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This paper is a numerical investigation on model reduction and con-

trol system design of integrally actuated membrane wings. A high-fidelity

electro-aeromechanical model is used for the simulation of the dynamic

fluid-structure interaction between a low-Reynolds-number flow and a di-

electric elastomeric wing. Two reduced-order models with different levels of

complexity are then derived. They are based on the projection of the full-

order discretisation of fluid and structure on modal shapes obtained from

eigenvalue analysis and Proper Orthogonal Decomposition. The low-order

systems are then used for the design of Proportional-Integral-Derivative and

Linear Quadratic Gaussian feedback schemes to control wing lift. When im-

plemented in the full-order model, closed-loop dynamics are in very good

agreement with the reduced-order model for both tracking and gust re-

jection, demonstrating the suitability of the approach. The control laws

selected in this work were found to be effective only for low-frequency dis-

turbances due to the large phase delay introduced by the fluid convective

time-scales, but results demonstrate the potential for the aerodynamic con-

trol of membrane wings in outdoor flight using dielectric elastomers.

Nomenclature

a Modal amplitude

Cij Left Cauchy deformation tensor

Cl Lift coefficient

Cp Pressure coefficient

Ei Electric field vector

Fij Deformation gradient

J Determinant of the deformation gradient

Jm Gent model material constant
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K Controller gain, penalty factor

P Pressure

qi System states

Sij snapshot matrix

U Volumetric strain energy function

V Velocity magnitude, voltage, volume

vi Velocity vector

W Electromechanical strain energy function

Greek Letters

α Angle of attack

ε Dielectric permittivity

λ Stretch

µ Shear modulus

ν Poisson ratio

ρ Density

σij Stress tensor component

Φij Projection matrix

ϕ Base function

Subscripts and Superscripts

e Electromechanical

m Mechanical

ν Viscous

s Structural

V Voltage

∞ Equilibrium elastic, Free streem

0 Initial, Reference, Vacuum

I. Introduction

The development of advanced Micro Air Vehicles (MAVs) requires computational meth-

ods capable of characterising the dynamics of highly compliant structures in low-Reynolds-

number flows. The main driver is the maximisation of efficiency to meet the stringent power

and weight limitations of these vehicles. Experimental results at typical flying regimes of

MAVs have shown that, thanks to their compliance, membrane wings exhibit delayed stall

and higher maximum lift than their rigid counterparts [1, 2]. From a flight dynamics point

of view, fixed-wings built with membranes have also shown higher manoeuvrability, agility

and enhanced stability to small flow disturbances [3, 4]. Despite these advantages, low-speed

controllability of fixed-wing MAVs remains one of the main issues that needs to be solved

for outdoor flight. A promising strategy is the use of embedded actuation through the use

of Dielectric Elastomers (DE) as the membrane material. This combines the advantages

of membrane wings with a simple and lightweight control mechanism and could result in

increased stability and controllability and lead towards “on-demand” aerodynamic perfor-

mance. Recently, Hays et al. [5] and Curet et al. [6] have tested the use of DEs to increase
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the performance of membrane wings through open-loop static and dynamic actuation. Low

actuation authority was found at low angles of attack, with amplitudes of the oscillations

being mostly independent on the voltage frequency. For larger angles the mean lift coef-

ficient increased up to 20% but at the cost of large amplitude oscillations. A delayed in

stall angle of up to 5◦− 7◦ was also observed, which is consistent with previous experiments

on non-actuated membranes [7]. However, issues of material stability and the high-voltage

requirements would need to be addressed before actual deployment as MAV wing skins [8].

In particular, the required voltage for actuation depends on the membrane thickness and

can reach several kilovolts for 1 mm thick wings.

Future design of such platforms will benefit from computational models that help describ-

ing the complex physical mechanisms in the interactions between the actuated membrane

and the surrounding fluid. Several coupled models for passive membrane wings have been

proposed in the literature [9, 10, 11]. Buoso and Palacios [12] have extended them to a

fully coupled electro-aeromechanical wing model and investigated the open-loop response of

the actuated membrane. The actuation has shown to provide enough authority to drive the

dynamic response of the system, with peaks of lift coefficient up to twice the reference, non-

actuated one. Those analysis are based on a membrane thickness of 50 µm, which requires

voltage amplitudes of the order of 500 V. To date, however, there have been no previous

experimental or numerical studies on the DE membrane performance in closed-loop.

Flow control in these flow regimes has mostly been investigated to suppress vortex-

induced vibrations of bluff bodies. Open-loop and closed-loop control schemes based on

Proportional-Integral-Derivative (PID) and state-feedback laws have been successfully demon-

strated in this context [13, 14]. However, large time delays have also been observed for

low-Reynolds-number flows. They demand very large integral gains and have shown to be

quite challenging for control system design [7, 14]. Tregidgo et al. [7] showed the presence

of a time-lag between the structural and fluid responses which was varying according to

the flow conditions. Additionally, large delays in the response of actuated wings in low-

Reynolds number flows have been measured by Williams et al. [15] who used feed-forward
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control schemes to speed up the system response. The compensation of the large delays for

low-Reynolds number applications is still an open problem and that is particularly relevant

for flow control on membrane wings.

State-feedback and feed-forward control schemes in practical applications require estima-

tions of the system response, which is usually done via low-order descriptions of the system.

Some model reduction techniques have been previously used for high-Reynolds flows, in-

cluding Volterra series [16] and Proper Orthogonal Decomposition (POD) [17]. Also for low

Reynolds numbers flows around cylinders POD and the Eigensystem Realisation Algorithm

(ERA) have been used [18, 19]. POD has also been previously adopted in the post-processing

of the low Reynolds number flow around membrane wings [20], although actuation of the

membrane has not yet been considered. POD-based ROMs have been successfully used for

control-system design in several numerical and experimental investigations [21, 22, 23, 24].

