
1

Transparent In-Circuit Assertions for FPGAs
Eddie Hung, Tim Todman, Wayne Luk

Department of Computing
Imperial College London, UK

{e.hung,timothy.todman,w.luk}@imperial.ac.uk

Abstract—Commonly used in software design, assertions are
statements placed into a design to ensure that its behaviour
matches that expected by a designer. Although assertions apply
equally to hardware design, they are typically supported only for
logic simulation, and discarded prior to physical implementation.
In this paper, we propose a new HDL-agnostic language for
describing latency-insensitive assertions and novel methods to
add such assertions transparently to an already placed-and-
routed circuit without affecting the existing design. We also
describe how this language and associated methods can be used
to implement semi-transparent exception handling. The key to
our work is that by treating hardware assertions and exceptions
as being oblivious or less sensitive to latency, assertion logic
need only use spare FPGA resources. We use network-flow
techniques to route necessary signals to assertions via spare flip-
flops, eliminating any performance degradation, even on large
designs (92% of slices in one test). Experimental evaluation shows
zero impact on critical-path delay, even on large benchmarks
operating above 200MHz, at the cost of a small power penalty.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) are a general-
purpose silicon technology capable of implementing almost
any digital design. This prefabricated flexibility provides
generic logic resources (e.g. lookup-tables and switched routing
interconnect) that can be configured at implementation-time.
Synthesising a design onto an FPGA uses Computer-Aided
Design (CAD) tools to compute a feasible configuration of a
subset of these resources to implement the requested circuit.

Modern FPGA devices can exceed 20 billion transistors;
hence, (i) FPGA CAD can be time-consuming [1], and (ii), due
to the heuristic nature of CAD algorithms, synthesised solution
quality can be extremely unstable. Rubin and DeHon [2] find
that even small perturbations to initial conditions of routing
algorithms affects delay by 17–110%. Thus, any modifications
to the circuit (adding extra functionality or fixing bugs) require
resynthesising — a lengthy procedure, which may return worse
results and impact designer productivity.

In this work, we present a solution allowing new, latency-
oblivious, logic, such as in-circuit assertions, to be inserted
into an existing design transparently without needing to
recompile the entire circuit. We define a latency-oblivious
circuit to contain no strict constraints on the number of
clock cycles for computing its result; one example of latency-
oblivious functionality is using trace-buffers to record on-
chip signal behaviour [3]: pipelining trace signals does not
affect observability. Another example is invoking circuit reset
when the system becomes unresponsive. The key advantage of

latency-oblivious circuits is that they introduce a new dimension
of synthesis flexibility, allowing transparent insertion.

Traditionally, digital circuits have been developed using a
logic simulation environment due to unlimited signal visibility,
fast recompilation cycles, and software-like instrumentation.
However, as designs become increasingly complex, circuit
simulation speed slows. In turn, this causes circuit testing to
be less thorough, and reduces designer productivity.

A promising approach uses in-circuit assertions [4] to verify
designs at run-time. Because they run in the same circuit as the
design under test, in-circuit assertions can run much faster than
simulation, allowing testing to be more thorough. In-circuit
assertions can be latency-oblivious since designers typically
care more about if any assertions were violated (tolerating a
small delay) rather than needing to be alerted immediately.

We insert additional logic, such as assertions, transparently
so it does not affect performance or functionality. To this
end, we insert post place-and-route, using only spare FPGA
resources not used by the original user circuit. By using such
mutually exclusive resources, new functionality can be added
without affecting the user design. To eliminate any impact on
the critical-path of the original design, we aggressively pipeline
the new circuitry, which is possible due to its latency-oblivious
nature. Our methods allow even large circuits to be thus
augmented – we have tested on circuits using up to 92% slices
of a large FPGA. We thus make the following contributions:

• An approach for reclaiming the spare, unused, resources
on FPGAs to transparently insert new logic such as in-
circuit assertions after circuit implementation.

• An assertion language based on Boolean logic with
a systematic approach to compiling latency-insensitive
circuits, allowing assertions be described at high level.

• Use of minimum-cost graph flow techniques to simulta-
neously pipeline-and-route all input signals required by
this logic, without impact on circuit timing.

• Extending to in-circuit exceptions, allowing some circuit
errors to be fixed without rerunning place-and-route.

• Experimentally validating and quantifying the overhead
of inserting assertion logic into realistic circuits, showing
that our techniques incur only a small power penalty.

The remainder of this paper is organised as follows: Section II
presents the background and reviews prior work, Section III
shows our assertion language, while Section IV describes our
transparent insertion approach in detail. Section V describes
an extension allowing exception handling. Sections VI and VII
present the methodology adopted in our evaluation and exper-

2

imental results. Finally, Section VIII concludes and outlines
current limitations and future work.

The key concepts in this manuscript were first presented
in [5]. Since this publication, we have developed a new lan-
guage to describe latency-oblivious assertions and exceptions.
The high-level language allows compact description of complex
assertions, and translation to multiple design descriptions.

II. BACKGROUND AND RELATED WORK

Latency-insensitive design: We exploit the flexibility of in-
serting latency-oblivious logic — logic without strict constraints
on the number of clock cycles in which it must return a result.
An example of latency-oblivious logic is trace-buffers used
to record on-chip signal activity for debugging; pipelining
each traced signal does not affect its observability. Latency-
insensitive design [6] is a methodology to create designs that
are insensitive to communication delays between components,
allowing tools to pipeline them arbitrarily to meet performance
criteria. This improved flexibility comes at the cost of area
overhead and is unsuited to designs with poor communication
locality. Note that only the elements we add are latency-
insensitive: the rest of the design need not be.

In-circuit assertions: Assertions specify boolean conditions
that should always hold true if the design is working correctly.
An example in software may be that a ‘malloc()’ system
call must return a non-zero value; a hardware example could
check the carry-out bit of an adder is always ‘0’ to indicate
no overflow occurs. While it may not be practical to halt a
hardware prototype in the same way as in simulation, it is
nonetheless beneficial to alert the designer if any assertion fails.
Assertions may be combinational, or include state as well, for
example, checking that each DRAM access latency lies within a
bound, or even statistical properties [7]. Tabula’s DesignInsight
technology [8] uses both hard IP and soft logic to allow adding
or changing SystemVerilog assertions dynamically.

Hardware assertions form part of the SystemVerilog language
standard (SVA) [9], and can also be described using the Property
Specification Language (PSL) [10]. Typically, such constructs
are supported only by logic simulators or formal verification
tools and are discarded for hardware, although researchers
have proposed extending these into silicon [4], [11]. Previous
approaches, however, insert assertions by modifying the original
hardware description and resynthesising the entire circuit —
HLS assertions can degrade FPGA performance by 3% [4]. Al-
though incremental compilation approaches can accelerate this
procedure, commonly the original circuit must be partitioned
in advance to reserve space for assertions.

