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Abstract 

Ubiquitination is a diverse post-translational modification, involved in a plethora of eukaryotic 

processes. At least three different enzymes are required for ubiquitination to occur: an ubiquitin-

activating enzyme (E1), an ubiquitin-conjugating enzyme (E2) and an ubiquitin ligase (E3). 

Conversely, deubiquitinating enzymes (DUBs) regulate the removal of ubiquitin modifications. 

Together, this enzymatic machinery facilitates a wide array of ubiquitin modifications and further 

ubiquitin-like modifications. Such modifications play a significant role in the regulation of vital 

biological processes including proteasomal degradation, DNA damage response (DDR) and NF-κB 

signalling. 

Ubiquitination machinery can be studied using a chemical proteomics approach. Activity-based 

probes (ABPs) which covalently trap enzymes can be employed. Such probes possess bioorthogonal 

handles, which on ligation to complementary reporter groups enable enrichment of probe-enzyme 

complexes prior to LC-MS/MS, western blot, or fluorescent analysis. The design, synthesis, and 

development of six inhibitor-inspired ABPs for ubiquitin machinery is described. Both small molecule 

and peptide probes were explored, and assessed for their ability to act as ubiquitin machinery 

probes both in intact cells and cell lysate. Spike-in SILAC methodology was employed to quantify 

probe targets under competitive conditions against parent inhibitors, and in a DNA damage response 

model.  

An alternative to using literature inhibitors is to derive novel starting points for tool design through a 

fragment-based drug discovery approach. A high throughput screen against the minimal catalytic 

core of HOIP, an E3 ligase, is described together with subsequent validation and characterisation of 

hit fragments by waterLOGSY NMR and Micro-scale thermophoresis, and crystallography attempts. 

Finally, a model system for the structural analysis of transient enzyme complexes is explored, to 

further our understanding of these interactions and ultimately to assess the applicability of these 

complexes for future drug discovery. The design and synthesis of a maleimide trap is described, 

along with its application to covalently trap an Ub-E2-E3 complex. 
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Chapter 1 Introduction 

1.1 Ubiquitination as a post translational modification (PTM) 

1.1.1 Discovery 

Post translational modification (PTM) is the covalent addition or removal of chemical entities on a 

translated protein, in order to regulate its biological properties.1, 2 Several PTMs, including 

acetylation, methylation, phosphorylation, and ubiquitination are known to govern cellular 

processes. Ubiquitination, the reversible attachment of the 76 amino acid protein ubiquitin (Ub, 

Figure 1A) to substrate proteins, is a diverse PTM which plays a vital role in several eukaryotic 

processes.3 Its roles include controlling cellular localisation and altering protein-protein interactions 

(PPIs), which in turn determine enzymatic activity and protein turnover.4  

 

Figure 1: (A) Cartoon and (B) space filling PyMOL representations of Ubiquitin (Ub), with the C-terminal 
Glycine (G76, Green), N-terminal methionine (M1, Yellow), and all Lysine residues (K, Cyan) labelled. 

Ub was first discovered in 1975 by Gideon et al. as a polypeptide that was highly conserved across 

mammalian, bacteria, yeast, and plant cells. 5 The first indication that Ub covalently modified other 

proteins came two years later, when an isopeptide bound histone-protein complex was identified by 

GoldKnopf and Busch, and the conjugated protein later recognised as Ub. 6, 7 In the 1980s, the link 

between the modification of proteins by Ub and their proteasomal degradation was elucidated by 

Ciechanover, Hershko and Rose. 7-9 Their work marks the birth of a now expansive field of research 

and later won the 2004 Nobel Prize in Chemistry.10 Ub has since been associated with a plethora of 

other cellular processes including endocytosis, cell cycle control, transcription regulation and the 

repair of DNA damage.11, 12 Such variety of function demonstrates the diversity of Ub as a PTM, 

whilst also illustrating the complexity of the ubiquitination process, which is controlled by several 

hundred enzymes. 
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1.1.2 Types of modification 

As described in Section 1.1.1, Ub modifications can occur through isopeptide bond linkages. This 

isopeptide bond forms between the C-terminal glycine (Gly76, or G76) of Ub and lysine (Lys, or K) 

residues on substrate proteins. A substrate can be modified by one or several Ub moieties, referred 

to as mono- and multi-ubiquitination respectively (Figure 2). Mono-ubiquitination has been 

associated with several biological processes, including histone regulation, and DNA damage repair.13-

16 Further, both mono- and multi-ubiquitination have been linked to endocytosis.  

 

Figure 2: Cartoon representation of types of Ub modification, and their known physiological roles. 

As Ub possess seven Lys residues (K6, K11, K27, K29, K33, K48, and K63, Figure 1B) it can itself act as 

a substrate, leading to the formation of polyubiquitin (polyUb) chains. The topology of these chains 

is dependent on which Lys residues are ligated, providing various chain isoforms with different 

structures and hence biological effects. 17, 18 For example, K63 polyUb adopts a chain-like form, 

whilst K48 polyUb assumes a more compact globular structure. Some chain isoforms have been 

connected with their physiological functions. For example, K63 polyUb have a strong prevalence in 

cell signalling pathways whilst K48 and K11 polyUb modifications are predominantly associated with 

proteasomal degradation. Though bifurcated chains are also known to exist and it is conceivable that 

very complicated heterotypic chains could be formed, very little is known about such modifications 

due to low cellular abundance.19-21  

In addition to isopeptide bond linkages, G76 can bind to the N-terminal methionine (Met1, or M1) of 

Ub to form head-to-tail linear Ub (Met1) chains. Ribosomal synthesis of Ub affords a Met1 polymer, 

which is then hydrolysed to provide monomer Ub units.22 Structural studies have shown that Met1 
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chains have a similar topology to K63 chains, yet they play distinct cellular roles.23 In 2006 Kirisako et 

al. showed that Met1 chains can be re-assembled by cells. 24 Since, the critical biological role of Met1 

chains has been revealed, which will be considered in more detail in Section 1.1.6.3.25 

1.1.3 Mechanisms of ubiquitination 

The plethora of Ub modifications available is made possible by an assortment of Ub enzymes. This 

Ub machinery enables precise control of several thousand targets proteins through the use of 

different enzyme assemblies. The basic mechanism of ubiquitination was elucidated by Ciechanover 

and co-workers in the years following its discovery as a key player during proteasomal degradation. 

In 1981 the Ub activating enzyme (E1) was identified as the first piece of the puzzle, when it was 

shown that E1 covalently binds to Ub in an ATP dependent manner via a thioester bond.26, 27 Ub-

conjugating (E2) and Ub-ligase (E3) enzymes were later isolated and identified in 1983 by affinity 

purification through an Ub-sepharose column.28 It was observed that E2 purification was only 

possible in the presence of E1 and ATP, which was not the case for E3. Further, E3 eluted from the 

column under salt conditions, whereas E1 and E2 did not, implying that the E3 was not covalently 

bound. Together this provides the current model of ubiquitination, as depicted in Figure 3. First, Ub 

is actively conjugated to an E1 enzyme via a thioester bond between Gly76 and a catalytic cysteine 

(Cys) residue. This Ub moiety is subsequently conjugated to an E2 enzyme via an analogous thioester 

bond to form an E2-Ub conjugate, with final transfer to a protein substrate Lys residue facilitated by 

an E3 ligase. The removal of such Ub PTMs is achieved by a family of deubiquitinating enzymes 

(DUBs).  

In humans there are only two Ub E1 enzymes: UBA1 (Ubiquitin-like modifier-activating enzyme 1) 

and UBA6 (Ubiquitin-like modifier-activating enzyme 6).29 Conversely ~40 E2s, and >600 Ub E3s have 

been identified to date.30, 31 This hierarchy of enzymes allows high substrate specificity by means of 

the numerous E3s which enable selective modification of targets. Each extended family of Ub 

machinery is discussed in turn below. 

1.1.3.1 E2 enzymes 

All E2 enzymes possess a ~150 amino acid catalytic domain referred to as the UBC domain.31The 

topology adopted by this domain is highly consistent, with additional C- and N-terminal extensions 

imparting enzyme specificity.31 Some E2s are known to interact with multiple E3 ligases families, 

whilst others show specificity to a particular family. In general, E2-Ub conjugates have low reactivity 

and require interaction with an E3 to facilitate Ub transfer. For example, the UBE2D (Ubiquitin-

conjugating enzyme E2 D) E2 family demonstrate low reactivity with Lys in isolation, but react 
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rapidly in the presence of their E3 partner.31, 32 Multiple structural studies indicate E2-Ub conjugates 

adopt highly dynamic conformations, and that binding to its E3 partner promotes a reactive 

conformation.33-37 The use of mutant E2-Ub conjugates in these studies, which are bound through a 

Lys rather than a Cys residue to mimic the transient thioester linkage, has allowed insight into these 

otherwise transient complexes. Interestingly, a small subset of E2s cannot initiate Ub chains, and 

instead are specific for polyUb chain elongation. These E2s do not possess intrinsic catalytic activity, 

and only facilitate Ub transfer when in complex with the substrate and E3 ligase partner. An example 

is UBE2N-UBE2V1 (Ubiquitin-conjugating enzyme E2 N- Ubiquitin-conjugating enzyme E2 variant 1) 

heterodimer, which is specific for K63 chain elongation.38, 39 

 

Figure 3: Cartoon representation of the Ub machinery assembly. Ub (purple) is actively conjugated by its 
Gly76 residue to an E1 enzyme via a thioester bond, and transferred by a cascade of E2 and E3 ligase 
enzymes to the substrate. Ub-enzyme conjugates are bound by a thioester bond between Gly76 and 
catalytic Cys residues. Ub is attached to the substrate via an isopeptide bond between its C-terminal G76 
and Lys residues, or a Gly76–Met1 peptide bond in the case of linear chains. The removal of Ub PTMs is 
regulated by DUB enzymes. 

In addition to Ub conjugation, other regulatory roles of E2s are becoming increasingly more 

apparent. For example, UBE2D2 binds to the DUB OTUB1 (Ubiquitin thioesterase OTUB1) and in 

doing so enhances its protease activity. In turn, OTUB1 can bind to other E2-Ub conjugates, and in 

doing so inhibits their activity.31  

1.1.3.2 E3 Ligase Families 

E3 ligases fall into two major categories of catalysis; i) assisting direct Ub transfer from the E2-Ub 

conjugate to the substrate protein; ii) intermediary covalent binding to Ub and subsequent transfer 
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to the substrate proteins. This leads to 3 distinct E3 families: RING (Really Interesting New Gene), 

HECT (Homologous to E6AP C-Terminus), and RBR (RING between RING) ligases.30 

Comprising ~ 600 enzymes to date, RING E3 ligases are the most abundant Ub ligase family. RINGs 

recruit E2-Ub conjugates and assist the direct transfer of Ub to substrate proteins (Figure 4A). RING 

domains characteristically consist of two zinc coordination sites which present a concave face to 

which E2-Ub binds. MDM2 (E3 ubiquitin-protein ligase Mdm2) is a RING E3 ligase, that mediates the 

proteasomal degradation of the tumour suppressor p53 (cellular tumour antigen p53).40 U-box 

domains, which are also included in this family, are structurally analogous to RINGs but lack the 

coordinated zinc ions.30, 41 RINGS and U-box E3s can be monomeric or homodimeric, whilst 

heterodimeric complexes are also known for RINGs. In the case of dimers, only one RING or U-box 

domain interacts with the E2 enzyme; the other domain is thought to be involved in complex 

stabilisation, or the recruitment of substrates. E3 ubiquitin-protein ligase CHIP (CHIP) is a 

homodimeric U-box E3 ligase, which has been shown to supress apoptosis by targeting heat shock 

proteins.42 RINGs can also be constituent parts of multi-subunit E3 complexes. This includes the 

cullin-E3 ligase family, which assemble on one of eight cullin scaffold proteins.43 Another multi-

subunit E3 ligase is the anaphase promoting complex/cyclosome (APC/C), which selectively targets 

cell cycle proteins for proteasomal degradation.30 

In contrast, HECT E3 ligases covalently bind to Ub, prior to transfer onto the substrate (Figure 4B). 

HECTs represent a smaller E3 ligase family, with ~30 Human enzymes identified to date.30 HECT 

ligases consist of two domains, the C lobe and N lobe, which are separated by a flexible tether to 

enabling variation of their relative orientation.30 The C-lobe contains the catalytic Cys that binds to 

Ub, whilst the N lobe recruits E2-Ub. Variation in the characteristic domains and tether region 

affords differing Ub modification specificity. Substrates are largely recruited to the N-terminus, a 

process which is often facilitated by adaptor proteins. For example, SMURF2 (E3 ubiquitin-protein 

ligase SMURF2) is a HECT E3 ligase that uses at least two adaptor proteins, SMAD2 (Mothers against 

decapentaplegic homolog 2) and SMAD7 (Mothers against decapentaplegic homolog 7), to facilitate 

binding to substrates.44, 45  

RBR ligases are another E3 ligase family consisting of ~12 members. RBR ligases utilise a hybrid of 

both RING and HECT catalytic mechanisms. RBRs consist of a RING1 and a RING2 domain separated 

by an IBR (In-between-RING) domain (Figure 4C). Though its historical naming is misleading, Wenzel 

et al. have since shown that RING2 behaviour is in fact akin to a HECT domain; E2-Ub conjugates 

bind to RING1, prior to Ub transfer to a RING2 catalytic Cys and ultimately to the substrate.32 As with 



19 

RING domains RBRs can form part of multi subunit complexes. Met1 chains are assembled by an RBR 

E3 ligase containing complex, aptly named LUBAC (linear ubiquitin chain assembly complex).  

 

Figure 4: Cartoon representation of RING, HECT and RBRs E3 ligase families. RING E3s assist direct transfer of 
Ub to the substrate, whilst HECT and RBR E3 ligases employ catalytic Cys residues to form thioester bound 
E3-Ub conjugates prior to substrate transfer. RBR ligases possess a RING1 (R1) and RING2 (R2) domain. R1 
mediates E2-UB binding, whilst Ub is transferred to the R2 domain. 

Analogous to E2-Ub conjugates, transfer of Ub to substrate Lys residues from E3-Ub conjugates is 

dependent on conformational changes. Recent studies of have provided structural insight into these 

changes and transfer mechanisms of HECT and RBR E3 ligases.46, 47 

1.1.3.3  ‘E4’ ligases 

In some cases, a further ‘E4’ ligase, also termed a ubiquitination elongation factor is required to 

enable the formation of polyUb chains. E4 ligases either function enzymatically as an additional E3 

ligase in the assembly, or they facilitate the progression of an existing E3 ligase. Several E4s possess 

a characteristic U-box domain; however, for some time it was a matter of debate as to whether such 

enzymes should be considered as a separate family of Ub machinery, or an E3 ligase subfamily.48 

Current evidence suggests the former is a more appropriate model on two counts: i) there is no 

evidence of a direct interaction between ‘E4’ and E2 enzyme; ii) not all E4s possess E3 activity in 

vivo, and as such cannot replace E3s in an enzyme assembly. UBE4B (Ubiquitin conjugation factor E4 

B) is an E4 ligase, that in combination with the E3 MDM2 polyubiquitinates p53, leading to its 

degradation.40  

1.1.3.4 DUBs 

Approximately 100 DUBs are known to date, which can be classified into five families.49 Four of these 

families: Ubiquitin carboxyl-terminal hydrolases (UCH), Ubiquitin-specific proteases (USPs), ovarian 

tumour proteases (OTU) and Josephins (MJD) are cysteine proteases. The fifth family comprises a 
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group of metalloproteases referred to as MPN+/JAMMs ((JAB1/MPN/MOV34 metallo-enzymes). USP 

represents the largest subfamily, comprising of 56 members.  

Mechanistically, DUBs fall into three modes of action; i) generation of free Ub, either from polyUb 

chains or ribosomal fusion proteins; ii) removal of monoUb motifs; iii) polyUb ‘chain editing’: i.e. 

conversion between chain isoforms.49 As with E2s and E3s, different DUBs demonstrate different 

specificities. For example, the UCH family are, amongst other roles, associated with hydrolysis of 

ribosomal Ub polymer.50 Other DUBs demonstrate differing chain-linkage specificity.22 For example; 

USP14 is proteasomal bound DUB that specifically cleaves K63 chains. In this way USP14 facilitates 

the recycling of Ub monomers following substrate targeting for degradation. On the other hand, 

USP5 and USP13 have been shown to cleave with no chain specificity. These DUBs target ‘free’ Ub 

chains, which are not attached to substrate proteins, to replenish the monomer Ub pool.51 

Conversely the OTU family show high linkage specificity, but the topology of this specificity varies 

greatly within the family.38 For example, OTUB1 shows specificity for K48 chains, whilst OTULIN 

(Ubiquitin thioesterase otulin), OTUD7A (OTU domain-containing protein 7A, also known as 

Cezanne), and OTUB7B (OTU domain-containing protein 7B, also known as A20) specifically cleave 

Met1, K11 and bifurcated K11/K48 chains respectively.31, 38  

The various Ub modifications and their associated assembly machinery is a highly complex field. For 

a comprehensive overview of known Ub machinery, their associated assembly systems, modification 

specificity, and substrate specificity, please refer to the following excellent reviews.22, 31, 52-54  

For a list of all known Ub machinery in the UniProt database, please refer to Appendix Table 1. 

1.1.4 Recognition of Ub PTMs: UBDs 

The code generated by various Ub modifications is detected and deciphered by Ub binding domains 

(UBDs) present on proteins. These domains associate with Ub motifs through PPIs, in turn triggering 

a cellular response. Such interactions with Ub are low affinity (10-500 µM), reflecting their transient 

nature.55 The first UBD to be identified was a subunit of the 26S proteasome, S5a. In 1994 Deveraux 

et al. determined that this 50 kDa substrate is capable of binding Ub-conjugates and polyUb chains 

at least 4 Ub in length.56 Now more than 20 UBDs have been identified, covering a broad landscape 

of structural complexity.57 Structural studies indicate that UBDs interact through a variety of distinct 

PPIs, utilising various secondary structures, such as α-helices, β-sheets and zinc finger domains. 

Furthermore, a given protein can possess multiple, homo- or hetero-, UBD domains enabling a wide 

range of linkage specificity.58 
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Conversely, the mode of Ub binding to these UBDs is highly conserved to a limited number of 

surface ‘patches’, including the isoleucine 44 (Ile44) hydrophobic ‘hotspot’.55, 58 However, different 

chain isoforms present different protein surfaces for subsequent interaction with UBDs. Accordingly 

different UBDs have different chain link specificities, even though they interact through mainly 

conserved residues. Ub-UBD interactions are often stronger with an isolated UBD domain, 

suggesting that these PPIs are regulated by intra, as well as inter- molecular interactions in the 

native environment.55 Further regulation is likely to be achieved by other PTMs.  

1.1.5 Ubiquitin like modifications (Ubls) 

In addition to Ub a number of Ubiquitin-Like Modifications (Ubls) have been identified in eukaryotes 

and prokaryotes. Ubls are related to Ub through structural similarity and all possess a β-grasp fold 

core 3D structure, consisting of a β-sheet cradling a single helix (Figure 5).59 Although Ub-like, these 

PTMs are distinct, with generally low sequence homology. Each eukaryotic Ubl is briefly discussed 

below. 

1.1.5.1 SUMO 

SUMO (Small Ubiquitin like modifier) was first identified in 1997 by Mahajan et al. as a conjugated 

adduct of RanGAP1 (Ran GTPase-activating protein 1) in mammalian cells, and has since been linked 

to several regulatory cellular events including DNA repair, apoptosis and cell cycle progression.60-62 

103 Amino acids in length, SUMO is a larger protein than Ub (Figure 5). At least 4 genes encode 

SUMO in invertebrates: SUMO1-4. SUMO2 and SUMO3 are 97 % identical and cannot be 

distinguished by antibodies, therefore these isoforms are considered collectively as SUMO2/3.60 

Sumoylation requires an analogous yet simplified assembly to ubiquitination; there is one E2, a 

handful of E3s, and a small subfamily equivalent to DUBs called SENPs (sentrin specific proteases) for 

SUMO removal. Like Ub, SUMO can form chains in yeast and mammalian cell. SUMO can also be 

modified by Ub leading to hybrid chains but the biological implications of both of these 

modifications remains elusive.63, 64 Together, SUMO and Ub modifications can elicit precise control 

over biological processes. A well understood example of Ub and SUMO ‘crosstalk’ is their 

competitive binding to residue K164 of PCNA (proliferating cell nuclear antigen) during S phase. 

PCNA is a processing factor which is essential for DNA replication. K164 is mono-ubiquitinated if the 

DNA is damaged, resulting in stalled replication and initiation of DNA repair. Conversely, SUMO 

binds when there is no damage. In this way, SUMO and Ub binding act as a ‘switchboard’ between 

DNA repair and replication modes of PCNA.3, 65 
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1.1.5.2 Nedd8 

Also discovered in 1997, Nedd8 is the closest Ubl to Ub in terms of sequence, with 58 % homology 

(Figure 5). Loss of function in the Nedd8 pathway was found to be lethal in plant, animal and some 

yeast models.60 Like sumoylation, neddylation machinery is a simplified version of the ubiquitination 

machinery, with one E1 and just a handful of E2s and E3 ligases. Nedd8 may form chains, but their 

function is unknown to date.66 Nedd8 is known to modify, and in doing so regulate, ubiquitination 

machinery. Notably Nedd8 modifies cullin-E3 ligase activity.67 Cullin-E3 ligases are auto-inhibitory 

and only activated following neddylation at a conserved Lys residue. Indeed, mutation studies 

indicate an accumulation of cullin substrates if this Lys residue is not preserved.68 Neddylation 

induces a conformational change and thus activates E3 ligase activity. Nedd8 modifications can be 

removed by a number of DUBs, and further regulation is achieved by CAND1 (cullin-associated 

NEDD8-dissociated protein 1), which prevents neddylation thereby preserving the inactive state.60, 69, 

70  

 

Figure 5: PyMOL representations of Ub, Nedd8, SUMO1, and ISG15. A cartoon representation of the β-grasp 
fold core structure shared by Ub and Ubls is included for reference.  

1.1.5.3 ISG15  

ISG15 (Interferon-simulated gene 5, Figure 5), as the name suggests, is expressed when stimulated 

by interferons (IFN). As for other Ubls, ISG15 machinery is simpler than Ub machinery, and 

interestingly the expression of this machinery is also induced by IFN.60 ISG15 plays a role in IFN 

pathways during host antiviral response following viral infection, and its expression to limited to the 
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higher eukaryotes that utilise this signalling pathway. ISG15 is known to modify host and viral 

targets.71 Akin to neddylation ISG15 modifications can regulate the activity of Ub machinery, and it is 

in this way that host cells impair virus ‘budding’ mechanisms.72, 73 Poly-ISG15 chains have not been 

identified, whilst multi-ISG15 modifications are prevalent.  

1.1.5.4 Other Ubls 

FAT10 (HLA-F adjacent transcript 10) and MNSFβ (monoclonal nonspecific suppressor factor β) are 

two further Ubls. FAT10 is a reported oncogene, whilst MNSFβ may be associated with T cell 

function during the immune response.74-78 UFM1 (Ubiquitin-fold modifier 1) is one of the newest 

additions to the Ubl family. The role of UFM1 remains unclear, but its specific E1 enzyme is essential 

for red blood cell differentiation in mice and is expected to play other developmental roles, either 

later stage or in alternative cell types.60, 79 Two Ubls: ATG8 (Autophagy-related protein 8) and ATG12 

(Ubiquitin-like protein ATG12), represent key components of the autophagy machinery. ATG12 is a 

canonical Ubl that modifies protein, whilst ATG8 is a lipid modifier existing as eight known isoforms 

in mammalian cells. These Ubls have been reviewed extensively by Van der Veen et al.60 

Other eukaryotic Ubls function by a non-canonical mechanism; that is, they do not modify substrate 

through a Gly-Lys isopeptide bond. For instance, HUB1 (Ubiquitin-like modifier hub1) acts as a non-

covalent modifier in yeast, through a C-terminal di-tyrosine motif, and is essential for RNA splicing.60 

URM1 (Ubiquitin-related modifier 1) which is conversed in yeast and human cells, is implicated in 

tRNA thiolation. URM1 possesses a C-terminal thiocarboxylate and may act as a sulphur carrier.80  
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1.1.6 Cellular roles and chemotherapeutic potential 

At mentioned in sections 1.1.1 and 1.1.5, Ub and Ubl modifications play critical roles in several 

biological processes. Here three such processes which offer chemotherapeutic potential are 

introduced: the ubiquitin proteasome system (UPS), DNA damage response (DDR), and NF-κB 

(nuclear factor kappa-light-chain-enhancer of activated B cells) signalling, along with their associated 

Ub/Ubl modifications. 

1.1.6.1 Ubiquitin Proteasome system (UPS) 

The 26S proteasome, generally referred to as the ‘proteasome’ is a 2000 kDa multi-protein complex 

conserved across all eukaryotes.29 Found in the cytoplasm and nucleus, the proteasome is composed 

of three subunits; the core 20S particle, which is sandwiched by two 19S regulatory particles (Figure 

6A). The 20S can be further classified into two outer α rings, which facilitate binding to 19S, and an 

inner β ring that enables proteolytic activity. Both α and β rings are formed from distinct subunits. In 

the case of the β ring, three of these subunits each provide a specific catalytic activity to facilitate 

proteolysis: trypsin-like, chromotrypin-like, and peptidylglutamyl-peptide hydrolysing activity.81 

Proteins which are targeted for degradation by a K48 polyUb modification bind to the 19S particle 

via their polyUb motif. The 19S particle then ensures cleavage and recycling of Ub, whilst the 20S 

particle ultimately degrades the substrate protein. In this way, the UPS regulates the cellular 

environment by controlling levels of redundant or defective proteins.  

Dysregulation of the proteasome leads to cellular stress. This makes the proteasome a prime drug 

target for certain cancers, which are highly dependent on UPS regulation.29 One such example is 

Multiple myeloma (MM). MM is cancer of plasma cells, which are responsible for antibody 

production in bone marrow. MM cells are proliferative and produce defective proteins in excess, 

making them highly dependent of UPS function.82 Proteasome-targeting drugs have since been used 

with success for MM patients, and the first UPS inhibitor, Bortezomib (Velcade, Millennium 

Pharmaceuticals, Figure 6B) was approved in 2003 by the FDA (Food and Drug Association).83 Since 

then, additional proteasomal drugs have undergone clinical trials in both haematological and solid 

tumours, with further inhibitors under clinical investigation to improve drug efficacy and limit 

toxicity.29  

Proteasomal inhibition is by no means a ‘magic bullet’ and its efficacy varies between different types 

of cancer. Proteasomal inhibition impacts on other cellular pathways including DNA repair, NK-kB 

signalling, and cell cycle arrest.84 Accordingly, the responsiveness of a malignancy to proteasomal 

inhibition can be related to its dependency on these pathways.  
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Figure 6: (A) Cartoon representation of UPS. PolyUb chains target substrate proteins for degradation by the 
proteasome, and the Ub chain is cleaved and recycled by DUBs. The major subunits of the proteasome are 
labelled. (B) Structure of Bortezomib, the first FDA approved proteasome inhibitor. 

1.1.6.2 DNA Damage Response (DDR) 

Ub was first associated with DDR in 1987 when Jentsch et al. identified that RAD6 (Ubiquitin-

conjugating enzyme E2 2), a known DNA repair protein in yeast, demonstrated E2 activity.85 RAD6, 

together with RAD18 (E3 ubiquitin-protein ligase RAD18), mono-ubiquitinates PCNA on sensing DNA 

damage during replication.65 Since, Ub and Ubl modification have been linked to all the DDR 

pathways triggered in response to different forms of DNA damage.  

DNA damage can occur on one strand, leading to Single Strand Breaks (SSBs) or the formation of 

bulky adducts (Figure 7A). Alternatively damage can occur simultaneously on both strands, resulting 

in Double Strand Breaks (DSBs) or interstrand cross-links (ICLs). Further, endogenous errors can 

occur during DNA replication such as insertion, deletion, or mismatching of base pairs. This variety of 

damage requires several repair pathways in order to retain genomic integrity. The role of Ub in these 

pathways can be regulatory through the UPS, which is observed during SSB repair. Alternatively Ub 

can play a signalling role, assisting the recruitment of DNA repair proteins to sites of damage. Some 

roles of Ub modifications during DDR are briefly introduced below. 

Nucleotide excision repair (NER) is the pathway utilised to repair bulky adducts. NER is achieved via 

two pathways: Transcription Coupled Repair (TCR) and Global Genome Repair (GGR). TCR acts as a 

rapid but error prone repair mechanism, whilst GGR provides an error free alternative. It is now 

known that Ub modifications provide the link between these two pathways and trigger GGR in the 

event of failed repair by TCR.86 On sensing damage during transcription, TCR is first initiated. Once 

the repair machinery is assembled, Rpb1 (DNA-directed RNA polymerase II subunit RPB1), a subunit 

of this repair machinery, is modified with polyUb chains by Rsp5 (E3 ubiquitin-protein ligase RSP5) 

and UBC5 (Ubiquitin-conjugating enzyme E2-16 kDa). The progression of this polyUb modification 
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acts as an Ub ‘clock’. If the DNA is repaired in time, transcription resumes. However if the polyUb 

chains grows to four Ub in length, TCR is abandoned, the damage site cleared of TCR machinery, and 

GGR commences.87, 88 Other Ub clocks are known to control other repair pathways, such as the 

repair of damage encountered during replication.3 

Two cullin-E3 ligases: Cullin-4A (CUL4A) and Cullin-4B (CUL4B) are also associated with NER.89 As 

discussed in Section 1.1.5.2, cullin-E3 ligase activity is regulated by Nedd8 modifications. Loss of 

neddylation leads to an accumulation of cullin-E3 ligase substrates, and ultimately S-phase cell cycle 

arrest.90 This results in DNA re-replication which constitutes as DNA damage and triggers DDR.91, 92 

Nedd8 inhibition has been further shown to sensitise cells to DNA damage induced by cisplatin and 

IR, and recently localisation of Nedd8 at damage sites has been observed, making Nedd8 machinery 

a novel anti-cancer target.93-97  

DSBs are the most cytotoxic form of DNA damage. K63 polyUb chains are known to assemble at DSBs 

following phosphorylation of Histone H2AX.98 Three independent studies in 2007 discovered that 

such chains are assembled by E3 ubiquitin-protein ligase RNF8 (RNF8) and the E2 UBE2N.99-101 In 

human cells RNF8 was later shown to further interact with phosphorylated E3 ubiquitin-protein 

ligase HERC2 (HERC2), leading to a stabilised RNF8/UBE2N interaction, and promoting RNF8 

dependent ubiquitination events in downstream DSB repair.102 E3 ubiquitin-protein ligase RNF168 

(RNF168), is further required for the recruitment of the repair proteins BRCA1(Breast cancer type 1 

susceptibility protein) and 53BP1 (Tumor suppressor p53-binding protein 1) to sites of damage.103 

Depletion of RNF8 or RNF168 sensitises cells to DSB-induced damage.98 It is now understood that 

RNF168, which is negatively regulated by the DUB OTUB1, binds to polyUb motifs created by RNF8 

and promotes polyUb chain formation on histone H2A, which in turn leads to the recruitment of 

repair proteins.98, 104 In this way, RNF8/RNF168 seemingly controls recruitment of both BRCA1 and 

53bp1, even though these are associated with separate DSB pathways: Homologous recombination 

(HR) and Non Homologous End Joining (NHEJ) respectively.98 As with NER, these two pathways 

provide both error free and error prone repair mechanisms. The mechanistic relationship between 

53bp1 and BRCA1 and subsequent repair pathway selection remains a complicated puzzle to crack.98 

Recent studies show that E3 ubiquitin-protein ligase RNF169 (RNF169), a close relative of RNF168, 

negatively regulates DSB repair pathways by competing with 53BP1 and BRCA1 binding to RNF8 

assembled polyUb chains. This suggests that RNF169 contributes to the DSB pathway balancing act. 