This work aims to demonstrate a POD-based reduced-order description for integrally-

actuated DE membrane wings to aid preliminary control feedback design. A previous work

by the authors [12] has investigated the open-loop dynamics of actuated membrane wings in

a low-Reynolds-number flow using a full-order coupled model. Further to those results, the

same framework will be used in this paper to derive a suitable reduced-order model. Section

II summarizes the full-order coupled aero-electromechanical model of Ref. [12]. Section III

introduces two low-order description for the actuated membrane wing. By means of the

two different reduced-order models (ROMs), section IV investigates the sensitivity of the

identification method on the magnitude of the input signal and compares the results of the

full and low-order description to assess the final results. Using the low-order description,

PID and LQG controllers are designed (section IV.C) and finally implemented in the full-

model to track required aerodynamic performance and compensate for disturbances of the

inlet flow conditions (section IV.C.3).
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II. High fidelity model

II.A. Electromechanical model

The structure is discretised using solid eight-noded, three-dimensional, hybrid elements with

translational degrees of freedom [25]. The solution is based on a mixed formulation where

the standard displacement-based description is augmented with an additional independent

variable which describes the hydrostatic pressure. The new variable is coupled with the

displacement solution through the constitutive model [25]. Considering the thickness of

the membrane allows the definition of the electrostatic Maxwell stress tensor in all three-

directions, relaxing the incompressibility assumption that would be otherwise required [12].

The hyperelastic constitutive model assumes a nearly-incompressible isotropic behaviour,

with a voltage- and stretch-independent value of the dielectric constant. In particular, the

constitutive material law is defined by the sum of a deviatoric, W∞, and isochoric, U , free-

energy functions. The deviatoric component will be described here by the Gent model [26],

given as

W∞ = −µJm
2

log

(
1− Ī1 − 3

Jm

)
, (1)

where µ and Jm are respectively the elastic shear modulus and limiting stretch constant,

which are material dependent. The function is expressed in terms of Ī1 = tr
(
C̄
)
, where

C̄ is the right Cauchy-Green deviatoric deformation tensor, defined as C̄ = J−
2
3F TF , with

F being the deformation gradient and J = detF [27]. The volumetric part is defined as

U∞(J) = K(J − 1)2, that is, a penalty function on the volume variation, where K is the

compressibility modulus of the material. The mechanical stresses are then obtained as the

work conjugates of the free energy function, W = U∞ +W∞.

The constitutive model is completed by adding the effect of the electrostatic stresses,

which are modelled here by means of the Maxwell’s stress tensor. Given an electric field

vector E, the corresponding stress tensor σe is defined as [28]

σe = εE ⊗E − 1

2
ε (E ·E) I, (2)
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where ε is the material dielectric constant, E is the electric field vector in the deformed coor-

dinate system and I is the unitary second order tensor. The coefficients of this constitutive

model are determined from experimental data on the specific material of interest. Buoso

and Palacios [12] have obtained a good approximation to experimental results on an inflated

VHB4905 membrane with µ= 20 kPa, Jm= 100, K= 3.8×108 Pa and ε = 2.7ε0, where ε0 is

the in-vacuum dielectric constant.

II.B. Fluid model

Solutions to the low-Reynolds flow are obtained using a finite-volume discretization of the

compressible Navier-Stokes equations with second-order-accurate integration in space and

time. A low-Mach preconditioner is used to enhance convergence [29]. The solution of flow

and energy equations is based on a coupled approach. No turbulence schemes or subgrid

models were found necessary at the Reynolds number under investigation, Re = 2500. The

membrane is modelled with a non-slip wall condition, and inlet, pressure outlet and free-

stream boundary conditions are used for the boundaries of the fluid domain. In addition

to studies on sensitivity to the grid-resolution and time step, for each case considered the

element size and time step have been compared with the characteristic viscous length and

time scales, that is, lν = ν
uν

and tν = lν
uν

, respectively, where ν is the kinematic viscosity of

the fluid and uν is the friction velocity [30]. The fluid mesh selected for the simulations in

this work is well within this range, with a value of l∗ and t∗ below 3 throughout the domain.

II.C. Fluid-Structure coupling

The coupling of both solvers is based on the definition of a common interface occupying the

same spatial position in both models. The pressure and viscous forces calculated in the fluid

solver, are mapped using the shape function of the structural elements [29] into nodal loads

for the finite-element (FE) solver. The new structural nodal displacements and velocities

are then passed to the fluid solver for the deformation of the mesh and the computation of

the new flow field. The mesh is deformed using 3D linear interpolation functions considering
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the relative distance of the mesh nodes to the moving and fixed boundaries. The exchange

of data between solvers uses a bridge in the RAM memory [29]. To capture the strong fluid-

structure coupling between in membrane vibrations, an implicit coupling scheme between the

structural and aerodynamic solvers has been used. The solution is initialised with a quasi-

steady step, neglecting inertia forces and velocities of the membrane, and is then iterated

with a dynamic step to converge to the real solution.

III. Model reduction

The full-order model described above is necessary to capture the problem physics, but

its large cost is prohibitive in the context of control system design. Consequently, model

reduction and system identification methodologies have been explored to establish the main

parameters of the control system. The structural domain will be reduced using a projection

into the system eigenvalues [31, 32]. Due to the large dimension of the coupled system, the

reduced model for the fluid will be calculated using a Proper Orthogonal Decomposition

(POD) [33, 34]. The time evolution of selected variables stored from a full-order simulation

are used in the snapshot method for the calculation of the POD basis. The size of the basis is

chosen by checking for convergence to the full-order solution and the percentage of the total

energy retained (it is set to be greater than 99.5%) [35]. This has already been discussed

in Buoso and Palacios [12], where it has also been shown that a few modes are enough

to reconstruct the system dynamics over the relevant range of frequencies. POD has been

preferred here to system identification techniques, such as ERA, for two reasons: i) the very

slow natural frequencies of the system of the system would require much larger simulation

times in an ERA; ii) “black-box” identification would not easily allow for a variation of

the structural parameters in the structure or the introduction of non-linearities. This, as

discussed below, is possible with POD basis. However, POD-based ROMs does not guarantee

observability and controllability, and those had to be verified for all ROMs used in this work.

Such an approach does not rely on the availability of the discretisation matrices used
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during the numerical integration of the full-order model, and can hence be applied to gen-

eral purpose numerical frameworks as in the case of this work. Two reduced-order models

(ROMs) of the fully-coupled system are then derived in now introduced. The main focus

during the development of these tools is to investigate the cost/benefits of two approaches

in terms of computational cost, robustness of the description and flexibility. Both ROMs

are defined as SISO systems, with voltage and lift coefficient as time-dependent input and

output, respectively. It is assumed a constant chordwise position of the membrane points,

which was found to be a very good approximation in the flow conditions considered. The

excitation of the system is done through a voltage input with fixed amplitude and a fre-

quency sweep. While other excitations were explored [16, 36], this was seen to provide here

a sufficient characterisation while reducing the computational cost.

