determine if any correlates exist.   
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4.2 RESULTS 
 
 
4.2.1 Viral labelling of MGB and AI 
 

Retrograde tracer studies identified that AI receives 17% of its input (extrinsic and 

intrinsic) from the ventral portion of the medial geniculate body (MGBv) (Andersen et 

al., 1980; Colwell, 1977; Lee & Winer, 2011; Merzenich et al., 1982). Therefore in 

order to quantify thalamic synapses on AI neurons, both MGB and AI must be 

robustly located and transfected using the dual viral technique of mGRASP (Kim et 

al., 2012). This firstly allowed me to determine how axonal input from MGB is 

distributed across cortex, and relate this distribution to the number of identified 

synapses. It also allowed me to investigate the subcellular distribution of synapses in 

order to establish whether thalamic input is ‘random’ or ‘clustered’. The post-

mGRASP virus is stereo-tactically injected into primary auditory cortex (AI) and the 

pre-mGRASP virus is injected into the medial geniculate body (MGB) of an 

anaesthetised mouse (Figure 4.1 A). The pre- portion of mGRASP encodes cerulean 

(blue fluorescent protein responsible for identifying pre- infected cells) (Figure 4.1 B 

top panel) and a portion of green fluorescent protein, GFP.  The post portion of 

mGRASP encodes, dtomato (a red fluorescent protein responsible for identifying 

post- infected cells) (Figure 4.1 B bottom panel) and the second portion of GFP 

required to form the complete fusion protein. When the two portions of GFP are close 

enough (20 nm), they fuse resulting in the green fluorescence characteristic of GFP.  

 

Three steps are followed in order to confirm successful stereotactically directed 

expression of the Pre-viral load in MGB. Firstly, the presence of labelled cell bodies 

at the location of MGB based on the ‘Allen brain atlas’, secondly the presence of 

axons in primary auditory cortex and finally the presence of axons being most 

prominent in the internal granular layer of cortex (Figure 4.1 B,C,D) (Herkenham, 

1986; Jones, 1981; Kemper & Galaburda, 1984). I firstly quantified the viral spread of 

the pre-virus in MGB, were I confirmed that MGB was sufficiently labelled (0.37 ± 

0.02 mm3). A larger volume of 300 nl was used to ensure sufficient labelling of MGB, 

given its difficulty locating it in the brain. I therefore quantified the laminar distribution 

of thalamic axons (n=4) by calculating the total labelled area in a 100x100 μm space 

across layers (Figure 4.1 D), where cortical layers were determined based on cell 

types, density and thalamic input (Brodmann, 1909; Douglas & Martin, 2004; Gilbert 

& Wiesel, 1979; D. LORENTE, 1949; Zilles & Amunts, 2010). Layer IV had the 

highest axonal input (5846 ± 201 μm2), followed by layer VI (3527 ± 156 μm2 ), Layer I 
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(3353 ± 51.4 μm2), Layer V (1664 ± 320 μm2) and finally Layers II/III (1492 ± 128 

μm2). The difference between layers that received the most input (IV, VI, and I) and 

layers that received the least (II/III and V) was significant (ANOVA, F = 1.17 p < 

0.05). This result confirms that the lemniscal pathway, MGB to AI, can be 

successfully labelled - as Layer IV, the internal granular layer, was identified as 

receiving the most axonal input.  

 

4.2.2 Layer and Cell class  
 

Recent work has shown that thalamic input onto cortical layers of AI drives 

functionally distinct responses (Viaene et al., 2011a, 2011b). Further optogenetic 

studies revealed that different cortical cell classes across laminae had different levels 

of thalamic innervation (Ji et al., 2015).  I therefore utilised the post-mGRASP virus to 

not only recover synaptic contacts but also their morphologies in order to establish 

cell classes. A much smaller viral titre of 50 nl was used to label neurons with the 

post virus in order minimize viral spread (0.067 ± 0.001 mm3) and subsequently 

avoid labelling cells outside the field of AI. Across all experiments (N=9) neurons that 

were not located in a densely labelled cluster and sufficiently labelled by the Post-

mGRASP virus (n=24) had their morphologies reconstructed using Neutube (Figure 

4.2A) and their depths determined. Two cell classes were established based on 

somatic and dendritic shape, where pyramidal neurons have a characteristically large 

triangular shaped soma with biconically radiating dendrites (Megıas et al., 2001); 

pyramidal (n=15) and non-pyramidal (n=9) (Figure 4.2 B).  Based on these 

distinctions, Pyramidal neurons (202.4 ± 19.4 μm2) had on average larger soma than 

Non –pyramidal neurons (154.2 ± 21.1 μm2), however these two classes based on 

soma size just fall short of significance (ANOVA, F = 2.1 p = 0.1).  Comparing the 

dendritic area the difference is clearer, with Pyramidal neurons having larger 

dendritic arbours (1841.1 ± 420 μm2) than Non-pyramidal neurons (1376.1 ± 342 

μm2). For this measure the difference between the two classes is significant 

(ANOVA, F=1.25 p < 0.05). In terms of laminar distribution a majority of cells were 

located in layer IV, 50%, with 33.3% in layers II/III, 16.6% layer V, 8.3% layer I and 

none in layer VI (Figure 4.2 D). This result confirms that the Post-virus can express 

sufficient quantities of fluorescent protein to reconstruct neuronal morphology and 

hence establish two distinct morphological classes based on their dendritic area, in 

this data set.  
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4.2.3 Process of synapse identification  
  

Given that both components of the mGRASP virus can successfully transfect 

thalamic and cortical neurons, I then developed a technique to automatically quantify 

all synaptic contacts. Previous techniques that used the ‘Peter’s rule’ (Braitenberg & 

Schüz, 2013; Peters & Feldman, 1976) were shown to greatly overestimate the 

number of true synaptic contacts (Mishchenko et al., 2010). The principle authors of 

the mGRASP technique propose that it overcomes this drawback as synaptic 

identification can only be achieved when the two portions of GFP are close enough 

(Kim et al., 2012). Given the nature of the mGRASP technique I was able to compare 

the two methods; as a prerequisite for successfully labelled GFP synapses, is the 

overlap of a dendrite with an axon. I therefore developed an automated process 

(Matlab) whereby stack images acquired from a fluorescence microscope are 

deconstructed. Overlaid images were split into each component channel (red and 

blue). A threshold is set to remove artefact from the image where subsequently the 

total number of pixels were calculated and each given the same unitary value (Figure 

4.3 A). The two ‘pixel extracted’ channels are then combined and an image is formed 

only where there is an overlap of the red and blue channel (± 1μm) (Figure 4.3 B). 

The resulting pixel counts are then converted into area. On average neurons had a 

much smaller overlap area (81.4 ± 21.3 μm2) than the average axonal area (3120 ± 

722.3 μm2) and neuronal area (1725 ± 289.3μm2) in the field of view. This is 

expected as depending on the image acquired, certain regions may be axon dense 

where there is no Post-labelled cell. Even though neurons in Layer IV, as expected, 

had the highest overlap area (107 ± 17.2μm2), interestingly the amount of overlap 

was not significantly different across layer. When comparing the amount of overlap 

between cell classes pyramidal neurons (82.5 ± 31 μm2) were just as likely to receive 

overlap than Non-pyramidal neurons (79.5 ± 25.8 μm2), (ANOVA, F= 2.8 p = 0.9).  