BRCA1 itself contains a RING domain, and complexes with BARD1 (BRCA1-associated RING domain 

protein 1) to function as a heterodimeric RING E3 ligase. Further E3 ligases have also been 

implicated in DDR and have been extensively reviewed by Brown et al.98 
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Finally, DNA damage induced by ICLs is sensed and repaired through the Fanconi pathway in a Ub 

mediated manner.105 FANCD2 ( Fanconi anemia group D2 protein) and FANCI (Fanconi anemia group 

I protein) together form the heterodimeric ‘ID complex’. On sensing ICLs, mono-ubiquitination of 

both components of this complex is achieved by E3 ubiquitin-protein ligase FANCL (FANCL) in 

combination with UBE2T (Ubiquitin-conjugating enzyme E2 T), leading to the recruitment of the 

repair complexes to damaged chromatin, with enzymatic turnover regulated by the DUB USP1.98 This 

brief introduction offers just a taste of the physiological roles Ub/Ubls play during DDR. For a 

comprehensive review refer to one of the suggested references.49, 98  

Targeting DDR pathways is an emerging strategy to improve the efficacy of existing cancer 

therapeutics. As radio- and chemo-therapies induce DNA damage, DDR pathways offer a mechanism 

of resistance for cancer cells.49 As described above, damage can often be repaired by overlapping, 

error prone and error free, pathways. In cancer, these DDR pathways can become over-activated or 

defective. This imbalance alters the cell’s DDR repertoire leading to a strong reliance on particular 

pathways, which can be exploited therapeutically; inhibition of critical pathways can prove lethal for 

malignant cells, whilst healthy cells survive (Figure 7B).49 This concept is referred to as synthetic 

lethality, and is also used in the context of therapeutic strategies combining chemotherapeutics with 

additional genotoxic agents. 

PARP (poly ADP ribose polymerase) enzyme inhibitors are a recent addition to the chemotherapeutic 

arsenal, which nicely illustrate synthetic lethality in action. Current PARP inhibitors inhibit PARP1 and 

PARP2, essential enzymes for SSB sensing and repair.106 The PARP inhibitor Olaparib (Lynparza, 

AstraZeneca), recently approved by the FDA, has proven to be successful in treating hereditary 

prostate malignancies which display defective BRCA1 or BRCA2 (Breast cancer type 2 susceptibility 

protein) genes.107 BRCA2, like BRCA1 is critical for HR DSB repair. PARP inhibition prevents SSB 

repair, leading to DSB formation during replication, which cannot be efficiently repaired by the 

defective HR.98 Following the demonstrated success of PARP inhibitors, multiple companies and 

research institutions are developing drugs which employ a synthetically lethal strategy, with several 

ongoing studies targeting Ub machinery associated with DDR. Although no drugs targeting DDR 

ubiquitination machinery are currently approved, several DDR relevant DUB and E3 ligase inhibitors 

are undergoing preclinical trials, and a Nedd8 E1 enzyme inhibitor is in phase I clinical trials.108  
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Figure 7: Cartoon representations of DDR, and synthetic lethality. (A) The major types of DNA damage and 
the Ub mediated repair pathways associated with them. (B) Certain cancer cells become reliant on particular 
repair pathways, inhibition of which leads to cancer cell death but healthy cell survival. 

1.1.6.3 NF-κB pathway 

NF-κB signalling refers to a small family of transcription factor proteins that control the expression of 

proteins critical to cell survival during inflammatory and immune responses. 109 NF-κB proteins (NF-

κBs) are inactively present in cells, enabling a fast response to stimuli without requiring additional 

protein synthesis. This is achieved through their complexation to inhibitors of NF-κB (IκBs) that 

sequester NF-κBs in the cytoplasm. In response to stimuli, these IκBs are degraded and the free NF-

κBs released, which subsequently enter the nucleus. Two types of NF-κB signalling are known: the 

canonical and non-canonical pathway. For the canonical pathway, Met1 polyUb chains have been 

identified as a novel pathway activator; modification of NEMO (NF-κB essential modulator) by the 

RBR E3 ligase LUBAC leads to its recruitment, which in turn activates the NF-κB signalling pathway.25 

Consequently IκBs are targeted for degradation by K11 polyUb modifications, enabling NF-κBs to 

translocate to the nucleus. Several DUBs are reported to negatively regulate NF-κB signalling, 

including CYLD (Ubiquitin carboxyl-terminal hydrolase CYLD), A20, and OTULIN.109 Conversely, non-

canonical NF-κB signalling is not regulated by linear ubiquitination. Seemingly distinct, studies by 

Basak et al. revealed that in fact these two pathways are mechanistically linked; suggesting that loss 

of canonical function will lead to atypical non-canonical function.110  
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Constitutively active NF-κB signalling in a common signature in a range of human cancer, with 

unchecked proliferation enabling continued tumorigenesis and metastasis of malignant cells whilst 

apoptosis is supressed.111 NF-κB signalling is also activated by genotoxic agents.112 Consequently, 

components of the NF-κB signalling pathway are an interesting anti-cancer target, as their inhibition 

could inhibit tumour proliferation, whilst also sensitising cells to chemotherapeutics. A recent 

genetic screen revealed that a component of the E3 complex LUBAC attenuates cisplatin induced 

apoptotic cell death, implying that NF-kB activation by LUBAC is a contributing factor in cisplatin 

resistance.113 

It has been suggested that NF-κB pathway inhibition in combination with UPS inhibition could offer a 

chemotherapeutic strategy. It was initially believed that UPS inhibition would directly inhibit NF-κB 

signalling, due to hindered IκB degradation. 114 This hypothesis was supported by the observed 

accumulation of IκB following Bortezomib treatment in clinical trials.84 However, further studies 

which observed activation of NF-κB signalling on UPS inhibition contradict this rational, and suggest 

that combined inhibition could prove synthetically lethal. 84  
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1.2 Studying ubiquitination: a proteomics approach 

1.2.1 Proteomics: the challenges of studying PTMs 

Proteomics is the study of proteins. Through genetics we have established the ‘blue print’ of life: the 

genome, which details all the genetically encoded proteins of the cell, known collectively as the 

proteome.115 The completion of the human genome project and the rise of genetic tests have 

powered the concept of personalised medicine, however, genomics alone does not provide all the 

information we need to understand biological processes. 

The genome is static and therefore doesn’t provide any dynamic information for the proteins that it 

encodes. Yet protein expression levels can vary dramatically in response to a number of biological 

factors. For instance, the proteome fluctuates throughout the cell cycle and in response to outside 

stimuli.116 It also differs between healthy and diseased cellular states. Add to this a resource of 

PTMs, plus additional DNA variations such as RNA splicing and isomerism, and the reality of studying 

proteins becomes far more complex. Consequently, sophisticated techniques that enable 

spatiotemporal control, coupled with high throughput and high sensitivity, are required to study the 

proteome and its related PTMs.  

There are two main aims when studying PTMs: i) to discover substrates of a given modification; ii) to 

identify the enzymes required to catalyse this modification. Since the discovery of Ub much work has 

been undertaken to study the modification and its associated machinery. Various methods, 

particularly mass spectrometry (MS) approaches have been applied, and will be summarised in the 

following sections. 

1.2.2 Mass spectrometry (MS) approaches 

Cracking the human genome and that of other organisms has led to the cataloguing of genome 

sequences for all encoded proteins to create vast protein databases, which in combination with 

sophisticated mass spectrometry (MS) technologies fuelled the nascent of MS-based proteomics.  

MS is an analytical method used to separate, detect, and measure ionised chemical species 

according to their mass-to-charge-ratio (m/z). Species can be ionised in a variety of ways, generally 

referred to as soft and hard ionisation techniques, which enables a broad range of chemical moieties 

to be detected and various experimental designs to be employed. In the 1980s it was demonstrated 

that soft ionisation techniques, such as MALDI (matrix assisted laser desorption/ionisation) and ESI 
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(electrospray ionisation) can be used to ionise proteins and peptides, enabling their identification by 

MS methods.117, 118  

Tandem MS (MS/MS) instrumental setups, where both the mass and sequence of multiple peptides 

can be determined from a single analytical run, has revolutionised our ability to study complex 

proteomes.119 In an MS/MS experiment intact ions are detected in the first MS stage (MS1) before 

some ions are selected for fragmentation and further MS analysis (MS2) to enable sequence 

determination. Quadrupole Time of flight (Q-TOF) and Orbitrap instruments are commonly used 

mass detectors for MS/MS proteomic experiments. With Q-TOF, ions are detected separately as they 

reach the detector at different time points. In the Orbitrap, ions are not separated in time, but can 

be differentiated by their oscillation frequency, which can be converted to MS spectra by Fourier 

transform. As with ionisation, ions can be fragmented in a number of ways. Collision Induced 

Dissociation (CID) in the gas phase is commonly employed for analysis of complex proteomic 

mixtures.120 Thus following a database search, proteins and peptides can be identified by their amino 

acid sequence.  

Multiple software packages that facilitate MS spectral processing and protein database searching 

exist, including the freely available MaxQuant software.121 Protein assignment is achieved by search 

algorithms, which fit MS and MS/MS spectral data to sequences recorded in protein databases. This 

fit is of course a model rather than concrete proof, and as such each ‘fit’ has an associated error, 

referred to as a ‘false discovery rate’ (FDR). Further complex algorithms fit these peptides to 

proteins, again with an associated FDR. FDR cut off thresholds can be applied to define the 

confidence of a protein assignment. Additional software, such as Perseus, enables data evaluation 

and visualisation. Further analytical tools, including the free online tool STRING, provide 

bioinformatic analysis of MS data, such as the Gene Ontology (GO) annotations associated with 

identified proteins, the known interacting partners and pathways of a protein, or the known 

interactions between a subset of proteins. 122  

There are two main methods of protein MS analysis: the top-down and bottom-up approaches.123 

Bottom-up approaches, which identify proteins from their constituent peptides, are well suited for 

the analysis of complex mixtures, and can be used to identify thousands of proteins and 

modifications within a few hours. Proteins are typically digested using trypsin, which cleaves 

proteins at Lys and arginine (Arg, or R) residues, but other enzymes, such as Lys-C which only cleaves 

at Lys residues, offer alternative peptide generation. 
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Bottom-up proteomics can be undertaken in a sort-then-break or break-then-sort manner. Sort-

then-break requires the separation of proteins prior to their enzymatic digestion and subsequent 

MS/MS analysis. Sorting is achieved by 1D or 2D gel electrophoresis, with digestion of excised bands 

providing a peptide ‘fingerprint’ of the protein in question, enabling its identification.124 This 

technique is limited by the sensitivity of the protein staining method used and therefore is not ideal 

for studying low abundant proteins or modifications. Alternatively, break-then-sort involves initial 

peptide generation with subsequent separation by liquid chromatography (LC).125 This LC-MS/MS 

methodology (Figure 8), commonly known as ‘shot-gun’ proteomics provides a much higher 

throughput, which is capable of detecting low abundance proteins and even membrane proteins. LC-

MS/MS is limited by its detection ability, this being subject to the resolution of separation and the 

abundance of the peptides. Both of these factors are exacerbated as sample complexity increases. 

 

Figure 8: Cartoon schematic of a bottom-up LC-MS/MS workflow using an orbitrap mass spectrometer. A 
protein mixture isolated from cells is enzymatically digested, separated by liquid chromatography and 
subjected to MS/MS analaysis. Peptides are ionised by ESI to provide peptide masses in MS1, selected, and 
fragmented by HCD (Higher-energy collision dissociation, a form of CID commonly used with orbitrap mass 
spectrometers) before MS2 analysis. Data analysis of MS1 and MS2 spectra, together with peak intensities, 
enables protein identification through MaxQuant software, and data evaluation using Perseus software. 

In comparison, whole proteins can by separated and analysed by top-down approaches.126 This 

enables different biological states of a protein, or ‘proteoforms’, to be detected by their differing 

accurate masses.127 In this way a PTM (such as ubiquitination) along with any co-occurring PTMs 

(such as acetylation, phosphorylation, and further ubiquitination) can be observed simultaneously, 

in the context of the whole protein. This provides important information beyond the scope of 

bottom-down approaches; it is almost certain that several PTMs work in unison to control proteins, 

and this ‘whole picture’ is lost when changes are detected at the peptide level.128 As MS sensitivity 
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and separation techniques steadily improve high throughput top-down proteomic approaches 

become increasing plausible, especially for lower molecular weight protein mixtures: recently Durbin 

et al. identified 1577 proteomes for cellular extracts of <30 kDa.129 
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1.2.3 Quantitative proteomic techniques 

Various approaches can be employed to quantify proteins. Quantification can be relative between 

different samples, or it can provide an absolute measure of protein concentration. Relative 

quantification, which enables the comparison of proteomes across different biological conditions 

and disease states, can be achieved through the introduction of stable isotopes into samples. 

Isotopes exhibit comparable physio-chemical properties whilst differing in mass, thus making them 

distinguishable by MS techniques.  

Stable isotopes can be introduced by metabolic or chemical means. SILAC (stable isotope labelling by 

amino acids in cell culture) is a metabolic approach that exploits the reliance of human cells on two 

essential amino acids: Arg and Lys.130 Culturing cells in ‘heavy’ media, which contain Arg and Lys 

amino acids labelled with 15N and 13C isotopes (15N2
13C6: Lys8, K8 and 15N4

13C6: Arg10, R10 ), leads to 

the stable incorporation of these ‘heavy’ amino acids into the cellular proteome. Heavy labelled 

proteomes can be quantified relative to ‘light’ proteomes incorporating natural amino acids in a 

classical Duplex SILAC experiment (Figure 9A). Further development of ‘medium’ isotopically labelled 

amino acids (2H4: Lys4, K4 and 13C6: Arg6, R6) has enabled three-way Triplex SILAC comparisons. 

Alternatively, SILAC methodologies can be used to study de novo protein production and protein 

turnover dynamics in so called ‘pulsed-SILAC’ experiments.131 More recently a spike-in SILAC 

methodology was established (Figure 9A).132 In spike-in SILAC, conditions to be compared are 

cultured in the absence of isotopes. Quantification is achieved by introducing a fixed quantity a 

heavy proteome into each light condition, which acts as an internal standard for relative 

quantification.  

Metabolic labelling introduces isotopic labels early on, thus minimising the impact of any 

experimental error introduced during sample preparation. However, SILAC reagents are relatively 

expensive and are not globally applicable; due to the necessity of heavy amino acid incorporation, 

SILAC is unsuitable for studying human tissue or bodily fluids. Chemical incorporation of isotopic tags 

offers an alternative approach. Isotopic tags can be incorporated at the protein or peptide level. The 

isotope-coded protein label (ICPL) method incorporates tags onto all free Lys residues and N-termini, 

prior to digestion (Figure 9A).133 Alternatively, tags can be incorporated onto free amines following 

digestion using a low cost dimethyl labelling strategy (Figure 9A).134 Both of methods are limited to 

triplex comparisons. In addition, as isotopic labels are introduced at the end of significant sample 

handling, error during quantification is a concern.  
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Both the metabolic and chemical labelling approaches introduced above are quantified during MS1 

detection. These labels, therefore, increase sample complexity at the MS1 level, as each isotopically 

labelled peptide represents an additional analyte. This in turn reduces the likelihood of observing 

low abundant peptides and PTMs. Methods whereby quantification occurs during MS2, rather than 

MS1 circumvent these complexity issues. Quantification during MS2 is achieved through the use of 

isobaric tags. Such tags are of equivalent mass, and co-elute during LC separation. On fragmentation 

during MS2, however, different isobaric tags reveal characteristic ions of unique mass. This enables 

the tags to be differentiated and relatively quantified. iTRAQ and TMT are commercially available 

reagents that allow up to 10-plex sample comparison (Figure 9A).135, 136 Though offering clear 

advantages by enabling high multiplexing whilst decreasing MS1 spectral complexity, such reagents 

still suffer from the errors associated with late stage labelling approaches, and are very expensive. 

Neutron encoding (NeCode) is a new technique that offers the advantages of both metabolic 

incorporation and isobaric tagging.137 NeCode relies on small mass differences (6 mDa) which can be 

generated between lysine isotopes, enabling up to 18-plex sample comparison. Such small mass 

defects make these variants nominally isobaric, and resolvable using high resolution MS techniques. 

Proteomes can be relatively quantified in the absence of isotopic labels using label-free 

quantification (LFQ, Figure 9A).138 LFQ algorithms quantify peptides by integrating their MS spectral 

signal, and then comparing each peptide signal between different samples.139 As LFQ requires no 

labelling it provides a cheap quantification method with a limitless multiplexing range. It also can 

provide a higher dynamic range of quantification, which is useful for the quantification of proteins 

which vary dramatically between samples. However, sample variation can result in significant 

quantification error. Consistent sample handling can be achieved by adopting automated workflows 

and minimising sample processing.  

Absolute quantification of proteins (AQUA) can be achieved by introducing known concentrations of 

heavy protein or peptide which act as a standard (Figure 9B).140 AQUA methodologies are applicable 

in targeted proteomic studies, such as selected reaction monitoring (SRM) MS. In SRM experiments, 

peptides of interest are preselected. Subsequent LC-MS/MS data acquisition focusses on the 

detection of these preselected peptides, thus, the addition of isotopically-labelled analogues 

provides standards for absolute quantification.  
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Figure 9: Overview of (A) relative and (B) absolute quantitative proteomic techniques. Isotopic labels can be 
introduced metabolically or chemically, whilst chemically introduced isobaric tags allow multiplex 
quantification in MS2. Different methodologies introduce quantification at different workflow stages, and 
thereby are prone to different extents of sampling error. Label-free quantification compares MS peak 
intensity in the absence of a heavy standard. Introducing a heavy spike of known concentration for a protein 
of interest enables absolute quantification of that protein. Red and blue denote the introduction of labels 
for quantification, at the cell, protein, or peptide stage. 

1.2.4 Profiling Ub  

1.2.4.1 MS analysis of Ub 

For successful analysis by MS methods, a PTM needs to be both stable and detectable under MS 

conditions. At 8 kDa, Ub represents a large modification; however, it meets both these criteria. 

Furthermore, following tryptic digest Ub modifications leave a characteristic scar at modification 

sites which can be exploited to identify Ub modification sites. Ub -modified Lys residues cannot be 

efficiently digested, generating a missed cleavage site on modified peptides. As the C-terminal 

sequence of Ub is Arg-Gly-Gly (RGG), tryptic digest leads to a Gly-Gly (GG) scar at sites of Lys 

modification representing a 114.1 Da mass shift. Thus, a secondary database search for this 

modification on Lys residues enables the identification of both modified proteins and their 

modification sites.  

Furthermore, as each of the seven Ub Lys residues reside on unique, prototypic, peptides different 

Ub chain isoforms can be distinguished. In 2003 Peng et al. demonstrated that all chain isoforms co-
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exist in yeast using this technique, and were able to measure their relative abundance.141 Since this 

study, the development of AQUA Ub standard peptides has enabled the absolute quantification of 

Ub chain linkage.142, 143 Further studies implementing AQUA have compared Ub modifications 

throughout the cell cycle, and in various disease states. For example K11 chain abundance increases 

sharply on exiting mitosis, whilst K48 abundance remains constant. 22, 144  

The tryptic signature peptide of SUMO is much longer (19 or 32 amino acids for SUMO1 and 

SUMO2/3 respectively) making SUMO modifications much harder to detect. The development of 

SUMO mutants which mimic the RGG C-terminal of Ub, together with the correct controls, have 

enabled the detection of SUMO sites. 145 An alternative mutant possessing a Lys-Gly-Gly (KGG) C-

terminus has also be used in combination with Lys-C digestion to identify SUMO sites.146 

As these MS-based techniques are limited by their sensitivity and dynamic range, various enrichment 

strategies are implemented to overcome these issues when studying proteins and PTMs of interest, 

including Ub. These approaches are discussed below. 

1.2.4.2 Affinity enrichment approaches 

 
Genetically incorporated epitope tags provide a useful handle for the affinity enrichment of specific 

proteins. N-terminal incorporation of His (poly-histidine), HA (Human influenza hemagglutinin), and 

biotin tags have been used to identify Ub- and Ubl- conjugated substrates. His-tagged Ub can be 

enriched using a Ni-based resin. His-tags have proved a successful handle for identifying Ub 

substrates in yeast, and were used in the study by Peng et al. mentioned earlier in Section 1.2.4.1.141 

His-tag enrichment suffers from high background in mammalian cells, however, due the higher 

numbers of native His rich proteins. HA offers an alternative tag which can be enriched using a HA-

specific antibody. Alternatively, biotin forms a strong, non-covalent interaction with avidin, which 

can be conjugated onto resin and used to enrich biotin-tagged proteins. Biotin can be incorporated 

chemically or enzymatically by a bacterial ligase: BirA (Bifunctional ligase/repressor BirA). The latter 

recognises a short N-terminal fused peptide sequence, known as the avi-tag, leading to the covalent 

attachment of a biotin motif.147 This approach has enabled the biotinylation of Ub in vivo and its 

subsequent incorporation into native polyUb chains.148 All these enrichment strategies suffer from 

background resulting from non-specific resin binding of non-tagged proteins. Therefore, potential 

substrates require further validation, commonly by immunoprecipitation or western blot with 

substrate specific antibodies.  
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UBDs have been used as an enrichment strategy for PolyUb chains. UBD pairs can bind cooperatively 

to polyUb in series, providing affinity interactions in the region of 1-15 µM.55 This has led to the 

development and application of tandem repeat ubiquitin binding entities (TUBEs) by Hjerpe et al.149 

As well as enriching polyUb chains, using TUBEs has the added bonus that inherent chain 

sequestration by TUBEs protects substrates from proteasomal degradation enabling their isolation 

and further study.150 Through combining different UBDs, TUBEs can be modulated to enrich for 

specific chain isoforms of interest.151 TUBEs have also been used to study the substrates of specific 

E3 ligases by overexpressing a selected E3 ligase with an epitope-tagged, trypsin-resistant TUBE.152 In 

an alternative approach, UBDs have been fused to the E3 ligase of interest to form ligase-traps which 

have enabled E3 ligase substrate studies.153 In general, the specificity of TUBEs and UBD enrichment 

strategies remains a concern, however, due to their nonspecific interaction with Ubl sequence 

domains in other proteins.154-156  

1.2.4.3 Ub Antibody enrichment 

Ub antibodies have been available since the 1980s, however, although possessing affinity for Ub 

they suffered from cross reactivity.157 Since, the development of monoclonal antibodies with 

specificity for polyub has enabled polyUb sample enrichment.158 In 2008 specific antibodies for K48 

and K63 chains isoforms were reported which have proven useful for western blot applications.159 

However, their application as an enrichment strategy has been unfruitful to date. 

Enrichment strategies at the peptide, rather than protein, level have been developed which exploit 

the K-GG signature peptide formed from the GG scar on Lys residues following tryptic digest of Ub 

modification sites. In 2010 the first K-ε-GG antibody was reported.160 This was quickly followed by 

three landmark papers which demonstrated that enrichment with a K-ε-GG antibody enabled the 

identification and SILAC relative quantification of >10 000 sites in the largest set of Ub substrates 

identified to date, all without perturbing the endogenous system.161-163 The downside of using the 

GG signature peptide to detect Ub modifications is that this motif is shared by Nedd8 and ISG15 

Ubls, making them indistinguishable by this technique alone.128 In their study, Kim et al. used 

positive controls to estimate the relative contribution of each modification. ISG15 contribution was 

estimated by β-interferon stimulation, whilst Nedd8 contribution was estimated by cleaving all Ub 

modification with generic DUBs, so that only Nedd8 modifications remained. In both cases the Ubls 

were estimated to make a minor impact on the overall K-ε-GG enrichment landscape. 161  
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1.2.4.4 Localisation studies 

Genetic incorporation of fused reporter proteins, such as GFP (green fluorescent protein) is common 

within the proteomic field. Being fluorescent, GFP fused proteins can be applied in both direct 

imaging to determine cellular localisation, and in co-localisation studies. Due to their size, however, 

fused proteins present a large perturbation from the endogenous system, which may alter both 

protein function and localisation.  

As PTMs are not genetically encoded, fusion proteins are often not applicable; however, as Ub is a 

protein, is it possible to design Ub-GFP substrates. These have been used to study proteasomal 

degradation in live human cells and further incorporated into transgenic mouse models.164, 165 In 

addition, GFP-fused UBDs and multi-UBDs have been reported as an alternative approach to ‘sense’ 

polyUb chains in live and fixed mammalian cells.166, 167 More generally, specific antibodies can be 

fluorescently labelled for localisation and co-localisation studies for proteins of interest in fixed cells. 

1.2.5 Profiling Ub machinery 

1.2.5.1 Genetic methods 

Early investigation of Ub and its associated machinery was undertaken in both mammalian and yeast 

models. Approximately 50 % homology with human genes associated with disease is observed, 

which combined with its ease of manipulation makes yeast a good biological model.168 Gene 

deletions, or ‘knockouts’, can be used to infer the biological function of the encoded enzymes. A 

recent study used yeast deletion mutants to quantify the effect of nine specific DUBs on the yeast 

proteome, using a multiplex TMT labelling strategy.169  

In mammalian models, gene knockouts and transient RNA interference (RNAi) techniques have been 

used extensively in enzymes studies, including that of Ub machinery. The CRISPR/Cas-9 (Clustered 

regularly-interspaced short palindromic repeats / Caspase-9) system is increasingly regarded as a 

superior method of gene knockout, providing a quicker and more robust approach.170 However, all 

these genetic approaches suffer from redundancy in pathways, whereby if several genes perform 

the same function, disruption of one may result in minimal phenotypic effect. This gene redundancy 

can make the biological roles of certain genes and their encoded proteins difficult to pinpoint. 

Genetic mutations, both synthetic and computational, are another important tool for studying 

enzyme activity. Alanine scanning, whereby amino acids are symmetrically replaced with alanine, 

has been used to identify key interacting residues in both Ub and its machinery.171, 172 Furthermore, 
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mutations to form more stable analogues can aid structural studies of transient enzyme complexes 

by crystallography methods, as mentioned in Section 1.1.3.2 

1.2.5.2 Activity-Based Probes (ABPs) 

Activity-Based Probes (ABPs) use chemical entities to capture and investigate a subset of enzymes in 

an activity-dependent manner.173 ABPs bind covalently to the active site of enzymes forming probe-

enzyme complexes, and can range from small inhibitor-like molecules to protein derivatives. ABPs 

offer a range of applications, including quantitative proteomic analysis and localisation studies in the 

context of PTMs. Classical ABPs possess an electrophilic trap to enable the covalent trapping to 

nucleophilic residues and a tag, such as a biotin moiety, which enables affinity enrichment of probe-

enzyme complexes (Figure 10A). Enriched proteins can then be separated and analysed by MS/MS or 

western blot. The early development of such ABPs was pioneered by the Cravatt and Bogyo labs, and 

has since been used to profile a variety of enzyme classes.174, 175 

ABPs derived from Ub have proven applicable for the activity-based protein profiling (ABPP) of DUBs. 

As Ub is transferred between Ub machinery via catalytic cysteine residues, incorporation of a 

cysteine reactive electrophilic trap at the C-terminal of Ub enables covalent trapping of these 

enzymes. Various electrophiles show reactivity towards cysteine, with varying degrees of selectivity 

over other amino acid residues observed.176 In 2001 Borodovsky et al. reported that radiolabelled Ub 

incorporating a C-terminal vinyl sulphone ([125I]-Ub-VS) could be used as a DUB probe in mammalian 

cell lysate.177 The following year the same authors reported the development of a series of HA-

tagged Ub probes (Figure 10B), which were synthesised using an intein-based chemical ligation 

method.178  Various electrophiles were incorporated and the resulting probes profiled. Subsequent 

bottom-up mass spectrometry analysis led to the identification of several DUBs by these probes. 

Since, Ub ABPs have enjoyed widespread use in DUB studies, including quantitative SILAC 

comparison of various disease states and selectivity profiling of DUB inhibitors.179, 180  

Further development of DUB reactive Ub ABPs has followed, including the synthesis of di-Ub probes 

which mimic various Ub chain isoform linkages, as well as the addition of short peptide sequences to 

form Ub-substrate mimics.181, 182 Identification of other ubiquitination machinery has proven more 

difficult by this approach. The incorporation of highly electrophilic traps into Ub ABPs has been 

reported as a method of identifying E3 ligases.183 However, attempts to synthesise such ABPs has 

proven unsuccessful in our hands.2 Recently, a Ub-E2 conjugate probe incorporating an electrophilic 

trap was used to study the RBR E3 ubiquitin-protein ligase parkin (Parkin).184 
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The synthesis of Ub ABPs is hindered by the low yields afforded by intein-based methods.178 The 

optimisation of solid phase peptide synthesis (SPPS) procedures has enabled total synthesis of Ub 

and Ub ABPs in substantially improved yield.185 This synthetic approach also allows increased 

flexibility in the choice of N-terminal modifications. Ub ABPs synthesised in this manner are now 

commercially available.  

In addition to one-step enzyme capture, the development of bioorthogonal reactions has permitted 

the use of two-step ABPP strategies (Figure 10D).186 Such reactions enable the addition of various 

bulky reporters, such as fluorophores and affinity tags, after the formation of probe-enzyme 

complexes. Bioorthogonal reactions require incorporation of a small chemical handle onto the ABP 

that can react with a complementary handle on reporter groups. These handles present a much 

smaller perturbation than an epitope tag or fusion protein, thereby preventing disruption of native 

biological processes under investigation. 

Bioorthogonal reactions by definition are chemical reactions that can occur without interfering with 

native biological processes. A bioorthogonal reaction must, therefore, be both selective and 

biocompatible. Accordingly, reaction components must be stable under physiological conditions, and 

the reaction performable at physiological temperature and pH. If the reaction is performed in live 

cells, toxicity from reagents and by-products is a consideration and needs to be avoided. Copper 

catalysed azide-alkyne cycloaddition (CuAAC) commonly referred to as ‘click chemistry’ has been 

used with great success as a bioorthogonal reaction in proteomic applications.187, 188 In CuAAC, 

alkyne and azide moieties provide complementary handles, which covalently react through a Cu (I) 

catalysed cycloaddition reaction (Figure 10E). CuAAC is a fast and highly sensitive reaction, though 

the use of Cu (I) does result in undesired toxicity. However, due to cell permeability bioorthogonal 

ligation of reporter groups is often undertaken after cell lysis, reducing toxicity concerns.    