The first ROM (section III.A) assumes that the system evolution can be described as a

function of the structural degrees of freedom only. This defines a relatively simple approach

with a very low computational cost associated to its identification. In the second model,

described in section III.B, the fluid and structural dynamics are independently identified and

then implicitly coupled to describe the full problem. This second model is more complex

and substantially more computationally demanding, but provides a better characterisation

of the system. In particular, while the structure-based description approximates well a given

configuration, the second approach allows for changes in the electrode distribution.

III.A. Structure-based ROM

POD modes are identified from the wing out-of-plane displacements obtained from a full-

order coupled simulation. A suitable excitation signal is needed as discussed above. The

POD basis is used to define projection matrix Φ ∈ Rm×n, where m is the number of nodes of

the structural domain and n is the number of basis selected. Displacements, velocities and

acceleration histories are then projected into the modal matrix Φ to compute the amplitudes

a, ȧ and ä respectively. This reduces the aeroelastic system to a very low order linear
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description of the form

ä + C∗ȧ + K∗a = G∗V 2, (3)

where C∗ and K∗ are the mass-normalised damping and stiffness matrices respectively de-

fined in Rn×n, G∗ is the mass-normalised gain matrix for the system input, defined in Rn×1,

and V is the known magnitude of the applied voltage. The only unknowns in Eq. (3) are

the coefficients of the linear matrices. The equations are written as function of these coeffi-

cients for every simulation instant of the full-order model leading to a linear system of 3n2

unknowns. The system is then solved using a least-square approach, similar to the method-

ologies used in [37, 38]. It has to be noted that this methodology is substantially different

from the Galerkin projection of the full-order matrices into the identified POD modes, but

it has the advantage of not requiring access to the discretisation matrices of the full-order

description, and can hence be used with general-purpose codes. This system is similar to

the modal description of a membrane in vacuum but, in this case, the system matrices takes

into account the effect of the surrounding fluid (albeit in a quasi-steady manner). The final

system description, in a state-space formulation is

q̇ =

−C∗ −K∗

I 0

q +

G∗

0v

V 2, (4)

where q =

{
ȧ(t)> a(t)>

}>
∈ R2n×1, I and 0 are the unity and zeros matrices in Rn×n

and 0v is the zero vector of dimension Rn×1. Eq. 4 defines a dynamical system describing

the evolution of its states for a given input voltage. Once a reduced order description of

the model has been satisfactorily obtained, the metric of the system performance has to be

defined. Here it is the Cl which is approximated by a linear function of the states of the

system and their evolution. and calculated as

Cl(t) = Γ

{
ä(t)> ȧ(t)> a(t)>

}>
, (5)
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where Γ ∈ R1×3n is determined imposing that (5) is satisfied in a least-square sense at every

instant of the full-order simulation. This model can only represent the structural driven

system response, and it assumes no internal dynamics in the fluid. However, it captures the

main system dynamics at a low computational cost.

III.B. Aeroelastic ROM

In this second model, which will be used for the identification of the ROM and the control

system design, the structural and fluid descriptions are individually identified and then

coupled in a monolithic system. Similarly to the methods used by Thomas et al. [36] and

Hall et al. [39], the fluid system is independently reduced considering its POD basis functions.

However, while Thomas et al. [36] performed a series of full-order simulations on which a

single structural mode was excited, the voltage input allows here for system excitations using

a sweeping signal with a predefined frequency range. In this way multiple natural modes are

excited at the same time, requiring only a single run (albeit a much more expensive one) of

the coupled full-order model.

The reduced structural model is derived from the principle of virtual work for a 2D beam,

but one in which the inertial, stiffness and actuation constants will be identified from the full-

order model. It assumes, as before, constant chordwise position of the m points used for the

discretisation of the 2D structure, zero bending stiffness and linear shape element functions.

Linearising under these assumptions, the element mass, Me, stiffness, Ke, and pressure load,

Fe, matrices are obtained and then assembled according to the standard procedure of the

Finite Element Method. Since the membrane is made of DE, the structural model requires to

take into account the effect of the voltage actuation into the stiffness matrix of the system. In

fact, the actuation determines a relaxation of the membrane in-plane stress which, assuming

incompressibility, is equal to −ε (V/he)
2 where ε is the material dielectric constant, V is the

applied voltage and he the membrane thickness. The actuated element stiffness matrix KV
e
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becomes then

KV
e =

σ0he
Le

 1 −1

−1 1

− εV 2

heLe

 1 −1

−1 1

 . (6)

The modal projection matrix Φs is then calculated from the first n modal shapes of the

structural system assuming a constant value of the applied voltage. The global mass, stiff-

ness and pressure load matrices are projected into the reduced-subspace and the non-linear

structural system assumes the form

q̇s =

0 −M−1
s KV

s

I 0

qs +

M−1
s Fs

0

 aps, (7)

where qs =

{
ȧs(t)

> as(t)
>

}>
∈ R2n×1 is the vector of the structural modal amplitudes,

as, and their velocities, Ms, KV
s , Fs are the modal mass, stiffness and pressure load Rn×n

matrices, respectively, and aps is the projection of the pressure difference distribution on the

membrane defined in Rn×1. In the specific, KNL
s depends on the applied voltage V and it is

obtained assembling the element matrices KNL
e defined in Eq. (6) and projected into Φs.