These results indicate that even though certain cortical layers receive more axonal 

innervation, they don’t necessarily lead to more dendro-axonal overlap. Furthermore, 

this overlap is equally present in pyramidal and non-pyramidal cell classes. Based on 

previous techniques, this overlap area qualifies as ‘successful’ synaptic contacts.  

 

The image was analysed further in order to compare detected mGRASP with 

predicted synapses (based on overlap area). Once blue and red fluorescence are 

overlapping (±1 μm) the green channel was then observed. If there is green 

fluorescence at the point of overlap (meets the criteria described in Methods) then a 

synapse is identified. Fig 4.4 A is an example layer IV pyramidal neuron that receives 
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a typical level of axonal thalamic innervation for its laminar position. On the left lower 

panel we have a Neutube reconstruction of the apical trunk where red indicates the 

portion of labelled neuron and the green spheres (n=26) are identified synapses. This 

procedure is then carried out across the entirety of the labelled neuron, in order to 

construct a complete synaptic map of thalamic inputs. I then compared ‘actual’ 

(mGRASP) synapses to the predicted number of synapses, which are determined by 

the overlap of labelled axon and dendrite. The data confirms that there is mismatch 

between the expected number of synapses and the actual number of synapses 

observed on neurons, where the correlation is mildly positive (Pearson correlation 

coefficient, r = 0.3 p < 0.05) (Figure 4.3 C) as you would expect, however there is 

~100 fold difference between the expected (2000 ± 398 synapses) and actual 

number of synapses (15.6 ± 4.3 synapses). This result suggests that overlap is not 

as accurate an indicator as mGRASP for quantifying the actual number of synapses 

present on a neuron. However there does remain the possibility of false negatives, 

although this rarely occurs (< 1%) (Kim et al., 2012)  

 

4.2.4 Quantification of Thalamocortical synapses  
 

Recent studies have suggested that thalamic inputs that innervate certain layers of 

cortex can evoked functionally distinct responses in AI neurons (Viaene et al., 2011a, 

2011b). Given that I can successfully label thalamic contacts on AI neurons using the 

mGRASP technique, I quantified the number of synapses present on cells across 

depth. Layer I (56 synapses) on average had the most synapses followed by Layer 

IV (34 ± 15.6 synapses), Layer II/III (7.5 ± 1.2 synapses) and Layer V (7.2 ± 1.2 

synapses). The number of synapses across layer was significant (ANOVA F= 2.6, p 

< 0.03), which confirms previous work that suggests that laminar location most likely 

determines the number of thalamic synapses a neuron receives (Figure 4.4B). 

Previous work identified that different cortical cell classes across laminae had 

different levels of thalamic innervation (Ji et al., 2015). This could suggest that not 

only do thalamic inputs target specific layers more than others but they’re also cell 

class selective. I then compared the total number of synapses between two 

morphologically distinct cell classes. On average Pyramidal neurons had more 

synapses (20.1 ± 6.7 synapses) than Non pyramidal neurons (10.4 ± 6.7 synapses), 

however this difference was not statistically significant.  

 

Given that synaptic contacts can be axo-somatic or axo-dendritic and that Pyramidal 

neurons have larger dendritic areas than Non-pyramidal neurons, I segregated the 
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number of synapses that occurred on the soma and dendrites and compared the 

difference again between the two classes (Figure 4.4D). Exactly 50% (n=11) of 

neurons had synapses present on their soma (4.3 ± 0.6 synapses) where there 

appeared to be a strong linear correlation between the number of synapses on the 

soma and the number of synapses on the dendrite (10.2 ± 3 synapses) (r = 0.75, p < 

0.01) across the overall population (Figure 4.4C). Interestingly, Pyramidal neurons 

had significantly (unpaired t-test, p <0.05) more synapses on their dendrites (18.3 ± 

6.2 synapses) than Non-pyramidal neurons (5.6 ± 3.3 synapses). Instead Non-

pyramidal neurons had on average more somatic synapses (3.2 ± 1.1 synapses) 

than Pyramidal neurons (1.8 ± 0.7 synapses). These results could suggest that 

axonal innervation from thalamus is not only layer dependent but also preferentially 

synapses onto dendrites Pyramidal cells. I previously observed a significant 

difference between Pyramidal and Non-pyramidal dendritic area, so investigated the 

possibility that neurons with far reaching dendritic arbors are more likely to form 

synapses (Figure 4.4E). When comparing dendritic area and the number of 

synapses, the data indicates that neurons with long dendritic arbors are more likely 

to have more synapses (r = 0.2, p > 0.05).  

 

4.2.5 Thalamocortical inputs are somatocentric 
  

Even though Pyramidal neurons have more dendritic synapses and that longer 

dendrites are more likely to have more synapses we don’t know how distributed 

those synapses are across dendritic arbors, where previous work highlighted the 

potential importance of spatial summation and its subsequent impact on synaptic 

integration (Branco et al., 2010; Jack et al., 1975; Mainen et al., 1996; Rall, 1967; 

Rall et al., 1967). As mGRASP is such a novel technique, there have been very few 

studies that have been able to probe functionally connected regions and quantify 

synaptic distributions (Druckmann et al., 2014). Therefore I quantified synaptic 

distributions and compared them amongst neuronal class and depth. Synapses in 

both neuronal classes had to be normalised relative to the dendritic location. 

Synaptic distance is directly traced through the dendrite back to the centre of the 

soma and then normalised relative to the total length of dendrite to which the 

synapse is located (Figure 4.5 A). This then yields two types of distribution, somato-

centric and distal distributions (Figure 4.5 B). Given that laminar location determines 

the number of thalamic synapses a neuron is likely to have, I compared normalised 

synaptic distances across the entire neuronal population within different layers of 

cortex (Figure 4.5 C). Interestingly, there was also a significant difference between 
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cells located in layer IV (0.28 ± 0.1) and the other layers (0.2 ± 0.1) (unpaired t-test, 

p<0.05). These results combined suggest that neurons located in layer IV are more 

likely to have synapses than other layer but those synapses are also less somato-

centric than other cortical layers. When comparing normalised synaptic distance 

between cell class across layer however there was no significant difference. 

Therefore thalamic axons innervating layer IV do not have unique distributions 

between cell class.  

 

Having determined that Pyramidal (0.2  ± 0.06) and Non-Pyramidal neurons (0.18 ± 

0.1) on average had similar normalised synaptic distance, I therefore wished to 

clarify whether this effect was correlated with a neurons size and the number of 

synapses it receives. Surprisingly the data indicates that in both cell classes, neurons 

that are more somatocentric (smaller normalised distances) have more synapses 

(Figure 4.5 D).  Furthermore when comparing dendritic area and normalised distance 

for pyramidal neurons, there was a strong negative correlation  (r = -0.55, p < 0.1) 

(Figure 4.5 D), however it must be noted that the trend just falls short of significance. 

The opposite trend was observed in non-pyramidal neurons, where the correlation 

was positive between normalised synaptic distance and dendritic area (r = 0.92, p < 

0.01). Firstly these results indicate that thalamic convergence onto neurons in AI 

regardless of cell class is relatively somato-centric and secondly that thalamic input 

is targeted closer to the soma the larger a pyramidal neuron is whereas the opposite 

trend exists for Non-pyramidal cells, where the larger the dendritic area the more 

likely those thalamic synapses are going to be located further from the soma.  