Network flow algorithms in FPGA tools: A flow network is
a graph G(V,E), with a set of vertices V and a set of directed
edges E, each edge connecting two vertices and with capacity
u ∈ N. A valid flow solution exists when (i) the flow carried
by each edge does not exceed its capacity, and (ii) conservation
of flow exists at all vertices — the sum of all flows entering
a vertex must equal the sum of all flows exiting — with two
exceptions at the source and the sink. The source node may
only produce flow; the sink node may only consume flow. A
single-commodity network has only one type of flow present.

Efficient algorithms to compute the maximum integer flow of
a single-commodity network exist (multi-commodity maximum
integer flow is known to be a NP-complete problem), and are
applied in FPGA CAD. FlowMap [12] employs a max-flow
algorithm (specifically, its dual, the min-cut) during FPGA
technology-mapping to compute a mapped netlist with the
minimum logic-depth, while Lemieux et al. [13] use max-flow
to evaluate routability of depopulated FPGA switch-matrices.

Combining both min-cost and max-flow algorithms is
reference [3], where they are used to connect signals to trace-
buffers during FPGA debug. In contrast, we use flow techniques
in this work to concentrate signals into a single region (rather
than connecting to trace-buffers distributed across the device) in
a way that does not impact the circuit performance. While prior
work reports that adding trace-buffer connections reduced the
maximum clock frequency from 75MHz to 55MHz, we pipeline
our signal routing to mitigate all impact on performance.

Recent work on incremental trigger insertion [14] uses spare
FPGA resources to insert trigger circuits for enabling debug
buffers. Unlike our approach, this work incurs critical path
delay penalties up to 107%, due to not pipelining the signals.
We also evaluate on a commercial architecture and tools.

III. ASSERTION LANGUAGE

We develop a high-level language for describing the condi-
tions for in-circuit assertions, based on Boolean logic, and show
how this can be implemented by systematically translating into
a target language such as VHDL. Since assertion conditions are
written in an high-level language, assertions are independent
particular implementations, thus potentially reusable between
different designs with related functionality.

Compared to industrial assertion languages such as SVA, our
assertion language corresponds to SVA’s concurrent assertions,
which evaluate once per cycle and run concurrently with design
code. Our language does not support SVA immediate assertions,
since these depend on simulation concepts such as delta time.
Unlike SVA, our assertions are not limited to VHDL designs,
but can target other descriptions such as Verilog and OpenSPL.

The assertion language includes useful primitives for com-
plex designs: arithmetic expressions including floating-point,
counters and accumulators, allowing complex assertion condi-
tions without needing to use lower-level primitives as in VHDL.
Delays allow assertions to match latencies of pipelined circuits.
Users can declare external hardware blocks, allowing assertion
conditions to use design-specific primitives.

An extended Backus-Naur form grammar follows (A∗

denotes zero-or-more repetition, A? denotes optional items,
bold text denotes keywords, capitals denote literals):

d = userID(<e(,e)∗>)?(e(,e)∗)({latency=e})?

| assertionID(<e(,e) ∗>)?(tID(,tID)∗){s;(s;)∗}
t = int<e> | uint<e> | t[e]
s = varID = e

e = true | false | INT | FLOAT

| e • e | e ◦ e | −e | ¬e
| [e(:e)?] | accum(e,e)

| counter(e,e) | delay<e>(e)

3

where d are declarations, including user-defined blocks which
can be used in assertions, with static (generic) parameters in
angle brackets and run-time parameters in round brackets and
optional latency specification, or assertion declarations also
with static and typed generic parameters; t represents types
with declared bitwidths – only signed and unsigned integers
and arrays of these are supported; s assigns an expression
to a variable – once assigned, a variable acannot be reas-
signed; e declares expressions: ◦ ∈ {+,−, ∗, /,<,≤, >,≥}
(arithmetic expressions with their usual priority); e1@e2 bit-
concatenates e1 to e2; INT and FLOAT respectively represent
integer and floating-point literals; e1[e2] selects a single bit or
an array element at position e2 depending on the type of e1;
e1[e2 : e3] selects bit range e2 to e3 inclusive; accum(e1, e2)
accumulates values of expression e1, resetting to zero when
e2 is true; counter(e1, e2) counts repeatedly from e1 to e2
in single steps; delay < e1 > (e2) delays e2 by e1 cycles.

Translating to latency-oblivious assertions: We systemat-
ically translate from the assertion language into a latency-
oblivious implementation. The translation is syntax-directed,
proceeding recursively from the root of the assertion condition
to the leaves, which will be atomic propositions or Boolean
literals (true or false). Each operator maps one-to-one to a
block in the implementation – for example, to a VHDL block
implementing that operator. The only restriction is that the
latency in cycles of the resulting circuit must be the same from
each circuit input to the circuit output, ensuring all data is
synchronised. The circuit can be arbitrarily pipelined to meet
the timing of the design under test. We automatically insert
pipeline registers to ensure inputs from the same cycle arrive
on the same cycle throughout the graph using a straightforward
ASAP (as soon as possible) algorithm.

Example: An assertion checking signal C is in range [L,H]:

1 assertion inRange<L, H>(uint<32> C) {
2 (L <= C) ∧ (C <= H);
3 }

where line 1 declares an assertion with two compile-time
parameters L and H (inside the angle brackets) and one run-
time parameter C; the body of the assertion is an expression
checking that C is in the range [L, H]. This could be used
wherever a value must be in a defined range, for example the
magnitude input to a barrel shifter, or to ensure a soft CPU
only reads instructions from a valid memory space.

IV. TRANSPARENT LOGIC INSERTION

Figure 1 shows our approach to inserting new logic trans-
parent circuitry in six steps: Step 1 compiles the user-circuit as
normal (for example, by using Xilinx ISE) without reserving
any resources a-priori or specifying additional constraints over
a regular compilation run. Step 2 examines the floorplan of the
compiled result, identifying an underutilised region (typically
at the peripheries of the device) that could host any new logic.
Currently, this step is manual; future work could automate it.

Step 3 applies minimum-cost flow techniques to transport
user signals (perhaps distributed across the whole device)
needed by the assertion circuit into its vicinity, via pipelining
registers. The exact number of pipeline stages, and the
maximum distance between stages are user parameters — we

1. Compile user-circuit
using vendor tools

as normal

6. Perform new logic
plus last-mile routing
using vendor tools
on spare resources

3. Use mincost-flow to
iteratively pipeline-and-

route signals into region,
using only spare resources

4. Compile new logic
using vendor tools
on spare resources

5. Merge user-circuit
with new logic

2. Manually identify an
underutilised region to

host new logic

Use
Case (i)
For new
logic
operating
on the
same
signals

Use
Case (ii)
For new
logic
operating
on new
signals

User input:
No. of pipelining hops
& maximum distances

Fig. 1: Transparent assertion logic insertion approach.

show the details later. Crucially, only spare logic and routing
resources not consumed by the original circuit compilation are
used — this characteristic makes our approach transparent.