In the linearised description used for linear control system design, the Maxwell stresses

are defined as a system input through an electromechanical loading matrix, Ψe. This will

lead to a stiffer system than the original, but it is a necessary assumption to linearise the

problem. For each membrane element, Ψe is then defined as

Ψe =
ε

heLe

 yei −yei+1

−yei yei+1

 , (8)

where ε is the material dielectric constant and yei and yei+1 are the vertical positions of

the element nodes which, in the linearised description derived in this work, are assumed to

be fixed at the values at the reference configuration considered. The linearised structural
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equations are then of the form

q̇s =

0 −M−1
s Ks

I 0

qs +

M−1
s Ψs

0

θsV 2 +

M−1
s Fs

0

 aps, (9)

where qs =

{
ȧs(t)

> as(t)
>

}>
∈ R2n×1 is the vector of the structural modal amplitudes, as,

and their velocities, ȧs, Ms, Ks, Fs and Ψs are the modal mass, stiffness, pressure load and

electromechanical matrices, respectively, and aps is the projection of the pressure difference

distribution on the membrane. In Eq. (9), θs,i = ΦT
s,ijθj represents the projection of the

voltage distribution on the membrane with θj being equal to one if the voltage is applied

on the j-th node, or zero otherwise. Unless specifically stated, in this work it is assumed an

integral membrane actuation setting all the components θj equal to one.

The flow field is characterised as a first-order system in the amplitudes of the POD modes.

The dominant POD modes are identified using the pressure evolution on the membrane sur-

face only. As it will be seen in section IV.B, this provides comparable fidelity for aeroelastic

analysis to that provided by PODs based on the pressure field in the entire fluid domain,

but at a fraction of the cost. The identified basis are used to build the projection matrix

Φf with k selected modes. The number of structural and fluid modes are the same, k = n.

The value selected for k and n is the minimum number of basis which satisfied the energy

criteria of the POD. The pressure history is projected to obtain the corresponding modal

amplitudes, ap. The structural displacements, velocities and accelerations from the same

full-order simulation are projected into a modal subspace defined by the membrane modal

shapes in vacuum, which has been defined as Φs, obtaining as, ȧs and äs respectively. The

fluid model is finally defined as

ȧpf = Apapf + Baäs + Cvȧs + Ddas (10)

where Ap ∈ Rn×n is the matrix representing the fluid dynamics, and Ba,Cv and Dd are the
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Rn×n matrices describing the evolution of the boundary conditions due to the membrane

deformation. They are obtained imposing that (10) is satisfied for the training data in a

least-square sense at every instant for all system states. Using the fact that aps = ΦT
s Φfapf ,

Eq. (9) and (10) are coupled in a monolithic system of the form

q̇ = Ωq + ΣV 2 (11)

where q =

{
ȧs(t)

> as(t)
> apf (t)

>

}>
∈ R3n×1, and the matrices Ω and Σ are defined as

Ω =


0 −M−1

s Ks M−1
s FsΦ

T
s Φf

I 0 0

Cv Dd −BaM
−1
s Ks Ap + BaM

−1
s FsΦ

T
s Φf

 , Σ =


M−1

s Ψs

0

BaM
−1
s Ψs

θs. (12)

In this case, the availability of the pressure distribution during the integration allows the

direct computation of the lift coefficient which, after linearisation, can be obtained as a linear

combination of the system states as and apf . As compared to the Structure-based ROM

of section III.A, the Aeroelastic ROM introduces an additional level of complexity, related

to the individual reduction and implicit coupling of the fluid and structural descriptions.

This gives a more complete description of the problem since it approximates the pressure

distribution along the membrane, which allows the investigation of the number and location

of system outputs (pressure measurements) in control design. Additionally, it allows for

the independent modification of only one of the two models, which is particularly useful to

investigate actuation strategies such as the initial prestretch or the extension of the electrodes

on the wing surface. As a drawback, the Aeroelastic ROM requires the post-processing of a

larger amount of data for its identification.

The coupling of the separated flow and the highly-deformable membrane will be strongly

non-linear, adn therefore the system response will depend on the amplitude of the inputs

(in particular, the actuation voltage). These non-linearities can not be fully captured in
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the ROMs, due to the modelling simplifications for their derivation, and the effect of the

amplitude of the excitation signal needs to be investigated before the identification of the

Aeroelastic ROM.

IV. Numerical results

The model reduction methodology described above will be exercise now on a numerical

example and used for the design of a controller for gust alleviation. Section IV.A investigates

the effect of the amplitude of the input signal used for the system identification, using

the Structure-based ROM of section III.A. This allows to limit the computational cost

of this parametric study on the amplitude of the training signal. Then, a reduced-order

model is identified using the Aeroelastic ROM described in section III.B and compared to

the full-order model in section IV.B. Next, in section IV.C the Aeroelastic ROM is used

to design PID and LQG control schemes and evaluate their tracking and gust rejection

performance. The controllers are finally implemented in the full-order model in section

IV.C.3 and their performance is compared with the predictions of the ROM-based closed-loop

transfer functions. All results are non-dimensionalized by the chord length c and flow velocity

V∞. In particular, the evolution histories of the structure and aerodynamic coefficients

are presented as function of the non-dimensional time t∗ = tV∞/c and the frequencies are

expressed in term of the Strouhal number St = fc/V∞.

The reference case is a 2D membrane on rigid supports in the presence of a fluid with

Reynolds number Re = 2500, free-stream velocity V∞ = 1.445 m/s and angle of attack

α = 4◦. These flow conditions have been considered in a verification exercise in a previous

work from the authors [12], and are therefore used here for this initial investigation on model

reduction and control design. A schematic representation of the problem is shown in Fig. 1

together with a zoom on the wing.

The membrane has a chord c = 30 mm and an initial thickness h = 0.05 mm for a

prestretch λp = 1.02, which determines a highly compliant case. In this work the prestretch
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Figure 1: Aeroelastic model.

λp refers to the ratio between the prestretched and undeformed membrane length. The

membrane is pinned at the lower side of the leading and trailing edge. The structure is

discretised with 800 elements chordwise, and one element in the thickness direction. Since

a 2D problem is addressed, a single element is used in the spanwise direction as well. Mesh

refinement and time-step sensitivity studies have been conducted in dynamic simulations for

an angle of attack α = 8◦, at which self-excited oscillations are observed in the system due

to the shedding of vortices from the leading edge. The relative errors on the mean value of

Cl as well as the amplitudes and frequencies of its oscillations were considered to establish

convergence. The maximum relative error of those quantities was set at 5%. The sensitivity

study considering this conditions allows to identify a suitable spatial and temporal resolution

to capture this coherent structures intrinsically related to the fluid internal dynamics. The

resulting mesh size and time-step were found to be enough to properly capture the dynamics

of the actuated cases at lower angles of attack. The resulting fluid domain extends for 100

chords in both directions and it is meshed with one million elements, which corresponds to

400 elements along the membrane walls in the chordwise direction, 400 in the flow direction

for the wake, and 400 elements in the radial directions from the chord. The smallest element

at the membrane wall is 50 µm and the biggest elements, at the domain boundaries, are

around twice the size of the membrane chord. The reference case is characterised by a

maximum amplitude y∗ = y/c = 0.02 at x/c = 0.43. The lift coefficient is Cl = 0.47.