 
4.2.6 Whole cell in-vivo transfection 
 

Synapses for both Pyramidal and Non-pyramidal neurons appear to be somato-

centric, meaning that thalamic contacts preferentially synapse onto proximal 

branches. The most intriguing question remains, is there any functional relevance to 

this apparent non-random synaptic distribution. By performing the mGRASP labelling 

technique on a single cell level whilst obtaining its electrophysiological profile, I can 

establish if certain synaptic distributions impact a neurons integration of frequency 

information. Whole-cell transfection (Rancz et al., 2011) provides us with a unique 

way of inserting DNA into a single cell whilst performing standard 

electrophysiological recordings.  In this case, Post-mGRASP plasmid DNA is added 

to the recording solution and during the recording it passively diffuses from the 

internal solution to the inside of the cell (Figure 4.6 A). Once a successful recording 



 81 

from one neuron is achieved, the pipette is slowly retracted and the animal recovered 

in order to prevent labelling of false positives. A successful incubation period lasts 52 

hours and then the neuron is subsequently imaged. Biocytin-streptavidin-cy3 was 

initially used to demonstrate that single neuronal morphology could be recovered, 

24hrs after a recording (n=6).  Once single cells could be identified using biocytin, 

plasmid GFP was used (n=3) in order to prove that individual cells could be 

successfully transfected.  Finally, pCAG-Post-mgrasp was used to prove that a 

plasmid form of the Post virus could be successful transfected (n=4) (Figure 4.6 B). 

Whole cell transfection is a necessary but extremely low yield technique, where a 

sequence of events must occur in order to increase the success rate (Figure 4.6 C). 

A high plasmid titre, negative voltage injection, Long incubation period and low 

access resistance all appear to be crucial in recovering single cell morphologies at a 

reasonable success rate of 25%.   

 

4.2.7 Thalamocortical contributions to spectral tuning  
 

Prior to electrophysiological recordings, MGB was stereo-tactically injected with pre-

Virus and allowed to incubate for 2 weeks in order to sufficiently label axons in 

primary auditory cortex (AI).  Neurons in AI were then recorded and labelled with 

pCAG-Post-mGRASP via whole cell transfection. Cortical neuronal morphologies 

and thalamic innervations were successfully recovered via this labelling technique 

(Figure 4.7 A). Recovered single cells were compared to their viral bulk counterparts. 

These neurons were identified as Pyramidal cells (layer IV and VI), where on 

average their somatic (106 ±17 μm2) and dendritic areas (1283 ±760 μm2) were not 

significantly different from viral recovered morphologies of the same class. Again as 

expected the single cells also showed a disproportionately higher number of 

expected synapses in comparison to the total number of actual synapses where they 

also received similar levels of thalamic input (12 ±8.5 synapses) when compared to 

the viral average (Figure 4.8 A). Normalised synaptic distances were then calculated 

and compared to the viral average for Pyramidal cells. Interestingly both recovered 

neurons had similar somatic centric distributions of their synapses when compared to 

the viral average (Figure 4.8 B). 

 

These neurons individual electrophysiological and spectral tuning profiles were 

compared with its thalamic synaptic distribution profile, in order to identify any 

functional correlates. Given that single cell morphologies and synaptic distributions 

did not deviate significantly from the virally labelled population, some functional 
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correlates can be extrapolated. As in chapter 3, a full functional characterisation was 

performed (Figure 4.9 A), this included determining electrophysiological cell class by 

injecting hyperpolarising/depolarising current steps and frequency response area. 

Intrinsic properties and frequency, for the first time, were compared to its thalamic 

synaptic distribution profile, which included the quantification of thalamic synapses 

and their distribution. Given that both recovered cells were Regular spiking neurons 

(RS), I could not compare them to other electrophysiological cell classes. I therefore 

selected input resistance (Ri) as we have previously seen in Chapter 3, that intrinsic 

burst firing (IB) neurons can be distinguished based on this parameter. There 

appeared to be a mild positive trend between the input resistance and synaptic 

distribution (Figure 4.9 B). A positive trend was also observed between the number 

of synapses and Bandwidth at 40dB above threshold, where the Layer VI neuron had 

a larger bandwidth (1.8 oct) than the layer IV neuron (1 oct) (Figure 4.9 C left). This 

trend was also reflected when comparing bandwidth to the synaptic distribution. A 

positive trend was also observed between the number of synapses and Peak 

latency, where the Layer VI neuron had a faster peak latencies (26 ms) than the 

layer IV neuron (28 ms) (Figure 4.9 D left).  As seen in the previous chapter both 

neurons had similar peak latencies to the population data. Finally a positive trend 

was also observed between the number of synapses and Peak amplitude, where the 

Layer VI neuron narrowly had larger EPSPs (5 mV) than the layer IV neuron (4.6 

mV) (Figure 4.9 E left). Interestingly both neurons had similar smaller peak 

amplitudes in comparison to the population data acquired in chapter 3. When 

comparing normalised synaptic distance the same positive trends were observed 

across all measures (Figure 4.9 B-E, right). Given such a small sample size, no 

conclusions can be made. Although an extremely promising technique more 

recordings are required to investigate any correlation that may exist between 

thalamocortical synaptic distributions and synaptic integration of auditory stimuli.  
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4.3 DISCUSSION 
 
In auditory neuroscience, determining which receptive field properties are enhanced, 

passively inherited and synthesized in auditory cortex are key questions that must be 

answered. The synaptic mechanisms and neural circuitry involved in spectral 

integration remain a mystery. Previous studies have suggested that thalamic input 

could play more a complex functional role in cortical processing than simply a feed 

into the canonical circuit of auditory cortex (Matsubara & Phillips, 1988; Mitani et al., 

1985; Viaene et al., 2011a, 2011b; M. Wilson et al., 1969). The amount of thalamic 

input a cortical neuron receives has been shown to drive functionally distinct 

responses (Ji et al., 2015; Viaene et al., 2011a, 2011b). The distribution of thalamic 

synapses on cortical neurons has never been performed in auditory cortex. By 

evaluating a neuron’s functional response profile and combining those observations 

with thalamic distributions it may be possible to shed light on this apparent functional 

dichotomy. Previous methods used to identify functional synapses were proven to be 

inaccurate (Mishchenko et al., 2010; Sotelo, 2003)  or extremely time consuming 

(Navlakha et al., 2013). The mGRASP technique overcomes these issues, allowing 

for efficient and accurate synapse identification. There is a growing body of evidence 

that suggests that pre and postsynaptic connectivity patterns are not as random as 

previously thought (Brown & Hestrin, 2009; Y. Li et al., 2012; Yu et al., 2009), where 

clustering of functional homologues occur on specific dendrites (Kleindienst et al., 

2011; Makino & Malinow, 2011; McBride et al., 2008; Takahashi et al., 2012). How 

this apparent non-random distributions effect the overall representation of a stimulus 

is widely debated (Jack et al., 1975; Mainen et al., 1996; Rall, 1967; Rall et al., 

1967). For the first time in auditory cortex I applied the mGRASP technique, in an 

attempt to tackle the role of thalamus in frequency tuning integration. In this chapter I 

discovered that thalamic axons preferentially but not exclusively synapse onto layer 

IV neurons in a somatocentric manner, independent of cell class. Furthermore I 

identify interesting trends regarding the size of pyramidal and non-pyramidal dendritic 

arbors and the distribution of thalamic input. For the first time in auditory cortex I 

whole cell in vivo transfection was performed in order to identify a neuron’s frequency 

response profile to the type of thalamic input it receives. In order to establish if 

observed differences in thalamic distribution impact cortical tuning curves further 

investigation is required.  
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4.3.1 Identifying thalamocortical synapses using mGRASP   
 

I successfully applied the mGRASP technique to identify thalamic inputs on cortical 

neurons in AI. Even though this technique proved to be more efficient and accurate 

than previously reported studies, drawbacks do exist. Successfully labelling the 

lemniscal pathway to AI has its challenges and a limiting factor of this technique is 

that you cannot restrict the Pre-viral payload to exclusively label MGBv. As a result 

other thalamic sub regions such as, MGBd and parts of LGB, are inevitably labelled 

and could contribute to some axonal innervation observed in AI. However the 

positioning of the Post virus in theory should minimize the chance of labelling 

synapses from other thalamic regions, which may have been labelled via 

unavoidable spread of the pre-virus from its initial site of injection in MGB. 