Based on results from step 3, which specifies a template
containing the location of all flip-flops used in pipelining,
and all logic resources occupied by the user circuit, step 4
applies vendor tools to compile (but not route) a separate
circuit implementing the new logic tailored to this template,
again using only those spare resources. As this new logical
circuit is mutually exclusive to the original user circuit, step 5
merges the pipelined-and-routed circuit from step 3 with the
newly placed circuit from step 4. Finally, step 6 completes
the unrouted connections inside the merged circuit (connecting
from the final pipelining stage to the new circuit, and within
the new circuit) using vendor tools.

For new functionality using the same set of pre-routed
signals

(
case (i) of Fig. 1

)
only steps 4 to 6 would need to

be repeated. However, for new logic operating on signals not
already routed

(
case (ii)

)
step 3 must also be repeated, to

compute new pipelined connections for any new signals.
Pipeline-and-route: A key ability of this toolflow is trans-

porting circuit signals, which may be scattered across a device,
into a concentrated region as inputs of a new circuit, with
the constraint that it may only use spare resources. Routing
these signals directly incurs large routing delays, depending
on distance. To mitigate these delays which can introduce
new critical-paths, we pipeline the signals of interest. As our
approach targets latency-oblivious logic, additional pipelining
stages are acceptable. Note that although fanout increases by
one for each signal routed, this is very unlikely to affect overall
design timing. Modern commercial FPGAs contain buffered
routing, so adding an extra routing branch to an existing net
incurs only a small capacitative load; on the Xilinx platform
we use in testing, timing analysis reports the effect as < 5ps.

We transform the FPGA routing resource graph (with nodes
occupied by the user circuit removed) into a flow network
using similar techniques to [3] and employ minimum-cost flow
techniques to route all necessary signals to unique pipelining
registers from a candidate set. An important degree of freedom
with this particular routing problem (and that does not exist with

4

Anchor

r=50

r=40
r=30

Signals

Pipeline registers

(a) First hop (b) Second hop (c) Third hop

New routing

⚓ ⚓ ⚓

Fig. 2: Pipeline-and-route technique — by iteratively decreasing
the set of candidate registers (as outlined, specified using radius
r) from anchor point, signals are pipelined to their destination.

user routing) is that each signal can connect to any register from
the candidate set; this provides significant routing flexibility
even under constrained scenarios. Our approach differs from the
separate placement and routing stages employed by traditional
CAD tools; in some ways, our tool can be seen as routing
signals, resolving congestion, and placing pipelining registers
simultaneously. Furthermore, unlike reference [3], we do
not seek to find the routing solution with maximum signal
observability, but instead use flow algorithms to perform both
placement and routing during signal pipelining.

Given timing estimates (costs) for each edge in the flow
network, the objective function that these techniques minimise
is the average-case timing for each connection — not the
worst-case timing across all connections that determines the
critical-path delay. Nevertheless, we find in our experiments that
when a user chooses the candidate register set conservatively
(through the number of pipelining hops, and the distance of
each hop from the anchor point), our approach can return
solutions that do not increase critical-path delay. It is worth
pointing out that we do not apply min-cost flow techniques
to find the optimal timing solution, for the following reasons:
a) due to the nature of the network flow problem, it is only
possible to optimise for average-case timing, b) we modify
the network heuristically to guide algorithm behaviour in
ways that do not reflect the true device, and c) the fact that,
while each application of min-cost flow is proven to find the
global optimum, when applying this technique iteratively (in
a piecewise fashion) for each pipeline stage, optimality is no
longer guaranteed. Instead, we consider the flow approach to
be an effective heuristic for this particular routing problem.

In our tool, the candidate set of registers is specified as spare
flip-flops that fall within a user specified radius from an (X,Y)
anchor location. Spare flip-flops may exist inside slices partially
occupied by the user circuit (but care must be taken to ensure
that such logic slices belong to a compatible clock domain
to the signals being transported) or within unoccupied sites.
The region determined by the anchor and radius is a circle (or
a segment, if clipped by the FPGA boundary). By iteratively
reducing the radius of this circle over multiple routing passes,
and hence reducing the candidate set of pipelining registers, it
is possible to migrate signals to the anchor point, at the cost of
additional latency for each pipeline hop. Figure 2 illustrates: in

each iteration, signals outside of the candidate region are routed
into its minimum-cost flip-flop inside the region. Those signals
already inside the region are routed to a different flip-flop
inside the region, to maintain latency between signals.

To guide the min-cost flow algorithm towards a valid routing
solution, we make two heuristic modifications to our network.
Firstly, we apply a penalty to all network edges crossing FPGA
clock regions. In most devices, all resources are exclusively
associated with a single clock region, and due to the clock
network design, signals crossing between regions incur clock
skew. In our experiments, we observe that sometimes the min-
cost algorithm returns very short routing paths bridging across
two different regions, which combined with a positive clock
skew, result in a hold time violation. To discourage such paths,
we add an inflated delay penalty to all such edges. Secondly,
we observe that it is possible for the min-cost algorithm to
connect to pipelining registers whose output pin is blocked due
to routing congestion. Given that we route signals piecewise,
it would not possible for one min-cost iteration to understand
the routeability of the next iteration. To alleviate this, during
candidate flip-flop selection, we prune all registers without
sufficient free fan-outs left for downstream usage.

Hot-swappable assertions: Since our added assertions are
mutually-exclusive with the circuit they monitor, they could
be added or changed at runtime. If space is limited, assertions
can be alternated, so need not all be present at once. Since the
assertions do not affect the timing of the already place-and-
routed design, they can be added in the field, after deployment.
Assertions can be swapped out to save power when running
on batteries, then swapped back in when on cabled power.

The ability to dynamically add, remove or change assertions
on a running device depends on: (a) architectural support — the
FPGA must allow unused configuration memory to be modified
on the fly without corrupting existing circuit operation; (b) CAD
support — the CAD tools must construct the assertion circuit
from spare resources that are mutually exclusive to those in
the existing circuit, so that no conflicts are introduced. By
using only spare resources for our assertions, our transparent
approach meets this second requirement; for future work we
intend to look at demonstrating hot-swappable assertions on
the new generation of commercial devices, such as the Altera
Stratix 10, which embeds pipelining flops inside its routing
network and supports fine-grained partial reconfiguration [15].

V. EXCEPTIONS: SEMI-TRANSPARENT LOGIC INSERTION

Our method inserts logic transparently (circuit behaviour is
preserved), but there are limits to what transparent insertion
can achieve; essentially, we are limited to adding extra circuit
outputs. In this section, we extend our method to allow limited
changes to circuit behaviour (abandoning strict transparency),
which can allow faults in the circuit to be corrected. By analogy
with software, we call these additions exceptions; like software
exceptions they allow error correction and recovery. We call
these additions semi-transparent: they only affect the replaced
circuit signal; the rest of the circuit is not directly affected.