Multiple reporters can be ligated onto a probe complex simultaneously using designed ‘capture 

reagents’. These reagents can possess affinity handles, fluorophores, and in some cases isotopic 

labels for quantification purposes. AzTb is a capture reagent developed by the Tate group combining 

TAMRA, biotin and azide moieties, to enable labelling of alkyne tagged probes (Figure 10F).189 

Capture reagents that include cleavable linkers have also been designed.190 Such linkers can be used 

to improve purification strategies, as well as to validate the site of ABP binding.  

Ub ABPs incorporating an alkyne handle have been reported.191 Such probes have been successfully 

synthesised in house and further demonstrated to label a number of proteins.2 A small molecule 
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inhibitor derived ABP, possessing an alkyne tag, has also been reported that labels Ub and Ubl E1 

enzymes through a two-step labelling approach.192 In a more global approach, ABPP of reactive 

cysteines has been performed by the Cravatt lab using an iodoacetamide (IA) derived alkyne tagged 

ABP, IA-Alkyne.193, 194 IA is a pan cysteine alkylating reagent and IA-Alkyne does identify some 

ubiquitination enzymes, however, both are toxic making the cellular application of IA-Alkyne 

problematic. A ‘caged’ bromoacetamide probe analogue has recently been reported that overcomes 

this toxicity, enabling the identification of >300 reactive cysteines in cells.195 Coverage of Ub 

machinery however still remains low.  

 

Figure 10: ABPP approaches. (A) Classical ABPs possess an affinity tag for enrichment, and an electrophilic 
trap for covalent binding. (B) HA-tagged Ub ABPs have been used extensively to study DUBs. (C) Various 
traps can be incorporated into Ub ABPs, which demonstrate varying selectivity. (D) Two step ABPs possess a 
bioorthogonal handle to enable the addition of bulky capture reagents after probe-enzyme complex 
formation. (E) CuAAC is a bioorthogonal ligation reaction between an alkyne and an azide bond, which is 
suitable for in lysate applications. (F)Structure of the capture reagent AzTb.  

Affinity-based probes (AfBPs), bind in an affinity, rather than an activity, based manner and can also 

be employed in an analogous manner.196 Such probes possess a photo-crosslinking moiety, to enable 

covalent trapping of interacting enzymes and further enrichment. To date, AfBPs have not been used 

in the proteomic profiling Ub machinery.  
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1.2.5.3 Emerging methods 

Methods have been developed which enable the detection of enzyme-probe interactions without 

requiring any affinity handles or bioorthogonal tags. DARTS (drug affinity responsive target stability) 

and CETSA (cellular thermal shift assay) are two ‘label-free’ approaches that exploit the altered 

stability of proteins on binding to small molecules. DARTS technology distinguishes bound and 

unbound proteins by their altered proteolytic stability.197 Alternatively, CETSA technology exploits 

their altered thermal stability properties.198  

Fusion of BirA ligase onto proteins of interest is a method of identifying an enzyme’s substrates in 

vivo. The technique, known as BioID, relies on substrate proteins being biotinylated when they are in 

close proximity to the BirA ligase.199 This enables subsequent purification and identification of 

protein substrates. Recently, BioID has been applied to identify the substrates of a cullin-E3 ligase 

complex.200  

Proteolysis-targeting chimera (PROTAC) technology provides a chemical means of protein 

knockdown.201 In 2010 an E3 ligase, Cereblon (CRBN), was identified as the primary target of 

thalidomide (Figure 12).202 The ligation of thalidomide or its derivatives to specific inhibitors enables 

the targeted degradation of proteins of interest. Such technology has been reported as a means of 

degrading bromodomain-containing protein 4 (BRD4), leading to impeded proliferation and induced 

apoptosis in a cancer cell model.203, 204 This approach has been applied to other proteins, through no 

Ub machinery to date. 205 

1.2.6 Inhibitors of Ub machinery  

As well as their therapeutic potential, high quality inhibitors can assist our understanding of 

biological processes, and provide starting points for the design of tool molecules, such as ABPs. 

Various inhibitors of Ub machinery have been identified through small molecule screens both in 

silico and in vitro, as well as through rational structural guided design. A selection are included in 

Figure 11-13 and further discussed below. 

PYR-41 and NSC624206 are two reported inhibitors of the Ub E1 enzyme, UBA1 (Figure 11).206, 207 

Both prevent E1-Ub thioester formation through suggested covalent mechanisms. MLN4924, a 

selective inhibitor of UBA3 (ubiquitin like modifier activating enzyme 3), the Nedd8 E1 enzyme, has 

shown promise as an anti-cancer therapeutic and is currently in phase I clinical trials.208 CC0651 is an 

inhibitor of UB2R1 (Ubiquitin-conjugating enzyme E2 R1) that binds to an allosteric site, stabilising 

the E2-Ub conjugate.209, 210 Active site binding E2 inhibitors have since been reported, including 
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NSC697923 and Tz9.211-213 Bay11-7821 is an anti-inflammatory drug, which is now known to form a 

covalent adduct with NF-κB pathway associated E2 enzymes.214  

 

Figure 11: Structures of reported E1 and E2 inhibitors.  

Due to their large number and imparted substrate specificity, much effort has gone into the 

development of E3 ligase inhibitors. Several E3 ligase inhibitors target PPIs between E3s and their 

substrates or other enzyme partners (Figure 12). Particular attention has been paid to the 

interaction between the E3 ligase MDM2, and its substrate p53. The Nutlin derivative Nutlin3, and 

MI-219 are two MDM2-p53 PPI inhibitors in phase I clinical trials.215, 216 Serdemetan (also in phase I 

clinical trials), SP141 and NSC66811 are known MDM2 binders that inhibit the MDM2-p53 

interaction, whilst RITA inhibits the interaction by binding to p53.217-220  

Other inhibitors have been developed that target various cullin E3-ligases, such as GS143 and SZL P1-

41, and as mentioned in Section 1.2.5.3 thalidomide is a CRBN inhibitor. 202, 221-223 SM-406 and GDC-

0152 are both inhibitors of cullin E3-ligases that act as IAPs (Inhibitor of Apoptosis Proteins) and are 

currently in phase I clinical trials due to their potential as selective cancer therapeutics.224, 225 An 

inhibitor or the APC/C complex, TAME, has also been reported.226  



45 

 

Figure 12: Structures of selected E3 ligase inhibitors. 
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In 2014 Mund et al. reported Heclin, a small inhibitor which shows broad inhibition of HECT E3 

ligases in cells, demonstrating their druggability.227 A01 has also been further reported as a selective 

E3 ubiquitin-protein ligase SMURF1 (SMURF1) inhibitor.228  

DUBs, which like E3s impart substrate specificity, have also enjoyed significant attention as drug 

targets. Several literature DUB inhibitors are known, varying from pan to specific inhibitors (Figure 

13). For example, PR-619 and WP1130 are broad inhibitors of USP and UCH family DUBs.229, 230 

P22077 and IU1 are reported as specific inhibitors of USP7 and USP14 respectively.179, 231 Some 

inhibitors of cysteine protease DUBs are covalent binders, utilising a Michael acceptor to trap 

catalytic cysteines. 12PgJ2, WP1130 and bAP-15 fall into this category.232, 233  

 

Figure 13: Structures of selected DUB inhibitors. Enzyme selectivity is indicated in brackets. 

For further details of ubiquitination enzyme inhibitors, please refer to the following comprehensive 

reviews.108, 234, 235  
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1.3 Project objectives 

The aim of this PhD project is to develop chemical tools to assist the study of ubiquitination 

machinery. As mentioned in Section 1.2.5.2, Ub-based ABPs have been used extensively in the 

literature to study the activity of DUBs. However, the study of other ubiquitination machinery has 

proven non-facile using these tools. Furthermore, such tools are restricted to in lysate applications.  

Several Ub enzyme inhibitors, introduced in Section 1.2.6, have been reported. A number of these 

compounds provide starting points for novel, cell permeable, ABP design. Once characterised, these 

ubiquitination probes could be applied to biological models of interest, such as DDR. Ultimately, DDR 

specific ubiquitination activity could be identified, the inhibition of which could induce synthetic 

lethality, or in combination could improve the efficacy of current chemotherapeutic strategies 

(Section 1.1.6.2). 

Alternatively, novel starting points for tool design could be identified using high throughput 

screening methods against specific families of ubiquitination machinery such as RBR E3 ligases. 

These enzymes form transient complexes with their partner E2 enzymes (Section1.1.3.1) and their 

substrates. The development of structural models to study these complexes would further assist 

their study and evaluation for further drug discovery.  

The main objectives of this PhD thesis were to: 

 Design and synthesise novel ubiquitination ABPs, derived from peptide and small molecule 

inhibitors (Chapter 2 and Chapter 3). 

 Identify the targets of these ABPs using a chemical proteomics approach, and to evaluate 

their suitability as ubiquitination probes (Chapter 2 and Chapter 3). 

 Apply ubiquitination ABPs in a DDR model (Chapter 2). 

 Explore novel starting points for the development of tools to study RBR E3 ligases, using a 

fragment based drug discovery approach (Chapter 4). 

 Develop a model system to study transient E3 ligase complexes (Chapter 5).  
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Chapter 2 Peptide activity-based probes for 
studying ubiquitination machinery 

Chemical proteomics is a powerful tool for elucidating complex biological interactions. This Chapter 

reports the design, synthesis, and development of ‘clickable’ peptide derived activity-based probes 

and their subsequent application in quantitative SILAC experiments in lysate. Their suitability as cell-

based probes is further explored by utilising fluorescently labelled analogues and through the 

incorporation of cell penetrating peptide sequences. 
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2.1 Introduction 

As previously mentioned in Chapter 1, Ub-derived ABPs are well established tools for profiling DUB 

activity in cell lysate. However, such ABPs are not suitable for all types of ubiquitination machinery. 

Whilst Ub-derived ABPs label more than 60 % of DUBs†, they have shown limited capacity to label 

other ubiquitination machinery. Furthermore, probe application is restricted by ineffective cell 

permeability. Though application in semi-intact cells has been reported, in the majority of cases the 

ABP is applied post cell lysis.236 This presents difficulties if targets of interest are transient or their 

activity is disrupted during lysis. Therefore, the development of cell permeable probes capable of 

effective labelling of Ub machinery would significantly enhance the study of these enzymes. 

In 2005, Borodovsky et al. reported that C-terminal Ub-derived peptide inhibitors possessing an 

electrophilic vinyl sulphone (VS) trap can inhibit several DUBs in vitro.237 These peptides were 

evaluated by autoradiography through competition against [125I]-Ub-VS (introduced in Section 

1.2.5.2), with DUB targets subsequently identified by LC-MS/MS analysis of excised bands using a Ha-

Ub-VS ABP (Chapter 1, Figure 10). This target analysis is not comprehensive, however, as it only 

identifies targets also labelled by Ha-Ub-VS. We hypothesise that such peptide-derived ABPs, far 

removed from the tertiary structure of whole Ub, will have the ability to label beyond the DUBs 

reported in this study, and potentially offer a probe for Ub machinery detection. Consequently, ABP 

analogues of these peptide inhibitors were designed and studied to evaluate their ability to label Ub 

machinery of interest. 

2.2 Design and synthesis 

For our preliminary peptide-based probe studies, a peptide consisting of the last 12 C-terminal 

residues of Ub (12-mer) was chosen, as this was the minimum peptide length reported to achieve 

effective competition.237 An ABP probe analogue (Pg-12-mer) was designed by incorporation of the 

unnatural amino acid propargyl glycine (Pg) at the N terminus (Figure 14A). Addition of a C-terminal 

electrophilic trap completed both inhibitor and probe design.  

Two electrophilic traps; VS and a vinyl methyl ester (VME) were tested to scope the effect of 

electrophile type on target identification (Figure 14B). Boc-protected VS (2) was successfully 

synthesised from N-Boc-2-aminoacetaldehyde (1) and diethyl [(methylsulfonyl)methyl] phosphonate 

                                                           

† Calculated from published data.179  
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using NaH in THF via a Horner-Wadsworth-Emmons type reaction, in 48 % yield (Figure 14C).238 

Protected VME (3) was synthesised in an analogous fashion from 1 and methyl 

diethylphosphonoacetate, in 42 % yield. Although initially employed with success, the use of NaH 

proved unreproducible on repeat synthesis of these compounds. Consequently, K2CO3 was tested as 

an alternative base, providing 2 and 3 in an improved yield of 66 % and 53 % respectively.182 

Subsequent Boc deprotection with 33 % TFA/DCM afforded VS as a TFA salt, whilst overnight 

treatment with anhydrous pTsOH afforded VME as a tosylate salt. Both deprotection methods 

afforded quantitative yields.  

 

Figure 14: (A) Retrosynthetic scheme of Pg-12-mer-X from 12-mer-X. (B) Structures of electrophilic traps 
employed. (C) VS and VME synthetic development: i) diethyl [(methylsulfonyl)methyl]phosphonate, K2CO3, 
THF, RT, 16 h, 66 %; ii) 33 % TFA / DCM, RT, 1 h, quant; iii) methyl diethyl phosphonoacetate, K2CO3, THF, RT, 
16 h, 53 %; iv) pTsOH, Et2O, RT, 16 h, quant.(D) Amide coupling of protected Pg-12-mer to an electrophilic 
trap in the presence of PyBop and DIPEA, followed by TFA deprotection affords the complete probe 
structure.  

Both 12-mer and Pg-12-mer were successfully synthesized by automated SPPS, using acid cleavable 

4-sulfamylbutyryl rink amide AM resin.237, 239 All N-terminals were acetylated, to mimic an adjacent 

peptide bond. On first attempt, the yield was significantly reduced due to poor coupling of the 

Threonine (Thr66) residue leaving the peptide capped after Lys67 as the major product. Nevertheless, 

C-terminal trap incorporation could be tested using this peptide mixture; the resin was activated by 



51 

overnight treatment with TMS-CHN2
239

 and the peptides displaced with concomitant installation of 

VS or VME. Subsequent TFA deprotection of the crude mixture, peptide precipitation from tBME, 

and LC-MS analysis confirmed successful formation of Pg-12-mer-VS and Pg-12-mer-VME probes. 

However, the crude mass return was extremely poor (~5 %). It was thought that this low mass yield 

was due to inefficient peptide cleavage from the resin; analysis of the resin post displacement 

confirmed that peptide still remained attached to the resin. 

It was postulated that the low mass return was due to poor accessibility of the trap amine to the 

resin cleavage site. To improve the yield both trap incorporation and peptide coupling strategies 

were addressed; Thr66 coupling was improved through the use of a Fmoc-Ser(tBu)-Thr(ΨME,Mepro)-

OH pseudoproline building block, whilst trap coupling was improved by using a 2-chlorotrityl 

chloride resin. This resin allows mild peptide cleavage using HFIP whilst maintaining side-chain 

protecting groups, thus enabling in-solution coupling of the trap in the presence of PyBop and 

DIPEA, with subsequent TFA deprotection, tBME precipitation and LCMS purification, affording the 

desired product Figure 14D).185 This approach proved significantly more efficient, with minimal 

truncated by-products observed and all peptide cleaved from the resin. In this way Pg-12-mer-VS 

and Pg-12-mer-VME probes we successfully isolated in mg quantities representing 8 % and 16 % 

yield respectively. 12-mer-VS and 12-mer-VME were synthesised in an analogous manner in 2.8 % 

and 13 % yield.  

2.3 In lysate applications and initial proteomic evaluation 

With Pg-12-mer-VS and Pg-12-mer-VME in hand, work progressed to test their labelling ability in cell 

extract. HeLa cells were chosen for preliminary tests, as they had been previously used successfully 

in our hands to evaluate labelling with Ub-based probes.2 The general proteomic workflow 

employed is summarised in Figure 15.  

Native HeLa cell lysate, formed by shear lysis, was incubated with 50 µM of probe for 1 hour at 37 

°C. Pre-incubation with 10 mM N-ethyl maleimide (NEM), a cysteine alkylation reagent, for 20 

minutes was used as a control for competitive labelling. The probe-enzyme complexes formed were 

subsequently ligated to AzTB, the capture reagent introduced in Chapter one, by CuAAC ligation 

chemistry. For primary analysis of labelling, samples were separated by SDS-PAGE and visualised by 

in-gel fluorescence (Figure 16A). Fluorescent labelling by both probes was observed above 

background, with labelling significantly stronger for Pg-12-mer-VS at this concentration. A depletion 



52 

of signal was observed in the NEM control lanes in both cases, suggesting that labelling is dependent 

on the availability of catalytic cysteines, and thus is activity dependent.  

 

Figure 15: Cartoon representation of the general proteomic workflow. Following probe incubation with cells 
or cell lysate, probe-enzyme complexes are ligated to AzTb. Captured complexes are then separated by SDS-
PAGE and visualised by in-gel fluorescence, or affinity enriched using NeutrAvidin™ beads (Thermo Fisher), 
digested with trypsin, and characterised by LC-MS/MS.  

In order to compare the labelling attributes of each electrophilic trap, probe concentrations were 

adjusted so that the labelling intensity was normalised (Figure 16B). A 10 µM treatment with Pg-12-

mer-VS was chosen, as this was observed to provide a similar labelling intensity to that of Pg-12-

mer-VME at 50 µM. Prior to proteomic analysis, optimisation tests were conducted to ensure that a 

sufficient amount of NeutrAvidin beads was used to enrich the samples. Following ligation to AzTB, 

100 µg of probe-treated lysates were incubated with varying amounts of beads for 2 hours. The 

supernatant was then removed and the beads washed, before boiling the beads to release enriched 

peptides. Aliquots of the clicked peptide, supernatant and bead enriched lysate were separated by 

SDS-PAGE and visualised by in-gel fluorescence (Figure 16C). On analysis, 10 µL of beads was found 

to insufficiently enrich the sample, whilst 25 µL and greater afforded a noticeable depletion in 

supernatant fluorescence signal. 25 µL was therefore chosen for proteomic applications, as this 

enabled sample enrichment, whilst minimising background signal arising from non-specific binding 

to the beads.  



53 

 

Figure 16: Preliminary investigation of peptide probe labelling on HeLa cell lysate by in-gel fluorescence. (A) 
Cell lysate were pre-treated with NEM or DMSO for 20 min before incubation with probe for 1 hr, followed 
by CuAAC ligation to AzTB, separation by SDS-PAGE, and visualisation by in-gel fluorescence in the Cy3 
channel (excitation wavelength 552 nm, emission wavelength 570 nm). Molecular weight (MW) markers are 
indicated, and Coomassie staining provides protein loading controls. (B) Concentration series of Pg-12-mer-
VS labelling. (C) Following AzTB ligation, Pg-12-mer-VS (10 µM) treated lysates (100 µg) were enriched on 
NeutrAvidin beads. Stage: C = following CuAAC, S = supernatant following enrichment, B = following release 
from bead.  

With probe concentration and sample enrichment conditions optimised, preliminary proteomic 

analysis was undertaken for Pg-12-mer-VS and Pg-12-mer-VME. Briefly, native HeLa lysate was 

incubated with the aforementioned concentration of Pg-12-mer-VS or Pg-12-mer-VME for 1 hour at 

37 °C. In the case of Pg-12-mer-VS, lysate formed by two preparative methods were prepared: shear 

lysis and chemical lysis, to compare the effect of lysis conditions on probe labelling. The probe-

enzyme complexes formed were subsequently ligated to AzTB and enriched as previously described. 

Once on bead, samples were reduced and alkylated by dithiothreitol (DTT) and IA respectively; the 

removal of disulphide bridges from peptide mixtures simplifies subsequent peptide identification. 

Overnight trypsinisation afforded an enriched peptide mixture which, once desalted, was separated 

by LC-MS/MS using a Q-Exactive Orbitrap mass spectrometer. Control samples lacking probe, were 

prepared in parallel in order to identify any background signal due to unspecific interactions with the 
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beads. Proteins were identified from their peptide MS data, by processing the raw data using 

MaxQuant and analysis using Perseus software (both introduced in Section 1.2.2). Identification by 

at least 2 ‘unique+razor’ peptides with a false discovery rate (FDR) of 0.01 was set as a minimum to 

define a probe target.  

On analysis of the chemically lysed lysate, 57 proteins were identified from the control as 

background ‘non-specific binders’, which were subtracted from the Pg-12-mer-VS and Pg-12-mer-

VME probe intensities. 1172 protein targets were identified for Pg-12-mer-VME and 882 for Pg-12-

mer-VS. Of these hits, 27 (2.3 % of proteins identified) and 27 (3.1 %) ubiquitination enzymes were 

detected respectively with E1, E2, E3 and DUBs all represented (Figure 17A). As Borodovsky et al. 

conducted competition studies in EL4 lysate, a direct comparison cannot be made, however, it is 

encouraging that four DUB targets; USP5, USP7, USP9x, and UCHL3 are identified in both studies.  

Pg-12-mer-VS labelling in shear forced lysate was substantially lower; with only 16 background 

proteins observed, and 279 protein targets identified. Of these hits 10 (3.6 %) ubiquitination 

enzymes were detected respectively with E1, E2, E3 and DUBs all represented (Figure 17A). There 

are several possible explanations for the observed variation in protein targets with lysis condition: 

i) incomplete release of proteins by shear lysis in comparison to chemical lysis techniques; 

ii) constituent detergents in chemical lysis buffer lead to additional protein-probe interactions; 

iii) human error during sample preparation. Although ubiquitination machinery represents a higher 

percentage of observed labelling in shear forced lysate the loss of coverage of E1 and E3 enzymes is 

somewhat disappointing, therefore, chemical lysis conditions were adopted for future 

investigations.  

In general, labelling associated with ubiquitination machinery is low across all samples, highlighting 

the promiscuous nature of these probes. As the difference in labelling by VS and VME electrophiles 

probes was small, it was decided that only one probe would be taken forward at this stage. Pg-12-

mer-VME was selected for continued study owing to the higher yield of probe obtained. If 

quantitative analysis proved interesting for Pg-12-mer-VME, Pg-12-mer-VS would be revisited.  
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Figure 17: Proteomic identification of Ub machinery labelled by Pg-12-mer-VS (10 µM) and Pg-12-mer-VME 
(50 µM). (A) Table summarising the Ub machinery identified under different lysis conditions by LC-MS/MS 
analysis. (B) in-gel fluorescence of Pg-12-mer-VS labelling in shear force and chemically lysed lysate. (C) 
Venn diagrams showing overlap of Ub machinery identified under different lysis conditions and with 
different probes. 

2.3.1 Maximising coverage: cellular fractionation  

Given our interest in applying Pg-12-mer-VME to study ubiquitination during DDR, it was important 

to maximise the ability of the probe to label relevant proteins. Consequently, cellular fractionation 

was attempted to determine whether this would increase coverage, particularly of nuclear proteins. 

Breast cancer cell line MCF7 was chosen for carrying out further optimisation, as these cells were a 

relevant model system for subsequent DDR studies. A chemical method which was deemed mild 

enough to maintain native conditions was used. Briefly, the cytosolic fraction was prepared by lysis 

of MCF7 cells with 0.5 % NP-40 at 4 °C. On centrifugation and removal of this fraction, the remaining 

pellet was resuspended in a sucrose cushion and the nuclear extract isolated. Labelling was initially 
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evaluated by in-gel fluorescence: fractionated lysate was treated with 10 µM Pg-12-mer-VME for 1 

hour before being ligated to AzTB, separated and visualised as described in Section 2.3. At first 

labelling efficiency was observed to be poor in nuclear extract (Figure 18A). Removal of sucrose by 

protein precipitation, methanol washing, and suspension in 0.2 % SDS/PBS proved to rectify the 

labelling efficiency in nuclear extracts, whilst analogous precipitation of the cytosolic fraction did not 

substantially reduced labelling (Figure 18B). 

For proteomic analysis, each biological condition was prepared in duplicate and processed and 

evaluated as described in Section 2.3. On analysis of the cytosolic fraction control samples, 278 

proteins were identified as background ‘non-specific binders’. UBA1 and USP5 were present in both 

control and probe samples, but at a greater intensity in the probe samples, and therefore were 

considered valid targets. 827 protein targets were identified above background. Of these hits 24 (2.9 

%) ubiquitination enzymes were detected respectively with E1, E2, E3 and DUBs all represented 

(Figure 18C). By comparison, in the non-precipitated samples 706 proteins were identified, though 

only one Ub relevant hit was lost in comparison to precipitated sample. Upon analysis of the nuclear 

fraction control samples, 271 proteins were identified as background ‘non-specific binders’ and 637 

protein targets were identified above background. Of these hits 17 (2.7 %) ubiquitination enzymes 

were detected respectively. Interestingly, no E2 enzymes were identified in the extract. Known 

nuclear localised Ub enzymes, USP3, RAD18, RANBP2 (E3 Sumo-protein ligase RANBP2), RING1 (E3 

ubiquitin-protein ligase RING1) and UHRF1 (E3 ubiquitin-protein ligase UHRF1) were identified, 

which was not possible prior to fractionation. In comparison only 60 proteins were identified in the 

non-precipitated samples. 

Together this data illustrates two main points: i) fractionation enables the detection of additional 

proteins of interest, notably USP3 and RAD18. ii) Buffer compatibly is highly important for click 

efficiency, but precipitation itself does not improve coverage. It should be noted that, due to mild 

lysis conditions employed to retain native extracts, nuclear extraction is not complete which may 

limit the identification of probe targets. This can be clearly observed by Coomassie staining as a lack 

of histones in the nuclear extract (Figure 18E).  



57 

 

Figure 18: Pg-12-mer-VME labelling (10 µM) in fractionated MCF7 lysate. In-gel fluorescence of Pg-12-mer-
VME labelling in (A) nuclear and (B) cytosolic fractions. Method: P = precipitated, NP = not precipitated after 
CuAAC ligation to AzTB. Stage: C = following CuAAC (and P or NP), S = supernatant following enrichment. (C) 
Table summarising the Ub machinery identified by LC-MS/MS analysis, in each cell fraction using P and NP 
methods. (D) Venn diagram showing overlap of Ub machinery identified in precipitated cytosolic and nuclear 
fractions. (E) Coomassie staining of Cytosolic (Cy) and Nuclear fractions (N), and cell pellet (Pe), all 10 µg.  
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2.3.2 Evaluation of literature Ub- VME probe 

To assess the value of Pg-12-mer-VME as an alternative to currently available probes, it was of 

interest to compare its capability to that of a commercially available Ub-VME probe, Biotin-Ahx-Ub-

VME (Figure 19A). Fractionated lysate was treated with 200 nM Biotin-Ahx-Ub-VME for 1 hour at 37 

°C before being spin filtered (10 kDa cut-off) multiple times and enriched on NeutrAvidin beads. 

Probe labelling and pull down efficiency was initially evaluated for the cytosolic fraction by biotin 

western blot, blotting against NeutrAvidin-HRP (Figure 19B). Biotin-Ahx-Ub-VME labels mostly in the 

higher MW region corresponding to several USP DUBs. Some background labelling is also observed 

in the absence of probe, due to naturally biotinylated proteins.  

 

Figure 19: (A) Structure of commercially available Biotin-Ahx-Ub-VME. (B) Fractionated MCF7 cell lysate was 
treated with Biotin-Ahx-Ub-VME (200 nM) for 1 hr, filtered (10 kDa MWCO), enriched on NeutrAvidin beads 
and analysed by biotin western blot. Ponceau staining was used as a loading control. Stage: E = eluant, C= 
concentrate following filtration, S = supernatant following enrichment (C) Table comparing targets identified 
by LC-MS/MS with Biotin-Ahx-Ub-VME and Pg-12-mer-VME. 

For proteomic analysis, samples were processed and analysed as described in Section 2.3. After 

subtraction of background proteins, 50 cytosolic fraction targets were identified for Biotin-Ahx-Ub-

VME, 35 of which (70 %) were ubiquitination enzymes (Figure 19C). The majority of these proteins 

were DUB enzymes, with only HUWE1 (E3 ubiquitin-protein ligase HUWE1), not belonging to this 
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family. 14 protein targets were identified in the nuclear extract by Biotin-Ahx-Ub-VME, 12 of which 

(86 %) were DUBs; no other Ub related enzyme classes were identified in this fraction. In 

comparison, Pg-12-mer-VME identifies Ub machinery from all enzyme classes, but this represents a 

much lower percentage of overall probe labelling. 

Overall, this reflects the literature view that the Ub-derived probes are highly specific to DUBs, and 

are superior for the study of this enzyme family in lysate models. Clearly the more promiscuous, 12-

mer-VME derived probes interact with several enzyme classes, including E3 ligase families. These 

findings indicate that such probes offer some potential as a broader ubiquitination machinery probe, 

though it remains to be seen whether quantitative changes for enzyme of interest can be observed 

within the context of promiscuous labelling. 
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2.4 Quantitative proteomics 

With promising results by non-quantitative analysis, work commenced to determine the competitive 

targets of Pg-12-mer-VME using quantitative proteomics. To reduce instrument time, competition 

was first analysed using non-fractionated native whole cell lysate, with the rationale that if this 

provided encouraging results, fractionation could be attempted at a later stage. 

First, competition was assessed by in-gel fluorescence: cells were incubated with an excess of 12-

mer-VME for 30 minutes, followed by Pg-12-mer-VME incubation at 10 µM for 1 hour before being 

ligated to AzTB, separated and visualised as described in Section 2.3 Interestingly, a decreased 

labelling intensity was observed with a 5-fold (50 µM) excess of inhibitor, but this observed 

competitive effect was reduced with higher excess of inhibitor. It was postulated that this is due to 

limited solubility of the inhibitor, which was observed to crash out of the reaction solution when in 

high excess. Therefore, 5-fold (50 µM) and 2-fold (20 µM) competition conditions were taken 

forward for proteomic evaluation by Spike-in SILAC.  

 

Figure 20: In-gel fluorescence of Pg-12-mer-VME labelling in competiton with parent inhibitor 12-mer-VME. 
Whole cell MCF7 lysate was pre-treated with inhibitor or DMSO for 30 min and then incubated with probe 
for 1 hr.  

2.4.1 SILAC analysis of competition 

MCF7 whole cell lysate was incubated in triplicate with varying concentrations of 12-mer-VME (0, 20 

and 50 µM) for 30 minutes at 37 °C before incubation with Pg-12-mer-VME (10 µM) for 1 hour. 