Furthermore ~90% of thalamic innervation into AI is from MGBv, as a result it is 

unlikely that false-positives that occur due to pre-viral spread into other regions of 

thalamus will occur (J. A. Winer, 1984). The spread of the post-virus must be 

controlled more accurately, where in most cases labelled neurons were located 

within 100 μm of the injection site. This was achieved in part by reducing the titre to 

50 nl (Kim et al., 2012). The timing of Post-mGRASP viral incubation also presented 

a challenge, where if it was left for too long cell necrosis and debris ensued or if 

terminated too early, cells were insufficiently labelled and could not be analysed 

properly. However given these drawbacks and strict analytical criteria (see Methods), 

a population of synaptic data was achieved (n=24). This population could be divided 

into two classes, pyramidal and non-pyramidal (Fig 4.2 B).  This classification was 

based on soma and dendritic morphology, where given the size of labelled 

population, this decision to define only two morphological classes seemed 

reasonable. The mGRASP technique not only allowed for the comparison of 

morphological classes but another important aspect of cortical circuitry, a cells 

laminar location (Binzegger et al., 2004; Callaway, 1998; Fitzpatrick, 1996; Kagan et 

al., 2002; Lund et al., 1979; Ringach et al., 2002). 

 
4.3.2 Quantification of thalamocortical synapses in AI 
 

Having proved that thalamus and cortex can be successfully labelled by each 

respective virus, thalamocortical contacts were inspected by identifying the presence 

of GFP. Neutube reconstruction of dendrites and axons assisted in a robust 

identification of ‘true’ synaptic contacts. Cell debris and channel bleed through of 

other fluorophores can lead to false positives being identified. In order to overcome 

this issue only green fluorescence at the point of overlap between the red and blue 
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channel is considered to be a true synaptic contact. A rolling ball radius of 0.25μm is 

applied in order to identify individual puncta. As previously mentioned, prior 

techniques involved simply using overlap as a marker for synapse formation, 

therefore actual synapses, identified via the mGRASP technique, were then 

compared to the predicted number of synapses, estimated based on overlap alone. 

My data demonstrated a significant over prediction of the expected number of 

synapses (~ 100 fold) confirming the result of previous studies (Mishchenko et al., 

2010; Sotelo, 2003) which suggests that overlap technique is not an accurate 

indicator for the number of actual synapses. However the value presented in this 

data set is also 10 fold lower than Mishchenko, Hu et al. 2010, which could indicate 

that the criteria used in this analysis could be too restrictive. Therefore to overcome 

this underestimation of thalamic contacts, the degree of overlap could be extended. 

Another interesting observation is that the relative amount of overlap was uniformal 

across depth and cell class. This would directly contradict previous studies that 

indicate thalamic input predominantly form synaptic contacts in layer IV (A. Kimura et 

al., 2003; LeDoux et al., 1985; Romanski & LeDoux, 1993). Again these results prove 

that, in the case of mGRASP, overlap is not the best indication of true synaptic 

formation. Finally the issue of false negatives was addressed in the techniques 

original publication and other light microscope based techniques (Kim et al., 2012). 

The combination of false negatives and overly restrictive criteria performed in these 

analyses would mean that the estimates/distributions I have presented are lower 

than the ‘true’ number of thalamic synapses on AI cortical neurons. The issue could 

be clarified by pharmacologically silencing cortex, whilst performing two-photon 

calcium imaging of neurons in AI whilst simultaneously driving thalamus. Although 

admittedly an arduous control experiment it does present the obvious benefit over 

electron microscopy as previously mentioned, as functional synaptic contacts can be 

identified. Furthermore when comparing the neuronal area in this chapter with other 

reports they appear low (Sarid et al., 2007), which could be due to insufficient 

labelling of all dendrites. 

 

4.3.3 Non-uniformal distributions of synapses across layer 
 

The next step is to identify how these synapses are distributed across cortical layers.  

Thalamic axons preferentially form synaptic contacts on deep Layer III and Layer IV 

neurons (A. Kimura et al., 2003; LeDoux et al., 1985; Romanski & LeDoux, 1993). In 

this data set we see that Layer IV does indeed receive the most input. However other 

cortical layers such as V and I also received a significant amount of input. This result 
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confirms previous reports of thalamic innervation of other cortical layers beside layer 

IV (Ji et al., 2015; Viaene et al., 2011a, 2011b). It has been suggested that these 

layer dependent inputs could play specific roles. In the case of layer I innervation, 

thalamocortical axons could drive responses on apical dendrites prior to activation 

from the lemniscal pathway via the classic canonical route (S. Sherman & Guillery, 

2006). This path could play role in feedforward and feedback processes (Matsubara 

& Phillips, 1988). Regarding innervation into other cortical layers, it has been 

proposed that it could affect, intralaminar circuitry, cortico-fugal and cortico-cortical 

circuits (Kitzes & Doherty, 1994). How this data fits into new models suggesting that 

the cortex actually can be represented as two distinct processing units that receive 

the same sensory information yet process it differently remains unclear 

(Constantinople & Bruno, 2013; Feldmeyer, 2015; Sarid et al., 2007). We know that 

neurons present in the upper layer and lower layers of cortex have distinct 

morphologies and channel expressions, yet what acts as the main ‘enabler’ for them 

to process the information differently could be explained by the distinct synaptic 

distributions that have been indicated in my dataset. Through further experimentation 

we can confirm the power of the mGRASP technique and begin to answer the basis 

for these distinct processing strategies and its potential role in behaviour and 

perception.  

 

4.3.4 Thalamocortical synaptic distributions 
 

Where these thalamic projections synapse on auditory cortical neurons up until now 

has not been researched. In this neuronal population 50% had synapses on their 

soma. The functional consequence of these synapses is unclear, as typically somatic 

synapses are typically inhibitory (Mitchell & Silver, 2003). This result, if true is 

interesting because thalamic projections to cortex are predominantly excitatory. The 

spatial arrangement of thalamic synapses on target dendrites was then analysed, 

revealing a somato-centric distribution (Figure 4.5).  The location of a synapse was 

normalised relative to the length of its dendrite. For both neuronal classes a vast 

majority of synapses were located on distal dendritic branches. Interestingly, even 

though larger pyramidal neurons, as previously reported had more synapses, these 

results suggest that these same large pyramidal neurons were more likely to have 

more somato-centric distributions. The opposite trend was observed in non-

pyramidal neurons, where larger cells were more likely to have more proximal 

synapses, relatively speaking. In combination with somatic synapses, there is a 

strong indication that thalamic inputs synapse close to or on the soma. The functional 
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significance of this trend has never been investigated. The neuronal classification of 

non-pyramidal and pyramidal, as previously mentioned, isn’t ideal as identifying 

neuronal class based on morphology alone can lead to subjective interpretations and 

can be improved with relative ease. By incorporating immunohistology and 

electrophysiology it is possible to not only determine cell class more definitively but 

also identify subclasses.   