15 of 37



IV.A. ROM based on structural information and dependency of amplitude

As mentioned above, the expected strong non-linear response of the fully-coupled system

requires the investigation of the dependence of its dynamics with the amplitude of the ac-

tuation voltage. Varying the input signal can in fact enhance different physical effects that

will determine more or less substantial differences in the identified ROMs. The system is

excited with a uniform harmonic voltage of the form V = V0 sin (2πStvt
∗), where V0 is the

voltage amplitude and Stv is the non-dimensional actuation frequency, Stv = fvc/V∞. The

amplitudes considered are V0 = 150, 250 and 500 V. In all three cases the frequency Stv is

varying linearly from 0 to 0.4 in a time window of T ∗ = 90. The effective reduced frequency

content of the output spans from 0 to 1.6 because the system is excited by the resulting

Maxwell stress, which evolves at twice the voltage frequency. Increasing the amplitude of

the input signal determines a higher mean value of the Maxwell stress responsible for the

membrane tension relaxation. This leads to a reduction of the system resonant frequencies,

to larger mean camber and structural oscillations and to an increase of the effect of struc-

tural and fluid non-linearities in the system response. The ROM is trained over the entire

simulation time, T ∗ = 90, and data are collected every ∆t∗ = 0.02. In this investigation only

the structural degrees of freedom are considered, and the lift coefficient is takes as perfor-

mance metric of the system response. The data stored then will allow the identification of

the reduced order description using the model of section III.A.

For each of the three cases the first four POD modes are shown in Fig. 2a while Fig. 2b

quantifies their cumulative contribution to the total system energy. For all three cases the

minimum energy represented by the retained modes has been set to 99.95%, leading to the

choice of 3 modes for V0 = 150 V and 250 V, and 5 modes for V0 = 500 V. In the first two

cases, the first membrane mode has the largest contribution to the system evolution (Fig.

2b), with minor effects from the second and third modes. In addition, the spatial modes

are very similar in shape for the first two signals, and their amplitudes are proportional to

the square ratio of the applied voltages
(
V02
V01

)2
, demonstrating weak non-linearities of the

problem. For V0 = 500 V, the first and second modes have a similar contribution to the
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response, and secondary contributions can be observed for modes three to five. The different

mode shapes show that the system start exhibiting some fluid and structural non-linearities,

which translates in the higher number of modes needed for its description. Ref. [12] has

also investigated the number of POD modes required to reconstruct the Cl evolution of the

system. It was found, in agreement with the results here, that two modes were enough to

reconstruct the signal at the frequencies of interest.
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Figure 2: POD modal bases for the excitation cases with V0 = 150, 250 and 500 V and their
contribution to the total system energy.

The resulting dynamical systems obtained from the identification are compared in Fig. 3,

which shows the transfer functions of the membrane Cl for a harmonic actuation input Φ. For
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an applied voltage V = V0 sin (2πStvt
∗) the system will react to V 2 =

V 2
0

2
− V 2

0

2
cos (2π2Stvt

∗)

which is proportional to the Maxwell stress on the DE. The reduced frequency considered

in Fig. 3 refers to the effective forcing frequency, and hence to twice the one of the applied

voltage. The resulting time-dependent function of the Maxwell stress will be denoted with Φ.

The non-dimensional natural frequencies, St, and damping ratios, ξ, of the three ROMs are

shown in Table 1. The impact of the mean actuation voltage in the signal used for the system

identification is clear: a higher amplitude causes a shift of the resonances of the system to

lower frequencies and increases the peak amplitude. This becomes more important towards

higher frequencies, due to the coupling with the flow. For V0 = 500, the transfer function

shows some differences as compared to the other two cases, with a slightly damped peak at

St = 0.75. This shows that higher frequencies are less damped in the coupled problem. The

lower damping of the higher modes as compared to the first one is the indication that these

are most likely to be excited by the coupling with the flow. These numerical results are in

agreement with the experimental work by Arbos-Torrent et al. [2] and Rojratsirikul et al.

[40], who observed the predominance of the second and higher system modes in the dynamic

response of membrane wings. They also found that the first membrane mode was found

to be dominant when large structural observation were measured, suggesting its impact in

structural-driven system dynamics.
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Figure 3: Cl transfer functions for the three different ROMs with Φ in 1012 V 2.

Comparison of the dynamical systems obtained with different system excitations shows
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Table 1: Resonant frequencies and damping of the identified linear systems

V0 [V] Mode 1 Mode 2 Mode 3

St ξ St ξ St ξ

150 0.35 5.53 0.88 2.03 1.42 1.02

250 0.34 5.15 0.84 2.04 1.36 1.15

500 0.30 3.48 0.75 0.07 1.21 1.04

that in all three cases similar features have been identified. The reduced-order model used

for control design in section IV.B will be obtained with a voltage amplitude of V0 = 250 V.

IV.B. Reduced-order model identification

The simple reduced-order description of section III.A has shown to be useful for a prelimi-

nary investigation on the input signal required for the system identification, but for control

design a more accurate description of the full system is required, such as that offered by the

Aeroelastic ROM of section III.B. It also allows to consider different electrode layouts by

the selection of the non-zero entries of the voltage distribution vector in Eq. (9). For the

identification of the ROM, the full wing is excited with the same voltage signal described

in section IV.A and an amplitude of V0 = 250V. Two modes for both the fluid and the

structure were found to satisfy the POD criteria for the reconstruction of the system dy-

namics. For the identification of the reduced-order model of the fluid, the POD has been

applied to the evolution of the pressure distribution on the membrane. Despite the reduced

set of data considered, the POD applied to the pressure distribution on the wing was seen

to represent the same basic system dynamics as a full-domain POD, with a much smaller

computational cost. The transfer functions of the pressure evolution on the membrane from

actuation obtained in the two cases were in fact nearly identical, but those results have not

been included here for brevity.