Motivating example: the previous section uses range check-
ing: detecting that a circuit signal, such as the program counter

5

in a soft-processor, lies within a valid range. Correcting the
program counter could, for example, replace a faulty value
with the address of a service routine, allowing operating system
software to handle the error. Our approach applies to exceptions
where a bounded amount of latency can be tolerated — such
as the program counter for a pipelined processor.

Assertion language extensions for exceptions: We extend our
assertion language to allow for exceptions. Unlike software
exceptions, each exception maps one-to-one with an assertion.
An extended Backus-Naur form grammar follows:

d = · · · | assertionID(<e(,e) ∗>)?(tID(,tID)∗){s;(s;)∗

catch{ID = e}}

where the extra production allows an assertion declaration to
have an exception handler: an assignment statement, allowing
one of the run-time arguments to the assertion to be overwritten.

The program counter range-checker could look like:
1 assertion inRange<L,H,OutOfRangeTrap>(uint<32> C) {
2 (L <= C) ∧ (C <= H);
3 catch {
4 C = OutOfRangeTrap;
5 }
6 }

where lines 1-2 declare the assertion as before; ines 3-5 declare
an exception handler which, if the assertion is triggered, over-
writes the circuit signal C with the value OutOfRangeTrap,
the address of the software handler, if the assertion fails.

Implementation: Figure 3 shows our implementation using
the methods of Section IV: SRC is the circuit signal with
associated assertion and exception. First, inputs to assertion and
exception logic are transported to the spare (possibly disjoint)
logic region(s), where the assertion and exception are located.
Next, we apply the pipeline-and-route method a second time to
transport the assertion condition and exception value back to its
original driver. We insert a multiplexer to choose between SRC
and the exception value depending on the assertion condition,
re-using as much of the original routing as possible. Note the
total latency in cycles from SRC to SRC’ via the exception
path will be the sum of the latency through the exception circuit
and the assertion circuit (which must be equally balanced),
and may be required to be less than some constraint (e.g. the
processor pipeline depth). Although the two circuits must be
balanced, this need not be to a fixed value; furthermore, this
latency can be arbitrarily distributed between input and output
links and in the spare region, for further CAD flexibility.

Semantics and correctness: Clearly adding exceptions is not
completely transparent, since circuit behaviour is changed if
an assertion with an exception is violated. However, circuit
timing can be preserved if 1) the monitored signal SRC is not
on a critical path and 2) the additional multiplexer does not
make the path from SRC to its downstream readers critical.

However, even if timing is preserved, the circuit could still
be incorrect, since if the assertion is triggered, the monitored
signal is delayed by several cycles, because it passes through
the pipeline-and-route network and the assertion and exception
logic. For some applications, this will not matter: the datapath
of video or audio applications may tolerate a few cycles of
delay, particularly if the alternative is failure. In the program

0

1

SRC
SRC'

Other assertion
inputs

Latency-oblivious
links inserted

using pipeline-
and-route
technique

Exception
Circuit

Assertion
Circuit

Latency-
oblivious logic
inserted into
spare FPGA

region

Fig. 3: Exception architecture: both assertion and exception are
located in spare logic regions. We apply pipeline-and-routing
twice: (1) transporting assertion and exception inputs to their
respective circuits; (2) transporting the assertion condition and
exception values back. A multiplexer overwrites original signal
value SRC with the exception value if the assertion is triggered.

counter example, the processor runs for a few cycles (but before
any erroneous computation is flushed) before jumping to the
trap routine: the exception value replaces the program counter.

In summary, extending our approach to allow exceptions,
where a circuit signal is replaced by an exceptional value if the
assertion is triggered, is not transparent, but can be useful in
some applications if care is taken not to alter the critical path
or introduce a new critical path. In general, the resulting circuit
may not be identical; however, for some useful applications
this approach allows a circuit to be corrected without rerunning
the time-consuming place-and-route process.

VI. EVALUATION METHODOLOGY: XILINX

Although we believe that our techniques can apply to all
FPGA vendors, we evaluate our work on Xilinx technology.
In our evaluation, we first employ Xilinx ISE v13.3 to
compile the original user circuit (step 1 from Fig. 1). For
designs with timing constraints we apply those to ISE, but for
designs without we operate ISE in ‘performance evaluation
mode’ which infers all clocks from the circuit and minimises
their periods. For step 2, we open the compiled design in
Xilinx’s FPGA editor to visualise its floorplan, and identify an
underutilised region to host any new circuitry.

Next, step 3 translates the place-and-routed netlist returned
by ISE from its proprietary binary format, NCD, into the
Xilinx Design Language format, XDL using the command
xdl -ncd2xdl. The XDL format is human-readable and
contains a complete description of Xilinx netlists: from LUT
masks, component placements, to source and sink pins, and
even which individual wires comprise every routed net. Toolkits,
such as Torc [16], can manipulate this format.

After decoding the circuit, we apply our custom pipeline-
and-route tool (built on top of Torc for manipulating XDL, and
employing LEMON [17] for flow computations) to execute the
procedure described in Section II. Figure 4 illustrates: given
an XDL circuit netlist, a set of signals to be routed (which
can be specified as regular expressions matching nets in the
XDL netlist), the clock domain that they belong in, and the
set of candidate registers (specified by an anchor point (X,Y)

6

Pipeline-and-Route
tool

Circuit Netlist
(XDL)

Signals to route
(regex)

Anchor point
(X,Y,radius)

Clock Signal

Modified Circuit Netlist
(XDL)

Insertion Template
(Verilog & UCF)

Re-entrant
capability

for iterative
application

From Step 1

To Step 5 To Step 4

From Step 2

Fig. 4: Our custom pipeline-and-route tool used in step 3.

and radius r) the tool applies minimum-cost network flow
routing techniques to transport all signals to a pipelining flop
within this region. The output is an augmented circuit netlist,
again in XDL format, and a template that can be used to build
the new circuit in the next step, comprising a Verilog file
specifying the location of all pipelining registers, and a Xilinx
User Constraints File (UCF) specifying which resources on the
device are occupied and cannot be used for new logic (using
the PROHIBIT constraint). Lastly, our pipeline-and-route tool
is re-entrant, meaning that the output netlist can be used as the
input netlist for the next routing run, allowing this procedure
to be executed iteratively for each pipeline hop.

In step 4, we take the template produced in the previous step,
add new functionality into the source, and synthesise and place
(but not route) this circuit using ISE. The UCF constraints file
enforces mutual exclusivity between logic resources in user
and the assertion circuits, and is also used to force the Xilinx
placer (with the AREA_GROUP constraint) to use only the host
region identified in step 2 . We do not route the added circuit in
this step because it is currently impractical (perhaps impossible
in the Xilinx toolflow) to enforce mutual exclusivity on routing
resources. For step 5, we translate the added circuit into XDL,
then use a custom tool to merge with the circuit from step 3.