Separately, ‘heavy’ R10K8-labelled MCF7 whole cell lysate was treated with Pg-12-mer-VME (40 µM) 

for 1 hour at 37 °C before cell lysis to form the ‘spike’. Following protein concentration 

determination, a fixed amount of spiked lysate was added to the normal lysate in a 1:4 ratio before 

being ligated to AzTB, enriched, reduced, alkylated, trypsin-digested, desalted, and separated by LC-
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MS/MS as previously described in Section 2.3. The raw data was processed using MaxQuant 

(introduced in Section 1.2.2). As for non-quantitative analysis, peptide identification required at least 

2 ‘unique+razor’ peptides with an FDR of 0.01. In addition, at least 2 ‘unique+razor’ peptides were 

required for a valid quantification. The calculated H/L SILAC ratios were further analysed in Perseus 

(introduced in Section 1.2.2). The SILAC ratios were inverted, to give L/H SILAC ratios, and 

transformed with Log2 to aid subsequent graphical representation of the data. The triplicates were 

categorically grouped, and proteins filtered such that at least 2 valid ratio values are required in at 

least one group across the experiment. Average L/H ratios were taken across each group, and these 

averages normalised against the group without any competition (12-mer-VME = 0 µM) to generate a 

ratio of ratios. The lower this ratio of ratio value, the more effect the competition observed. The 

results are summarised in Figure 21. 

On analysis, 811 proteins were identified with valid ratio of ratios. 21 ubiquitination enzymes were 

identified, the majority of which had previously been identified by non-quantitative analysis. USP14, 

and E3 ubiquitin-protein ligase RNF14 (RNF14) were identified for the first time, possibly owing to 

the alternative lysis conditions. Applying a threshold ratio change of greater than 1.5 fold (equivalent 

to a log2 fold change of 0.58), 221 of these proteins were categorised as ‘biologically significant’ 

shifters. On further analysis by the student T-test (P-value < 0.05) 67 proteins demonstrated 

statistically significant shifts. Ubiquitin-like-conjugating enzyme ATG3 (ATG3), USP14, and E3 

ubiquitin-protein ligase TRIM33 (TRIM33) all demonstrated biological and statistical competitive 

labelling by Pg-12-mer-VME, with CHIP lying just outside the set threshold (Figure 21A). It should be 

noted that this is a low statistical threshold, however, and that the quantitative changes observed 

were not deemed significant when subjected to a more stringent perturbation-based FDR T-test.  

ATG3 is an E2 enzyme, necessary for cytoplasm-to-vacuole transport, autophagy and mitochondrial 

homeostasis.240, 241 USP14 is a proteasome associated DUB, which facilitates Ub ‘recycling’ after 

proteins have been targeted for degradation.242 Both of these enzymes utilise a catalytic cysteine. 

TRIM33 belongs to the RING E3 family and does not possess a catalytic cysteine. However, 

mutagenesis studies have shown that replacement of either Cys125 or Cys128 with alanine abolishes E3 

activity, without affecting its interaction with its substrate, SMAD4 (Mothers against 

decapentaplegic homolog 4).243 CHIP is an E3 ligase that targets misfolded chaperone proteins, such 

as heat shock proteins, for degradation.244 As CHIP is an Ubox protein it also does not utilise a 

catalytic cysteine, however, mutagenesis studies do indicate that other nucleophilic residues, Lys30 

and His260, are necessary to ubiquitinate Forkhead box protein P3 (FOXP3), a target of CHIP.245 Some 

significantly induced, rather than competed, labelling of ubiquitination machinery was also 
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observed. Labelling of E3-cullin ligase activity regulator CAND1 was induced but did not lie in the set 

range of biological significance.  

Considering all significant hits, several histone chaperones were identified. Two members of the 

Nucleoplasmin family: Nucleoplasmin-1 (NPM1) and Nucleoplasmin-3 (NPM3) demonstrated a large 

ratio change with competition which can be seen most clearly with the heat map representation ( 

Figure 21B). NPM1 is involved in multiple biological processes, including histone assembly and 

centrosome duplication.246 Although NPM3 is less well characterised, the homology between NPM1 

and NPM3 suggests that they have similar functions. Only three proteins demonstrated significant 

competition with the lowest concentration of inhibitor: Zinc finger protein 622 (ZNF622), Acidic 

leucine-rich nuclear phosphoprotein 32 family member B (ANP32B), and FACT complex subunit 

SSRP1 (SSRP1). ZNF622 has been linked to apoptosis in response to oxidative stress.247 ANP32B is 

another histone chaperone, which has been described as an anti-apoptotic protein as well as a cell 

cycle progression factor. 248, 249 SSRP1 is a component of the FACT complex: a general chromatin 

factor involved in multiple DNA related processes, including transcription elongation during which 

FACT acts as a histone chaperone.250 The FACT complex also plays a role in DSB DNA repair.251 15 

proteins showed considerable induction of labelling on pre-incubation with inhibitor. Though these 

are not competitive targets of Pg-12-mer-VME, they do suggest that Pg-12-mer-VME can label 

proteins that are activated by parent inhibitor 12-mer-VME, suggesting that their common scaffold 

is capable of both inducing and interacting with certain proteins.  

Evaluation of GO annotations (introduced in Section 1.2.2) for significant hits revealed a strong 

association of molecular function with RNA, nucleic acid, and organic cyclic compound binding 

(Figure 22A). Biological functions were diverse, with 22 strongly enriched (P < 0.001) GO terms 

generally associated with metabolism, protein transport, and protein targeting to membranes. The 

top 6 of these GO terms are plotted in Figure 22A. Network analysis using STRING (http://string-

db.org/) also identified multiple connections between the competed targets, with substantial 

interactions within smaller protein subsets (Figure 22B).  

http://string-db.org/
http://string-db.org/
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 Figure 21: Spike-in SILAC competition analysis. Samples were prepared in triplicate and spike added in a 1:4 
ratio. (A) Volcano plots of Pg-12-mer-VME (10 µM) labelling in competition with indicated concentrations 
12-mer-VME. Dashed lines represent statistical (vertical) and biological (horizontal) significance thresholds. 
Proteins in the shaded regions meet both criteria. Proteins which show significant competition under either 
condition (blue) and all Ub machinery (Pink, labelled) are highlighted. (B) Heat map of the 67 significantly 
competed targets, with L/H ratio at each inhibitor concentration indicated.  
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Figure 22: (A) GO terms and (B) STRING network evaluation of the 67 significant targets. Lines in the STRING 
evaluation represent evidenced interactions between proteins, with evidence source indicated in the key. 
Proteins discussed in the text are boxed. 
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2.4.2 Studies of a basic DDR model 

Having identified some Ub machinery as competitive targets of Pg-12-mer-VME, it was of interest to 

study them in a DDR model. It was further postulated that quantitative changes may be identified 

for non-competitive target proteins, due to pathway activation in response to DNA damage.  

First, a basic DDR model was generated by treatment with epirubicin. Epirubicin is a 

chemotherapeutic used in the treatment of several cancers, including breast cancer.252 It is a DNA 

damaging agent which, amongst other mechanisms of damage, forms double strand breaks.253 

Histone H2A.X is phosphorylated on residue Ser139 (γ-H2A.X) at the start of double stand break 

repair and can therefore act as a biomarker for this process.254 MCF7 cells were treated with varying 

concentrations of drug and incubated for 6 or 24 hours. Following cell lysis, samples were separated 

by SDS-PAGE, transferred onto PVDF membrane and analysed by western blot. On blotting for γ-

H2A.X, accumulation of γ-H2A.X was observed with higher concentrations of epirubicin at both time 

points tested, signifying higher levels of induced DNA damage. The difference in γ-H2A.X signal 

across the selected concentration range was greater at 6 hours, suggesting that this is still within the 

active DDR timeframe. Therefore, quantitative proteomic analysis was undertaken for the 6 hour 

time point to compare labelling by Pg-12-mer-VME in epirubicin treated (0, 0.1 and 1 µM) lysate. 

 

Figure 23: (A) Structure of epirubicin. (B) MCF7 cells were incubated with varying doses of epirubicin and 
incubated for 6 or 24 hr. Following cell lysis, samples were analysed by western blot. Tubulin is included as a 
loading control. 

Following cell treatment and native whole cell lysis, lysates were treated with Pg-12-mer-VME for 1 

hour. Separately, ‘heavy’ R10K8-labelled MCF7 whole cell lysate was treated with Pg-12-mer-VME 

(40 µM) for 1 hour at 37 °C before cell lysis to form the ‘spike’. Following protein concentration 

determination, a fixed amount of spiked lysate was added to the normal lysate in a 1:4 ratio before 

being ligated to AzTB, enriched, reduced, alkylated, trypsin-digested, desalted, and separated by LC-

MS/MS as described in Section 2.3. The raw data was processed using MaxQuant and Perseus as 

described in Section 2.4.1. The results are summarised in Figure 24. 
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On analysis, 902 proteins were identified with valid ratio of ratios, including 26 ubiquitination 

machinery. Applying a threshold ratio change of greater than 1.5 fold, 136 of these proteins were 

categorised as ‘biologically significant’ shifters. On further analysis by the student T-test (P-value < 

0.05) 30 proteins demonstrated a statistically significant shift across the 3 biological conditions. 

RNF14, an RBR E3 ligase, fell into this category with another RBR, ARIH1, lying just outside the 

biological threshold. RNF14 has been reported as a positive regulator of Wnt signalling in colon 

cancer cells, whilst ARIH1 is reported to protect cells from genotoxic stress by mediating DNA 

damage-induced translation arrest.255, 256 To reduce the number of hits, a higher statistical threshold 

was applied (p<0.01), leaving 10 hits. Although all of these proteins had previously been identified in 

the competition experiment with 12-mer-VME none had been previously identified as significant. 

Furthermore, only one of the 10 targets, SUPT16H (FACT complex subunit SPT16), is associated with 

DDR. SUPT16H is a component of the FACT complex, which was first mentioned in Section 2.4.1. 

Oliveira et al. report that FACT plays an important role at the start of the HR pathway of DSB repair. 

The same authors showed that depletion of SUPT16H decreases HR activity.251 Ribosome biogenesis 

protein BOP1 (BOP1), which is linked to ribosome assembly and cell cycle progression, showed the 

greatest ratio increase in the DDR model. 257, 258 ATP-dependent RNA helicase DDX39A (DDX39A) 

showed the greatest statistically significant change. DDX39A is required during nuclear export of 

mRNA, but to date it has not been linked to DDR.259  

In summary, some targets of Pg-12-mer-VME were observed to be depleted or induced on 

introduction of DNA damage; however, none of them were previously identified as competitive 

probe targets. It should be noted that a low statistical threshold has been applied, however, and that 

the quantitative changes observed were not deemed significant when subjected to a more stringent 

perturbation-based FDR T-test. 
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Figure 24: Spike-in SILAC DDR analysis. Samples were prepared in triplicate and spike added in a 1:4 ratio. (A) Volcano plots of Pg-12-mer-VME (10 µM) labelling 
following epirubicin (0 0.1 or 1.0 µM) treatment. Dashed lines represent statistical (vertical) and biological (horizontal) significance thresholds. Proteins in the shaded 
regions meet both criteria. Proteins which show significant competition under either condition (blue) and all Ub machinery (Pink, labelled) are highlighted. (B) Heat 
map of the 10 significantly competed targets, with L/H ratio at each epirubicin dose indicated. 
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2.5 Preliminary in cell application 

In parallel with experiments in lysate, it was of interest to determine whether this activity could be 

translated into intact cells. Initially, both Pg-12-mer-VME and Pg-12-mer-VS were tested, to 

determine the effect, if any, of the electrophilic trap on cell permeability. 

First, HeLa cells were incubated with 50 µM of Pg-12-mer-VME or Pg-12-mer-VS for 1 hour prior to 

cell lysis. Lysates were then ligated to AzTB, separated and visualised as described in Section 2.3. 

Pre-incubation with NEM was used as a control for competitive labelling. Although 10 mM NEM was 

used for analogous in lysate applications, 200 µM was chosen for in cell treatments, as this did not 

cause cell viability issues. It was observed by in gel fluorescence that both probes are capable of 

labelling in-cell, in an activity dependent manner (Figure 25A). Further studies were then conducted 

to ascertain probe competition in cells against the parent inhibitor peptide sequence in cell. In 

addition to 12-mer-VME and 12-mer-VS, the probes were also competed against peptide lacking an 

electrophilic trap for comparison (12-mer, Figure 25B). MCF7 cells were incubated with an excess of 

inhibitor for 30 mins at 37 °C, before treatment with Pg-12-mer-VME or Pg-12-mer-VS for 1 hour 

prior to cell lysis. Lysates were then ligated to AzTB, separated and visualised as described in Section 

2.3 (Figure 25C). Labelling by Pg-12-mer-VME was clearly out competed by 5-fold (250 µM)excess of 

12-mer-VME, or 10-fold (500 µM) excess 12-mer. Analogous competition for Pg-12-mer-VS was less 

convincing however, with minimal loss of labelling intensity observed with both inhibitors.  

 

Figure 25: Probe application in intact cells. (A) HeLa cells were pre-treated with NEM or DMSO for 20 min, 
incubated with probe for 1 hr, lysed, and analysed by in-gel fluorescence. (B) MCF7 cells were pre-treated 
with inhibitor or DMSO for 30 min and then incubated with probe for 1 hr, lysed, and analysed by in-gel 
fluorescence. 
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Pg-12-mer-VME was taken forward for further non-quantitative proteomic analysis in intact cells. 

Briefly, MCF7 cells were treated with Pg-12-mer-VME (50 µM) for 1 hour at 37 °C. Following cell 

lysis, the probe-enzyme complexes formed were ligated to AzTB, enriched, and processed for LC-

MS/MS analysis as previously described in Section 2.3. Control samples lacking probe, were 

prepared in parallel in order to identify any background signal due to unspecific interactions with the 

beads. Proteins were identified from their unique peptide MS data, by evaluating the raw data was 

using MaxQuant and Perseus software. Disappointingly, after multiple attempts, no ubiquitination 

machinery was detected by Pg-12-mer-VME. 

2.5.1 Determining peptide cellular localisation  

It was hypothesised that probe labelling ability was being hindered by the cellular localisation of the 

probe peptide sequence. Therefore, further study into the cellular localisation of Pg-12-mer-VME 

was undertaken using live cell fluorescent imaging. Accordingly, fluorescently labelled analogues T-

12-mer-VME and T-12-mer (Figure 26A) were synthesised. Visualisation of such analogues would 

allow the influence of the electrophilic trap and the peptide sequence on cellular localisation to be 

decoupled. TAMRA was chosen, due to its relatively low cost in comparison to other fluorophores 

and its reported cell permeability in isolation.260 In a cross comparison study Fischer et al. further 

demonstrated that cellular import is peptide, rather than fluorophore, driven.261 It is possible that a 

longer peptide sequence would improve probe selectivity towards ubiquitination machinery, 

therefore, in addition to the 12-mer sequence T-15-mer-vme and T-15-mer analogues were also 

synthesised to ascertain their suitability as cell-based probes.  

TAMRA was successfully coupled to the N-terminus of both peptide sequences in the presence of 

HATU and DIPEA. The reaction proceeded cleanly as confirmed by LCMS analysis, thus, subsequent 

TFA deprotection, tBME precipitation and LCMS purification, afforded analogues T-12-mer and T-15-

mer in high yields of 20 % and 30 % respectively. In order to synthesise T-12-mer-VME and T-15-

mer-vme, mild HFIP resin cleavage was utilised as previously described in Section 2.2, followed by 

in-solution coupling of the trap in the presence of PyBop and DIPEA. However, although this coupling 

was attempted several times, it proved unsuccessful. It is unlikely that the N-Terminal TAMRA is 

interfering with HFIP cleavage ability; HFIP is frequently reported as a solvent in peptide reactions, 

including TAMRA coupling, and the crude mass obtained was not unusually low.262 Alternatively, it is 

possible that the peptide is too hindered for the in-solution coupling reaction.  

Although T-12-mer-VME and T-15-mer-vme synthesis was unsuccessful, T-12-mer and T-15-mer 

localisation was still assessed by live cell imaging. 12-mer was included as a TAMRA-free control. 
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Briefly, MCF7 cells were incubated at 37 °C with 10 µM of T-12-mer or T-15-mer or 12-mer for 1 

hour, before addition of Hoechst nuclear stain and further incubation for 30 minutes. The cells were 

then gently washed with Hank’s PBS and imaged on the plate (Figure 26B).  

 

Figure 26: Localisation studies. (A) Structures of T-12-mer and T-15-mer probes. (B) MCF7 cells were treated 
with probe or control (10 µM) for 1 hr, before incubating with Hoechst nuclear stain for a further 30 min. 
cells were washed and TAMRA and Hoechst fluorescence visualised using Cy3 (excitation wavelength 552 
nm, emission wavelength 570 nm) and DAPI (excitation wavelength 358 nm, emission wavelength 461 nm) 
channels respectively.  

It was observed by Cy3 labelling that T-12-mer and T-15-mer display distinctive localisation patterns. 

On analysis of the merged images, T-12-mer displays broad cellular localisation in the cytoplasm and 

potentially in the nuclear envelope. This suggests that the observed loss of labelling of ubiquitination 

machinery in cell is not attributed to cellular localisation. Conversely T-15-mer displays weaker and 

more localised labelling. Neither probe demonstrated nuclear localisation. It should be noted that 

these results are preliminary and further replicates using glass slides are required in order to 
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comment significantly about the localisation observed. Due to time restraints, work continued with 

the 12-mer peptide sequence, though 15-mer does offer an interesting alternative for future study.  

2.5.2 Peptide development for in cell applications.  

In parallel to cell localisation studies, the addition of cell penetrating peptide sequences to Pg-12-

mer-VME was considered. It was hypothesised that directing the probe would increase labelling of 

proteins of interest. Addition of a nuclear localisation sequence, for example, may enhance labelling 

of nuclear proteins. Alternatively, the addition of a cell penetrating sequence could be used to 

generally improve peptide permeability and therefore improve cellular labelling. To test this 

hypothesis a small series of alternative probes based on Pg-12-mer-VME were designed. N-terminal 

additions of a nuclear localisation signal (NLS) and two patented cell penetrating peptide sequences 

(CCP1 and CCP2) were synthesised and tested (Figure 27).263, 264 All sequences were made 

successfully following standard SPPS procedures and coupled to VME as described in Section 2.2. 

Due to the high prevalence of Arg residues in these sequences, a longer TFA deprotection time of six 

hours was required to ensure complete side chain deprotection. Following LC-MS purification NLS, 

CCP1 and CCP2 were obtained in 1.7 %, 4.2 %, and 2.3 % yields respectively. Though low, this 

provided sufficient material for preliminary testing. 

MCF7 cells were incubated with 10 µM of each probe for 1 hour prior to cell lysis. Lysates were then 

ligated to AzTB, separated and visualised as described in Section 2.3 (Figure 27B). Unfortunately, 

labelling ability of the new probes was lower than that of Pg-12-mer-VME, with the strong ~60 kDa 

signal not observed. Therefore this avenue was not further studied.  

Figure 27: (A) Structures of NLS, CCP1, and CCP2 probes. (B) MCF7 cells were incubated with each probe (10 
µM) for 1 hr, lysed, and analysed by in-gel fluorescence. 
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2.6 Conclusions  

The work in this Chapter focuses on the design, synthesis, and analysis of ABPs derived from the 12 

C-terminal residues of Ub. Alkyne tagged probes containing an electrophilic trap, VS or VME were 

designed and synthesised by in-solution phase coupling of the trap. Labelling of Ub machinery was 

observed for both probes in lysate. As lysate proteomic analysis showed a minimal difference in 

labelling between the two traps, only VME was taken forward for the purposes of further 

optimisation. The coverage of nuclear targets was somewhat improved by utilising a mild cell 

fractionation method. On comparison, Ub-derived probes showed high selectivity for DUBs, whilst 

Pg-12-mer-VME was highly promiscuous. Though unselective, Pg-12-mer-VME did label a number of 

E3 ligases, which were not identified by its protein counterpart. Quantitative proteomic analysis on 

competition and in a DDR model revealed several quantifiably engaged targets with diverse 

biological roles. Some ubiquitination machinery demonstrated competitive labelling, however, the 

confidence in these findings is restricted to the non-stringent statistical thresholds applied. 

Pg-12-mer-VME showed initial promise as a cellular probe by in-gel fluorescence; however, no 

ubiquitination machinery was labelled in cell. To determine whether this was a result of peptide 

cellular localisation, TAMRA labelled probes were applied in live cell fluorescent imaging. Preliminary 

results suggested that the 12-mer peptide widely localised across the cell, whilst the longer 15-mer 

peptide demonstrated more localised labelling. Probes with an additional cell penetrating peptide or 

NLS were synthesised and tested, but did not improve probe labelling observed by in-gel 

fluorescence.  

Though this work has successfully shown labelling of ubiquitination machinery in lysate, robust 

quantification of this labelling has proven non-facile. Furthermore, the labelling observed was not 

translatable into cells. Chapter 3 discusses small molecule derived probes as an alternative approach 

for the development of probes suitable for in cell applications. 
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Chapter 3 Small molecule activity-based probes for 
studying ubiquitination enzymes 

In contrast to Chapter 2, this Chapter reports the design, synthesis, and development of ‘clickable’ 

small molecule derived activity-based probes and their subsequent application in quantitative SILAC 

proteomic experiments both in cell and in lysate. Two different inhibitor scaffolds are explored, and 

further compared to alternative electrophilic probes from other projects within the Tate group. 
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3.1 Introduction 

3.1.1 Small molecule inhibitor leads for probe development  

As discussed in Chapter 2, peptide-based ABPs have proven unsuccessful tools to study cellular 

ubiquitination in our hands. It would be beneficial to develop small molecule ABPs, which are 

synthetically tractable and translatable into cells. There are numerous small molecule inhibitors 

reported for E1, E2, E3 and DUB enzyme classes, which provide a starting point for ABP 

development. Covalent, active site binding inhibitors provide an ideal starting point for probe 

development as they possess an intrinsic electrophilic trap. Conversion into an ABP, therefore, only 

requires the addition of a clickable tag. Several DUB and E1 acting covalent inhibitors have been 

reported in the literature. MLN4924 (Figure 28) is a neddylation selective E1 inhibitor which acts as 

an AMP-Ub substrate mimetic, resulting in a covalent interaction with the catalytic cysteine.208, 265 In 

2013 An et al. successfully converted ‘Compound 1’, a pan E1 selective analogue of MLN4924, into 

an alkyne tag possessing activity based probe and demonstrated its ability to label a number of E1 

enzymes.192 This represents the only literature reported cellular ubiquitination ABP to date.  

 

Figure 28: Overview of the small molecule inhibitors discussed in this Chapter.  

PYR-41 is a reported cell permeable covalent inhibitor of the human E1 enzyme, UBA1, with a 

recombinant IC50 of 10 µM (Figure 28).206 The presence of two covalently reactive groups leads to 

various possible mechanisms of covalent interaction. Indeed, in addition to UBA1 inhibition reduced 

activity against NEDD4 (E3 ubiquitin-protein ligase NEDD4), a HECT E3 ligase, and significant 
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inhibition of DUBs USP5, USP9x, USP14, UCHL3 and UCH37 has been reported in vitro.206, 266 In 

addition, Kapuria et al. observed higher MW adduct formation for the two most potent DUB targets, 

USP5 and USP9x, in cells treated with PYR-41. This suggests that PYR-41 has the capacity to crosslink 

multiple enzymes at once. This effect further extends to non-Ub pathway related proteins such at 

Jak2 (Tyrosine-protein kinase JAK2) and RUNX1 (Runt-related transcription factor 1). Irrespective of 

this published promiscuity, PYR-41 is sold commercially as an UBA1 selective probe. It was of 

interest, therefore, to design and synthesise a PYR-41 derived probe in order to determine its 

cellular targets, as well as evaluate its value as a pan ubiquitination probe.  

Probe formation through the adaption of non-covalent inhibitors is feasible; however the design and 

synthetic tractability of trap and alkyne tag incorporation needs to be carefully considered. Although 

several E3 ligase inhibitors are known, many target protein-protein interactions (PPIs) rather than 

the active site making them unsuitable starting points for ABP development.108 Similarly allosteric 

binders, such as the E2 inhibitor CC061 (Figure 28) are unsuitable starting points for ABP design. 209, 

210 Tz9 is a RAD6B (Ubiquitin-conjugating enzyme E2 B) inhibitor, and member of the first known 

active site binding E2 inhibitor series, reported by Sanders et al.in 2013.211 This provides the first 

small molecule starting point for E2, and potentially other ubiquitin enzyme, probe design. Tz9 and 

its analogues were identified as inhibitor candidates by in silico screening against the known X-ray 

structure of RAD6B before being functionally characterised through their application in both 

recombinant and cellular assays. Although Tz9 is not reported as an irreversible probe, inhibition 

was measured by evaluating covalent Rad6B-Ub thioester formation. Further, the reported In silico 

docking implies that the ester group of the inhibitor lies close to the active site cysteine residue. 

Analysis of published structure-activity relationship (SAR) data further showed that nitro-containing 

members of the series, such as Tz9, presented improved binding affinities in comparison to those 

containing electron-donating benzyl ester moieties, an effect which could be due to increased ester 

reactivity. As there is literature precedent for esters being attacked by ubiquitin ligases183, we 

hypothesised that Tz9 could be acting in a similar manner. Consequently, Tz9 probes were designed 

and synthesised to study whether or not this inhibitor offers a novel probe scaffold to identify 

ubiquitination machinery.  

The development and application of probes for both PYR-41 and Tz9 are discussed in the ensuing 
sections. 
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3.2 PYR-41 probe 

3.2.1 Design and synthesis 

Initial work focussed on the design and synthesis of a PYR-41 derived ABP, PYR-41-P (Figure 29). As 

PYR-41 intrinsically possesses an electrophilic Michael acceptor, conversion to a probe molecule only 

required incorporation of an alkyne tag for subsequent bioorthogonal ligation. The ester position 

was chosen for alkyne tag insertion, as the available structure activity relationship (SAR) data 

suggested that this was non-essential for inhibition.206 A retrosynthetic route to PYR-41-P is shown 

in Figure 30. It was envisioned that PYR-41-P could be synthesized in an analogous manner to its 

parent inhibitor by using an alkyne containing analogue (4) of intermediate 5, which is utilised in the 

reported synthesis of PYR-41. 

 

Figure 29: Design of PYR-41-P from parent inhibitor PYR-41. 

The synthetic development of PYR-41-P is outlined in Figure 31. At first, a patented synthetic 

procedure was adopted.267 Formation of 7 from 6 was achieved in 73 % yield by refluxing in ethanol 

in the presence of thionyl chloride, followed by salt neutralisation using Na2CO3.268 Further reaction 

with ethyl malonyl chloride afforded intermediate 8 which, due to instability to silica column and LC-

MS conditions, was carried forward without purification. Unfortunately subsequent cyclisation under 

basic conditions proved unfruitful, therefore, direct formation of the cyclised intermediate 5 from 7 

with malonyl chloride in the presence of DMAP was attempted with success, affording 5 in 94 % 

yield.269  

 

Figure 30: A retrosynthetic approach to PYR-41-P synthesis. 
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Incorporation of the alkyne tag was achieved by ester hydrolysis of 5, followed by amide bond 

formation with propargyl amine, EDCI and HOBt to afford intermediate 4. Due to insufficient 

solubility of intermediate 9 for reaction in DCM or MeCN, DMF was required for the reaction to 

proceed. Although formation of 4 was identified by LC-MS analysis, subsequent removal of DMF 

through aqueous washing was highly inefficient with significant transfer of 4 into the aqueous wash. 

Consequently, DMF was removed in vacuo at 60 °C. Due to poor product migration in organic phase, 

purification by flash column chromatography proved an unsuitable method of purification, whereas 

a good trace could be seen by LC-MS analysis. Accordingly, it was decided that 4 was best isolated by 

preparative LCMS. As there is no risk of racemisation, HOBt is strictly not required for the peptide 

coupling reaction to occur. Furthermore, HOBt side products are undesirable in this instance, as they 

may precipitate under the acidic conditions employed during LC-MS purification. Hence, the reaction 

was repeated in the absence of HOBt and the crude residue after DMF removal successfully purified 

in 9 % yield. Although this yield is still significantly lower than hoped, it was decided that no further 

synthetic optimisation would be investigated prior to probe suitability having been determined.  

Finally, PYR-41-P was formed by Knoevenagel condensation between 4 and 5-nitro-2-furaldehyde. 

Initially the reaction was achieved in 24 % yield by reflux in ethanol overnight, which was improved 

to 69 % by refluxing under microwave in MeOH for 20 minutes. PYR-41 was formed in an analogous 

manner, by Knoevenagel condensation between 5 and 5-nitro-2-furaldehyde under microwave 

conditions in MeOH for 20 minutes, in 91 % yield. Both compounds were formed in sufficient yield 

and purity to undertake biological evaluation. 
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Figure 31: PYR-41 probe synthetic development; i) SOCl2, EtOH, Reflux 16 h, 73 %. Salt neutralisation was 
achieved using 10 % Na2CO3/DCM, RT, 15 min; ii) ethyl malonyl chloride, NEt3, THF, -10 °C to RT, 16 h (crude); 
iii) 1 M NaOH / EtOH RT, 30 min; iv) malonyl chloride, DMAP, DCM, RT, 1 h, 94 %; v) 1 M NaOH / MeOH, 1 h, 
RT, 86 %; vi) EDCI·HCl, DIPEA, propargyl amine, DMF, RT, 16 h, 9 %; vii) 5-nitro-2-furaldehyde, MeOH, reflux 
under microwave, 20 min, 69 %; viii) 5-nitro-2-furaldehyde, MeOH, reflux under microwave, 20 min, 91 %. 

3.2.2 In lysate application and initial proteomic evaluation  

With PYR-41-P in hand, work moved forward to test its ability to label enzymes in cell extract. Akin 

to Chapter 2, HeLa cells were used for preliminary tests. 

Firstly, HeLa cell lysate was incubated with varying concentrations of PYR-41-P for 1 hour at 37 °C. 

Pre-incubation with 13 mM NEM, for 20 minutes was used as a control for competitive labelling. The 

probe-enzyme complexes formed were subsequently ligated to Az-TB, separated by SDS-PAGE and 

visualised by in-gel fluorescence as described in Section 2.3 (Figure 32A). Strong, concentration 

dependent labelling in cell lysate was observed, both at and below 50 μM: a concentration which is 

used routinely for studies with PYR-41 in the literature.206, 266 A depletion of signal was observed in 

the NEM control lane, suggesting that labelling is dependent in the availability of reactive cysteines, 
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and thus can be described as activity dependent. Clearly, PYR-41-P is labelling several targets in cell 

lysate, beyond its expected UBA1 and DUB targets. The presence of high molecular weight labelling 

(>250 kDa) is also in agreement with the ability of PYR-41 to cross link proteins.266  

 

Figure 32: Preliminary investigation of PYR-41-P labelling on HeLa cell lysate (A) Cell lysates were pre-treated 
with NEM or DMSO for 20 min before incubation with probe for 1 hr, followed by CuAAC ligation to AzTB, 
separation by SDS-PAGE, and visualisation by in-gel fluorescence (Cy3). Molecular weight (MW) markers are 
indicated, and Coomassie staining provides protein loading controls. (B) Table summarising the Ub 
machinery identified by LC-MS/MS analysis of PYR-41-P labelling (50 µM) .  