 

4.3.5 Comparing a neurons individual electrophysiological profile with its synaptic 
distribution  
 

In order to determine whether there was any functional underpinning to the observed 

synaptic distributions, the mGRASP technique was combined with in vivo whole cell 

electrophysiology. This was achieved using whole cell transfection, where an 

electrophysiological characterisation is performed followed by a characterisation of 

thalamic synapses. MGB was stereo-tactically injected with pre-Virus and 

subsequent recordings were made in AI, where recorded neuron is transfected with 

pCAG-Post-mgrasp via passive diffusion through the pipette. It proved to be an 

extremely low yield technique, however minor adjustments were made (Fig 4.6 C) in 

order to achieve a final success rate of 25%. In total 4 neurons were recovered using 

this technique, however due to low intrinsic fluorescence, 2 cells were excluded from 

the analysis as morphological and synaptic profiling was not possible. This proved to 

be an inherent issue with this technique, as due to the nature of the plasmid 

construct common immune-histochemical protocols used to boost a signal would not 

work. Therefore to increase the sample population more research is required to 

identify the best incubation period for this plasmid construct. This method allowed us 

for the first time to compare possible thalamic distributions to functional output.  

Although due to the sample size, only casual observations can be made. There 

appeared to be a mild positive trend between the input resistance and synaptic 

distribution where this positive trend was less evident when comparing the 

membrane time constant (Fig 4.9 B). A positive trend was also observed between the 

number of synapses and the frequency tuning bandwidth at 40dB. However as this 

data falls short of significance no definitive conclusions as of yet can be made.  

 

A final point to make is that dendritic and somatic areas calculated do appear low 

(Benavides-Piccione et al., 2006). This could be as a result of insufficient labelling 

relative to other techniques or alternative analyses used. Further experimentation on 

this new technique will help improve its robustness.  



 88 



 89 



 90 



 91 



 92 



 93 



 94 



 95 



 96 



 97 

5 CORRELATES OF CMR IN AI OF THE MOUSE 
 
5.1 INTRODUCTION 
 

Natural auditory environments are complex, where natural sounds are both spectrally 

and temporally complex.  Pure tones are often used to probe the auditory system, as 

this stimulus is the basic building block of more complex naturalistic sounds. Animals 

have evolved the ability to detect salient sounds in complex background noise, a 

process crucial to survival (communication, hunting and evasion). This process 

requires segregation of perceptual objects by monitoring intensity changes across 

frequency ranges over time. Changes in such spectro-temporal patterns, are 

detected by the auditory system to a remarkably high resolution (Klumpp & Eady, 

1956; Rosenblith & Stevens, 1953). The auditory system employs pattern recognition 

when monitoring these spectro-temporal changes (McDermott et al., 2013), to 

improve sound processing (Yaron et al., 2012). One such pattern prevalent in nature 

(vocalisation and running water) is coherent amplitude fluctuations across 

frequencies (Comodulation) (Nelken et al., 1999). Such a phenomenon could act as 

a cue in the auditory system for object formation and segregation (McDermott et al., 

2013).   

 

A psychoacoustic phenomenon known as, Comodulation masking release (CMR), 

involves adding comodulation to an existing masker to improve signal detection (Hall 

et al., 1984). This is a somewhat surprising effect, as typically adding noise 

decreases signal detection (Fletcher, 1940). There are two types of CMR; within-
channel CMR, where the modulated noise is similar in frequency to the signal and 

across-channel CMR, where the modulated noise and signal frequencies are 

dissimilar. A mechanistic explanation of within-channel CMR has been demonstrated 

in the auditory periphery whereas across-channel CMR, instead has been attributed 

to an auditory grouping effect performed in the brain (Buss et al., 2009; T Dau et al., 

2004; Torsten Dau et al., 2009; Verhey et al., 2012).  However the precise 

mechanism and location in the auditory pathway where this process is carried out is 

not well understood.  

 

The temporal history of the masker affects the magnitude of across-channel CMR (T 

Dau et al., 2004; Grose et al., 2009; Grose & Hall III, 1993; Grose et al., 2005; 

McFadden & Wright, 1992; Verhey et al., 2012). Increasing the duration of the 

masker (history) prior to the signal enhances CMR has also been shown to reduce 
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detection thresholds (Hatch et al., 1995; McFadden & Wright, 1990, 1992). 

Conversely asynchronous across channel noise modulation produces no masking 

release (Grose et al., 2009; Grose & Hall III, 1993; Grose et al., 2005). These 

findings would suggest that: 1) the history of the noise masker and 2) the importance 

of synchronous spectro-temporal dynamics are fundamental to across-channel CMR. 

Given that these are psychoacoustic observations the exact location in the auditory 

system that produces this effect is unclear. However these processes are suggestive 

of higher order processing that may involve auditory cortex. A handful of multi-unit 

and single unit extracellular studies have investigated CMR in the brain. These 

studies have been conducted in the cochlear nucleus (the first auditory nucleus) and 

auditory cortex (one of the last auditory processing stations), where most confirmed 

the effects of within-channel CMR (Nelken, Rotman et al. 1999, Nieder and Klump 

2001, Hofer and Klump 2003, Las, Stern et al. 2005). 

 

In this chapter I attempted to confirm the presence of across-channel CMR in primary 

auditory cortical (AI) neurons by performing whole cell recordings in the 

anaesthetised mouse.  Having established its presence I then assessed the influence 

of noise history (through the addition of a precursor) and determine whether it 

enhances the effect of CMR. I then determined if this enhancement involved cortical 

circuitry or whether any improvement is passively inherited from subcortical nuclei. In 

order to determine this auditory cortex was silenced during the precursor using 

optogenetics. This was achieved by targeting the expression of Channelrhodopsin-2, 

a light gated ion channel, to the membranes of PV+ interneurons in AI. PV+ 

interneurons are a subgroup of fast spiking GABAergic interneurons, that target the 

perisomatic region of pyramidal cells and therefore when activated will inhibit their 

activity. Whole cell recordings were performed during this stimulus paradigm in AI of 

PV-cre mouse lines and the resulting activity is monitored.  
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5.2 RESULTS 
 
5.2.1 Cortical correlates of CMR in mouse AI 
 

My first aim was to establish whether neural correlates of CMR are present in 

individual neurons of the mouse auditory cortex. Psychoacoustic CMR is 

characterised by increased detectability (reduced detection threshold) of a signal 

embedded in noise that lies within the same auditory filter. This type of noise is 

referred to as a narrowband masker (NB). The degree of masking release is 

dependent on (i) the amount of extra noise energy (bandwidth) encompassing the 

signal frequency (broadband), and (ii) the envelope of this additional noise energy is 

coherently modulated with respect to the NB masker. Therefore both conditions 

should be met in order to observe masking release of signal-evoked neuronal 

activity. In order to assess the relative contribution of additional noise energy and 

degree of co-modulation, a ‘modulated broadband masker’ must be presented. It is 

comprised of amplitude-modulated ‘flanking bands’ of pure tones, added to the NB 

masking stimulus (6 pure tones split into low and high frequency flanking bands). The 

modulation phase of flanking noise bands are presented either incoherently 

(incoherent modulation, IM), or coherently (coherent modulation, CM) (Figure 5.1A), 

with respect to the NB masker. Whole cell patch clamp recordings were made in AI 

of anaesthetised mice, where evoked activity to pure tone stimuli is recorded in order 

to establish a frequency response area. By determining a neurons FRA it then 

becomes possible to adjust the signal and masker frequencies in the CMR stimulus 

so that it represents the range of inputs onto individual cells. Finally, evoked activity 

was measured during the presentation of the pure tone signals embedded in 

masking noise at a variety of signal-to-noise ratios (SNRs; range: -10 to +20 dB, 5dB 

steps) for each co-modulated condition. Across the population, evoked responses 

were observed to both signal and co-modulated masker, including a wide variety of 

firing profiles to the masking noise alone (Fig 5.1 B). Thus by comparing signal 

detection between three distinct noise conditions (NB, IM, CM), I could measure the 

influence of across-frequency coherence on signal detectability in auditory cortex 

(Figure 5.1 B-C). 