Finally, step 6 converts the merged XDL circuit back
into the binary NCD format using the inverse command
xdl -xdl2ncd (which also invokes the Design Rule Check,
DRC) and invoke the Xilinx PAR router in re-entrant mode
to both route the added circuit, and complete last-mile routing
from the final pipelining stage to the new circuit’s inputs.
During routing, we employ the RCT_SIGFILE environment
variable to force PAR not to rip-up any existing nets from the
user circuit and to use only spare routing resources instead.

We target the Xilinx ML605 evaluation kit, containing a
Virtex6 FPGA (xc6vlx240t) with 150,000 six-input LUTs
contained in a grid of 162x240 slices. We employ four
benchmarks, chosen for their complexity, variety and high
clock rates: LEON3, a System-on-Chip design; two variants of
an AES encoder/decoder; a floating-point datapath. For each,
we insert assertions to verify correct operation. If the assertions
detect a failure, a signal is driven high, thus triggering debug
circuitry or alerting the administrator. Since the response speed
is not critical, latency-oblivious assertions are suitable.

Benchmark 1: LEON The Aeroflex Gaisler LEON3 [18] is an

Encoder Encoder Encoder

Decoder Decoder Decoder

128b LFSR

128b LFSR

Plain-text

Encoder key

Encrypted-text

Decoder key
(delayed)

128b LFSR

Plain-text (delayed)

==LED
output

Fig. 5: User benchmark for experiment 2: AES (3-pair)
encoder+decoder block diagram.

open-source (VHDL) multi-core SoC design capable of booting
Linux. The design is parameterised to customise the number,
size and configuration of SPARC cores and on-chip peripherals.
We configure the LEON3 with 8 cores, each with 64kB of
I-cache and D-cache, and MMU, DDR3 memory controller,
Ethernet and CompactFlash peripherals. The LEON3 ML605
template constrains the main SoC clock to 75MHz (13.33ns).

Benchmarks 2 and 3: AES For a datapath orientated bench-
mark, we build two variants of a 128-bit AES encoder/decoder;
Fig. 5 shows a block diagram for the 3-pair variant. The circuit
is derived from [19], modified to insert an extra pipelining
stage in each AES round, improving performance but doubling
encoding and decoding latency to 20 cycles. The advantage of
this benchmark is that it is entirely self-stimulating (both plain-
text and encoder key inputs generated by linear-feedback shift
registers), and self-checking, with each encoder paired with a
decoder allowing the decoded result to be verified against the
original plain-text input (regenerated via an offset LFSR).

Benchmark 4: FloPoCo Lastly, we use a floating-point
datapath built using FloPoCo [20]. We use P parallel copies of
a W -tap single-precision floating-point moving average filter.
Each filter’s input is stimulated using one 32-bit LFSR; for
a 400MHz target frequency, FloPoCo returns a circuit with
pipeline latency of 45. To generate a medium utilisation circuit,
we choose P=24, W=8 and disable shift-register extraction in
ISE (which would convert pipeline registers to shift-registers),
creating a benchmark with higher flip-flop utilisation.

VII. RESULTS

A. Experiment 1 — simple in-circuit assertion for LEON3:
We insert into the LEON3 benchmark a combinational assertion
to check the program counter for each of the 8 cores lies in the
memory space of the DDR3 memory controller. This checks
instructions only come from main memory, and never from
invalid, potentially insecure memory spaces.

Using our assertion language, the assertion is shown in Sec-
tion III; we systematically translate this to the implementation.

Unmodified, the LEON3 benchmark consumes 81% of logic
slices, 54% of all LUT resources, and meets a 13.33ns (75MHz)
clock constraint, as shown in Table I, column 2. Examining the
floorplan, we spot an underutilised region near the upper-left
side of the device; the anchor point is (0,185). We invoke our
pipeline-and-route tool twice (step 3 from Fig. 1), transporting
necessary signals towards this anchor via two pipeline stages,
first with radius 160 and second with radius 80. In total, 240 bits
are routed: the 30-bit program counter (the 2 least significant

7

Exp. 1: LEON3 SoC Exp. 2: AES (3 pair) Exp. 3: AES (2 pair) Exp. 4: FloPoCo
This work Resynthesis This work Resynthesis This work Resynthesis This work Resynthesis

User circuit:
Slice utilization 30,698 (81%) 34,880 (92%) 26,362 (69%) 24,650 (65%)
LUT utilization 82,830 (54%) 108,132 (71%) 71,976 (47%) 61,967 (41%)
Register utilization 60,725 (20%) 32,022 (10%) 21,391 (7%) 97,968 (32%)
Critical-path delay 13.324ns 4.213ns 4.153ns 6.232 ns
Pipe-and-routed ckt:
Signals routed 240 - 384 - 512 - 144 -
Slice utilization 30,720 (+22) - 34,985 (+105) - 26,890 (+528) - 24,790 (+140) -
LUT utilization 82,925 (+95) - 108,264 (+132) - 72,216 (+240) - 61,996 (+29) -
Register utilization 61,205 (+480) - 33,942 (+1,920) - 23,951 (+2,560) - 98,400 (+432) -
Critical-path delay 13.324ns - 4.213ns - 4.153ns - 6.232ns -
Pipeline latency 2 - 5 - 5 - 3 -
Assertion circuit:
Slice utilization 30,770 (+50) 33,642 35,140 (+155) 35,104 28,045 (+1155) 25,807 24.839 (+49) 23,842
LUT utilization 83,078 (+153) 82,489 108,831 (+567) 108,591 76,478 (+4262) 75,996 62,163 (+167) 63,738
Register utilization 61,454 (+249) 60,973 34,636 (+694) 32,689 28,385 (+4434) 27,765 98.550 (+150) 98.100
Critical-path estimate 3.729ns - 2.436ns - 2.758ns - 3.162ns -
Assertion latency 3 3 8 8 8 8 3 3
Final circuit:
Critical-path delay 13.324ns 13.327ns 4.213ns 4.205ns 4.153ns 4.318ns 6.232ns 10.085ns

TABLE I: Detailed comparison between our proposed method and the resynthesis approach.

address bits are unused) for each of the 8 cores. The resulting
circuit consumes modest additional resources (registers from
existing and new slices, plus LUTs used as route-throughs).

Next, we synthesise the assertion circuit (step 4); it occupies
50 slices and 153 LUTs over the pipelined circuit. Due to the
simple assertion, the pre-routing critical-path timing estimate
for its pipelined circuit is 3.73ns (in fact, the estimated critical-
path is between the final pipeline stage and the assertion
circuit), comfortably meeting the 13.33ns circuit constraint.
After merging and routing the assertion circuit with the user
circuit (steps 5 and 6) we find that no new critical-paths have
been introduced, and the circuit meets timing at 13.32ns.