In order to identify the targets of the PYR-41-P, preliminary proteomic analysis was undertaken. 

Briefly, HeLa lysate was incubated with 50 µM of PYR-41-P for 1 hour at 37 °C. The probe-enzyme 

complexes formed were subsequently ligated to Az-TB, enriched, reduced, alkylated, trypsin 

digested, desalted, separated, and analysed by LC-MS/MS as described in Section 2.3. Identification 

by at least 2 ‘unique+razor’ peptides with an FDR of 0.01 was set as a minimum to define a probe 

target. A control sample, lacking PYR-41-P, was also prepared in parallel.  

On analysis of the control sample, 107 proteins were identified as background non-specific binders, 

which were subtracted from the PYR-41-P intensities. UBA1, the reported target of PYR-41, was 

identified in both samples though at a higher intensity in the probe sample. Treated at its literature 

concentration of 50 µM, 2038 PYR-41-P protein targets were identified. Of these hits 54 

ubiquitination enzymes were detected, including UBA1, and several E2, E3 and DUBs, which in total 

represented 2.6 % of labelling (Figure 32B). These initial in-lysate proteomic results were a promising 
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indicator for PYR-41-P as a pan Ub probe; although the probe clearly demonstrates promiscuous 

binding, this may be acceptable if its competitive hits are identifiable.  

3.2.3 Optimisation of in-cell treatment 

With promising results from in-lysate analysis, work commenced to determine the cellular labelling 

of PYR-41-P. Based on the strength of in-lysate labelling, 25 µM was chosen as a suitable 

concentration to test cellular uptake of the probe. HeLa cells were incubated with 25 µM of PYR-41-

P for 0 to 4 hours prior to cell lysis. Lysates were then ligated to Az-TB, separated and visualised 

(Figure 33A). In comparison to in-lysate labelling, in-cell labelling was much weaker, with observed 

bands poorly defined against the fluorescent background and not significantly affected by incubation 

time.  

Numerous factors could be contributing to the observed loss of labelling in cells, in particular: i) low 

cell permeability of PYR-41-P; ii) quenched probe reactivity in the growth media; iii) quenched probe 

reactivity in cell. The calculated clogP values of PYR-41 and PYR-41-P are 1.97 and 0.77 respectively 

(calculated using imolecular website. http://www.molinspiration.com/services/logp.html). Although 

the clogP of PYR-41-P is lower due to its additional H-bond donating amine, its cLogP remains 

positive, making it unlikely that this is sufficient to significantly hinder cell permeability.  

In order to investigate the effect of media on the probe’s labelling capability HeLa cells were treated 

with 50 µM of PYR-41-P for 1 hour in PBS and compared to analogous treatment in DMEM (Figure 

33B). Strikingly, the labelling intensity was much higher in PBS compared to DMEM. This was 

regardless of the percentage of FBS supplemented in the DMEM. Though isotonic, over time PBS 

buffer causes cells to detach from the culture plate, making it unsuitable for extensive application to 

cells. It is possible that PBS affects cellular membrane properties and contributes to the improved 

labelling through improved cell permeability. Alternatively, a constituent of DMEM is interfering with 

the probe. A time course indicated that labelling occurs very quickly, with no significant increase in 

protein labelling after 15 minutes (Figure 33C), therefore 15 minutes was chosen at a time point to 

further study PYR-41-P cellular labelling when treated in PBS. As there is literature precedent for 

compound treatment in PBS further tests were conducted to scope these conditions for competition 

experiments.270  

http://www.molinspiration.com/services/logp.html
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Figure 33: Probe application in intact cells. HeLa cells were incubated with probe, lysed, and labelling 
analysed by in-gel fluorescence (A) time course of PYR-41-P labelling treated in DMEM media. (B) 
Comparative study of feeding media and FBS percentage on probe labelling. (C) Time course of PYR-41-P 
labelling treated in PBS.  

The activity of PYR-41-P in cells was tested by pre-incubating cells with NEM in PBS for 20 minutes 

prior to a 15 minute treatment with PYR-41-P at 50 μM (Figure 34A). Intriguingly, as opposed to in 

lysate studies, labelling increased after pre-incubation with NEM. This could be due to: i) NEM 

quenching redox active thiols in the cell; ii) NEM activating biological pathways which are 

subsequently labelled by PYR-41-P. Due to the possibility that NEM could be activating pathways in 

the cell, competition against the parent compound, PYR-41 was attempted as an alternative 

indication of cellular activity. Cells were incubated with an excess of PYR-41 for 15 minutes, followed 

PYR-41-P incubation at 50 μM for 15 minutes (Figure 34B). A similar, though less striking increase in 

labelling was observed as the excess of PYR-41 increased. Though unexpected, this phenomenon 

could be explained if the moiety shared by PYR-41-P and PYR-41 induces and targets the same 

proteins. If this is the case, pre-incubation of inhibitor would induce targets which are susequently 

labelled by the probe species. Alternatively, pre-incubation with either PYR-41 or NEM quenches 

free thiols in the media or cells, effectively ‘shielding’ probe activity.  
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Figure 34: In cell PYR-41-P competition studies. (A) HeLa cells were pre-treated with NEM or DMSO for 20 
min, incubated with probe for 15 min, lysed, and analysed by in-gel fluorescence. (B) HeLa cells were pre-
treated with PYR-41 or DMSO for 15 min, incubated with probe for 15 min, lysed, and analysed by in-gel 
fluorescence B) Competition series against parent inhibitor, PYR-41.  

When PYR-41 was first reported by Yang et al, quenching of PYR-41 activity was observed when 

treated at 50 μM against recombinant UBA1 in the presence of 1 and 10 mM concentrations of 

gluathione.206 Although cellular levels of glutathione generally lie in the micromolar range of 0.5-10 

µM271, it seems reasonable that cellular glutathione is at least in part responsible for the quenching 

of labelling observed, possibly in combination with other free thiols. With this in mind the 

constituents of DMEM were considered in detail, on which it was noted that the formulation in use 

contained cystine. Under reducing conditions, cystine can be reduced to two molecules of 

cysteine.272 Amongst its several roles, cystine serves as a specific ligand for the cystine-glutamate 

antiporter, by which mechanism it is transported into the cell where it is reduced, causing an 

increase in cellular cysteine levels. It was postulated that using DMEM lacking cystine could improve 

the cellular activity of PYR-41-P, thereby reducing the cellular levels of free thiol. 

Cells were incubated in either PBS, DMEM or cystine free (CF) DMEM supplemented with 50 µM of 

PYR-41-P or DMSO for 15 minutes. Pre-starving the cells of cystine, by pre-feeding with CF media 

overnight, was also tested. Control samples, where the HCl salt of cystine was re-added to cystine 

free media were included, to confirm that any effect observed was due to cystine and not another 

formulation difference (Figure 35). Although still weaker than that observed with PBS, a marked 

increase in labelling intensity was observed in HeLa when comparing CF DMEM against DMEM, 

suggesting that the presence of cystine in the media is adversely affecting probe labelling. The effect 

of pre-starving the cells on observing this amelioration was minimal, and re-addition of cystine 

reversed the observation in both cases. Interestingly, expanding the study to include alternative cell 

lines demonstrated that this effect has some cell line dependence. The labelling pattern observed for 

HeLa and MCF7 were similar, but interestingly labelling was much more hindered by cystine in the 
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case of HeLa cells than MCF7 cells. Further testing in HEK293 cells also showed improved labelling on 

cystine removal (data not shown). 

 

Figure 35: Comparative study of PBS, DMEM and cystine free (CF) DMEM media on PYR-41-P labelling. HeLa 
and MCF7 cells were incubated with probe in different media conditions for 15 min, lysed, and and analysed 
by in-gel fluorescence. Media: PBS = phosphate buffed saline, DMEM = Dulbecco’s modified eagle media, CF 
= cystine free, (S) = cystine starved overnight prior to probe incubation, C = cystine. Addtion of cystine to 
depleted media was used as a negative control. CM = Coomassie. 

Further in-cell competition experiments were carried out in MCF7 cells. Labelling of MCF7 cells in CF 

media by PYR-41-P after 30 minutes incubation was shown to be concentration dependent (Figure 

36A). Although pre-incubation with NEM did not show loss of labelling, neither did it result in the 

large increase in labelling observed previously. Competition against PYR-41 was reassessed: cells 

were incubated with an excess of PYR-41 for 30 minutes, followed by PYR-41-P incubation at 50 μM 

for 30 minutes (Figure 36B). Although modest, a decreased labelling intensity was observed as PYR-

41 concentration increased; a marked improvement on original attempts to conduct competition 

analysis in cells. These competition conditions were taken forward for proteomic Spike-in SILAC 

analysis. 
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Figure 36: In cell competition studies in CF media. (A) MCF7 cells were pre-treated with NEM or DMSO for 20 
min, incubated with probe for 30 min, lysed, and analysed by in-gel fluorescence. Probe treatment in DMEM 
is included for comparision (B) MCF7 cells were pre-treated with PYR-41 or DMSO for 30 min, incubated with 
probe for 30 min, lysed, and analysed by in-gel fluorescence. 

3.2.3.1 In-cell probe application 

Prior to commencing in-cell competition proteomics, the cellular targets of PYR-41-P obtained in the 

absence of any isotopic labelling were analysed. Triplicate plates of MCF7 cells were incubated with 

50 µM of PYR-41-P or DMSO control for 1 hour at 37 °C prior to cell lysis. The probe-enzyme 

complexes formed were subsequently ligated to Az-TB, enriched, reduced, alkylated, trypsin-

digested, desalted, separated, and analysed by LC-MS/MS. Identification by at least 2 ‘unique+razor’ 

peptides with an FDR of 0.01 was set as a minimum to define a probe target, and proteins were 

relatively quantified by LFQ . 

On analysis of the DMSO control samples, 101 proteins were identified as background ‘non-specific 

binders, which were subtracted from the PYR-41-P intensities. 302 protein targets of PYR-41-P were 

identified (Figure 37A). Although this included some ubiquitination enzymes, including UBA1, there 

was a substantial loss of labelling when compared to cell lysate. Ranked by LFQ intensity, GO 

annotations of the top 50 targets were associated (P-value <0.01) with RNA binding and 

oxidoreductase activity, and are implicated (P-value < 0.001) in cell redox homeostasis (Figure 37B 

and Figure 37C). Although the observed decrease in ubiquitination hits was disappointing with 

respect to the development of a Ub machinery probe for use in intact cells, it was still of interest to 

determine the observed competition against PYR-41. 
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Figure 37: Cellular targets of PYR-41-P. (A) Plot of proteins ranked by LFQ intensity, with ubiquitination 
machinery labelled. GO term (B) Molecular functions (P< 0.01) and (C) biological processes (P < 0.001) 
associated with the top 50 targets of PYR-m41. 

3.2.3.2 In-cell competition against PYR-41 

In order to study in-cell competition against PYR-41, MCF7 cells were incubated in triplicate with 

varying concentrations of PYR-41 (0, 125 and 250 µM) for 30 minutes at 37 °C before incubation with 

PYR-41-P (25 µM) for 30 minutes followed by cell lysis. Separately, ‘heavy’ R10K8-labelled MCF7 cells 

were treated with PYR-41-P (50 μM) for 1 hour at 37 °C before cell lysis to form the ‘spike’. 

Following protein concentration determination, a fixed amount of spiked lysate was added to the 

normal lysate in a 1:2 ratio before being ligated to Az-TB, enriched, reduced, alkylated, trypsin-

digested, desalted, and separated, and analysed by LC-MS/MS. The raw data was further processed 

using MaxQuant and Perseus software as described in Section 2.4.1 The results are summarised in 

Figure 38. 

On analysis, 422 proteins were identified with valid ratio of ratios, including all the previously 

identified Ub relevant enzymes labelled in Figure 37. Applying a threshold ratio change of greater 

than 1.5 fold (equivalent to a log2 fold change of 0.58), 69 proteins were categorised as ‘biologically 

significant’ competed targets. However, on further analysis by the student T-test (P-value < 0.05) 

only 7 of these proteins demonstrated statistical significant shifts, none of which represent Ub 

machinery (Figure 38A). 

This result, though disappointing, is not all together unexpected when compared to the in-gel 

analysis of competition. Although PYR-41-P is observed to promiscuously label proteins, it is possible 

that it is the high promiscuity of PYR-41 and PYR-41-P which makes them difficult to analyse. Of the 
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7 significantly competed targets, Heme oxygenanse 2 (HMOX2) demonstrated the greatest ratio 

change with competition, which can be seen most clearly with the heat map representation (Figure 

38B). HMOX2 is an oxidoreductase that catalyses Heme metabolism through oxidation to form 

biliverdin, which is subsequently reduced to bilirubin.273 It has also been linked to cellular response 

during hypoxia.274 Protein deglycase DJ-1 (PARK7) showed the next greatest ratio change. PARK7 

repairs and releases glycated proteins. Amongst several cellular functions, PARK7 plays an important 

role as an oxidative stress sensor and redox-sensitive chaperone and protease, protecting the cell 

from oxidative stress and related pathways of cell death.275, 276 As the name suggests, PARK7 is 

associated with Parkinson’s disease, with more than 25 PARK7 gene mutations having been linked to 

the disease.277 Kelch-like ECH-associated protein 1 (KEAP1) was competed at 5-fold (125 µM) 

inhibitor excess, but was lacking a valid value at 10-fold (250 µM) competition. KEAP1 acts as a 

substrate adaptor protein for the Cullin-3-RBX1 E3 ligase complex.278 KEAP1 associates with the 

nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor, sequestering it in the 

cytoplasm and targeting it for proteosomal degradation. NRF2 regulates expression of several 

enzymes which maintain cellular homeostasis. As KEAP1 Possesses 27 cysteine residues (9 of which 

are predicted to be reactive), it can be modified by reaction with numerous electrophiles, leading to 

dissociation from NRF2, NRF2 nuclear translocation and related gene expression. In this manner, 

KEAP1 senses the redox status of a cell resulting from electrophilic activity.279 PYR-41-P also 

competitively labels two kinases: IRAK1 (Interleukin-1 receptor-associated kinase 1) and ITPK1 

(Inositol-tetrakisphosphate 1-kinase). As these enzymes do not utilise a catalytic cysteine this further 

demonstrates the pan reactivity of PYR-41 and PYR-41-P. Crk-like protein (CRKL) and 

Phosphoglycolate phosphatase (PGP) were also identified as further targets of uncharacterised 

function. STRING analysis of the 7 hits revealed minimal interaction between the proteins identified 

(Figure 38C), with only a weak association between HMOX2, PARK7, and KEAP1 identified, which is 

solely evidenced by text-mining for co-mentioned proteins in PUBmed abstracts.122 

Although ubiquitination targets were identified in this experiment, none demonstrated both 

biological and statistical significance, though two satisfied the criteria in part. At 10-fold competition 

proteasomal ubiquitin receptor ADRM1 (ADRM1) did show biologically significant competition. 

ADRM1 acts an ubiquitin receptor, recruiting the DUB Ubiquitin carboxyl-terminal hydrolase isozyme 

L5 (UCHL5) to the proteasome and promoting its activity. TRIM33 showed statistically significant 

competition under the same experimental conditions. Due to a lack of Ub- related competitive probe 

targets, DDR studies are not reported. 
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Figure 38: Spike-in SILAC competition analysis of PYR-41-P. Samples were prepared in triplicate and spike 
added in a 1:2 ratio. (A) Volcano plots of PYR-41-P (25 µM) labelling in competition with indicated 
concentrations 12-mer-VME. Dashed lines represent statistical (vertical) and biological (horizontal) 
significance thresholds. Proteins in the shaded region meet both criteria. Proteins which show significant 
competition under either condition (blue) and all Ub machinery (Pink, labelled) are highlighted. (B) Heat 
map of the 7 significantly competed targets, with L/H ratio at each inhibitor concentration indicated. Grey 
denotes a missing value. (C) STRING network evaluation. Lines in the STRING evaluation represent 
evidenced interactions between proteins, with evidence source indicated in the key. 
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3.2.4 Summary  

PYR-41-P, a probe analogue of PYR-41, has been designed, synthesised, and shown to label 

ubiquitination machinery in cell lysate. For in-cell applications, however, low labelling efficiency and 

potential probe quenching was observed, which was improved through the use of cystine free 

DMEM media. In-cell competition experiments showed highly promiscuous labelling, which poorly 

engaged ubiquitination machinery, and showed limited competition against PYR-41. In summary, 

although early promise was seen from in-lysate applications, PYR-41 has proven unsuitable as a 

cellular ABP molecule for studying Ub machinery.  
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3.3 Tz9 probe series (T probe series) 

3.3.1 Design and synthesis 

As the ester group of Tz9 can be attacked either directly or at the β position, probes with alkyne tags 

either side of the ester bond were designed (Figure 39). However, with several interactions 

predicted by in silico docking, it was difficult to predict suitable positions for tag incorporation. As 

the published SARs data implied the methyl group on the benzyl ring minimally effects inhibition 

compared to proton, this position was chosen as a point of alkyne insertion to probe β attack on the 

probe (T1).211 On the basis of chemical feasibility and starting material availability the tag was added 

to the benzyl moiety, ortho- to the nitro group, to probe direct interactions with the ester group. 

Ether (T2) and amine (T3) chain groups were designed, in order to determine the effect, if any, of 

hydrogen bonding on probe labelling. 

 

Figure 39: Design of Tz9 derived T series ABPs: T1, T2, and T3. 

A retrosynthetic analysis of Tz9 is showed in Figure 40. It was hypothesised that the probes could be 

synthesized in an analogous manner. For T1, an alkyne containing starting material could be used, 

whilst for T2 and T3 the alkyne moiety could be incorporated onto intermediate 15 using ipso-

substitution.  

The synthetic development of T1-3 and Tz9 is outlined in Figure 41. A literature procedure was first 

adopted to synthesise the parent compound Tz9.211 11 was formed as an HCl salt from 4-

methylaniline (18) in 92 % yield by refluxing overnight with dicyandiamide in aqueous HCl. Following 

salt neutralisation with MeONa in MeOH, refluxing with ethyl glyocolate overnight formed 10 in 39 

% yield after purification by silica gel chromatography. Subsequent overnight reaction of 10 with 4-

nitrobenzoyl chloride in DCM under reflux and purification by silica gel chromatography afforded Tz9 

in 70 % yield.  
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Figure 40: Retrosynthetic analysis of Tz9, and postulated incorporation of alkyne tags into probes T1-3. 

T2 and T3 were both formed by reacting intermediate 10 with the appropriate nitro-benzoyl chloride 

derivative: 12 and 13 respectively. Initial attempts to synthesise 13 by reaction of 3-fluoro-4-nitro-

benzoic acid (14) with proparlyamine in the presence of triethyl amine in DCM proved unfruitful, 

most likely due to the poor solubility of 14 in DCM. Repeating the reaction under reflux in H2O, 

however, was successful affording 13 in 72 % yield.280 12 was formed using an alternative strategy, 

by reaction of 14 with proparyl alcohol in the presence of NaHMDS in THF, which proceeded with 44 

% yield.281 The activated acyl chloride derivatives of 12 and 13 were formed by refluxing for 2 hours 

in toluene in the presence of thionyl chloride.211 Separate reactions with 10 in the presence of 

triethyl amine in DCM afforded T2 and T3 in 75 % and 64 % yield respectively after silica gel 

chromatography.  

Initial attempts to form T1 utilised 4-ethynl-aniline (18) as a starting material, however, refluxing 

overnight with dicyandiamide in aqueous HCl led to the formation of 4-acteylaniline (22, Figure 42) 

rather than the desired alkyne derivative 16. On re-assessment of the literature, this outcome is not 

all that surprising; there are several papers citing such a transformation of the starting material 

under aqueous acidic conditions.282 The reaction was reattempted multiple times under microwave 

conditions in oven dried flasks using dry acetonitrile as an alternative solvent system to minimise the 

interference of water. Both HCl and glacial acetic acid were trialled as candidate acids, and the 

resulting precipitates analysed.  
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Figure 41: T probe series synthetic development; (i) dicyandiamide, 3 M HCl (aq), 90 °C, 16 h, 92 %. Salt 
neutralisation was achieved using 37 % MeONa/MeOH, RT, 3 h; (ii) Ethyl glycolate, MeONa/MeOH, reflux, 
16 h, 39 %; (iii) Tz9: 4-nitro benzoyl chloride, NEt3, DCM, reflux, 16 h, 70 %; T2: SOCl2, THF 75 °C, 2h, then 12, 
NEt3, DCM reflux, 16 h, 75 %; T3: SOCl2, THF 75 °C, 2h, then 13, NEt3, DCM reflux, 16 h, 64 %;(iv) 12: proparygl 
alcohol, NaHMDS, THF, RT, 16 h, 44 %; 13: propargyl amine, H2O, 85 °C, 16 h, 73 %; (v) dicyandiamide, 3 M 
HCl (aq), 90 °C, 16 h, no product formation; (vi) dicyandiamide, 3 M HCl (aq), 90 °C, 16 h, 63 %. Salt 
neutralisation was achieved using 37 % MeONa/MeOH, RT, 3 h; (vii) ethyl glycolate, MeONa /MeOH, reflux, 
16 h, 80 %; (viii) bis(triphenylphosphine) palladium (II) dichloride, CuI, NEt3, ethynyltrimethylsilane, DMF, 
100 °C, 16 h. TMS was subsequently removed using K2CO3 / MeOH, RT, 16 h. overall crude product, 64 %; (ix) 
4-nitro benzoyl chloride, NEt3, THF, reflux, 16 h, 6.4 %  
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Figure 42: Proposed mechanism of ketone formation from compound 16 under acidic conditions. 

The reaction with HCl was unfruitful, with formation of the acetyl 22 observed as the major product 

by LCMS analysis. Addition of HCl in dioxane, was also unsuccessful. Glacial acetic acid did lead to 

some formation of 16, observable by both LCMS and NMR spectroscopy, however, the product was 

difficult to solubilise. Milder acidic conditions, using TMS-Cl in acetonitrile in the presence of 

isopropanol also did not work in our hand.  

As there was no literature precedent for the desired reaction preceding under basic conditions this 

was not attempted. Instead, an alternative synthetic route was devised, utilising 4-iodoaniline (19) 

to form an analogous imidodicarbonimidic diamide intermediate (20), thereby allowing the 

installation of the alkyne moiety at a later stage of the synthesis under non-acidic conditions (Figure 

41). 20 was formed as an HCl salt from 19 in 63 % yield by refluxing overnight with dicyandiamide in 

aqueous HCl. Following salt neutralisation with MeONa in MeOH, refluxing with ethyl glycolaate 

overnight formed 21 as a precipitate in 80 % yield. Due to the poor solubility of 21, this crude 

material was carried though. A Sonogashira coupling in hot DMF enabled the installation of TMS 

alkyne, which on slurring in K2CO3 formed the alkyne derivative (15). Subsequent overnight reaction 

of the crude material with 4-nitrobenzoyl chloride in THF under reflux in the presence of 

triethylamine and purification by silica gel chromatography afforded T1 in 6.4 % yield. This low yield 

is most likely due to the limited solubility of intermediate 21, leading to the subsequent use of DMF 

which reduced compound extraction efficiency for small scale reactions. T1 was also not isolated 

with optimal purity, with residual 4-nitro benzoic acid observed by NMR. Being non-nucleophilic, it 

was not expected that the presence of this impurity would impede the ability of the probe to label 

reactive cysteines. Therefore, as < 2 mg of material had been formed, the ability of the probe to 

label was first assessed at high concentration, with the intention to optimise T1 isolation if this 

probe design demonstrated preferable labelling ability in comparison to T2 and T3.  
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3.3.2 In cell application of T- probe series  

3.3.2.1 In-gel fluorescent analysis of T-probe series cellular labelling 

Due to the discrepancy observed between cellular and in-lysate labelling by PYR-41-P, for analysis of 

the T probe series it was decided to profile directly in cells. MCF7 cells were incubated with 100 µM 

of T1, T2, or T3 for 1 hour at 37 °C prior to cell lysis and in-gel fluorescence analysis as described in 

Section 2.3.  

 

Figure 43: Preliminary investigation of T probe series. (A) MCF7 cells incubated with probe (100 µM) or 
DMSO in DMEM (D) or cystine free (CF) media for 1 hr, lysed, and analysed by in-gel fluorescence. (B) 
non-reducing gel of the same samples.  

It was observed that T2 labelled strongly at this concentration, whilst T1 and T3 showed weak 

labelling which was poorly defined against the fluorescent background (Figure 43A). The weak 

labelling observed with T1 suggests that nucleophilic attack on the probe scaffold is occurring by 

direct addition to the ester bond. Due to the improved labelling of PYR-41-P observed in CF media, 

this was also tested for the T series, but no significant difference was observed. Whilst T1 labelling of 

cysteines would result in the formation of a stable thioether bond, T2 and T3 labelling would result 

in the formation of a labile thioester bond. Reducing and non-reducing gel running conditions were 

compared, but the relative labelling of T2 and T3 was not affected (Figure 43B). This suggests that 

the lack of labelling observed with T3 is not due to bond instability under reducing conditions. On 

the other hand, the lack of effect on T2 labelling does lead us to question whether T2 is in fact 

labelling cysteines. Esters are by no means cysteine selective electrophilic traps; therefore it is not 

surprising that other nucleophilic acids significantly contribute to the observed labelling. 

Accordingly, T2 targets were evaluated by proteomic analysis. 
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3.3.2.2 In-cell probe application 

The cellular targets of T2 (100 μM) were identified and quantified by LFQ as previously described in 

Section 3.2.3.1. On analysis of the DMSO control samples, 126 proteins were identified as 

background ‘non-specific’ binders. 24 of these were significantly enriched by T2 and therefore 

retained during analysis, leading to 518 identified targets (Figure 44A). Encouragingly, several 

ubiquitination enzymes were labelled; ranking the protein targets by LFQ intensity, both UBA1 and 

CAND1 lie within the top 50 targets. On GO term analysis, the top 50 targets were found to be 

associated (P-value <0.01) with RNA binding, and implicated (P<0.001) in multiple biological 

pathways that generally relate to glycolysis (Figure 44B and Figure 44C).  

 

Figure 44: Cellular targets of T2. (A) Plot of proteins ranked by LFQ intensity, with ubiquitination machinery 
labelled. GO term (B) Molecular functions (P< 0.01) and (C) biological processes (P < 0.001) associated with 
the top 50 targets of T2. All listed biological processes are enriched by 6-7 %. 

Further ubiquitination machinery identified with T2 includes two DUBs, an E2, TRIM28, and RAD23B. 

RAD23B is a multi-ubiquitin chain receptor involved in modulation of proteasome degradation 

during NER DDR.283 However, it is not known to possess E2 activity. The expected target of the 

inhibitor scaffold, RAD6B, was not observed, even though T2 was applied at 10-fold concentration 

excess in comparison to literature reported used of Tz9. According to the human protein atlas284 

(http://www.proteinatlas.org/) RAD6B is expressed at moderate levels in MCF7 cells, therefore, its 

absence is most likely attributed to i) T2 is not interacting with RAD6B due to structural change from 
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Tz9; ii) inhibitory action of Tz9 on RAD6B is not governed by a covalent mechanism. Both hypotheses 

could be tested through direct incubation of T2 and Tz9 with recombinant RAD6B and subsequent 

ES-MS analysis. However in the interest of time this avenue was not pursued. Though not interacting 

with RAD6B, T2 offers a potential probe for several Ub targets and as such warranted further 

evaluation as a proteomic tool. 

3.3.2.3 Competition studies with T2  

Prior to competition studies, T2 concentration was optimised to improve the competitive range 

available for analysis. MCF7 cells were incubated with varying concentrations of probe for 30 

minutes at 37 °C prior to cell lysis and in-gel fluorescence analysis. Protein labelling by T2 was 

observed to be concentration dependent (Figure 45A). 20 μM was chosen as a sufficient labelling 

concentration; whilst this concentration ensures widespread protein labelling, it is also low enough 

to permit competition against high-fold inhibitor excesses. Furthermore, activity-based labelling was 

confirmed by competing against NEM in cell lysate, using an analogous method to that described in 

Section 3.2.2. This demonstrates that target labelling is through an electrophilic mechanism that can 

be inhibited by NEM. 

 

Figure 45: (A) Concentration series of T2 labelling after 1 hr incubation in MCF7 cells. (B) MCF7 cell lysate 
was pre-treated with NEM or DMSO for 20 min, incubated with T2 for 1 hr and analysed by in-gel 
fluorescence.  

Competition against the parent compound, Tz9, was initially assessed by in-gel fluorescence. Cells 

were incubated with an excess of Tz9 for 30 minutes, followed by T2 incubation at 20 μM for 30 

minutes and further processing as described in Section 2.3. Disappointingly, minimal competition 

was observed (Figure 46). It was hypothesised that this lack of competition was a result of the 

relatively large scaffold modification caused on addition of the alkyne containing group to form T2, 

and that this modification could prevent effective competition against Tz9. Accordingly, an 
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alternative inhibitor containing a propyl-side chain to better mimic T2, T2c (Figure 47), was 

synthesised to assist in the validation of the competitive targets of T2. 

 

Figure 46: In-cell competition studies of T2 against Tz9. MCF7 cells were pre-treated with Tz9 or DMSO for 30 
min, incubated with probe for 30 min, lysed, and analysed by in-gel fluorescence. 

T2c was synthesised in an analogous manner to T2; addition of n-propanol to 3-fluoro-4-nitro-

benzoic acid (14) to form intermediate 23 was achieved in 76 % yield in the presence of NaHMDS in 

THF (Figure 47). Subsequent treatment with thionyl chloride, and reaction of the resulting acyl 

chloride with intermediate 10 (Figure 41) in the presence of triethyl amine in DCM afforded T2c in 58 

% yield after silica gel chromatography. 

 

Figure 47: Synthetic development of T2c, an alternative inhibitor for T2. (i) Propanol, NaHMDS, THF, RT, 16 
h, 76 %;(ii) SOCl2, THF, 75 °C, 2h, then 10, NEt3, DCM reflux, 16 h, 58 %. 

Once in hand, competitive labelling of T2 against T2c was assessed by in-gel fluorescence. Cells were 

incubated with an excess of T2c for 30 minutes, followed by T2 incubation at 20 μM for 30 minutes 

and further processing as described in Section 2.3. Observed competition remained low, however, 

with only a slight decrease in T2 labelling with 10-fold (200 µM) competition by T2c.  
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Figure 48: In-cell competition studies of T2 against T2c. MCF7 cells were pre-treated with T2c or DMSO for 
30 min, incubated with probe for 30 min, lysed, and analysed by in-gel fluorescence. 