 

5.2.2 CM-condition produces larger EPSPs and reduces threshold relative other 
conditions 
 

A majority of neurons demonstrated a simple relationship between evoked activity 

and SNR, whereby increased signal levels evoked larger and faster EPSPs across 
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all conditions, however there were clear observable differences between conditions 

(Figure 5.1 C-D). For each condition had ten repeats across all eight different SNR 

conditions (see Methods 2.2.2). The ten repeats were averaged in order to produce a 

mean trace across the entire stimulus window (2 s) at each SNR. Each mean trace 

was then subtracted from the mean trace for the noise alone condition, in order to 

isolate signal-evoked activity. Finally signal evoked activity across SNR was 

measured in terms of mean membrane potential (MMP) and peak latency (PL) of 

evoked EPSPs during the signal window of the entire trace. Interestingly, when 

comparing MMP across SNR, on average the CM condition evoked larger EPSPs 

than (2.2 ± 0.76 mV), IM (1.1 ± 0.6 mV) and NB (1.7 ± 0.8 mV). This trend was 

reflected in the peak latency where EPSPs in the CM condition were faster than 

(13.6 ± 3.76 ms), IM (18.6 ± 5.9 ms) and NB (16.1 ± 5.7 ms), where the difference 

was significant (ANOVA, F=1.9, p =0.05).  

 

This result shows that the CM condition evokes significantly faster and larger 

responses relative to IM and NB conditions, which suggest that it is more likely to 

elicit spike activity. However given that CMR concerns the reduction of threshold, I 

then compared signal detection thresholds across condition so see if these larger 

EPSPs occur at lower SNRs. This was achieved by determining the minimum sound 

level, otherwise known as threshold, at which signal-evoked responses can be 

observed (> 0.5 mV). Interestingly there was a significant difference across SNR 

between conditions in both MMP and Peak time (MANOVA, p = 0.05) where the NB 

(9.5 ±1 dB SNR) and IM (8±1 dB SNR) conditions showed similar activity, whereas 

signal evoked responses in coherently modulated broadband (4±1.6 dB SNR) noise 

were detected at significantly lower SNRs (Figure 5.1 D-E). Given that there were 

only small differences in signal-evoked responses between NB and broadband IM 

maskers it suggests that adding sound energy alone to a masking noise neither 

improves nor impairs the detectability of low-level signals. On the other hand CM of 

flanking noise bands produced significant enhancements in signal-evoked 

subthreshold activity, which suggests that these results correspond to true masking 

release reported in previous psychoacoustic measurements.  From a biophysical 

perspective, it could suggest that inputs driven by IM and NB stimuli integrate on a 

neurons dendrite, overlapping in time so that channels are opened simultaneously 

(temporal summation). This could result in a ‘leakier’ cell (low resistance R) and 

hence less able to store charge (C), resulting in attenuation of the driving force. This 

difference in temporal summation of synaptic contacts across a cell could explain the 

reduction in threshold observed under the CM condition.  
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5.2.3 Centering a neurons receptive field at the signal improves CMR 
 

Frequency selectivity is an elemental property of auditory cortical neurons, 

fundamental in determining individual neuronal sensitivity to tone signals. Most 

psychoacoustic studies have centred the noise and signal frequency around the 

minimal threshold response in an audiogram (Buus, 1985; Hall III & Grose, 1988; 

Hall et al., 1984). Recent extracellular studies report within-channel CMR correlates 

in cat AI (Nelken et al., 1999) and across-channel CMR in mouse AI (Sollini et al., 

2014). It has been suggested that a neurons frequency tuning impacts signal 

detectability (Sollini et al., 2014). In order to confirm this effect, a neurons 

characteristic frequency (CF) was identified by determining its FRA and two types of 

CMR stimulus are presented i) where the embedded signal, as previously presented, 

matches its CF and the second ii) changing the signal frequency.  The signal 

frequency was altered ± 1 oct from CF, and evoked activity compared (n = 8). As 

expected, on average the On-CF response showed an improvement over Off-CF for 

all measures (Fig 5.3 C-E) (MMP 1.8 ± 0.5 mV and Peak time 28.4 ± 18.2 ms). There 

was also a significant reduction in threshold when the signal frequency is set at CF 

vs off-CF (unpaired t-test, p <0.05). These results suggest that frequency tuning 

plays a crucial role in signal detection.  

 

5.2.4 Noise history improves CMR 
  

Psychoacoustic studies have shown that the temporal history of the masker is known 

to affect the magnitude of across-channel CMR (T Dau et al., 2004; Grose et al., 

2009; Grose & Hall III, 1993; Grose et al., 2005; McFadden & Wright, 1992; Verhey 

et al., 2012), however a correlate of this effect has only been observed recently in the 

mouse (Sollini et al., 2014). The original coherently modulated noise signal had its 

early noise portion removed resulting in two stimulus conditions, a long and a short 

CM (Figure 5.2 A). There was a significant difference (unpaired t-test, p<0.05) 

between both measures where EPSPs were on average larger (MMP, 1.55 ± 3.76 

mV) and faster (PL, 4.8 ± 1.7 ms) in the long condition than the short CM condition 

(Figure 5.2 C). The difference in threshold was as significant across SNR (MANOVA, 

p <0.05), where thresholds were on average lower in the long condition (4 dB SNR) 

(Figure 5.2 D). Overall, this result demonstrates that the noise history enhances the 

effect of CMR at the level of cortex.   

 

5.2.5 Cortex contributes to CMR 
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Adaptation to coherently modulated maskers could manifest at several stages in the 

ascending auditory pathway. To determine whether it is an effect passively inherited 

from subcortical regions or is formulated at the level of cortex a paradigm to 

transiently and selectively inactivate neuronal activity in the auditory cortex during 

early sound processing while leaving activity in subcortical processing centres intact 

was employed. To achieve this a protocol involved was used to selectively express 

channelrhodopsin (ChR2) in Parvalbumin-positive (PV+) interneurons using viral 

injections of the FLEXed ChR2 construct into auditory cortex of PV-Cre mice (Figure 

5.4). ChR2 was successfully expressed in PV+ neurons (96.6  ± 0.8 %), however 

there were instances PV- and YFP+ labelled cells. Given that so few were observed, 

activation of a handful of other cells types (pyramidal and SOM) most likely will no 

impact the overall effect of cortical inactivation produced by PV+ interneurons. Blue 

light stimulation (150ms, 473nm, 5mW) of cortical tissue caused transient activation 

of PV+ cells (Figure 5.4 D), which in turn produced strong inhibition of cortical 

pyramidal cells (Weible et al., 2014) (Figure 5.4 D). This method enabled fast 

temporal inactivation, and more importantly, recovery of auditory cortical processing, 

indicating that any potential leakage into other cell types had no observable impact. 