We compare the efficiency of our transparent logic insertion
with the traditional approach of adding the assertion at source-
level and resynthesising the whole circuit. To ensure fairness,
we manually modify the source code to extract the signals of
interest out through the circuit hierarchy, attaching them to
an identical instance of the assertion HDL. Table I shows the
results under the ‘Resynthesis’ heading. While the final result
shows that, for this experiment, there is effectively no impact
on timing because both circuits meet the 13.33ns constraint,
designers would still have to resynthesise their circuit for
each set of assertions. Interestingly, these results also show a
significant 10% difference between the logic slice utilization
between the original user circuit, and the instrumented circuit;
it appears that even adding a small amount of extra logic causes
the CAD tools to make very different packing decisions.

Figure 6 charts the runtime advantage of our approach. On
this benchmark, inserting assertions transparently is 3.9 × faster
than resynthesising. For pipeline-and-routing the assertion input
signals, instead of resynthesising the assertion circuit, runtime
is dominated by the final routing using vendor tools.

B. Experiment 2 — stateful assertion for AES (3-pair): Our
second experiment inserts stateful assertion logic into a circuit
with both high maximum clock frequency and high device
utilization: AES, with 3 encoder-decoders pairs (Fig 5).

Using our assertion language, checking that the input
plaintext is equal to the output plaintext after three rounds

Place seed → #1 #2 #3 #4 #5
Benchmark ↓ (ISE default)
AES (3x) user 4.338 4.418 4.374 4.515 4.213
AES (3x) resyn 4.929 4.387 4.635 4.279 4.205
AES (2x) user 4.252 4.497 4.301 4.666 4.153
AES (2x) resyn 4.917 4.678 4.468 5.240 4.318
FloPoCo user 6.542 9.408 9.877 6.232 9.891
FloPoCo resyn 9.892 6.157 9.723 10.085 10.719

TABLE II: Critical-path delay (ns) fluctuation under different
placement seeds.

of encoding and decoding can be written as:

1 user uint<128> deAES(uint<128>, uint<128>)
2 { latency=N };
3 assertion checkAES(uint<128> msg, uint<128> key1,
4 uint<128> key2, uint<128> key3, uint<128> enc) {
5 delay<4*N>(msg) == deAES(delay<3*N>(key1),
6 deAES(delay<2*N>(key2),
7 deAES(delay<N>(key3), enc)));
8 }

where lines 1-2 declare the AES decoder (a user-defined block
deAES with latency N) and lines 3-8 define the assertion as a
chain of AES decoders; delayed keys balance decoding latency.

This circuit uses 71% of the LUTs, 92% of logic slices,
showing that our methods apply to large designs. The AES
circuit has no timing constraints, so we operate ISE in
performance evaluation mode to find the best timing; to mitigate
CAD noise, we compile using five different placement seeds
(placer cost tables), the best result returns a critical-path delay
of 4.21ns, or 237MHz. Table II lists timing for all five seeds.

Examining the original circuit floorplan (shown in Fig. 7a)
we manually determine that the top-right region of the device
is underutilised, and invoke our tool five times in order to
pipeline-and-route signals into this region. We chose the top-
rightmost coordinate as the anchor position (161,239), using
decreasing radii on each iteration: 200, 160, 120, 80, 40. The
signals we pick are 128-bit buses taken from the centre of
each of the 3 encoders (specifically, the key_out[127:0]
register from the fifth of ten coding rounds), totalling 384

8

(ii) (i) (ii)
(i)

(ii)
(i)

(ii)
(i)

Fig. 6: Runtime comparison between original user circuit compilation (User), resynthesis with new logic (Resyn), and our
approach. The runtime for use case (i) — exclusive of step 3, pipeline-and-route — and use case (ii), inclusive, are also shown.

(a) Step 1: Floorplan of the
place-and-routed solution for
the user circuit, with resources
from each of the en-/de-coders
shown in a different colour.

(b) Step 6: Final floorplan
for augmented circuit: inserted
logic is marked in white, exam-
ple signal routing path shown
in cyan.

Fig. 7: Adding 3 x 128-bit monobit assertions to the AES (3-
pair) encoder+decoder benchmark, which occupies 92% logic
slices and 71% LUTs, while maintaining 237MHz. An unusable
region in the centre of the FPGA device is also shown.

signals. Fig. 7b highlights the pipelining flip-flops used, each
iteration alternates between yellow and green.

To prevent attacks, the output of a secure cryptographic
function should be uniformly distributed; the output should
resemble a uniform random number generator. A first-order
test is the monobit test [21], counting the number of ‘1’ bits in
a data stream. Over a long sequence, the number of ‘0’ bits and
‘1’ bits occuring should match, within some statistical bound.
Fig. 8 shows the pipelined monobit counter. We attach three
such assertions into the AES circuit, one per encoder, then AND
these results, driving an off-chip LED. The monobit circuit
counts the number of ‘1’s in each 128 bit vector, accumulating
the count over 256 cycles (making a stream of 32,768 bits).
Once the stream has been examined, a range check tests that the

32b 32b 32b 32b

PopCnt PopCnt PopCnt PopCnt

128b input

Input registers
(1 stage)

Bit population counters
(2 stages)

5b 5b 5b 5b Pipelined adder tree
(3 stages)

6b 6b

7b

15b
15 bit accumulator
(1 stage)

+ +

+

+

A < input < B Range check

Modulo 256
counter

en

rst

1b Output register, with enable
(1 stage)

Fig. 8: Assertion for experiment 2: 128-bit monobit accumulator
with 7 pipeline stages, (plus final reduction stage, not shown).

number of ‘1’ bits lies within a certain value: for a statistical
significance p-value < 0.01, this is 32768

2 ± 466. In total, the
three monobit circuits consume 155 logic slices and 567 LUTs,
and has a pre-routing timing estimate of 2.44ns.

Using our assertion language, a monobit test looks like:

1 user int<N> popcnt(int<2ˆN>);
2 assertion monobit(int<N> input, int<15> A,
3 int<15> B) {
4 var count = counter(0, 256);
5 var inp = accum(
6 ((popcnt(input[127:96]) + popcnt(input[95:64]))
7 (popcnt(input[63:32]) + popcnt(input[31:0]))),
8 count==0);
9 (A < inp) ∧ (inp < B);

10 }

where line 1 declares a user-defined block to count high bits;
lines 2-10 form the assertion, declaring a counter (line 4),
accumulating population counts while the counter is non-zero
(lines 5-8), testing the range condition (line 9).