T2 labelling at 10-fold and 2-fold (40 µM) inhibitor excess was further examined in triplicate and 

quantified by spike-in SILAC. MCF7 cells were incubated in triplicate with varying concentrations of 

T2c (0, 40 and 200 µM) for 30 minutes at 37 °C before incubation with T2 (20 μM) for 30 minutes 

followed by cell lysis. Separately, ‘heavy’ R10K8-labelled MCF7 cells were treated with T2 (20 μM) for 

30 minutes at 37 °C before cell lysis to form the ‘spike’. Following protein concentration 

determination, a fixed amount of spiked lysate was added to the normal lysate in a 1:2 ratio before 

being ligated to Az-TB, enriched, reduced, alkylated, trypsin-digested, desalted, separated, and 

analysed by LC-MS/MS. The raw data was further processed using MaxQuant and Perseus software 

as previously described in Section 2.4.1. The results are summarised in Figure 49. 

On analysis, 412 proteins were identified with valid ratio of ratios. As expected from LFQ in-cell 

analysis, CAND1, UBA1, UBE2V1 and TRIM28 were identified. However, USP5 and USP14 were not 

identified in this experiment. Though disappointing, these DUBs exhibited low LFQ intensities and as 

such it is not unlikely that these identifications are lost in the complex analysis of a SILAC 

experiment. Furthermore, a lower concentration T2 was used.  
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Figure 49: Spike-in SILAC competition analysis of T2. Samples were prepared in triplicate and spike added in 
a 1:2 ratio. (A) Volcano plots of T2 (20 µM) labelling in competition with indicated concentrations T2c. 
Dashed lines represent statistical (vertical) and biological (horizontal) significance thresholds. Proteins in the 
shaded regions meet both criteria. Proteins which show significant competition under either condition 
(blue) and all Ub machinery (Pink, labelled) are highlighted. (B) Heat map of the 4 significantly competed 
targets, with L/H ratio at each inhibitor concentration indicated. (C) STRING network evaluation. No 
evidenced interactions between network proteins were identified.  

Applying a threshold ratio change of greater than 1.5 fold, 21 proteins were categorised as 

‘biologically significant’ shifters. As with PYR-41-P, further analysis by the student T-test (P-value < 

0.05) identified a small subset of these proteins; Importin-4 (IPO4), HMOX2, 60S ribosomal protein 

L17 (RPL17) and Junction plakoglobin (JUP) that demonstrated statistical significant shifts, none of 

which represent ubiquitination machinery. Interestingly the majority of significant shifts are the 
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result of induced, rather than competed labelling of these proteins on competition. It should be 

noted that, in keeping with in-gel fluorescence analysis, minimal competition is observed as 

illustrated by the narrow protein distribution in the volcano plot (Figure 49A). 

Of the 4 significantly shifted targets, JUP was the only protein competitively labelled. JUP is an 

architectural plague protein necessary from cell adhesion, mutations of which have been associated 

with cardiomyopathy.285 The other three labelled targets were significantly induced on competition. 

IPO4 demonstrated the greatest ratio change with competition, which can be seen most clearly with 

the heat map representation (Figure 49B). IPO4 is a nuclear transport receptor for nuclear 

localization signals (NLS) in molecular substrates.286 HMOX2, which has been previously described in 

Section 3.2.3.2, showed the next greatest ratio. Finally RPL17, as the name suggests, is a 60s 

ribosomal protein and unlikely to be a meaningful target. STRING analysis of the 4 hits revealed no 

associated interactions between the proteins identified (Figure 49C). By this analysis, competitive 

labelling of T2 cannot be effectively assessed by competition with Tz9 or T2c. Clearly, further work is 

required to ultimately determine the competitive targets of T2. Due to inconclusive competition 

data, DDR analysis is not reported. 

3.3.3 Cross-probe comparison 

On direct comparison of PYR-41-P and T2 cellular targets, neither significantly (based on 

competition) label ubiquitination machinery. PYR-41-P shows typical electrophilic characteristics, 

including labelling of redox enzymes, whilst T2 demonstrated limited electrophilic features. It was of 

interest to consider whether or not the labelled targets were a direct effect of the probe scaffold, or 

more generally the result of an electrophilic interaction. Consequently, significantly labelled targets 

identified by PYR-41-P and T2 were compared to the competition data collected for other 

electrophilic probe molecules (24-27, Figure 50A) of varying scaffolds synthesized in our group.287, 288 

Each significant competition target of PYR-41-P and T2 was scored to reflect its labelling frequency 

across the panel of six probes. A protein which is labelled by all the probes has a score 6; the higher 

the score, the less scaffold specific the interaction. 
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Figure 50:(A) Structures of the alternative electrophilic probes used in this study. (B) Comparison of the 
competitive targets of PYR-41-P and T2 to competitive labelling of these targets by probes 24-27. (C) 
Comparison of Ub machinery identified by PYR-41-P and T2 to identification of these targets by probes 24-
27. (D) A selection of the Ub-machinery which are competitive targets of probes 24-27, but not identified by 
PYR-41-P or T2. Competitive targets are defined by competition against the probe’s parent inhibitor. The 
score represents the frequency (1-6) of the protein when compared across the six probes (6=highest 
frequency). 

By this method, HMOX2 was found to be frequently labelled across the probe panel, confirming as 

expected that this is a non-specific electrophilic target (Figure 50B). Similarly, KEAP1 and IPO4 

interacted with multiple probe types. Other targets, such as PARK7 and JUP, were less commonly 

labelled and therefore more likely to be due to a scaffold-specific interaction. However, whilst this 

comparison assists the identification of globally reactive targets, it should be noted that these 

probes were applied in different cell lines of interest, thus preventing the classification of unique 

targets. All ubiquitination machinery identified by the probe panel, regardless of the significance of 

probe labelling based on competition, were also compared (Figure 50C). The majority of 

ubiquitination machinery labelled by PYR-41-P and T2 had a high (≥4) labelling frequency, with 

CAND1 and UBA1 being labelled with all the probes, suggesting that probe labelling of these targets 

is non-specific. Some ubiquitination machinery did, however, appear to be less general targets. 
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USP32, which is labelled by PYR-41-P, showed a low labelling frequency across the panel as did 

UBEV1 and RAD23b, which are both labelled by T2.  

Finally the ability of probes 24-27 to competitively label ubiquitination machinery not competed or 

identified by either PYR-41-P or T2 was analysed, to determine whether these alternative scaffolds 

offer any improved ability to label ubiquitination machinery. It was found that several ubiquitination 

machinery were labelled with varying frequency by the panel, including multiple USP - family DUBs. 

USP10 was highly labelled across the panel, whilst other USPs was less frequently identified. A 

selection of identified targets is shown in Figure 50D. This suggests that these ubiquitination 

machinery are not ‘global’ targets of electrophilic probes.  

3.4 Conclusions 

The work in this Chapter focuses on the design, synthesis, and analysis of ABPs derived from small 

molecule inhibitors of ubiquitination machinery. Two inhibitor scaffolds were studied, leading to the 

testing of four related ABPs. PYR-41-P showed initial promised, labelling several ubiquitination 

enzymes by in-lysate application. Unfortunately, this probe engagement was lost on application in 

cell. In general PYR-41-P demonstrated poor in cell labelling efficiency, which was somewhat 

improved by omitting cystine from the growth media. Furthermore, competition studies with NEM 

lead to the hypothesis that the probe may be quenched by cellular free thiols. Of the three T series 

probes, T2 showed the greatest labelling ability, with several ubiquitination machinery labelled in 

cells. In general, labelling was not affected by reducing conditions, suggesting that the majority of T2 

targets were not labelled via Cys residues. Quantitative proteomic analysis of PYR-41-P and T2 in 

competition against their parent inhibitor or inhibitor analogue was disappointing, with PYR-41-P 

not competing any Ub machinery and inconclusive T2 competition data. PYR-41-P did, however, 

label a number of electrophilic targets, such as KEAP1 and HMOX2.  The confidence in these findings 

is, however, restricted to the non-stringent statistical thresholds applied. Finally, comparison 

between proteins identified by PYR-41-P and T2 and those identified with alternative electrophilic 

probes 24-27 was used to identify generic targets of electrophilic probes and to postulate proteins 

whose probe interaction is more scaffold specific. 

Though this work has been unsuccessful in identifying a suitable probe molecule to study 

ubiquitination machinery in cells, the issues discussed in here illustrate some of the difficulties faced 

by researchers during probe development, and highlight the importance of identifying suitable 

inhibitor scaffolds to act as starting points in probe design. With this in mind, Chapter 4 discusses a 

fragment screening approach to identify novel starting points for E3 ligase inhibitor / probe design. 
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Chapter 4 Identifying potential scaffolds for E3 
inhibitors: HOIP as a case study 

Fragment based screening has been established as a valid drug discovery approach for enzyme 

targets.289 The approach provides a means of identifying novel starting points for inhibitor, or probe, 

compounds. This Chapter reports the results of a fragment library screen against the minimal 

catalytic core of HOIP, a RBR E3 ligase. Hits were primarily identified using Differential Scanning 

Fluorimetry, with further validation by WaterLOGSY NMR spectroscopy. Subsequent characterisation 

of a number of hits by Micro-Scale Thermophoresis and efforts towards X-ray crystal structure 

determination are also described.  



103 

4.1 Introduction 

To further our ability to study ubiquitination enzymes it is important to expand the number of probe 

scaffolds available in the researcher’s toolbox. In contrast to Chapter 2 and 3, which focussed on the 

development of literature inhibitors into probe molecules, the work in this Chapter focuses on the 

de novo identification of molecular starting points, or fragments, (<300 Da) for further development 

into inhibitor and probe compounds of ubiquitination machinery. HOIP, a RBR E3 ligase was studied 

using a fragment based strategy, which is further described below.  

4.1.1 Fragment-based drug discovery (FBDD) 

The workflow utilised in a typical fragment-based screen is shown in Figure 51. Briefly, a purified 

recombinant protein of interest is screened against a library of molecular fragments using a high 

throughput biophysical assay. Any hits identified from this primary screen are further validated and 

characterised using complementary techniques. Knowledge of how a fragment binds, enables hit 

optimisation through structure guided medicinal chemistry, leading to the development of lead 

compound(s) for drug discovery.  

In contrast to High Throughput Screens (HTS), where libraries of drug-like molecules (~500 MW) are 

screened to identify high affinity (nM-µM) interactions, fragment-based studies identify weaker 

interactions (µM-mM) with lower mass (<300 MW) compound libraries.290 Although fragment 

interactions are not as potent as those of larger molecules, it is possible to achieve greater ligand 

efficiency (defined as the binding energy per heavy atom of a ligand to its binding partner), thus 

providing an initial high quality starting point for further drug development. If structural data is to 

hand, fragments can be developed by growing into other protein pockets to enhance their potency 

and/or selectivity. Software development which enables ‘automated’ fragment growing 

computationally, such as that developed by Novartis, facilitates optimisation.291 An alternative 

approach involves linking together fragments which bind to different protein pockets. Such 

‘Fragment growing’ and ‘fragment linking’ methods have been reported with some success for 

fragment development against other targets in the literature, both in academic and industrial 

settings. 289, 290, 292 Indeed, the first fragment based drug, Vemurafenib, was approved by the FDA in 

2011 as a treatment for metastatic melanoma.  

Despite this precedent for success, fragment development does present challenges. Whilst 

traditional HTSs employ very large (106) compound libraries, fragment libraries are much smaller 

(103), but can cover a relatively large area of chemical space. Library design is therefore essential in 
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order to conduct a diverse high quality screen. Libraries must consist of high purity compound 

samples, with good solubility at high concentration. The target itself also dictates the experimental 

formats available for a large scale screen, since the quantity of target that can be produced, its 

purity, and solubility need to be taken into consideration. Similarly, its ability to crystallise and 

compatibility with NMR methods are important criteria to meet to successfully characterise 

potential fragment hits. 

 

Figure 51: Schematic representation of the general FBDD workflow. A protein target is screened against a 
fragment library, and identified hits further validated and characterised using complementary biophysical 
methods. Iterative cycles of structure-guided hit optimisation, validation, and characterisation, result in the 
identification of novel lead compounds for further drug development. 

The ability to successfully screen an enzyme is dependent on the availability of a robust assay. Due 

to the low affinity of the interactions being detected, false positive rates are often high in FBDD. 

Consequently, hits are identified through a variety of complementary biophysical and structural 

techniques. Used in combination, the acquired data enables triaging of potential hits and should lead 

to a reduction in false positives. The biophysical and structural techniques employed in fragment-

based screens are briefly discussed in the following Section. 
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4.1.2 Biophysical and structural techniques 

4.1.2.1 Differential scanning fluorimetry (DSF) 

DSF is a method of measuring the temperature at which a protein unfolds, or ‘melts’ (Tm) when 

subjected to a temperature gradient.293 A reporter dye binds to hydrophobic regions that become 

exposed on unfolding, leading to an increased fluorescence signal. Fragment binding should stabilise 

the protein, leading to an increase in the unfolding temperature. The change in Tm (ΔTm) induced is 

used to rank the fragments as potential hits. 

 It is a fast, cheap, and experimentally easy method of conducting a large high throughput primary 

screen whilst consuming low quantities of target and fragment. However, analysis can be difficult for 

proteins consisting of multiple domains that present multiple unfolding events. The reporter dye 

may also interfere with some fragments. Due to this lack of reliability, careful analysis of DSF data is 

required, as well as the use of complementary techniques to detect false positives.  

4.1.2.2 Surface plasmon resonance (SPR) 

SPR is a method of measuring protein-fragment interaction by measuring the changes in refractive 

index of a surface displaying immobilised protein as fragment is injected across the surface. 

Immobilised protein in a relevant conformation is required and the technique is more technically 

challenging than others, however, only small amounts of material are required and, unlike DSF, it is 

possible to directly calculate dissociation constants (Kd), although the enthalpy of unfolding is 

required. 

4.1.2.3 Ligand-detected NMR spectroscopy 

There are several 1D NMR techniques that enable ligand-detected binding events to label-free 

protein. A classical CPMG (Car-Purcell-Meiboom-Gill) experiment relies on changes in tumbling rate 

(and therefore nuclear relaxation rate) of a fragment on its binding to protein. Slower tumbling rates 

on binding lead to faster T2 nuclear relaxation in comparison to the free, unbound form.289 Such 

changes in T2 relaxation in turn translate into observable peak broadening or removal in the NMR 

spectra. Saturation Transfer Difference (STD) is another technique which transfers magnetisation 

from the protein to the fragment via the Nuclear Overhauser effect (NOE) only when the fragment is 

bound.294 WaterLOGSY is a further variation on STD, whereby magnetisation transfer occurs 

between the fragment and water molecules in the protein’s solvation shell when the fragment is 

bound.295This transfer of magnetism is observed as an inverted resonance signal in the NMR spectra. 

All the above techniques require optimisation for the target of interest, high amounts of protein, 

and provide a medium throughput screening platform. As they rely on changes in tumbling rates, 
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best results are seen for large globular proteins (>30 kDa); the techniques are less applicable for 

small or dynamic proteins.  

4.1.2.4 Protein-detected NMR spectroscopy 

Low throughput protein-detected NMR techniques require large quantities of isotopically (15N) 

labelled material, and an assigned 2D spectrum. Though this method enables binding site mapping, 

the necessity of a priori structural information makes this technique less generally applicable to 

therapeutic targets.289  

4.1.2.5 Isothermal titration calorimetry (ITC) 

ITC measures the energy required to maintain a constant temperature as a small molecule is titrated 

into a protein sample with respect to a control. It is the ‘gold standard’ characterisation method for 

protein-small molecule interactions and provides a full set of thermodynamic parameters (ΔG = -

RTlnKa = ΔH-TΔS). However, due to the low affinity of fragment interactions, data collection can 

present technical challenges, as the ΔH may not be enough to detect. Large quantities of protein are 

required, as well as high fragment concentration and solubility. Matching DMSO levels in the protein 

and fragment solutions is important during sample preparation, as small concentration differences 

can create data artefacts. Further complications may arise if the fragment binds to multiple sites. 

The method is low throughput, and therefore not suitable as a primary detection method. None the 

less, ITC is routinely employed in fragment applications as a characterisation method once optimal 

conditions has been defined for a target protein, due to the importance of thermodynamic 

parameters in the downstream development of inhibitors molecules.289 

4.1.2.6 Micro-scale thermophoresis (MST) 

Micro-Scale Thermophoresis (MST) is a recently developed method of determining the state of a 

protein (e.g. bound vs unbound) by measuring changes in molecular mobility across micro-scale 

temperature gradients.296 Temperature gradients are induced by an IR-laser, and thermophoresis is 

detected by measuring the fluorescent distribution of labelled proteins. A molecule’s 

thermophoretic signal is affected by changes to its surface area, hydration shell and effective charge 

of the protein, therefore, a binding event results in a change of thermophoretic signal. It has a fast 

measurement time and simple sample preparation to provide binding affinity data. As 

measurements are recorded in capillaries, sample consumption is low. In some cases the fluorescent 

signal observed before a temperature gradient is induced is dependent on fragment concentration, 

providing an additional measure of binding. MST is particularly well suited for fragment binding 

studies due to its high sensitivity range (nM-mM). However, it does require fluorescently labelled 
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protein, which may interfere with fragment binding. Due to its infancy, the theory of thermophoresis 

is still under debate and MST is yet to be fully validated as a technique; various binding profiles are 

possible and require careful analysis. That aside, although currently not as prevalent as ITC, MST 

does offer a much desired fast and low consuming method of studying low affinity interactions. 

4.1.2.7 X-ray crystallography 

Due to the atomic detail that it provides, X-ray crystallography remains an unparalleled method for 

structure determination.289 As well as identifying binding sites (even those of very weak binders), it 

can detect changes in protein conformation on binding, providing a wealth of detail to inform 

downstream inhibitor development. Generally, protein crystallisation requires moderate amounts of 

purified macromolecule, and optimised conditions that produce crystals of sufficient quality for X-

ray diffraction data collection.297 Experimental electron density enables the generation of a 3D 

structure. For the purposes of FBDD, protein crystals need to be either soaked or co-crystallised with 

the fragment of interest in order to solve the bound structures. Accordingly, proteins amenable to 

FBDD should yield reproducible crystals that can withstand high DMSO and fragment concentrations. 

Generally a resolution of 2.5 Å or greater is required to accurately map the fragment into the 

electron density. Though X-ray diffraction is a powerful technique, and essential for further fragment 

development, its low throughput nature makes it better suited as a characterisation technique 

rather than a means of initial screening for most laboratories. 

The suitability of each technique for each stage of fragment discovery is summarised in Table 1 .  

 Initial 
Screening 

Validation Characterisation Protein 
consumption 

Throughput 

DSF    + +++ 

SPR    + ++ 

NMR (ligand)    ++ ++ 

NMR (Protein)    +++ + 

ITC    +++ + 

MST    + +++ 

X-ray    ++ + 
Table 1: ‘Traffic light’ summary of the suitability of biophysical methodologies at each stage of FBDD. Protein 
consumption and throughput considerations are included (+ = low; ++ = medium, +++ = high).  

4.1.3 Screening E3 ligases 

The drug discovery effort towards Ub machinery and the resulting inhibitors has been previously 

introduced in Chapter 1. Though both HECT and RBR E3 ligase families possess active sites, and as 
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such are somewhat conventional drug targets, they have received surprisingly little attention to 

date. The application of FBDD to HOIP, an RBR, is discussed in this Chapter.  

4.1.4 HOIP 

HOIP is the catalytic component of the LUBAC E3 ligase complex.24 LUBAC is a particularly interesting 

E3 ligase: it is the only known linear chain E3 ligase, and the only macromolecular E3 ligase. To date, 

there are no known inhibitors of HOIP, or for any other E3 ligases belonging to its RBR E3 ligase 

subfamily. HOIP plays a key role in inflammation and innate immunity, through NF-κ-B activation, 

and is an antiapoptotic regulator.298 Interestingly, Mackay et al. have found that HOIP depletion 

sensitises cancer cells to cisplatin, leading to the hypothesis that inhibition of HOIP in combination 

with chemotherapeutic treatments would enhance the efficacy of platinum-derived 

chemotherapeutics.113 

HOIP employs a catalytic cysteine in its Ring2 domain to transfer a donor Ub onto an acceptor Ub 

during linear chain synthesis. The minimal catalytic core (P37) required to enable this synthesis has 

been determined by Stieglitz et al.298 X-ray crystal structural analysis of P37 in complex with a donor 

and acceptor Ub during linear chain formation reveals a hydrophobic pocket interacting with the 

donor Ub C-terminal tail adjacent to the active site, presenting an interaction which could be 

targeted by a small molecule. As the unbound X-ray structure of P37 was also determined, P37 

represented a valid target for a fragment-based drug discovery screen. 

The study was conducted as detailed below in collaboration with Katrin Rittinger (Crick Institute, Mill 

Hill). P37 had previously been produced in large quantities and in high purity in Katrin Rittinger’s 

laboratory. Consisting of a single protein domain, P37 was well suited to DSF studies; therefore, this 

was employed as a preliminary screening platform.  

4.2 DSF screening of HOIP catalytic core 

4.2.1 Optimisation of DSF assay for P37 

First, the suitability of DSF as a FBDD platform for P37 was determined. P37 was provided as a 

solution in 50 mM HEPES, 150 mM NaCl, 1 mM DTT at pH 7.5. As HEPES buffers are generally 

compatible with the DSF assay this buffer was used for initial screen tests. Sypro® Orange, a 

common dye for DSF applications, was also used; its relatively high excitation wavelength of 492 nm 

minimises the likelihood of the small molecule screen interfering with the dye’s optical properties. 
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A series of P37 concentrations were tested in the DSF assay to aid selection of a suitable 

concentration for the assay (Figure 52). Briefly, varying concentrations of P37 were incubated in the 

presence of SYPRO® Orange dye and 2 % DMSO, then fluorescence measurements were recorded 

over a 25-95 °C gradient, using a real time PCR machine. Readings were performed in triplicate. The 

raw data was analysed using an Excel workbook customised for DSF analysis, which was developed 

and made publically available by Dr Frank Niesen (Structural Genomics Consortium, UK 

ftp:ftp.sgc.ox.ac.uk/pup/biophysics). The workbook was used to create normalised graphs to 

represent the data, and Tm values were calculated by fitting the data to the Boltzmann equation 

using GraphPad Prism 5 software.  

 

Figure 52: Initial protein concentration optimisation for DSF assay. P37 in 50 mM HEPES, 150 mM NaCl, 1 
mM DTT, pH 7.5, 2 % DMSO was incubated with 10x SYPRO® Orange dye and the fluorescence was recorded 
over a 25-95 °C gradient. Tm values were calculated from the mid-point of the melting curve using GraphPad 
Prism 5 software. Curves shown are representatives of triplicate readings, the mean and standard deviation 
of which are indicated. 

In all cases P37 demonstrated a sharp unfolding transition at a high Tm (> 55 °C), suggesting that P37 

is unfolding as a single domain transition, and is stable enough in isolation to conduct a DSF assay. 2 

µM was selected as a suitable concentration for conducting the fragment based screen, as it was the 

lowest concentration tested that presented minimal background fluorescence. The reproducibility of 

the reading was high, with a standard deviation (s.d) below 0.1 °C, making it a high quality negative 

control. 

As no small molecule P37 binders are known, it was proposed that binding of P37 to Ub could be 

used a positive binding control. The use of a protein binder has its own complications, however, due 

to its own unfolding profile contributing to the fluorescence reading in the DSF assay. P37 was 
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incubated as previously described, with the addition of Ub (100 µM or 1 mM), and Tm curves 

measured (Figure 53). Whilst 100 µM of Ub made little impact on Tm, an increased concentration of 1 

mM significantly changed the fluorescence profile. Accordingly, Ub was not carried through as a 

positive control for the screen. Instead, the screen was conducted using the highly reproducible 

negative control. 

 

Figure 53: Determining the suitability of Ub as a positive control. P37 and Ub were co-incubated with 
SYPRO® Orange dye and the fluorescence recorded. P37 and Ub alone readouts are included as controls  

4.2.2 Initial screen of P37 

Work proceeded to screen a fragment library against P37 using the optimised DSF assay conditions. 

The Maybridge Ro3 2500 Diversity Fragment Library (Thermo Fisher Scientific) was chosen, due to its 

high structural diversity and rule-of-three compliance as outlined below: 

 MW ≤ 300 Da (mean value of 181.1 Da) 

 clogP ≤ 3.0 (mean value of 1.6 Da) 

 ≤ 3 Hydrogen bond donors / acceptors (mean values of 0.9 and2.4 respectively) 

 ≤ 3 rotatable bonds (mean value of 1.0) 

 
Fragment quality (≥ 95 % purity) and DMSO solubility (200 mM) were also assured by the supplier. 

Briefly, P37 was incubated in the presence of SYPRO® Orange dye with 2 mM fragment or equivalent 

DMSO control, then fluorescence measurements recorded over a 25-95 °C gradient, and Tm values 
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recorded as previously described. The error of the assay was determined by measuring the standard 

deviation of the DMSO control. An assay plate was deemed to be of suitable quality if the standard 

deviation of the negative controls was ≤ 0.1°C. The total error of the assay across all 29 plates 

measured was greater, with the standard deviation of the negative control standing at 0.3 °C. This 

difference is accounted for by an observed lowering of the control average Tm over time, which can 

be correlated to the use of a new Sypro® Orange batch from the supplier (due to the scale of the 

screen). Therefore, fragments were evaluated relative to their assay plate standard deviation. A 

change in average Tm (ΔTm) > 2 s.d was considered to be a possible hit fragment.  

The results of the initial DSF screen are summarised in Table 2. Fragment screen hit rates are often 

high (typically 3-10 %). As a positive hit rate (> 2 s.d) of 5.6 % is mid-range for an initial fragment-

based screen, a more stringent cut off was implemented (> 4 s.d) to define initial hits. This decreased 

the number of defined hits to 67 (2.9 %) for further analysis. Of these, 41 fragments induced a ΔTm > 

0.5 °C. It was observed that a high percentage of fragments induced a negative shift. It is unknown if 

these fragments would benefit from further analysis. It has been suggested that the identification of 

destabilising factors could aid buffer design for crystallisation purposes.299 Although potentially of 

interest, focus remained on positive shifters alone for the purpose of screening P37. 

Fragment classification Applied threshold Number of 
fragments 

Percentage 

+ve shift ΔTm >2 s.d 
ΔTm >4 s.d 
ΔTm >5 °C 

131 
67 
41 
 

5.6 % 
2.9 % 
1.8 % 

-ve shift ΔTm <2 s.d 
ΔTm <4 s.d 
ΔTm <5 °C 

935 
530 
265 

40.3 % 
22.9 % 
11.15 % 
 

Non-shift 2 s.d ≥ΔTm ≥ - 2 s.d 
4 s.d ≥ΔTm ≥ - 4 s.d 
5 °C ≥ΔTm ≥ - 5 °C 
 

1168 
1637 
1928 

50.4 % 
70.5 % 
83.1 % 

Ambiguous melting curve Invalid Boltzmann fit 86 3.7 % 

Table 2: Overview of results from DSF screen of Maybridge Ro3 2500 Diversity Fragment Library. 

In order to streamline the number of hits taken forward whilst retaining chemical diversity, the 67 

hits were subjected to a structure similarity search across all members of the fragment library using 

ChemBioFinder (Perkin Elmer). In this way structurally similar hits were categorised into groups. 

Non-hit fragments were also grouped into these categories: on inspection of their ΔTm this enabled 

the prediction of potential SAR data for fragment binding to P37. Some fragment categories were 

highly populated, such as those containing a sulphanyl imidazole, thiourea, or aromatic sulphone 
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motif. Hits not falling into a group were considered as independent categories. After assessment, 

6/15 categories were discarded on the basis of: 

 Likely cross reactivity of chemical groups present (eg. hydrazines, Michael acceptors)  

 The predicted SARs implied that a hit was a one off or false positive. (i.e. the majority of the 

category are defined as non-hits). 

 Taking predicted SARs into account, the major motif was not suitable for fragment growth. 

(i.e. strong reliance on additional groups beyond the major motif, which prevented any 

variation to the fragment structure whilst maintaining a positive ΔTm).    

 

The melting curve of each hit was then manually inspected and hits with irregular curves (eg. bowled 

shaped, high background) discarded. Of the remaining eight categories one representative hit, and in 

some cases a further analogue, were taken forward for further validation, as detailed in Table 3. 

Whether a hit had been identified in other proteins screens conducted by our research group against 

the Ro3 library was also checked. This was found to be the case for fragment 11A5, and several hits 

in the thiourea category. Thioureas are renowned unspecific protein binders, and it was surprising to 

find that so many thioureas (86 fragments, 10 of which afforded a positive ΔTm with P37) had been 

included during library design. Though not useful as specific binders for P37, 11A5 and one thiourea 

fragment, 27C4, were retained for comparison to other hits in future validation experiments. 

Fragments 18H9 and 26E11 gave the largest thermals shift of +3.3 and 1.6 °C respectively. 18H9 

represents one of ten sulphanyl imidazole containing fragments present in the Ro3 library, only one 

of which did not induce a positive ΔTm. This strongly suggests that this motif is indeed binding to 

P37. 26E11 is a representative of the aromatic sulphone containing fragment category, which also 

includes 11A5. Interestingly, of the 19 aromatic sulfone containing fragments in the screen, only 6 

induced a positive shift. These SARs could be valuable for future fragment development. The 

remaining fragments (27A7, 24H2, 23B4, 8C8, 18D4 and 27C4) all afforded weaker shifts in the 0.8-

0.6 °C range. It is difficult to draw any meaningful SAR data for these fragments, possible due to the 

low ΔTm values measured. Melting curves for the fragments and analogues carried forward are 

shown in Figure 54 and Figure 55. 
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Table 3: Fragment ID, plate ID, ΔTm, Chemical structure, molecular weight of the (A) fragments and (B) 
analogues selected for further validation.  
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Figure 54: Melting curves for P37 (2 µM) in the presence 2 mM of indicated fragments (red) or DMSO control 
(blue). 
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Figure 55: Melting curves for P37 (2 µM) in the presence 2 mM of indicated fragment analogues (red) or 
DMSO control (blue). Representative melting curves for P37 (2 µM). 

4.3 Concentration dependence studies by DSF  

It was of interest to study the effect of fragment concentration on binding. Generally, ΔTm should 

reasonably correlate with binding affinity and fragment concentration.300 The DSF assay was 

repeated in duplicate at varying concentrations between 0.5-2.0 mM for indicated hits and 

analogues in order to further validate fragment binding. These ‘titration’ experiments illuminated 

three main types of binding behaviour: linear, saturated and inverted (Figure 56). 

 

Figure 56: Cartoon representations of three alternative concentration dependent fragment behaviours 
during DSF experiment: saturated, linear and inverted. 

The effect of fragment concentration on ΔTm is shown in Figure 57. 26E11 and its analogue 11A5 

both demonstrated saturated concentration dependence across this concentration range. In 
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contrast, 18H9 and its analogue 21A2 demonstrated linear concentration dependences. Of the 

remaining four fragments tested, three (27C4, 27A7, 24H2) exhibited an insignificant effect on ΔTm 

with varying concentration, as determined by a 2 standard deviation cut-off with respect to the 

negative control. 8C8 displayed a significant but weak linear dependence. It is postulated that the 

concentration dependence of 8C8 is attributed to an ‘inverted’ binding behaviour, whereby 

stabilisation significantly increases at higher fragment concentration.  