The lift coefficient predicted by the Aeroelastic ROM is then compared with the full

model to assess its suitability to describe the full system dynamics. Fig. 4 shows the Cl for
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different input voltages for the full-order model and the linearised version of the ROM. From

these results, the Aeroelastic ROM used later in this work will be obtained using a training

signal at amplitude V0 = 250V and the sweeping frequencies described in the previous

section. Overall, the good agreement of full and reduced-order models demonstrates that

this ROM is able to capture the main system dynamics. While each run of the full-order

model requires approximatively 24 hours on 16 CPUs to provide sufficient data points for

training the ROM, the ROM itself runs in seconds on a single CPU.

As discussed in Ref. [12], this system size is sufficient to reconstruct the relevant time

histories and the small discrepancies are related to the modelling assumptions of the linear

models. In particular, the low-order model predicts a stiffer membrane behaviour which

results in a reduced Cl amplitude and a shift of the system resonance towards higher fre-

quencies. As discussed in section III.B, this was expected from the linearisation approach

used for the Maxwell stresses. The difference is similar in both cases shown in Fig. 4, which

suggests that this discrepancy could be mitigated during the control system design by re-

ducing the control system gains before the implementation in the full-order model. For large

frequencies, the system performance are mainly defined by the forcing effect of the structure.

The small differences at the lowest actuation frequencies in Fig. 4b have been related to

the non-linear coupling of the systems, which can not been captured in a linear description.

This is exemplified in Fig. 5 which shows the Cl evolution for an integral voltage actuation

with amplitude V0 = 250 V and frequency Stv = 0.08. The plot compares the performance

prediction of the full model, the linear Aeroelastic ROM described in section III.B and the

non-linear ROM obtained updating the stiffness matrix at each time step according to Eq.

(6). This non-linear ROM does not require a new training procedure. It is in fact based

on the Aeroelastic ROM with the modification of the stiffness matrix at every time step.

This highlights, once again, the flexibility and robustness of the model-reduction method-

ology considered. The introduction of the non-linear structural component in the system

description gives an even better agreement with the full-order model. Nevertheless, the lin-

ear model can still offer a satisfactory representation of the system performance to build a
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control system.
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Figure 4: Comparison of the full and reduced-order descriptions: Cl evolution for an input
voltage V = V0 sin (2πStvt

∗) with Stv linearly varying from 0 to 0.3, a) V0 = 150 V and a)
V0 = 250 V.
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Figure 5: Cl evolution for an integral actuation with an input voltage V = V0 sin (2πStvt
∗)

with V0 = 250 V and Stv = 0.08. Comparison of the performance from the full-order model,
non-linear and linear ROMs.

To demonstrate even further the flexibility of the reduced-order model approach of this

work, it is now considered a different case, with an electrode extending only on the first

21 of 37



half of the aerofoil. It uses the same Aeroelastic ROM as before, identified via the sweeping

voltage signal, but the effect of the actuation voltage is prescribed only on the first half of

the wing, modifying the electrodes distribution vector θ in Eq. (8) . Fig. 6 compares the Cl

evolutions in the full-order simulation and the non-linear ROM. The low order-description

slightly overestimates the oscillations of the lift coefficient, but adequately captures both the

main system dynamics and the Cl evolution close to its minimum values.
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Figure 6: Cl evolution with half-chord electrode and input voltage V = V0 sin (2πStvt
∗) with

V0 = 250 V and Stv = 0.08. Results from the full-order and non-linear low-order models.

Note finally the significant system delays of the actuated system. Fig. 7 presents the

Cl variation over the mean value for the input signal used for the system identification.

Comparing the time evolutions of the input and output signals it is evident the large lag of

the system response which is related to the fluid convective time-scale [7, 14]. Williams et al.

[15], who considered an actuated wing in a low-Reynolds-number flow, have also identified

large delays in the actuated system, and the limits that this imposes on the effectiveness of

feedback controllers.

IV.C. Control system design

Two common control architectures, a PID-type controller and a Linear Quadratic Gaussian

(LQG) regulator, will be investigated to track a prescribed lift evolution and reject flow

disturbances. It has to be noted that the actuation through DEs in the specific configuration

considered is characterised by a zero-saturation: the controller effort depends on V2 which

only allows for the relaxation of the membrane tension. This is a constraint which could
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be mitigated with a different actuator design, but this is beyond the scope of the present

work. Additionally, the design of the control system will focus on reduced frequencies up to

St = 0.1 that have been estimated to be the upper limit for the atmospheric disturbances

expected for MAVs applications [7].

IV.C.1. Proportional-Integral-Derivative (PID) controller

A PID controller for a SISO system is defined as

V 2(t) = Ki

∫ t

0

e(τ)dτ +Kpe(t) +Kdė(t), (13)

where V is the applied voltage, Ki, Kp and Kd are the integral, proportional and derivative

gains, and e(t) = Cl,ref − Cl(t) is the instantaneous error with the reference lift coefficient,

Cl,ref . The gains are designed using the reduced-order model by investigating the transfer

function of its closed loop response. Fig. 8 shows the magnitude and phase of the transfer

functions in the tracking problem, H1, and in the rejection of flow disturbances, H2. The

figures also show the dependence of the closed-loop performance on the integral gain.

Considering the tracking performance, larger values of Ki determine amplitudes of H1

closer to unity for wider ranges of reduced frequencies. The phase of the tracking transfer

function shows significant lag, resulting in poor tracking performance of fast time-dependent

signals. The integral gain can be augmented up to a maximum value (grey line) that leads
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Figure 8: Closed-loop transfer functions with PID control architecture: influence of integral
gain Ki on tracking performance and sensitivity to flow disturbances.

to the system destabilisation in the full-order description. This has been found by the

evaluation of the controller performance in the full-order model. It is also observed that, for

values of Ki above 8×1015 V 2/s (continuous line in Fig. 8), the magnitude of H1 is greater

than one for a small frequency bandwidth and it results in an overshoot of the tracking

performance for a step input in both reduced and full-order models. When considering the

sensitivity to disturbances, it is observed a higher rejection at low frequencies for larger

values of Ki. It is seen, in fact, that the amplitude of the Cl oscillations meets the one

of the open-loop case (also shown in Fig. 8) at higher St numbers for large values of Ki,

increasing the bandwidth of the effectiveness of the controller. The effectiveness is measured

as the reduction of the amplitudes of the oscillations as compared to the open-loop case.