This stimulus protocol was first tested on the short duration masker (CM), where 

laser inactivation of cortex occurred prior to the presentation of the modulated 

masker and signal (n=32).  

 

Signal-evoked responses measured in MMP (0.7 ± 0.4 mV) and PT (2.7 ± 1.77 ms) 

were unchanged following cortical disruption demonstrating that cortex could reliably 

recover following laser inactivation (MMP MANOVA, p = 0.5 and PT, MANOVA, p = 

0.9). For the long-CM condition the result is unclear as the two measures produced 

conflicting effects. When looking at differences in peak latency of EPSPs under each 

condition, there is a significant increase in latency under the cortically inactivated 

condition (3.58 ± 1.5 ms), whereas there was an insignificant decrease in MMP (0.7 ± 

0.1 mV) (Fig 5.5 C). This trend was also observed across SNR, where there was no 

significant change between the two conditions in terms of MMP whereas for PT there 

was (MANOVA, p << 0.01). Therefore, based on this data selective optogenetic 

inactivation of auditory cortex caused a significant reduction in signal-evoked 

response when measured in PT but not MMP, possibly demonstrating that auditory 

cortical processing of the early sound portion could be critical for large across-

channel CMR. To confirm this hypothesis further experimentation is required as 

thresholds did appear to increase to similar levels between the long-CM opto 

condition and the short CM condition (Figure 5.5 D). Laser stimulation during the 
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presentation of the early sound portion also resulted in a large significant change in 

threshold, increasing thresholds by 5.4 dB (from 0.2 to 5.6 dB SNR).  Therefore in 

conclusion selective optogenetic inactivation of auditory cortex caused a significant 

reduction in signal-evoked response, demonstrating that auditory cortical processing 

of the early sound portion most likely plays a critical in large across-channel CMR. 

 

 

 

5.3 DISCUSSION 
 

The auditory system has the ability to identify salient sounds in noisy backgrounds; 

the mechanism through which it evolves into a sensory perception is best explained 

through across-channel CMR. In this chapter, a potential neural correlate of CMR 

has been identified in AI of the mouse, where the largest effect involved adding more 

frequency information and coherently modulating it  (Fig 5.1). Interestingly, ‘priming’ 

auditory cortical processing with an extension of noise (precursor) increased CMR at 

the level of cortex. Silencing cortex had the effect of on average increasing 

thresholds and hence diminishing the effect of CMR. These results would imply that 

primary auditory cortex plays a role in the formation of across-channel CMR, 

however further experiments will need to be carried out to test the validity of this 

statement.  

 

5.3.1 Across-channel CMR  
 

It has been suggested that across channel CMR occurs when the embedded noise 

encompasses frequency information beyond a single auditory filter. I therefore 

measured the impact of adding coherent and incoherent modulated flanking noise 

bands, outside of a mouse auditory filter, on cortical detection of embedded pure 

tones. This was achieved by performing whole cell recordings in AI of anaesthetised 

mice where subthreshold activity was recorded in response to different stimulus 

conditions. Subthreshold activity can be very informative regarding the type of inputs 

a neuron receives where two critical EPSP dynamics involved in achieving 

suprathreshold activity can be easily determined (amplitude and timing). Of the three 

stimulus conditions (NB, IM, CM), the incoherently comodulated noise didn’t improve 

signal detection significantly from the narrowband condition. The comodulated 

condition did significantly reduce threshold and on average (across SNR) where it 

also evoked larger and faster responses to the signal (higher MMP and shorter PL), 
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suggesting that this most likely translates to spike activity.  These results would 

suggest two things: Firstly that in the IM condition, even though more sound energy 

has been added to the noise, a requirement for improving CMR, there is no observed 

improvement in signal detection thresholds which could indicate that frequency 

channels in AI do not integrate and act independently. Secondly in the case of the 

CM condition, the modulation phase appeared crucial in enhancing the effect 

additional noise energy, as there was a large decrease in detection threshold. This 

most likely suggests that across-frequency integration occurs when sound energy is 

synchronised across frequency channels. 

 

5.3.2 Noise history improves signal detection 
 

Psychoacoustic experiments have shown that CMR was sensitive to the spectro-

temporal history prior to signal presentation (Buss et al., 2009; T Dau et al., 2004; 

Grose & Hall III, 1993). My results agree and confirm that presentation of an 

extended portion of the noise prior to signal presentation improved detectability 

(Figure 5.3). This effect was observed firstly in EPSP dynamics where the MMP was 

on average larger in the long CM condition than the short CM condition. Secondly the 

long condition evoked faster EPSP’s on average than the short condition. Combined 

with this, differences thresholds were significantly increased in the short condition (4 

dB SNR). Several mechanisms have been proposed that could explain this effect 

(Sollini et al., 2014) such as synaptic plasticity and complex inhibition. Stimulus 

specific adaption (Ulanovsky et al., 2003) appears to be a common feature in AI 

where the plasticity has been shown to evolve and change neuronal responses over 

rapid timescales (Fritz et al., 2005). It has been suggested that this This dynamic 

model of AI could serve a means of improving performance during perceptual 

learning (Polley et al., 2006; Schnupp et al., 2006) where this mechanism could be 

attributed to the influence that AI has on subcortical processing, (King et al., 2007; 

Suga, 2008).  

 

5.3.4 Contribution of Auditory Cortex to CMR  
 

As you ascend through the auditory system feature selectivity becomes more 

apparent, such as increased receptive filed dimensionality, frequency specificity 

(Atencio et al., 2012) and the increasing effect of stimulus history (Wehr & Zador, 

2005). Some of these features are known to be involved in object formation at the 

level of cortex and beyond (Bizley & Cohen, 2013). Across-channel CMR is heavily 
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reliant on stream segregation and subsequent object formation, but to what extent 

auditory nuclei contribute to its effect remains unknown (T Dau et al., 2004; Torsten 

Dau et al., 2009; Verhey et al., 2012). The optogenetic study attempts to answer the 

contribution that Primary auditory cortex has on observed CMR (Figure 5.5). 

Transient activation of PV+ neurons temporarily disrupts the cortical network by 

inhibiting excitatory pyramidal neurons that they synapse onto, which in turn has a 

cascade effect. Given that a majority of input onto cortical neurons is cortico-cortical, 

pyramidal neurons are left with distant cortical and thalamic input. By silencing one of 

the key components in cortical processing it is possible to abolish any across 

frequency integration or an alternative unknown network effect that mostly likely 

evolves at the level of cortex. To determine the benefit of noise history auditory 

cortex was silenced during the priming period of the stimulus, which was shown to 

act as a key cue in signal detection (Figure 5.3). The data implies that on average 

auditory cortex enhances the effect of CMR but is not responsible for it, as noise and 

signal evoked activity is still detected in the laser condition, albeit diminished. This 

would suggest that auditory cortex augments an inherited precortical effect.  
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6 GENERAL DISCUSSION & FUTURE WORK 
 
 
6.1 Probing selectivity in sensory cortices  
 
 
Auditory cortex plays a critical role in further integrating the spectral and temporal 

information it receives from subcortical nuclei (Linden & Schreiner, 2003; Volkov & 

Galazjuk, 1991). My main aim in chapter 3 was to acquire the basic receptive field 

properties of cortical neurons in the mouse. Previous research in AI describes 

receptive-field properties of neurons obtained by single/multi-unit recordings in 

anaesthetized or awake animals. The limitations to this approach, as previously 

mentioned, are uncertainties regarding the class of cell that is firing and its 

underlying synaptic activity. In this regard very little is known about auditory cortical 

responses in the mouse. The work in this thesis identified and confirmed interesting 

trends regarding frequency responses and how cells respond to their cessation 

(onset and offset responses) in the anaesthetised mouse. In summary: subthreshold 

receptive fields were broad, sometimes with bandwidths of 4 octaves. Onset 

responses were more frequency selective than offset responses. Even though onset 

and offset suprathreshold bandwidths were similar, EPSP dynamics were not; with 

onset evoked EPSPs peak amplitude and latency were larger and faster respectively. 