 

Figure 57: Ligand concentration dependence of ΔTm by DSF for selected fragments. 

The relationship between ligand concentration and ΔTm has been studied both theoretically and 

experimentally.301, 302 Assuming a 1:1 binding model and a single unfolding transition, they should 

correlate in a roughly linear fashion. However, a saturated relationship is also possible if ligand 

solubility is limited, or if the ligand increasing binds to denatured protein. Equally, it has been 

suggested that minimal concentration dependence or inverted relationships are observed when the 

concentration range is much lower than the Kd value of the fragment.300  

Although titration experiments add to the body of evidence for hit identification, alternative 

validation methods are necessary to determine true fragment binders, as discussed in the following 

sections. 
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4.4 WaterLOGSY validation 

Ligand-detected waterLOGSY NMR spectroscopy was chosen as a preliminary means of fragment 

characterisation, as it required modest amounts of protein and material and was of moderate 

throughput. The method had also been previously used with success in the laboratory on an 

alternative protein target. Briefly, 1H spectra were acquired for each fragment at 1 mM using the 

same buffer conditions employed for DSF analysis. A waterLOGSY experiment was then run for each 

fragment alone, before addition of P37 and further waterLOGSY acquisition. Peak inversion on 

protein addition was indicative of fragment binding. Initially, P37 was added at a final concentration 

of 10 µM, and increased to 40 µM if spectral shifts were inconclusive.  

The results of waterLOGSY validation of fragments are summarised in Figure 58. In some cases, 

analogous fragments from within a fragment category were also validated to provide further 

information. 18H9 and 27C4 were validated as binders, with at least one proton signal being 

inverted on protein addition. Analysis of other fragments was less conclusive. A decrease in ‘trough 

depth’ with increasing protein concentration was observed for 8C8, 21A2, 26E11 and 27A4. Side-

shifting of peaks on addition of protein was difficult to characterise; this was observed for 18D4 

(data not shown) and partially for 11A5. No inversion was observed for 23B4 or its analogue 23G3 

(data not shown), nor 27A7. No waterLOGSY was obtained for 24H2 due to weak proton signal. 

The titration experiment and waterLOGSY data together suggested that 18H9 was a valid hit. It was 

somewhat surprising that 27C4 was validated by NMR after the weak concentration dependence 

observed by DSF. This, coupled with the known promiscuous binding of thioureas to proteins, led to 

the exclusion of 27C4 from further study. Conversely, after encouraging titration results, 26E11 and 

its analogue 11A5 performed poorly in waterLOGSY experiments. Data for 8C8 and 24H2 were also 

inconclusive; consequently the four fragments 18H9, 26E11, 8C8 and 24H2 were taken forward for 

further analysis.  

The inconclusive nature of the waterLOGSY data could be in part due to the small size of P37; 25 kDa 

lies below the recommended threshold of 30 kDa for robust ligand detected NMR analysis.289 The 

suitability of waterLOGSY also depends on how well hydrated the binding site is and how transient 

the binding event is; both of these factors influence the capacity for magnetisation transfer. STD and 

CPMG experiments offer valid alternatives. STD is beneficial for hydrophobic binding sites, whilst 

CPMG is useful for studying tighter binding interactions. However, due to time constraints and the 

amount of material available neither of these alternative experiments have been attempted to date.  
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Although protein-detected NMR spectroscopy would have provided an alternative validation 

method, insufficient quantities of 15N labelled P37 was available at the time of screening, and a 

characterised correlation spectra was not available. ITC was also discarded as an alternative method, 

due to the amount of protein required. SPR, although consuming low amounts of protein and ligand, 

would have required significant optimisation. Therefore, in the interest of time and making use of 

available expertise and equipment within the collaborative groups, the four selected fragments, 

18H9, 26E11, 8C8 and 24H2, were further validated and characterised by MST. 

 



119 

 

Figure 58: WaterLOGSY analysis, with spectral overlay of 1D fragment alone (green), waterLOGSY fragment 
alone (red), fragment plus protein at 10uM (cyan) and in some cases 40 µM (purple). Inverted resonances 
are indicated by an open bracket. 
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4.5 Fragment characterisation by MST  

All MST experimentation was undertaken with the help of Dr Steve Martin at the Crick Institute (Mill 

Hill). In order to measure Kd values by MST, P37 was first fluorescently labelled with a Cy5 

fluorophore using a Monolith NT protein labelling kit. The kit utilises an N-hydroxysuccinimide (NHS) 

ester of the fluorophore, which is amine reactive with an optimum reaction pH between 8.3-8.5. Due 

to the presence of 12 lysine residues and an isoelectric point (IP) of 8.21, P37 is not an ideal protein 

as there are multiple amines that can be labelled. Consequently, the labelling reaction was 

undertaken below the recommended pH, at pH 7.5 in order to favour N-terminal reactivity. The 

reaction was left to proceed in the dark for 45 minutes, before removal of excess unreacted 

fluorophore by gel filtration. A labelling efficiency of 33 % was determined spectroscopically by 

measuring absorbance at 650 nm and 280 nm, with measured concentrations of labelled and 

unlabelled protein approximately 2 µM and 6 µM respectively.  

An ubiquitination assay was performed by Katrin Rittinger’s group in order to check the effect of 

labelling on protein activity. Labelled and wild type (WT) P37 were separately incubated with 

recombinant UBA1 (E1), ATP, Ubch7 (E2) and Ub for 4 hours at 25 °C. Samples were taken at set time 

intervals, the reaction quenched by addition of sample loading buffer, and then proteins were 

separated by SDS-PAGE and visualised using Coomassie staining (Figure 59). 

 

Figure 59: Determining the effect of fluorophore addition on p37 catalytic activity. P37 was incubated with 
UBA1 (E1), ATP, Ubch7 (E2) and Ub at 25 °C. Time course samples were separated by SDS-page and 
Coomassie stained. WT= wild type. Ub2-n indicates linear chain stoichiometry.  
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Time dependent formation of linear Ub chains was observed as a series of higher MW bands. Band 

pattern analysis indicated that the labelled protein had a reduced enzymatic activity in comparison 

to wild type P37. This could mean that labelling interferes with binding of the fragments and as such 

the MST data cannot be used with high confidence. However, some catalytic activity does remain, 

with labelled protein showing a similar band activity after 2 hours to wild type after 1 hour. 

Consequently, the labelled P37 was used to measure fragment binding affinities by MST, but these 

measurements should be regarded as preliminary data requiring further validation using an 

alternative characterisation technique, such as ITC, with wild type P37.  

In order to determine binding affinities, 100 nM of labelled protein in 50 mM HEPES, 100 mM NaCl, 

0.5 mM TCEP, 0.05 % Tween, pH 7.5 was incubated for 5 minutes with a 5 mM-75 nM fragment 

concentration series at a constant DMSO concentration of 2 %. The samples were then transferred 

into capillaries and MST measurements were recorded using a Monolith NT.115, reading 

fluorescence at 670 nm. Both fluorescence and thermophoresis measurements were recorded and 

used to fit the raw data to non-linear binding curves. The obtained binding affinities of 18H9, 26E11, 

8C8 and 24H2 are summarised in Table 4. Representative graphs are presented in Figure 60 and 61.  

Fragment Binding affinity (Kd) Time dependence? 
(Y/N) Fluorescence 

determined (mM) 
Thermophoresis 
determined (mM) 

18H9 
 

1.08 0.92 Y 
 

26E11 
 

4.00 4.75 N 

8C8 
 

~45 mM n.d N 

24H2 
 

~29 mM n.d N 

Table 4: Summary of binding affinities determined by MST, comparing values recorded by both initial 
fluorescence and thermophoretic methods. 
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Figure 60: MST fluorescence (670 nm) profiles for fragments (A) 18H9 and (B) 26E11 binding to P37 (100 
nM). A 2 mM-75 nM fragment concentration range was measured at 2 % DMSO. On introduction of an IR-
laser induced temperature gradient, time dependent thermophoretic signal is measured (blue and red lines). 
Kd curve fittings of initial fluorescence and thermophoretic data are included. 
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Figure 61: MST fluorescence (670 nm) profiles for fragments (A) 8C8 and (B) 24H2 binding to P37 (100 nM). A 
5 mM-75 nM fragment concentration range was measured at 2 % DMSO. On introduction of an IR-laser 
induced temperature gradient, time dependent thermophoretic signal is measured (blue and red lines). Kd 

curve fittings of initial fluorescence data are included. 
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On initial testing, 18H9 showed insignificant binding to labelled P37. However, after incubation 

overnight at 4 °C the fragment demonstrated a good fit to the binding curve, affording a Kd of 

approximately 1 mM (Figure 60A). Kd values calculated by fitting both the fluorescent and 

thermophoresis data were in agreement. It was hypothesised that the observed time dependence 

was the result of a slow irreversible binding event. This hypothesis was confirmed by mass 

spectroscopy, which revealed a mass change of +68 Da following overnight incubation of WT P37 

with 18H9 (Figure 62). This mass change can be attributed to the addition of an imidazole ring, 

through the reaction of the catalytic cysteine with the sulphanyl imidazole containing fragment.  

 

Figure 62: Postulated mechanism for slow irreversible binding of fragment 18H9 to P37. For MS spectra 
please refer to Appendix Figure 1. 

26E11 had an observed Kd of approx. 4.3 mM, averaged from both the fluorescent and the 

thermophoresis data, with no time dependence observed (Figure 60B). 24H2 and 8C8 had very large 

Kd values, calculated from initial fluorescence, of approximately 30 mM and 45 mM respectively 

which were not time dependent (Figure 61). As these values were much greater than the 5 mM 

maximum concentration used for MST dilution series, the Kd values were estimated by fixing the 

upper intensity limit to 1800: the maximal fluorescence reached by 18H8, which reached saturation. 

Due to available ligand stock concentrations and protein aggregation at higher percentage DMSO, 

higher concentration reading were not attempted, but could be attempted as future work with new 

ligand stocks of higher concentration. 

The Kd values recorded by MST are in agreement with the qualitative trend observed in the initial 

DSF screen. Together, this suggests that although measurements recorded using labelled P37 are not 

optimal, they do still provide insight into fragment binding with P37. Although large, the measured 

Kd values of 18H9 and 26E11 lie within an accessible region for fragment discovery303 and should be 

characterised further.  
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4.6 X-ray crystallography 

Fragments 18H9 and 26E11 were taken forward by Katrin Rittinger for X-ray crystallography, and co-

crystallisation experiments attempted with P37. The ability of P37 to withstand DMSO was tested 

and found to be sufficient to conduct such trials, with structural integrity maintained in the presence 

of up to 10 % DMSO. However crystals with fragments bound were not observed. P37 has a very 

fragile crystal structure due to the presence of flexible loops, which is supported by a helical base 

platform.298 It was suggested that a binding fragment would improve the structure’s stability and 

thus the sturdiness of the crystal structure: P37 crystallises more robustly when in complex with Ub. 

Therefore co-crystallisation experiments were also attempted with this structure. However, no 

fragment binding was observed. 

It is difficult to draw conclusions from this result. It is possible that the fragments do not bind, or do 

not bind tightly enough, under these conditions. If 18H9 binds to the catalytic cysteine as postulated, 

however, is it possibly that it is excluded by the presence of active site binding Ub.  

4.7 Conclusions  

The work in this Chapter focuses on a fragment based drug discovery strategy against the RBR E3 

ligase HOIP. A library of 2320 fragments was screened against P37, the minimal catalytic core of 

HOIP. P37 alone displayed a high thermal stability. The hit rate was acceptable when a stringent 4 

s.d. threshold was implemented. Hits that satisfied these requirements were further grouped by 

structural similarity, leading to eight representative compounds and four further analogues being 

taken forward for validation. On investigating the effect of fragment concentration on ΔTm, several 

fragment behaviours were observed. WaterLOGSY NMR spectroscopy was used as an alternative 

technique to validate fragment hits; however, most of the hit compounds did not induce a shift, or 

led to inconclusive findings. There are several possible explanations for this observation: i) the hits 

are false positives; ii) the interactions are too weak to detect; iii) the protein is not suitable for 

analysis by waterLOGSY. Further characterisation of a selection of fragment hits by MTS revealed at 

least two low mM potency hits, one of which (18H9) was a covalent binder. It is possible that this 

interaction is occurring with the active site cysteine.  

It is generally agreed that high resolution structural data is essential to enable characterisation of 

fragment binding modes and thus the rational development of fragments into lead compounds. To 

date, however, attempts to crystallise P37 with fragments 18H8 and 26E11 have been unfruitful. 
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Targeting the catalytic core represents one strategy of RBR ligase inhibition. However, the 

mechanism of these ligases is reliant on the formation of other transient complexes, which could 

also be targeted. In Chapter 5, model systems to study these alternative mechanisms of RBR 

inhibition are discussed.  
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Chapter 5 Crystallographic models to facilitate the 
structural study of E3 ligases. 

Structural understanding of enzymatic reactions underpins our ability, and ultimately influences our 

strategy, to disrupt protein function. Protein complexes formed during enzymatic events are often 

difficult to study due to their transient nature. The development of more stable model systems 

which mimic such complexes is one method of furthering our understanding. This Chapter reports 

the development of a covalent Ub-E2-E3 ligase complex through the use of a tri-maleimide trap. 

Trap design and synthesis, optimisation of Ub mono-incorporation strategies, and efforts towards 

trapping the Ub-Ubch7-HHARI complex are described.  
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5.1 Introduction 

5.1.1 Structural study of transient complexes 

X-ray crystallography is a key structural tool used to study the interaction of proteins and the 

mechanism of enzymatic reactions.304 Thereby it enables the identification of targetable pockets and 

grooves which are related to an enzyme’s function. Further downstream, as attempted in Chapter 4, 

it allows characterisation of the binding mode of interacting compounds and facilitates structure 

driven optimisation of drug design.297, 305 As Ub transfer events frequently involve transient complex 

formation it can be difficult to gain an understanding of the interactions that are occurring. 

Consequently, various strategies have been adopted to gain structural insights into these events.  

One such method is to stabilise the transient intermediates involved in a complex. Plechanovova et 

al. studied the complex formed during Ub transfer from E2 to E3 by mutating the E2 catalytic Cys to 

a Lys residue, thereby converting the E2-Ub from a transient thioester to a more stable amide 

intermediate.37 This method introduced only a small perturbation from the native complex, and 

enabled the visualisation of E2 to E3 Ub transfer, through an E2 ‘priming’ mechanism for the first 

time. An alternative method of gaining insight into transient complexes is to covalently trap all 

interacting constituents. Although clearly a perturbation on the native complex, such models can 

provide novel insights into weakly explored interactions. Kamadurai et al. have previously reported 

the covalent trapping of the WW3 domain of the E3 HECT ligase Rsp5, with a peptidyl substrate 

mimic during Ub transfer.46 As HECT ligases employ catalytic Cys residues to transfer Ub, it was 

possible to trap these nucleophiles using an electrophilic maleimide group. The use of a substrate 

fragment, and further removal of any non-catalytic cysteine by mutation, further simplified the 

model. None the less, new information could be drawn from such a model, and provided that the 

enzyme employs a catalytic Cys, the same methodology can in principle be applied to other enzyme 

families. 

5.1.2 Studying RBR ligase complexes 

As previously mentioned in Chapter 1, RBRs consist of two RING regions, RING1 and RING2, 

separated by a IBR region (Figure 63A).52 The RBR family includes ligases of clinical interest such as 

parkin, whose dysfunction is linked to the early onset of Parkinson’s disease306, and the 

aforementioned HOIP. The X-ray crystallographic studies conducted on HOIP by Stieglitz et al. 

identified a targetable pocket during transfer of Ub onto substrate (in the case of HOIP, an acceptor 

Ub), and thus supported its suitability for the fragment-based screen described in Chapter 4. 
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However, this only represents one possible point of disruption of RBR ligase function (Figure 63D). 

An alternative point to disrupt is the initial transfer of Ub onto the RING2 catalytic cysteine (Figure 

63C). Though E2-Ub-RING1 docking has been previously reported for an RBR (Figure 63B), the 

complex formed during Ub transfer to RING2 (Figure 63C) is extremely transient and as such is 

poorly studied to date.307 The development of a model system to provide structural insights into this 

latter complex would benefit two-fold: i) in aiding the mechanistic understanding of RBR ligase 

function and ii) in determining the tractability of this complex for future small molecule screens and 

ultimately drug design. Accordingly, a model system was developed as detailed below in 

collaboration with Katrin Rittinger (Crick Institute, Mill Hill). 

 

Figure 63: The RBR ligase mechanism and candidate points of disruption. (A) RBRs consist of three major 
protein domains: RING1 (R1), RING2 (R2) and IBR. (B) Incoming Ub-E2 conjugate binds to R1. (C) 
Intermediary Ub transfer onto the catalytic cysteine of R2. (D) Subsequent ligation of Ub onto substrate. 
Theoretically, structural understanding of complexes B, C or D could be used to rationalise drug discovery 
approaches. 

5.1.2.1 HHARI 

HHARI is an RBR ligase. It interacts with the E2 Ubch7 to form a stable complex and is known to 

facilitate ubiquitination (and hence regulation) of translation initiation factor EIF4E2, suggesting that 

it may play a role in protein translation.308 Although both the Apo and E2-Ring1 bound structures of 

HHARI have been solved, to date the conformational changes that occur during Ub transfer from 

UbcH7 to HHARI-RING2, prior to transfer to substrate, remain unknown.307  
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Due to its relevance as an RBR ligase, and availability in Katrin Rittinger’s laboratory, HHARI was 

chosen to test our capability to covalently trap an RBR-E2-Ub complex (Figure 63C). The following 

sections describe the development of a covalent trap to conduct these structural studies and its 

subsequent optimisation and evaluation. 

5.2 Trap development 

5.2.1 Trap design 

Due to its literature precedent for cysteine trapping, maleimide chemistry was chosen as a starting 

point for trap design.46 Two alternative approaches were postulated: Mono- and Dual-maleimide 

trapping (Figure 64).  

Complex isolation through a mono-trapping approach (Figure 64A), whereby each ligase is trapped 

on a separate maleimide, provides flexibility to enable sufficient movement of the complex 

components to adopt native conformations within the trapped complex. Alternatively a dual-

trapping strategy (Figure 64B) allows covalent attachment of both ligases to the same moiety 

through the use of bromo-maleimides. Although dual trapping is potentially a powerful strategy, the 

retention of the double bond makes reversibility of trap binding possible. The trap design also 

provides minimal flexibility for ligase binders. On this basis it was decided that a mono-trapping 

approach would initially be employed. A three carbon linker was chosen, as this was deemed 

sufficiently flexible and was commercially available. 

In order to simplify the enzyme trapping from a 4- to a 3-component reaction, it was decided that Ub 

should be preloaded onto the trap before introduction of any additional enzymes. Furthermore, it 

was hypothesised that pre-loading Ub, which is recognised by both E2 and E3 ligases, may assist 

subsequent enzyme binding in an orientation relevant to their function. 

Classically, C-terminal modification of Ub is achieved by nucleophilic addition to Ub-thioester 

intermediates prepared through an intein-based chemical ligation method (introduced in Section 

1.2.5.2).178 This method is, however, associated with poor yields; negating its use was thus beneficial 

when considering trap design. Sortase tagging offered a potential method of Ub-trap ligation.309 This 

method, however, requires the presence of a C-terminal LPXTG motif as a sortase recognition 

sequence, thereby adding a further four amino acids to the active site region of the trapped 

complex. It was decided that this level of modification would bring undesirable complexity to a 

model whose ultimate purpose is for structure elucidation. Ultimately it was decided that it was 
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easier to incorporate Ub into the trap using a C-terminal cysteine containing mutant (UbG76C). As 

with the ligases, this nucleophilic Ub mutant could be added to a maleimide moiety, leading to the 

design of a symmetrical tri-maleimide trap, Trap C (Figure 64C). It was postulated that mono-Ub 

addition could be achieved through controlled stoichiometric addition of Ub to the trap, prior to 

incubation with ligase enzymes.  

 

Figure 64: Postulated trap designs. (A) Di-maleimide trap, using a mono-trapping approach. (B) Bromo-
maleimide trap, using a dual trapping approach. (C) Tri-maleimide trap, using a mono-trapping approach. 
Trap C was chosen for this study. 

5.2.2 Trap synthesis 

The synthetic route of Trap C is outlined in Figure 65. Following a literature reported method, 

intermediate 29 was formed in 68 % yield by the addition of ethyl chloroformate to maleimide (28) 

at 5 °C in the presence of N-methylmorpholine.310 Subsequently Trap C was assembled in 44 % yield 

by the addition of 3 equivalents of 29 to tris(3-aminopropyl)amine in the presence of NaHCO3. 

Sufficient purity for use in biochemical assays was achieved by silica chromatography.  
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Figure 65. Tri-maleimide trap synthetic development: i) ethyl chloroformate, NMM, EtOAc, RT, 1 h, 68 %; ii) 
tris(3-aminopropyl)amine, NaHCO3, THF/H2O, 0 °C, 4 h, 44 %. 

5.3 Towards a trapped Ub-Ubch7-HHARI complex 

5.3.1 Mono-Ub trap formation 

With Trap C in hand, the feasibility of mono-protein addition to a tri-functional trap was determined 

with the help of Dr Nick Brown at the Crick Institute (Mill Hill). Initially UbG76C was added to Trap C 

in tris-HCl buffer (pH 8.5) and incubated in varying ratios for 10 minutes at room temperature before 

quenching by adding DTT and subsequent separation by SDS-PAGE (Figure 66A). UbG76C is clearly 

highly reactive with the trap with mono- (Ub-T), di- (Ub2-T) and tri- (Ub3-T) Ub trap complexes 

observed under these conditions, including with the highest molar excess of trap. The band pattern 

observed remained the same under both reducing and non-reducing SDS-PAGE running conditions 

(data not shown), indicating that the observed bands are due to covalent interaction with the trap.  

Changing the order of addition of reagents, such that Trap C was added to UbG76C, somewhat 

reduced the formation of (Ub3-T) (Figure 66B). It is hypothesised that this order of addition results in 

a high initial local concentration of trap relative to UbcG76C, which would favour lower order 

addition of UbG76C. Running the reaction in MBS buffer at a reduced pH of 6.5 further decreased 

the addition of multiple Ub species (Figure 66C). This improvement is most likely the result of 

reduced cross-reactivity of amine containing amino acids such as Lys at reduced pH due to 

protonation. Optimal conditions for mono-addition were ultimately achieved by performing the 

reaction on ice for 3 minutes with 500 fold trap excess (Figure 66D). The effect of reaction dilution 

was also examined, but was found to be less influential on the reaction than temperature (data not 

shown). Once generated, mono Ub-trap was successfully separated from excess Trap C by gel 

filtration. 
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Figure 66: Optimisation of mono-Ub trap formation. UBG76C (8.5 kDa) and Trap C were incubated at 
indicated molar ratios, quenched with DTT, separated by SDS-PAGE and analysed by Coomassie staining. (A) 
pH 8.5, Ub-to-trap addition, RT, 10 min. (B) pH 8.5, trap-to Ub addition, RT, 10 min. (C) pH 6.5 , trap-to Ub 
addition, RT, 10 min. (D) pH 6.5, trap-to Ub addition, 0 °C, 3 min. 

5.3.2 Trapping a minimal E3 domain 

Having optimised Ub-T formation, ligase additions were attempted. Initially, addition of the isolated 

RING2 domain of HHARI (R2), with its E2 partner Ubch7, was attempted. R2 was chosen, as it only 

possesses one cysteine residue, providing a simpler model to determine the feasibility of ligase 

trapping. A pre-mixed solution of Ubch7 and R2 was added to filtered Ub-T on ice for 3 minutes 

before quenching by adding DTT and subsequent separation by SDS-PAGE (Figure 67). Additions of 

different ratios of Ubch7 and R2 were attempted. Separate control samples for excess Ubch7 and R2 

with Ub-T were included to aid identification of bands. 
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Figure 67: Preliminary Ub-T trap investigations with UbcH7 and R2. UBG76C and Trap C were incubated in a 
1:500 molar ratio on ice for 3 min and filtered (7 kDa MWCO) before incubation with UbcH7 (E2) and R2 at 
indicated molar ratios. Samples were quenched with DTT, separated by SDS-PAGE and analysed by 
Coomassie staining. E2 (17.9 kDa) and R2 (7.3 kDa) control samples are included.  

It was observed that, unlike UbG76C, neither Ubch7 nor R2 are particularly reactive with Ub-T when 

incubated in isolation. Some Ub-T-Ubch7 and Ub-T-(Ubch7)2 formation is observed, but most of the 

E2 enzyme remains unreacted. Similarly, a low level of Ub-T-R2 formation is observed. On 

co-incubation, a band shift in the region of 25 kDa is observed. A complex of this mass could 

correspond to Ub-T-R2 (23 kDa), however, strikingly Ub-T levels remain unchanged. This band 

therefore does not seem to correspond to the formation of an Ub-T-ligase complex. Neither is it 

likely to be a direct E2-R2 heterodimer (~25 kDa), as this was not observed in a further control gel 

under either reducing or non-reducing conditions (Appendix Figure 2). An increased molar ratio of 

R2 led to a more intense Ub-T-R2 band, whilst a decreased molar ratio of Ubch7 led to a modest 

decrease in the intensity of the ‘product’ band. This finding suggests that the 25 kDa could simply be 

a gel running effect on UbcH7. Although all incubations were repeated in various ratios and orders of 

enzyme addition, the observed band pattern did not change; this is not surprising, considering the 

previously observed low reactivity of the proteins with the trap, and further suggests that the newly 

observed is Ub-T independent. In any case, this model appears insufficient due to a weak reactivity 

of both ligase components with Ub-T. 

5.3.3 Trapping a larger HHARI fragment 

As R2 was found to be poorly reactive with Ub-T, an alternative HHARI fragment, HH (HH94-397 

(W379A)), was tested in combination with UbcH7 to scope the feasibility of ligase trapping. As HH 

and UbcH7 were known to form a stable complex in solution measurable by both Octet and ITC (Nick 

Brown, Crick Institute, direct communication), it was hypothesised that co-incubation would also 
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circumvent issues due to the low activity of UbcH7 in isolation with Ub-T. A pre-mixed 1:1 solution of 

Ubch7 and HH were added to Ub-T on ice for 3 minutes before quenching with DTT and separation 

by SDS-PAGE (Figure 68A). Separate control samples for excess Ubch7 and HH with Ub-T were 

included to aid identification of bands. 

 

Figure 68. Preliminary trap investigations with UbcH7 and HH. (A) UBG76C and Trap C were incubated in a 
1:500 molar ratio on ice for 3 min and filtered (7 kDa MWCO) before incubation with UbcH7 (E2) and HH at 
indicated molar ratios. Samples were quenched with DTT, separated by SDS-PAGE and analysed by 
Coomassie staining. E2 and HH (35.6 kDa) control samples are included. (B) Postulated structures attributed 
to bands in indicated higher MW regions. 

Encouragingly, in isolation HH proved to be much more reactive than R2 towards Ub-T; minimal Ub-T 

remains and both Ub-T-HH and Ub-T-(HH)2 formation is observed. Additionally, higher mass 

complexes were observed. It is hypothesised that these correspond to cross reactivity of HH, which 

possesses three non-catalytic cysteine residues (Figure 68B). After co-incubation, minimal HH 

remains and a new band that corresponds to the formation of a putative Ub-T-Ubch7-HH complex 

(63 kDa) appears. Some Ub-T-HH, minimal UbT-HH2 and excess UbcH7 also remain. The persistence 

of isolated UbcH7 in the presence of Ub-T-HH indicates that not all HH and UbcH7 form a stable 

complex. It is postulated that the higher mass bands correspond to species resulting from cross 

reactivity of non-catalytic cysteines. These bands persist under reducing and non-reducing 

conditions (data not shown). In conclusion, although the purity of product formation needs to be 

addressed, maleimide traps are a viable method of isolating a RBR-E2-Ub transient complex. 
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5.4 Conclusions / future work 

A tri-maleimide trap was successfully synthesised using standard synthetic methods. Reaction 

conditions were optimised to enable selective formation and purification of a mono-ubiquitinated 

trap (Ub-T). Primary tests which employed the minimal E3 domain, R2, and UbcH7 indicated that the 

reaction efficiency with Ub-T is low in the case of both proteins. A larger fragment of HHARI, HH, did 

prove to be more reactive towards Ub-T in isolation and when added in conjunction with UbcH7. 

Although a putative band that proves the formation of Ub-T-UbcH7-HH was observed under these 

conditions, additional higher mass bands could be detected. One explanation for these bands is the 

cross-reactivity of additional cysteine residues present in Ubch7 and HH leading to multi-trap 

species. 

Though these findings provide a promising start, the model complex needs to be formed exclusively 

so that it can be purified with adequate purity for crystallisation purposes. In order to achieve this 

objective the following issues need to be addressed:  

i) Additional reaction products need to be minimised. The use of cysteine free HH and UbcH7 mutant 

should significantly decrease the amount of side products. A cysteine free UbcH7 mutant has been 

successfully developed by Katrin Rittinger’s group; however, the preparation of a full mutant of HH 

has been proved troublesome to date. Alternatively, trap chemistry could be adjusted to provide 

increased control for sequential addition of complex components. The use of clickable entities could 

be a viable route to allow the controlled addition of maleimide groups to the trap before each 

protein addition, as postulated in Figure 69. An alkyne containing maleimide trap (30) has been 

previously reported in the literature, and could be used in an analogous fashion to Trap C to trap Ub 

and a ligase.46 Subsequent CuAAC ligation to an azide containing maleimide (31), would result in the 

introduction of the final maleimide group thereby enabling the controlled addition of another ligase.  

ii) Amount of remaining substrate needs to be minimised. Residual substrate should be reduced by 

ensuring that the UBCH7-HH complex is formed quantitatively. As HH and UbcH7 are known to form 

a stable complex in solution, this should reduce the reaction to secondary order. An excess of Ub-T 

could be also be used with respect to the incoming enzyme complex as this presents a large mass 

difference (~55 kDa) which can be separated during purification. However, this is only applicable if 

cysteine free mutants become available. 
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Figure 69: Postulated application of clickable maleimide trap entities, to enable controlled addition of 
ligases. 

As soon as these purity issues are addressed, the complex can be isolated for the first time followed 

by first crystallisation attempts. 
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Chapter 6 Conclusions and future work 

The main aim of this PhD project was to develop chemical tools to assist the study of ubiquitination 

machinery. This Chapter highlights the key outcomes of this work and discusses the broader 

implications for our understanding of ubiquitination machinery and their study. Future directions are 

also proposed. 