Fig. 7b shows the final merged circuit floorplan: assertion
circuit logic in white; pipeline signal routing for one signal in
cyan. After routing the merged circuit, preserving all existing
user nets, static timing analysis by Xilinx tools shows no effect
on the critical-path; the circuit still meets timing at 237MHz.

Comparing to resynthesising the circuit (with assertions)
shows a negligible effect (7ps improvement) on the critical-path
delay between the original and instrumented circuits, over five

9

placement seeds. By chance, the best placement in both cases is
found with seed value 5; examining other seeds (Table II) shows
significant deviations between the two synthesis solutions: for
the default seed value of 1, this timing impact exceeds 10%.
The runtime improvement for the transparent approach on this
circuit is 3.0 times; while the routing runtime has decreased
due to it being a less complex circuit (only one clock domain),
we must invoke our pipeline-and-route tool five times.

C. Experiment 3 — complex assertion for AES (2-pair): The
third experiment involves a less dense design: 2 pairs of the
AES encoder/decoder circuit, occupies 69% of all logic slices
and 47% of all LUTs and runs at 241MHz.

We route two 128-bit buses from each of the two encoder
blocks in this benchmark (totalling 512-bits) into the top right
region of the device, applying a more complex pattern counter
test to each. This divides each 128-bit value into disjoint 4-bit
segments, counting the occurrences of each 4-bit pattern. Like
the monobit test, over a long stream of bits, each of the 24=16
possible patterns should be equally probable. The four pattern
counters occupy 1,155 logic slices and 4,262 LUTs.

This assertion circuit combines with the user-circuit without
affecting its original critical-path delay (4.15ns). Inserting the
same assertion at source level and resynthesising degrades the
critical-path delay to 4.32ns (232MHz). We do not show the
assertion code, as it resembles the monobit test.

C. Experiment 4 — FloPoCo assertion: The final experiment
uses our FloPoCo design. With shift-register extraction disabled,
the benchmark utilises 65% of all logic slices, 41% of all LUTs,
with a critical-path delay of 6.23ns (160MHz). The assertion
checks for infinity or NaN conditions at each tap in this pipeline.
Each condition is represented in FloPoCo’s internal format by
one bit going high; for all taps this totals 144 bits.

Rather than just signalling if any assertion fails, we build a
priority encoder to transform the 144 bit input into an 8 bit
encoded output, to assist a designer in locating the failure.

The FloPoCo assertion can be defined as follows:

1 user uint<3> pri(uint<8>) { latency=... };
2 assertion inRange(uint<34> input[24][8]){
3 pri(input[0][0][32] @ input[0][1][32] @ ...
4 @ input[0][7][32])
5 @ pri(input[1][0][32] @ ... @ input[1][7][32])
6 ...
7 @ pri(input[23][0][32] @ ... @ input[23][7][32])
8 @ pri(input[0][0][33] @ ... @ input[0][7][33])
9 ...

10 @ pri(input[23][0][33] @ ... @ input[23][7][33]);
11 }

where line 1 declares the priority encoder as a user-defined
block, lines 2-11 define the assertion whose inputs are a 24×8
array of 32-bit floating-point numbers, and which concatenates
the output of priority encoders whose inputs are bits 32 and 33
of each array element – the NaN and infinity bits of each tap
in each parallel filter. Future versions of our assertion language
will add for-loops to ease generation of repetitive assertions.

This assertion circuit is also successfully added into the user
circuit without impacting the critical-path delay, while resyn-
thesis with the same placement seed degraded the maximum
frequency from 160MHz to less than 100MHz. Over five seeds,
the best resynthesis result was 162MHz as shown in Table II.

Exp. 1: LEON3 Exp. 2: AES x3
Clock speed → 75MHz 66MHz 150MHz
User 3.32W 6.00W 11.42W
Resynthesis 3.32W 6.03W 11.57W
This work 3.32W 6.09W 11.68W

Exp. 3: AES x2 Exp. 4: FloPoCo
Clock speed → 66MHz 200MHz 150MHz
User 4.59W 10.36W 5.69W
Resynthesis 4.65W 10.61W 5.73W
This work 4.75W 10.88W 5.72W

TABLE III: Measured power consumption.

E. Power evaluation: Lastly, we investigate the power usage
of circuits with and without assertions. We employ the ML605’s
support for on-chip power measurement (via the Virtex6’s
System Monitor) – results in Table III show power consumption:
for the original user circuit without assertion checking; for
assertions added at source level where the entire circuit is
resynthesised; for the transparent approach (this paper). All
power measurements used ChipScope Analyzer averaged over
128 seconds, once the die temperature had stabilised.

For experiment 1, we boot a Linux image supporting up to
4 cores on the SoC, stressing each core using a gzip instance
sourced from /dev/urandom. For experiments 2 and 3 based
on variants of the self-stimulating AES benchmark, we collect
results at two different clock rates. Unfortunately, the high
device temperature/current caused by running ‘AES x3’ at
200MHz triggers the power regulator’s shutdown mechanism
meaning that we only show results at 150MHz.

The results show that, unsurprisingly, adding extra assertion
circuitry increases power consumption — on average by 2%
for resynthesis, and 4% for our techniques. Although the
resynthesis solution may be more efficient (smaller area because
of denser packing decisions) than the original user circuit,
our approach still consumes more power due to transporting
all assertion input signals, via pipelining registers, into one
region to feed the assertion circuit. This incurs multiple
hops of extra switching activity which does not exist in the
resynthesis approach, which can distribute the assertion logic
close to the signal source and not require pipelining. For a
circuit resynthesised with extra assertion logic, however, unless
additional gating techniques are used this 2% power overhead
is permanent, whereas for our approach it is only temporary
— if the assertion logic is no longer needed, the 4% overhead
can be recovered by reverting to the original bitstream.

VIII. CONCLUSION

This paper proposes a language for describing in-circuit
hardware assertions in a HDL-agnostic manner, and describes
methods to allow latency-oblivious assertion circuitry to be
inserted into a synthesised circuit transparently. Our flow inserts
new circuitry after the user circuit has been placed-and-routed,
using only spare resources, ensuring that assertions can be
added, changed, or removed without affecting the original
circuit. To eliminate any impact on critical-path delay, we
aggressively pipeline both the newly inserted circuit and the
routing for its inputs. To pipeline input signals, we use min-cost

10

flow techniques to efficiently transport signals via pipelining
registers, placing and routing them simultaneously.

We find that the key benefits for transparent insertion
are: a) only spare resources are needed, even on large,
complex designs; b) the critical-path delay is unaffected, c) it
is 2–3.9 times faster than resynthesis from scratch. However,
our approach incurs a small, temporary, power overhead due to
extra switching from pipelining the new circuit input signals.

We further extend our technique to allow in-circuit excep-
tions; by relaxing strict transparency, some circuit errors can
be fixed without rerunning expensive place-and-route.