However, after intersecting the open-loop transfer function, higher values of Ki determines

larger amplification of the disturbances. Based on these considerations, the value of the

Ki controller selected is Ki = 8 × 1015 V 2/s in order to avoid the overshooting of the step

response during tracking. This limits the bandwidth of effectiveness in disturbance rejection
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to St = 0.03. It has also been found that the augmentation of the PI gains lead to the

destabilisation of the aeroelastic system. Thus, it is set Kd = 0 and Kp = 5.4 × 1013 V 2.

The integral gain has been set to Ki = 8.0× 1015 V 2/s.

IV.C.2. Linear Quadratic Gaussian (LQG) controller

In the LQG feedback scheme the controller action is proportional to an estimate of the

system states through a constant gain matrix [41]. The matrix is obtained as the solution

of the Algebraic Riccati equation which minimises the cost function

J =

∫ ∞
0

(
xTQx+Qie

2 + u2
)
dt, (14)

where x are the states of the Aeroelastic ROM, e the lift tracking error, Q and Qi are

the weights of the aeroelastic states and of the tracking error, respectively, and u is the

normalised voltage input defined as u = V/Vmax where Vmax = 500V is the maximum

actuation voltage, which is within the limits of validity of the electromechanical material

model. The diagonal components of the weight matrix, Q, are initially estimated based on

the maximum amplitudes of the modes obtained during the full-order simulations. Only

diagonal entries are considered for Q. The controller relies on structural oscillations for the

compensation of the lift coefficient through a variation of the membrane camber with the

actuation. This implies that very small weights are given to the structural degrees of freedom

(the modal amplitudes and their derivatives), to allow for the large variations required to

compensate for changes in the lift. The selection of the gains for the amplitude of the

pressure modes and the servo-component are selected based on a parametric study on the

closed-loop performance of the reduced-order model.

The states of the system are not available in the full-order description, and need to be

estimated in real-time for the implementation of the state-feedback scheme using a Kalman

filter [41]. The design of the Kalman filter is done by setting to zero the noise cross-correlation

matrix and varying the ratio of the correlation matrices of input and measurement noise. In
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the current design it is assumed minimal noise in the output measurement, so the ratio is

set to 105. The design of the Kalman filter has been verified for an open and closed-loop

conditions in the full-order model and showed to predict well both the system states and the

lift coefficient.

For the tracking problem, an additional integral weight, Qi, is used to correct for the

error between the current and the reference lift signals. This defines an outer control loop

whose commands are added to the LQG actions. Fig. 9 shows the magnitude and phase

of the transfer functions to track a reference lift, H1, and to reject flow disturbances, H2,

as function of the selected integral weight. In the case proposed here, Qi is varied in the

range between 0.6×1010−1.6×1010 with a 0.2×1010 step increase. Lower values have shown

very poor tracking performance also for constant tracking signals, and have therefore not

been included in the results. The weights of the structural states and their derivatives are

set to 1, and the pressure weights to 1 × 102 and 1.2 × 102 for the first and second mode

respectively. The parametric study shows that increasing the integral gain leads to overall

better tracking performance. This trend continues up to an upper bound, indicated in the

figure, where the controller destabilises the full-order system, Qi = 1.6 × 1010. Increasing

Qi also helps in the rejection of disturbances at low frequencies. However, high-frequency

oscillations are amplified by the controller. The selected gain Qi = 1.0 × 1010 (continuous

line in Fig. 9) has its higher frequency of disturbance rejection at St = 0.04.

A similar exercise has been carried on for the variation of the weights of the states related

to the pressure evolution, but it is not shown here for conciseness. The main results is that

the increase of these weights has the opposite effect of the increase of Qi. The final design

has been selected to reduce the tracking time of a step response while still maintaining

satisfactory gust rejection performance at low Strouhal numbers.

IV.C.3. Implementation of the controllers in the full-order model

Section IV.B has already demonstrated the agreement of the full-order and reduced-order

models, and the robustness and flexibility of the Aeroelastic ROM. Here the controllers
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Figure 9: Closed-loop transfer functions with LQG control architecture: influence of the
weight of the integral component Qi on tracking performance and sensitivity to flow distur-
bances.

obtained using the ROMs in the previous section will be exercised in a simulation of the

closed-loop membrane response using the high-fidelity model.

First, the closed-loop performance in the full-order model is evaluated in the tracking of

a step change in the reference lift. The PID and LQG controllers are required to track an

increase of 5% of the reference lift coefficient, Cl,ref . Fig. 10 shows the evolution of the lift

and the applied voltage in the closed-loop systems defined by the PID and LQG controllers.

The actuation voltage determines a relaxation of the membrane tension and an increase in

the camber that leads to the required increase in lift. Both controllers show similar system

response, with the chosen PID law being a more aggressive tracking strategy. This is simply

due to the selection of gains in the control design process. Results in Fig. 10 are compared to

the step response in open loop, which shows strong oscillations at the frequency of the first

aeroelastic mode. Those are still present, but with smaller amplitudes, in the closed-loop

response. They are related to the initial conditions and are too fast be controlled by the
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present feedback schemes, as it was seen in Fig. 9.
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Figure 10: Step responses for the open-loop and closed-loop systems in the full-order model:
a) Cl history and b) voltage requirements.

The analysis of the tracking performance of Fig. 8 and Fig. 9 highlighted a degradation

of the tracking performance with time-dependent signals of increasing reduced frequency.

This is verified in the full-order model considering the tracking of a reference signal, Cl,ref ,

of the form

Cl,ref = Cl0(1 + δCl) [1− cos (2πStClt
∗)] (15)

where δCl and StCl are the amplitude and frequency of the oscillations. The investigation is

shown here only for the LQG controller, but similar results were obtained for the PID case.

Fig. 11 shows the Cl evolution and the controller effort for the the LQG control scheme in the

full-order model. The plots considers two cases with δCl = 2.5% and StCl = 0.02 and 0.04.

In the plots, Cl,ref refers to the reference signal to be tracked, while the full-order model and

ROM to the resulting Cl of the closed-loop response in the full-order and ROM, respectively.