I also confirmed that frequency tuning of both Onset and Offset responses is 

complex, where a majority of neurons exhibited mismatches between onset and 

offset CF tuning. This complexity most likely occurred as a result of the 

heterogeneous shapes of frequency response areas in both onset and offset 

responses Although preliminary, my data suggests that there could be functional 

differences between IB and RS cells in the mouse AI, however more experiments 

must be carried out to establish these trends.  

 

All in all, these recordings represent a narrow spectrum of what would be a full 

characterisation of the type of stimulus information auditory cortical neurons can 

encode. Although non-homogeneous there appear to be representations of 

binaurality (Middlebrooks et al., 1980), intensity information (D. Phillips et al., 1994; 

Polley et al., 2007), gradients for sharpness of tuning (Read et al., 2001) and 

response timing (Cheung et al., 2001). Therefore by expanding the stimuli presented 

to neurons it may be possible to identify more precisely the exact transformations 

that auditory cortex performs. Furthermore the utilisation of the patch clamp 

technique in these set of experiments allowed for partial characterisation of neuronal 
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responses to simple tonal stimuli in AI. Although insightful, determining cell class 

based solely on its electrophysiological profile is insufficient. Therefore a simple 

addition to the experimental design would be to add Biocytin and recover the 

recorded cells morphology. This would enable more accurate identification of cell 

type and depth, and hence the role those individual units might play in overall 

network function. However presenting all of these stimuli whilst maintaining cellular 

viability would be quite challenging. Therefore less invasive and long-term recordings 

must be employed. Two-photon calcium imaging, offers the best means to further our 

understanding, as the dynamics of calcium indicators and ability to record at deeper 

cortical locations is being constantly improved. 

 
 
 6.2 High throughput approaches for identifying functional and anatomical correlates  
 
 
The gross viral labelling technique identified interesting synaptic distributions of 

thalamic inputs onto cortical cells. Irrespective of cell class, the data presented in this 

thesis would suggest that these synapses cluster on distal dendrites. Furthermore I 

was also able to establish two distinct morphological classes, where there appear to 

be interesting trends regarding subtle differences in synaptic clustering. However as 

previously mentioned there are several drawbacks; such as isolating neuronal 

processes to individual cells, overestimating viral incubation which can result in 

cellular debris that interferes with puncta detection and false positives. The very strict 

criteria I employed to avoid these inherent issues, though lead to a smaller dataset 

and potential underestimation of ‘true puncta’. By carrying out further experiments 

using the same methodology it will be possible to increase the size of the dataset 

and test the validity of my observations. This would enable one to generate 

interesting hypotheses such as; does the non-uniformal distribution of thalamic input 

across cortical layers yield distinct synaptic distributions? And do those synaptic 

distributions vary between cell classes within those layers? Furthermore by applying 

post-hoc immunhisotchemical labelling (PV, SOM, CR, CCK and VIP) it may be 

possible to increase the repertoire and serve as an affirmation of neuronal classes 

beyond morphological inspection (X. Xu et al., 2010).  

 

How these interesting synaptic distributions from thalamus contribute to receptive-

field properties of neurons remains elusive. The mGRASP technique doesn’t 

necessarily tell you how a particular input contributes to integration; it does offer 

useful insight from which one can make inferences. I approached this problem by 
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marrying mGRASP with single-unit recordings by applying the in vivo whole cell 

transfection technique for the first time in the mouse. Although an extremely low yield 

technique, I proved that by adjusting certain parameters it is possible to recover the 

synaptic map and receptive field of a neuron in 1 in every 4 experiments. I attempted 

to identify what aspect of the technique prevented any further increase in yield by 

performing two-photon guided patch clamp experiments with Alex-Fluor 594 on 

anaesthetised mice. I confirmed that neuronal death did not occur immediately after 

recordings even with rapid retrieval of the patch pipette, as neuronal morphologies 

were visible for up to 30 minutes (Figure 6.1). This would suggest that neural death 

occurs as a result of long-term damage, possibly as a result of ionic imbalance or 

lipid peroxidation (Lu et al., 2002).  

 

 

 

Figure 6.1  
Two-photon guided patch. Neuron located in auditory cortex visualised using Alex Fluor 594. The image is 
taken after pull off, with the cell still visible after 20 minutes. This would suggest that the membrane was no 
ruptured during the patching and pull off process (scale = 15μm). 
 

It would appear that the best strategy involves performing the gross viral labelling 

method first followed, by two-photon guided patch clamp recordings. By selecting 

spatially distinct neurons it could be possible to retrieve receptive fields and then 

correlate them to post-hoc imaging of their synaptic maps. Alternatively, one could 

inject each respective virus in MGB and AI replace patch clamp recordings with 

calcium imaging and using juxta-cellular labelling identify recorded neurons post hoc. 

Beyond identifying thalamic inputs it would be of great interest to segregate the type 

of synaptic input further and identify which inputs the most prominent. By using 

specific cre mouse lines it could be possible to express the pre portion of the virus in 

certain neuronal cell classes, such as SOM or PV interneurons, and then quantify 

their synaptic contributions and correlate them potential functional implications.  

 
6.3 Identifying and deciphering cortical circuits involved in across channel CMR 
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In chapter 5 I confirmed a physiological correlate of CMR at the level of primary 

auditory cortex. Furthermore this correlate can only be accounted for through across-
channel effects. By cortically silencing via laser stimulating PV cells expressing 

ChR2, it is possible to identify if this correlate of CMR at the level of cortex is merely 

occurs as a result of passive inheritance. My data indicates that there is an increase 

in threshold when cortex is silenced. However the trend just falls short of 

significance, therefore it is necessary to perform more experiments in order to 

confirm if cortex definitively contributes. The next obvious question is how cortex 

contributes. Assuming that auditory cortex augments an inherited precortical effect, 

as my results suggest, one possible mechanism that it could rely on, is stream 

segregation. Stream segregation, although a vaguely understood concept most likely 

involves complex feed forward and other inhibitory mechanisms. Therefore it may be 

possible to silence or enhance inhibitory circuits in cortex and identify if the action of 

certain inhibitory circuits are responsible or not. This can only be achieved by 

selectively transfecting specific inhibitory neuronal classes such as SOM and PV with 

ArchT or ChR2, in order to perturb the circuit and monitor the resulting activity. 

Furthermore most CMR studies have been restricted to Extracellular recordings. 

Whole cell recordings provide us with a potentially unique insight into the type of 

neurons that encode CMR, an aspect due to time constraints, not explored in this 

thesis. Of the auditory evoked recordings (n=80), 32 (dataset in chapter 5) were 

classed as having significant responses to CMR. This could suggest that certain 

subtypes/classes of neuron are recruited into a specific circuit involved in CMR. To 

test this hypothesis it would be necessary to identify morphological and 

electrophysiological properties of recorded neurons and directly compare them to 

CMR response profiles. By combining these two approaches it may be possible to 

begin building perceptual circuits.  
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