Currently, our transparent insertion flow is encumbered by
overly-broad constraints, owing to using the Xilinx toolflow for
an unsupported application. When building inserted circuit (step
4 of our flow) we can only mark logic resources as occupied
at slice granularity — even if only one of four slice LUTs is
occupied, we cannot use the rest of the slice; furthermore, we
cannot mark occupied routing resources in the same manner.

Furthermore, we must use placement constraints to force
inserted circuits to be placed near the pipelined signals, to
minimise routing congestion between user and inserted circuits,
given that the current flow compiles the inserted circuit without
knowledge of leftover routing. These limitations may be lifted
by building toolflows to create and insert transparent circuits,
e.g. modifying the VTR-to-Bitstream project [22].

In the long term, we would like to consider enhancements
to FPGA architectures and CAD toolflows to further improve
the effectiveness of inserted assertions and exceptions.

ACKNOWLEDGEMENTS: This work is supported in part by the Eu-
ropean Union Seventh Framework Programme under grant agreements
257906, 287804 and 318521, by the UK EPSRC, by the Maxeler
University Programme, by the HiPEAC NoE, by Altera, and by Xilinx.

REFERENCES

[1] K. Murray, S. Whitty et al., “Titan: Enabling Large and Complex Bench-
marks in Academic CAD,” in 2013 Int’l Conf. on Field Programmable
Logic and Applications (FPL), Sept 2013, pp. 1–8.

[2] R. Y. Rubin and A. M. DeHon, “Timing-driven Pathfinder Pathology and
Remediation: Quantifying and Reducing Delay Noise in VPR-pathfinder,”
in 2011 Int’l Symp. on Field Programmable Gate Arrays (FPGA), 2011,
pp. 173–176.

[3] E. Hung, A.-S. Jamal, and S. Wilton, “Maximum Flow Algorithms for
Maximum Observability during FPGA Debug,” in 2013 Int’l Conf. on
Field-Programmable Technology (FPT), Dec 2013, pp. 20–27.

[4] J. Curreri, G. Stitt, and A. D. George, “High-level Synthesis of In-Circuit
Assertions for Verification, Debugging, and Timing Analysis,” Int. J.
Reconfig. Comput., vol. 2011, pp. 1:1–1:17, Jan. 2011.

[5] E. Hung, T. Todman, and W. Luk, “Transparent Insertion of Latency-
Oblivious Logic onto FPGAs,” in 2014 Int’l Conf. on Field-Programmable
Logic and Applications (FPL), September 2014, pp. 1–8.

[6] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli, “Theory of
latency-insensitive design,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, no. 9, pp. 1059–1076, 2001.

[7] T. Todman, S. Stilkerich, and W. Luk, “Using Statistical Assertions
to Guide Self-Adaptive Systems,” in Proc. of the Workshop on Self-
Awareness in Reconfigurable Systems (SRCS), Sept 2013, pp. 28–32.

[8] K. Morris, “Tabula tames verification: DesignInsight brings unique debug-
ging superpowers,” http://www.eejournal.com/archives/articles/20141007-
tabula, October 2014.

[9] D. Bustan, D. Korchemny et al., “SystemVerilog Assertions: Past, Present,
and Future SVA Standardization Experience,” Design Test of Computers,
IEEE, vol. 29, no. 2, pp. 23–31, April 2012.

[10] IEEE, “IEEE Standard for Property Specification Language (PSL),” IEEE
Std 1850-2010 (Revision of IEEE Std 1850-2005), pp. 1–182, April 2010.

[11] S. Das, R. Mohanty et al., “Synthesis of System Verilog Assertions,” in
Design, Automation and Test in Europe, 2006. DATE ’06. Proc., vol. 2,
March 2006, pp. 1–6.

[12] J. Cong and Y. Ding, “FlowMap: an optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 13, no. 1, pp. 1–12, 1994.

[13] G. Lemieux, P. Leventis, and D. Lewis, “Generating highly-routable
sparse crossbars for PLDs,” in 2000 Int’l Symp. on Field Programmable
Gate Arrays (FPGA), 2000, pp. 155–164.

[14] F. Eslami and S. J. E. Wilton, “Incremental distributed trigger insertion
for efficient FPGA debug,” in 2014 Int’l Conf. on Field-Programmable
Logic and Applications (FPL), September 2014.

[15] M. Hutton, “Faster and More Robust FPGAs,”
http://www.fpl2015.org/pdf/keynotes/3.pdf, Sept. 2015.

[16] N. Steiner, A. Wood et al., “Torc: Towards an Open-Source Tool Flow,”
in 2011 Int’l Symp. on Field-Programmable Gate Arrays (FPGA), Feb.
2011, pp. 41–44.

[17] B. Dezs, A. Jüttner, and P. Kovács, “LEMON - an Open Source C++
Graph Template Library,” Electron. Notes Theor. Comput. Sci., vol. 264,
no. 5, pp. 23–45, July 2011.

[18] Aeroflex Gaisler, “GRLIB IP Core User’s Manual,” http://www.gaisler.
com/products/grlib/grip.pdf, January 2013.

[19] Altera, “Advanced Synthesis Cookbook,” http://www.altera.co.uk/
literature/manual/stx cookbook.pdf, July 2011.

[20] F. de Dinechin and B. Pasca, “Designing Custom Arithmetic Data Paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, 2011.

[21] L. E. Bassham III, A. L. Rukhin et al., “SP 800-22 Rev. 1a. A
Statistical Test Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications,” National Institute of Standards &
Technology, United States, Tech. Rep., 2010.

[22] E. Hung, F. Eslami, and S. Wilton, “Escaping the Academic Sandbox:
Realizing VPR Circuits on Xilinx Devices,” in 2013 Int’l Symp. on
Field-Programmable Custom Computing Machines (FCCM), April 2013,
pp. 45–52.

Eddie Hung is currently the technical lead at
Invionics, a startup that offers a platform for building
custom EDA tools. Prior to that, he received his
M.Eng. degree from the University of Bristol, Bristol,
UK, in 2008, and his Ph.D. from the University
of British Columbia, Vancouver, BC, Canada in
2013. The research described in this manuscript
was completed when he was a post-doc at Imperial
College London, London, UK during 2014-15, where
he remains a visiting researcher.

Tim Todman received his B.Sc. degree from the
University of North London and M.Sc. and Ph.D.
degrees from Imperial College London. He is a
research associate in the Department of Computing,
Imperial College London. His research interests
include high-level synthesis and runtime verification
of reconfigurable hardware designs.

Wayne Luk (F09) received the M.A., M.Sc., and
D.Phil. degrees in engineering and computing science
from the University of Oxford, Oxford, U.K. He
was a Visiting Professor with Stanford University,
Stanford, CA, USA. He is currently a Professor of
Computer Engineering with Imperial College London,
London, U.K. His current research interests include
reconfigurable computing, field programmable tech-
nology, and design automation.