A very good agreement is found between the two models showing the capability of the ROM

to reproduce the system behaviour with a good fidelity. In addition, as highlighted from the
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parametric study of Fig. 9, the physical system exhibits a phase delay which increases with

the frequency of the excitation, thus reducing the effectiveness of the control law. Also, when

increasing the frequency of the reference signal, there is a reduction of the amplitude gain, in

agreement with what predicted by the closed-loop transfer function of the Aeroelastic ROM.

The plots show that the controller is actuating the wing with a positive voltage, resulting in

a relaxation of the membrane tension, an increase in the camber and a resulting increase in

the lift coefficient. As it can be seen from the time histories of lift and voltage, both delays

are identified and their combined effect determines the upper frequency of the closed-loop

system. The first delay is due to the control system architecture, and can be identified

between the lags of the peaks in the reference signal and the voltage amplitude. The second

effect is evident when considering the time delay between the maximum peak of the voltage

and the corresponding peak in the Cl. The identification of these delays is consistent with

previous experimental investigation in the literature [7, 15].
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Figure 11: Tracking of sinusoidal lift. Comparison of the performance from the full and
reduced-order models for a LQG state-feedback control scheme.

The closed-loop performance of the wing is finally investigated under flow disturbances.

This has the double aim of comparing the prediction of the closed-loop transfer function

with the full-order model and show the potential for gust rejection of integrally-actuated

membrane wings. The disturbance is a variation of the inlet angle of attack of the type

α∞ = α0 + δα [1− cos (2πStαt
∗)] , (16)
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where α∞ is the instantaneous inlet velocity angle of incidence, δα and Stα are the amplitude

and reduced frequency of the perturbation, respectively. The controller input in this case is

the instantaneous value of the lift coefficient and the output is the actuation voltage. The

designed variation of the inlet angle of attack is not fed-forward to the controllers, whose

only input is the instantaneous lift. The range of reduced frequencies considered in this work

is compatible with the disturbances experimentally investigated by Tregidgo et al. [7]. Fig.

12 shows the performance for the non-actuated and closed-loop actuated wing for selected

values of δα and Stα in terms of Cl variation and controllers effort. In all cases the controllers

are required to stabilise the wing performance around the reference Cl. The amplitudes and

reduced frequencies of the disturbances are selected to investigate the effect of non-linearities

and delays in the closed-loop wing performance.
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(b) δα = 0.2◦, Stα = 0.01.
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(c) δα = 0.1◦, Stα = 0.02.
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Figure 12: Rejection of flow disturbances. Lift evolution and controller effort for varying
disturbance amplitude, δα, and frequency, Stα.

The lift coefficient is constant in the initial part of the simulations due to the time required
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for the inlet disturbance to convect from the boundaries to the wing. Both controller show

similar reductions in the amplitude of the lift oscillations, in agreement with the closed-

loop responses of the Aeroelastic ROM in sections IV.C.1 and IV.C.2. For the slowest

disturbance shown (Fig. 12a and 12b), the closed-loop schemes achieve reduction of lift

oscillation amplitudes of up to 70%. During the simulation, the controllers generate the

voltage to relax the wing tension. This results in an increase in the camber that compensates

for the reduction of lift due to the gust. In both controllers, the applied voltage shows a

non-zero net value, which is linked to the average camber necessary to counteract the mean

variation of the inlet angle of attack prescribed in (16). Increasing the reduced frequency of

the disturbance slightly reduces the effectiveness of the controllers due to the delayed system

response. They still achieve a 8% reduction of the amplitude of oscillations for δα = 0.1◦ and

4% for δα = 0.4◦ (Fig. 12d). The PID controller causes high-frequency oscillations due to

the saturation of the output signal just before t∗ = 50, while the slower performance of the

LQG feedback scheme avoid the problem. PID results for Stα = 0.02 (Fig. 12c and 12d) are

near the limits of stability of the controller, as it can be seen in Fig. 8. Higher frequencies

do not destabilize the selected LQG feedback, but the delay in the response means that it is

not able to compensate for those faster gusts either. Overall, feedback control has showed

to be effective only for low-frequency disturbances due to the slow system response resulting

from the interaction of the convective time-scales and the wing. This is consistent with the

observations of Williams et al. [15] and Tregidgo et al. [7].

V. Conclusions

This work has presented a numerical methodology for the reduced-order modelling and

control of actuated dielectric membrane wings. A system identification technique based on

the Proper Orthogonal Decomposition has been used to define two low-order descriptions of

the aeroelastic system. A Structure-based ROM, has been used to evaluate the impact of

the amplitude of the training signal used for the identification. In a second step, the struc-
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tural and the fluid descriptions have been independently reduced and coupled in monolithic

system, named Aeroelastic ROM, to account for the strong fluid-structure interaction of the

problem. The Aeroelastic ROM predictions have been shown to be in very good agreement

with the full-model. Additionally, this ROM allows for modifications of the electrode layout

and the inclusion of structural non-linearities, showing its suitability for the inclusion in a

preliminary wing-design process. Importantly, the analysis of the coupled-system dynamics

have showed the presence of large time delays, which had been experimentally identified in

similar systems, and limits the authority of feedback controllers under high frequency exci-

tations. Using the Aeroelastic ROM as an approximation of the full-order system dynamics,

Proportional-Integral-Derivative and Linear-Quadratic-Gaussian control schemes have been

designed. They have been implemented in the full model to demonstrate rejection of flow

disturbance (as it will be needed in outdoor flight under gusty conditions) and tracking of

a predetermined lift (to achieve manoeuvrability). The resulting closed-loop transfer func-

tions have shown to be predictive of the behaviour of the full-order system, including the

degradation of its performance at higher frequencies. This agrees with recent experimen-

tal investigations in the literature. Feed-forward schemes and an increase of the number

of sensors could mitigate the limitations highlighted with the control schemes considered

in this work. However, despite this limitation, intrinsically related to the physical system

under investigation, the control laws have been found to be effective for low-frequencies dis-

turbances. Overall, this preliminary investigation has demonstrated the suitability of the

model reduction technique for control design and the potential of embedded actuation using

DE membranes for the real time aerodynamic control of membrane wings.
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