6.1 ABPs to study ubiquitination machinery 

6.1.1 Conclusions 

ABPs derived from both peptide and small molecule based inhibitors were designed and successfully 

synthesised (Chapter 2 and Chapter 3).  

Peptide derived ABPs showed initial promise as pan Ub machinery probes in HeLa cell lysate. Both 

Pg-12mer-VME and Pg-12-mer-VS were promiscuous labellers, with little difference observed 

between the different electrophilic traps tested. Pg-12mer-VME was much more reactive than its 

Ub-derived ABP analogue, and was capable of labelling a number of E3 ligases in MCF7 cell lysate. 

However, on quantitative proteomic analysis of Pg-12mer-VME, few Ub enzymes were identified as 

competitive targets of this ABP. Following the development of a DDR model in MCF7 cells, 

application of Pg-12mer-VME in this model was inconclusive; though some variation in labelling was 

observed, none of the targets had been previously identified as competitive probe targets.  

Although initial application of peptide derived probes in-cell revealed that the probes were cell 

permeable and that the observed labelling could be out competed by parent inhibitor, on proteomic 

analysis no ubiquitination machinery was observed. Further in-cell fluorescent studies with TAMRA- 

labelled analogues suggest that the 12-mer peptide sequence broadly localises across the cell, whilst 

alternative peptide sequences, such as 15-mer, localise to distinct regions. Though the addition of 

NLS or cell penetrating peptide sequences could provide tailored ABP cellular localisation, such 

additions proved detrimental to probe labelling capability as observed by in-gel fluorescence. 

Small molecule derived ABPs were based on two different inhibitors: PYR-41 and Tz9. Like the 

peptide derived probes, PYR-41-P was a promiscuous labeller which showed initial promise as a pan 

Ub machinery probe in HeLa cell lysate. However, its cellular applications as an Ub probe again 
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proved difficult: although some Ub machinery was labelled in MCF7 cells, none were identified as 

competitive targets on quantitative proteomic analysis of this ABP.  

T2 was determined to be the strongest labelling Tz9 probe analogue, and was taken forward to 

further study. However, although on reaction with cysteine residues T2 is expected to form thioester 

bonds, relative probe labelling observed by SDS-PAGE was not affected by reducing conditions, 

suggesting that T2 is mainly not labelling via cysteine residues. LC-MS/MS analysis of T2 labelling in 

cell lysate was not determined, but some Ub machinery was identified on its application in-cell. 

However unlike the other ABPs evaluated, the reported target of Tz9; RAD6B, was not identified by 

T2. Quantitative proteomic analysis was compounded by the lack of competitive labelling observed 

in the presence of Tz9, or alternative inhibitor analogue T2c. Further comparison to alternative 

electrophilic probes studied by members of the Tate group allowed the identification of generic 

targets of electrophilic probes. In this way the differing electrophilic profiles of PYR-41-P and T2 

were evaluated. 

Literature reported Ub-derived probes enable the robust identification of multiple DUBs in cell 

lysates. Alternative Ub-derived ABPs, such as the Ub-E2 conjugate ABP probes reported by Pao et al. 

have recently been shown to effectively label RBR ligases in lysate models.184 Collectively, our work 

has demonstrated probe labelling beyond the DUBs and RBR ligases currently assessable with these 

probes. However, all the probes studied are promiscuous, and have proven difficult to evaluate 

robustly due to a lack of significant competition observed for this ubiquitination machinery against 

the parent inhibitors. The observed discrepancy between in lysate and in cell labelling has further 

implications for the in-lysate study of ubiquitination enzymes; it would be interesting to see what 

the labelling capability of Ub-derived probes is in cell. In addition, it is clear that the general activity 

of electrophilic species in cell needs to be taken into consideration when designing ABP competition 

experiments. This follows from the observed quenching of PYR-41-P cellular labelling when treated 

in DMEM, and the postulated shielding of probe activity following NEM incubation.  

Taken together, our findings suggest that promiscuous probes may not be generally suited for this 

type of study, but that the pursuit of cellular ABPs for ubiquitination machinery remains relevant, 

due to the disparate labelling observed in cell and in lysate. Generic electrophilic probes, such as IA-

alkyne193, 194, do not strongly enrich for Ub machinery, and the promiscuous ABPs reported in this 

study do not offer much improvement on this for cellular quantitative proteomic studies. Indeed, 

the Ub machinery identified by T2 and PYR-41-P were frequently labelled by other electrophilic Tate 
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group probes. Therefore, the design of more selective probes, which retain their activity in cell 

would be more beneficial.  

6.1.2 Future work 

6.1.2.1 General considerations 

 Explore alternative inhibitor scaffolds, which may lead to selective, cell permeable Ub-ABPs. 

Several alternative literature inhibitors exist, which offer alternate (reported) reactivity and 

selectivity. In particular, the small molecule Heclin could be pursued.227 Hectlin was reported 

to broadly inhibit HECT E3 ligases in cells. As His-tagged HECT ligases were expressed in 

HEK293 for this study, however, the additional targets of Heclin are unknown. Bay 11-7821 

could also be pursued.214 In vitro studies with recombinant ubiquitination enzymes revealed 

that this small molecule inhibits 24 E2 ligases. If this inhibition translates into cells, Bay 11-

7821 may provide a starting point for an E2 ABP probe. Without comprehensive target 

identification, however, the promiscuous nature of such probes remains elusive. 

 Increase confidence in identified ABP targets. This can be achieved through the application 

of a trypsin-cleavable capture reagent, which enables both the detection of modified 

peptides, and the identification of the modified amino acid residues. In this way, labelling of 

catalytic Cys can be determined. This will be particularly useful for the analysis of T2 

labelling, which appears to significantly label non-Cys residues. Additional validation of ABP 

targets identified by LC-MS/MS can be undertaken by western blot analysis. 

 Attempt alternative, ‘label-free’ methods of probing inhibitor scaffolds. As competition 

against the parent inhibitor was not always possible or significant, CETSA could be employed 

as an alternative method of probing the targets Tz9 and PYR-41.  

 Explore the networks generated from the competitive targets of each probe in further detail. 

This analysis could lead to testing the probes in alternative cell lines of interest, or in 

alternative biological models. 

 Complementary to ABP profiling, Ub profiling using a K-ε-GG antibody enrichment strategy 

would enable the identification of the downstream effects of the parent inhibitors, which 

could be linked back to ubiquitination machinery, and further validated by western blot 

analysis.  
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6.1.2.2 Probe-specific considerations 

 Although the impact of additional NLS or cell penetrating peptide sequences on probe 

labelling in cell was studied and found to negatively impact on probe labelling, their cellular 

localisation could still be elucidated. If these peptides provide an interesting profile, the 

efficiency of CuAAC for these probes could be analysed by MS, and if necessary alternative 

bioorthogonal labelling strategies attempted. 

 Although no ubiquitination machinery was identified by Pg-12-mer-VME in cell, this could be 

further confirmed by maximising the coverage of the LC-MS/MS analysis. This could be 

achieved by cellular fractionation into cytosolic, nuclear and membrane components 

following probe treatment, and separate LC-MS/MS analysis of these fractions. Additional 

fractionation of these samples into multiple LC-MS/MS runs would increase the coverage of 

low abundance hits.  

 Alternative, less promiscuous peptide probes could be designed. This could be achieved with 

an alternative peptide sequence. For example, labelling by the 15-mer peptide sequence, or 

longer peptides could be explored by LC-MS/MS. Alternatively, peptide scaffolds, which 

mimic the 3D architecture of Ub around the flexible C-terminal tail and therefore should be 

more selective to ubiquitination machinery, could be designed. However, cell permeability 

should remain a consideration. In addition, the use of alternative electrophilic traps could be 

explored. It is postulated that reducing trap reactivity would lead to less promiscuous 

probes; however this presents a difficult balancing act, between reduced promiscuity and 

retained reactivity with E2 and E3 ligase enzymes.  

 Explore the NEM inductive effects observed for PYR-41-P by in-gel fluorescence by LC-

MS/MS analysis. In addition, explore the NEM competitive probe targets for T2. 
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6.2 FBDD and structural models for RBR E3 ligases 

6.2.1 Conclusions 

A commercial library of fragments was screened by DSF against P37, the minimal catalytic core of 

the RBR ligase HOIP (Chapter 4). Several hit fragments were identified in this primary screen, 

displaying linear, saturated, or inverted concentration dependences. A series of hits were subjected 

to validation by waterLOGSY NMR spectroscopy, and further characterisation by MST. In this way, 

two low mM confirmed hits: 26E11 and 18H9 were identified for further study, with 18H9 

determined to be a covalent binder. X-ray crystallography of fragment bound P37 was attempted, 

however, crystallisation attempts have proved unfruitful to date, preventing the further 

development of these fragments. Although the structural characterisation of these fragments 

remains to be seen, these fragments remain putative starting points for HOIP inhibitor design, and 

could be applied in the further development of selective HOIP, or pan RBR probe design. 

Though this work has successfully identified two fragments which bind to P37, it has also highlighted 

some issues with the FBDD methodology employed. Although the primary hit rate following the DSF 

screen was reasonable for a fragment screen, the majority of tested hits were not confirmed by 

waterLOGSY NMR. However, subsequent characterisation of one such fragment, 26E11, by MST 

revealed a mM range hit fragment. This suggests that other hits should not be unduly discarded 

before further testing by alternative validation methods. 

In addition, a tri-maleimide trap was designed and synthesised to enable the covalent trapping, and 

ultimately structural analysis, of transient RBR E3 ligase complexes. Structural insight into such 

complexes furthers our mechanistic understanding and enables the ‘druggability’ of these complexes 

to be evaluated. Conditions to enable mono-ubiquitination of the trap were optimised, and the 

putative formation of a trapped Ub-E2-E3 complex observed. This work represents the starting point 

for further development of an Ub-E2-E3 complex structural model. The high reactivity of maleimide 

was tempered by lowering pH conditions to favour Cys additions. However, cleanly forming 

complexes with proteins processing multiple Cys residues proved problematic and limited the 

tractability of this approach for crystallographic studies.  

Since starting this work, The E2-R2-Ub complex of HOIP has been solved by Lechtenberg et al.47 the 

authors utilised a Cys to Lys mutation to provide a stable E2-Ub conjugate which then crystallised 

with HOIP in the present of further free ubiquitin. This presents the first structural information for 
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an active RBR-E2-Ub complex. Once optimised, crystallisation of our model complex will provide 

further, complementary information for the study of RBR ligase catalysis. 

6.2.2 Future work 

6.2.2.1 FBDD 

 Validate fragments using alternative methods, such as STD NMR spectroscopy, to increase 

the confidence of hit fragments.  

 Further characterise fragments by ITC, which does not require a labelled protein analogue, 

to complement the current characterisation data collected by MST. In addition, conducting 

the linear ubiquitination assay employed by Katrin Rittinger’s laboratory in the presence and 

absence of fragment, will determine the biochemical effect of the fragment hits on P37 

activity. 

 Optimise crystallisation conditions for P37 to enable the structural characterisation of hit 

fragments. Alternatively, if the 15N 2D NMR of P37 is assigned, binding sites could be 

determined by protein detected NMR. 

 Test the hit fragments on alternative RBR ligases, to determine their selectivity, and 

potential scope for the development of an RBR selective probe compounds from these 

fragments. 

 Elucidate the binding site of fragment 18H9 with P37, by MALDI MS analysis of tryptic 

peptides. If truly catalytic cysteine binding, the application of fragment 18H9 as an 

alternative E3 ligase reactive electrophilic trap could be explored. The kinetics of 18H9 are 

slow however; this would require further study and optimisation, and the selectivity of the 

interaction remains to be seen.  

6.2.2.2 Structural models 

 Conditions to enable the exclusive formation of the desired Ub-E2-E3 complex, with minimal 

by-products and residual starting materials require further optimisation. An alternative 

approach would be the controlled, step-wise addition of each ligase. Both of these 

approaches as discussed fully in Chapter 5. 
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Chapter 7 Materials and Methods 

7.1 Chemical synthesis 

7.1.1 General methods 

All solvents and reagents were purchased from Sigma-Aldrich, Alfa Aesar, or VWR unless otherwise 

stated, and used without further purification. Moisture sensitive reactions were performed in oven 

dried flasks, under a nitrogen or argon atmosphere. Anhydrous solvents were dispensed using Pure 

SolvTM solvent drying towers (Innovative Technology Inc.) Brine refers to a saturated solution of 

sodium chloride. 

Analytical thin layer chromatography was carried out using Merck Si60, F254 chromatography sheets. 

Spots were visualised by UV light or through use of an appropriate stain (iodine, ninhydrin, or 

potassium permanganate). Flash column chromatography was carried out manually on Merck 60 Å 

silica gel, eluting with solvents as supplied under a positive air pressure, or run on a Biotage Isolera™ 

One flash purification system using a wet-loading Biotage SNAP cartridge. 

High resolution Mass spectra were acquired by the Imperial Mass Spectrometry service with m/z 

values reported in Daltons. Analytical and preparative LC-MS experiments were performed using a 

Waters HPLC system, consisting of a 2767 autosampler, 515 pump, 2998 photodiode array detector, 

and a 3100 electrospray ionisation (ESI) mass spectrometer. The system was equipped with Waters X 

Select C18 columns, running linear gradients of MeOH / H2O (0.1 % formic acid). Flow rates of 1.2 

mL/min and 20 mL/min were used in analytical and preparative mode respectively. Water was 

removed using a Christ alpha 2-4 LD lyophiliser. 

1H and 13C NMR spectra were recorded on a Bruker Av-400 (400 Hz) or Av-500 (500 Hz) instrument at 

room temperature (RT) using deuterated solvents as a reference for internal deuterium lock. 

Chemical shift data is given as δC/H in units of parts per million (ppm) relative to tetramethylsilane 

(TMS), where δ (TMS) = 0.00 ppm. The multiplicity if each signal is indicated by: s = singlet; bs= broad 

singlet; d = doublet; t = triplet; q = quartet; m= multiplet. Coupling constants (J), calculated using 

MestReNova© NMR software, are quoted in Hz and recorded to the nearest 0.1 Hz. Spectra are 

included in the Appendices for reference.   

Microwave reactions were undertaken in a Biotage Initiator. 
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7.1.2 Tert-butyl[(2E)-3-(methylsulfonyl)prop-2-en-1-yl]carbamate (2)  

 

The following procedure was adapted from a previously reported method.177 To a suspension of 

anhydrous K2CO3 (285 mg, 2.06 mmol, 1.5 eq) in anhydrous THF (10 mL), diethyl [(methylsulfonyl) 

methyl]phosphonate (475 mg, 2.06 mmol, 1.5 eq) was added. The mixture was stirred for 1 hr at RT 

before a solution of N-Boc-2-aminoacetaldehyde (219 mg, 3.13 mmol, 1.0 eq) in anhydrous THF (2 

mL) was added. The reaction was stirred overnight at RT, then quenched with H2O (10 mL). THF was 

removed in vacuo and the crude material extracted with DCM (15 mL). The organic layer was 

washed with 2 % HCl (15 mL), 10 % NaHCO3 (15 mL), dried over MgSO4 and concentrated in vacuo. 

Subsequent purification by silica gel chromatography (hexane.: EtOAc, 1:1) afforded 2 (170 mg, 53 

%) as a pale yellow oil: Rf 0.2 (hexane / EtOAc, 1:1); 1H NMR (400 MHz, CDCl3) δH 6.94 (dt, J = 15.1, 

4.3 Hz, 1H, C5H), 6.53 (dt, J = 15.1, 2.0 Hz, 1H, C6H), 4.91 – 4.86 (bs, 1H, NH), 4.08-3.85 (m, 2H, C4H), 

2.97 (s, 3H, C7H), 1.48 (s, 9H, C1H); 13C NMR (101 MHz, CDCl3) δC 155.5 (C3), 145.2 (C5), 129.6 (C6), 

80.3 (C2), 42.9 (C7), 40.7 (C4), 28.3 (C1); LC-MS m/z (ES+) 258 [M+Na]+, 80 %; 234 ([M-H]-, 100 %). 

7.1.3 (2E)-3-(methylsulfonyl)prop-2-en-1-amine trifluoroacetate (VS)  

 

This compound was prepared following a previously reported method.177 To a reaction flask charged 

with 2 (23.5 mg, 0.10 mmol 1.0 eq) a 33 % solution of TFA in DCM (4 mL) was added. The reaction 

was stirred for 1 hr at RT and then concentrated in vacuo. The crude residue was resuspended and 

co-evaporated with anhydrous toluene (3 × 4 mL) to afford VS (28.5 mg, quant.) as a pale yellow oil. 

The product was reacted immediately without further purification 1H NMR (400 MHz, MeOD) δH 7.05 

– 6.82 (m, 2H , C2H / C3H), 3.84 (dd, J = 5.2, 1.2 Hz, 2H, C1H), 3.02 (s, 3H, C4H); 13C NMR (101 MHz, 

MeOD) δC 137.3 (C2), 133.8 (C3), 41.1 (C4), 38.7 (C1); LC-MS m/z (ES+) 136 ([M+H]+, 100 %); HRMS 

found 153.0692 [M+NH4]+, expected 153.0698. 
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7.1.4 tert-butoxy[(2E)-4-methoxy-4-oxobut-2-en-1-yl]oxoammonium (3)  

 

The following procedure was adapted from a previously reported method.177 To a suspension of 

anhydrous K2CO3 (651 mg, 4.71 mmol,1.5 eq) in anhydrous THF (10 mL), methyl 

diethylphosphonoacetate (863 µL, 4.71 mmol, 1.5 eq) was added. The mixture was stirred for 1 hr at 

RT before a solution of N-Boc-2-aminoacetaldehyde (500 mg, 3.13 mmol, 1.0 eq) in anhydrous THF 

(5 mL) was added dropwise. The reaction was stirred overnight at RT, then quenched with H2O (10 

mL). THF was removed in vacuo and the crude material was extracted with DCM (15 mL). The 

organic layer was washed with 2 % HCl (15 mL), 10 % NaHCO3 (15 mL), dried over MgSO4 and 

concentrated in vacuo. Subsequent purification by silica gel chromatography (hexane : EtOAc, 4:1) 

afforded 3 (453 mg, 66.5 %) as a colourless oil: Rf 0.4 (hexane / EtOAc 3:1); 1H NMR (400 MHz, CDCl3) 

δH 6.94 (dt, J = 15.7, 4.8 Hz, 1H, C5H), 5.97 (dt, J = 15.7, 1.9 Hz, 1H, C6H), 4.74 (s, 1H, NH), 4.04 – 3.87 

(m, 2H, C4H2), 3.76 (s, 3H, C8H3), 1.47 (s, 9H, C1H3);13C NMR (101 MHz, CDCl3) δC 166.6 (C7), 154.1 (C3), 

145.1 (C5), 120.9 (C6), 80.0 (C2), 51.7 (C8), 41.3 (C4), 28.4 (C1); LC-MS m/z (ES+) 238 [M+Na], 80 %, 216 

([M+H]+, 50 %). 

7.1.5 (2E)-4-methoxy-4-oxobut-2-en-1-aminium tosylate (VME)  

 

This compound was prepared following a previously reported method.178 p-Toluenesulfonic acid was 

dehydrated following a literature procedure.311 A solution of tert-butoxy[(2E)-4-methoxy-4-oxobut-

2-en-1-yl]oxoammonium 3 (21.5 mg, 0.1 mmol, 1.0 eq) and anhydrous p-toluenesulfonic acid (19.0 

mg, 0.10 mmol, 1.0 eq) in anhydrous Et2O (2 mL) was stirred overnight at RT. Concentration in vacuo 

afforded VME (28.4 mg, quant.) as a colourless oil. The product was reacted immediately without 

further purification; 1H NMR (400 MHz, MeOD) δH 7.75 – 7.66 (m, 4H, TsOH), 7.24 (d, J = 8.0 Hz, 4H, 

TsOH), 6.97 – 6.86 (m, 1H, C2H), 6.16 (dt, J = 15.9, 1.7 Hz, 1H, C3H), 3.80-4.74 (m, 5H C5H3 / C1H2), 

2.37 (s, 6H, TsOH); 13C NMR (101 MHz, MeOD) δC 167.1 (C4), 143.4(TsOH), 141.8 (C2), 139.8 (TsOH), 

129.8 (TsOH), 126.9 (TsOH), 125.9 (C3) 52.4 (C5), 40.9 (C1), 21.3 (TsOH); LC-MS m/z (ES+) 116 [M+H]+, 

100 %); HRMS found 116.0704 [M+H]+, expected 116.0712. 
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7.1.6 Ethyl 4-hydrazinylbenzoate hydrochloride (7)  

 

This compound was prepared following a previously reported method. 268 To a suspension of 4-

hydrazinobenzoic acid (1.00 g, 6.57 mmol, 1.0 eq) in absolute ethanol (30 mL) thionyl chloride (884 

mg, 539 μL, 7.43 mmol, 1.1 eq) was added dropwise at 0 °C. The mixture was allowed to warm to RT, 

before being refluxed for 16 hr. The reaction was then cooled and diluted with Et2O (30 mL). The 

resulting precipitate was isolated by suction filtration, washed with Et2O and dried in vacuo to afford 

7 (1.04 g, 73 %) as a lustrous colourless solid: Rf 0.4 (hexane / EtOAc 3:1); 1H NMR (400 MHz, MeOD) 

δH 8.03 – 7.90 (d, J = 8.8 Hz, 2H, C5H), 7.05 – 6.88 (d, J = 8.8 Hz, 2H, C6H), 4.30 (q, J = 7.1 Hz, 2H, C2H2), 

1.33 (t, J = 7.1 Hz, 3H, C1H3); 13C NMR (101 MHz, MeOD) δC 167.6 (C3), 150.5 (C7), 132.2 (C5), 

125.1(C4), 114.2 (C6), 62.0 (C2), 14.6 (C1); LC-MS m/z (ES+) 181 ([M+H]+, 75 %). 

7.1.7 Ethyl 4-(3,5-dioxopyrazolidin-1-yl)benzoate (5)  

 

The following procedure was adapted from a previously reported method.269 7 (1.00 g, 4.63 mmol, 

1.0 eq) was stirred for 15 min at RT in a solution of 10 % Na2CO3 (10 mL) and DCM (20 mL). The 

organic layer was separated and the aqueous layer extracted with DCM (3 × 15 mL). The combined 

organic layers were dried over MgSO4, filtered and concentrated in vacuo. The resulting residue was 

dissolved in anhydrous DCM (10 mL) and DMAP (1.02 g, 8.96 mmol, 2.0 eq) was added. Malonyl 

chloride (436 µL, 4.48 mmol, 1.0 eq) was added in one portion and the reaction stirred for 1h at RT 

before being quenched with saturated NH4Cl solution (10 mL). The aqueous layer was extracted with 

DCM (3 × 10 mL), the combined organic fraction was washed with 1 M HCl (3 × 40 mL) and then 

dried over MgSO4, filtered and concentrated in vacuo to afford 5 (1.07 g, 94 %) as a yellow solid: Rf 

0.1 (EtOAc/AcOH, 99:1); 1H NMR (400 MHz, DMSO-d6) δH 8.05 – 6.75 (m, 4H, C5H / C6H), 4.31 (q, J = 

7.3 Hz, 2H, C2H2), 3.69 (s, 1H, C9H), 1.33 (t, J = 7.3 Hz, 3H, C1H3); 13C NMR (101 MHz, CDCl3) δc 165.8 
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(C3), 130.8 (C5), 130.1, 127.1, 117.6 (C6), 112.9, 106.4, 61.2 (C2), 60.7, 39.9 (C9), 37.8, 14.3 (C1); m/z 

(ES-TOF) 247 ([M-H]-, 100 %), 495 ([2M-H]-, 100 %), 249 ([M+H]+,60 %). 

7.1.8 4-{(4E)-4-[(5-nitrofuran-2-yl)methylidene]Ethyl4-(3,5-dioxopyrazolidin-1-
ylbenzoate (PYR-41)  

 

The following procedure was adapted from a previously reported method.267 A solution of 5 (20.0 

mg, 0.08 mmol, 1.0 eq) and 5-nitro-2-furaldehyde (17.0 mg, 0.08 mmol, 1.0 eq) in MeOH (1 mL) was 

refluxed under microwave conditions for 20 min, after which formation of a dark red precipitate was 

observed. The precipitate was collected by centrifugation (3000 g), washed with Et2O (2 × 2 mL), 

DCM (2 × 2 mL) and dried in vacuo to afford PYR-41 (27.0 mg, 91 %) as a dark red solid: 1H NMR (400 

MHz, DMSO-d6) δH 8.43 (d, J = 4.1 Hz, 0.5H, C11H), 8.25 (bs, 0.5H, C11H), 8.05-7.78 (m, 5H, C5H, C6H, 

C13H / C14H), 7.54 (d, J = 10.5 Hz, 1H, C13H / C14H), 4.25 (q, J = 7.1 Hz, 2H, C2H2), 1.27 (t, J = 7.1 Hz, 3H, 

C1H3); 13C NMR (101 MHz, DMSO-d6) δC 172.1, 165.6 (C3), 154.1 (C8/C10), 153.6 (C8/C10), 150.6, 130.8 

(C5/C13/ C14), 130.7 (C5/C13/ C14), 125.3 (C11), 122.2, 117.7 (C13/C14), 115.0 (C6), 61.1 (C2), 14.7 (C1); LC-

MS m/z (ES-) 370 ([M-H]-, 100 %); HRMS m/z (ES-ToF) found 370.0681 [M-H]-, expected 370.0675. 

7.1.9 4-(3,5-dioxopyrazolidin-1-yl)benzoic acid (9)  

 

5 (0.08 g, 0.32 mmol, 1.0 eq) was stirred in a solution of 1 M NaOH (2 mL) and MeOH (1 mL) for 1 hr 

at RT. MeOH was removed under reduced pressure and the remaining aqueous solution adjusted to 

pH 3 using 1 M HCl. The mixture was extracted with EtOAc (3 × 5 mL), dried over MgSO4, filtered, 

and concentrated in vacuo to afford 9 (61.5 mg, 86 %) as a pale yellow solid: 1H NMR (400 MHz, 

Acetone-d6) δH 8.06 (d, J = 8.9 Hz, 2H, C3H), 7.86 (d, J = 8.9 Hz, 2H, C4H), 3.58 (s, 2H, C7H2); 13C NMR 
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(101 MHz, DMSO-d6) δC 167.8(C1), 167.2 (C6/ C8), 131.3, 130.8 (C3), 117.6 (C4), 111.3, 38.3 (C7); LC-MS 

m/z (ES+) 221 ([M+H]+, 80 %); HRMS m/z (ES-ToF) found 221.0562 [M+H]+, expected 221.0562.  

7.1.10 4-(3,5-dioxopyrazolidin-1-yl)-N-(prop-2-yn-1-yl)benzamide (4) 

 

To a solution of 9 (0.20 g, 0.90 mmol, 1.0 eq) in anhydrous DMF (1 mL) EDCI hydrochloride (0.192 g, 

1.00 mmol, 1.1 eq) and DIPEA (175 µL, 1.00 mmol, 1.1 eq) were added. The solution was stirred for 

10 min at RT before propargyl amine (0.064 g, 1.00 mmol, 1.1 eq) was added. The reaction was 

stirred for 16 hr at RT, before the DMF was removed at 60 °C using a Genevac®. The resulting crude 

residue was dissolved in 28 % MeOH/H2O and purified by preparative LC-MS (5-98 % MeOH/H2O (0.1 

% formic acid)) to afford 4 (21.2 mg, 9.1 %) as a colourless solid: Rf 0.2 (MeOH/DCM 1:9); 1H NMR 

(400 MHz, DMSO-d6) δH 9.03 – 8.80 (m, 1H, NH), 8.11 – 7.63 (m, 4H, C6H / C7H), 4.06 (dd, J = 5.5, 2.8 

Hz, 2H, C3H), 3.66 (s, 2H, C10H), 3.14 (t, J = 2.8 Hz, 1H, C1H); 13C NMR (101 MHz, DMSO-d6) δC 165.6 

(C4), 129.5, 128.7 (C6),118.3, 117.8 (C7), 104.1, 81.8 (C2), 73.4 (C1), 38.3 (C10), 28.9 (C3); LC-MS m/z 

(ES+) 258 ([M+H]+, 70 %), 256 ([M-H]-, 70 %); HRMS m/z (ES-ToF) found 258.0887 [M+H]+, expected 

258.0879. 

7.1.11 4-{(4E)-4-[(5-nitrofuran-2-yl)methylidene]-3,5-dioxopyrazolidin-1-yl}-N-(prop-2-
yn-1-yl)benzamide (PYR-41-P) 

 

A solution of 4 (5.3 mg, 0.021 mmol, 1.0 eq) and 5-nitro-2-furaldehyde (3 mg, 0.021 mmol, 1.0 eq) in 

MeOH (1 mL) was refluxed under microwave conditions for 20 min, on which formation of a deep 

purple precipitate was observed. The precipitate was collected by centrifugation (3000 g), washed 

with Et2O (2 × 2 mL), DCM (2 × 2 mL) and dried in vacuo to afford PYR-41-P (5.5 mg, 69 %) as a deep 
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purple solid: 1H NMR (400 MHz, DMSO-d6) δH 8.95 (t, J = 5.6 Hz, 1H, NH), 8.50 (d, J = 4.1 Hz, 1H, 

C12H), 8.19 – 7.45 (m, 6H, C6H/ C7H / C14H/ C15H), 4.05 (dd, J = 5.6, 2.5 Hz, 2H, C3H), 3.14 (t, J = 2.5 Hz, 

1H, C1H); 13C NMR (101 MHz, DMSO-d6) δC 196.5, 165.1, 153.1, 150.2, 146.4, 128.4 (C6 / C15), 128.3 (C6 

/ C15), 124.8 (C12), 121.9, 117.8, 117.3, 114.6 (C14), 113.1 (C7), 81.4 (C2), 73.0(C1), 28.5 (C3); LC-MS m/z 

(ES+) 381 ([M+H]+, 80 %); HRMS m/z (ES-ToF) found 379.0671 [M-H]-, expected 379.0679. 

7.1.12 N-(4-methylphenyl)imidodicarbonimidic diamide (11)  

 

This compound was prepared following a previously reported method.211 A mixture of 4-

methylaniline (457 mg, 4.27 mmol, 1.0 eq) and dicyandiamide (359 mg, 4.27 mmol, 1.0 eq) was 

dissolved in aqueous HCl (3 M, 1.4 mL) and heated at 90 °C overnight. The reaction was allowed to 

cool, and the resulting solid isolated by suction filtration. The solid was washed with THF (5 mL), 

hexane (5 mL) and acetone (5 mL) before being dried in vacuo to afford 11 (752 mg, 92 %) as a 

colourless HCl salt: 1H NMR (400 MHz, DMSO-d6) δH 9.54 (s, 1H, NH), 7.22 (m, 6H, C3H, 4 × NH), 7.10 

(m, 2H, C4H), 7.01 (s, 2H, NH), 2.25 (s, 3H, C1H3).; 13C NMR (101 MHz, DMSO-d6) δC 161.42 (C6/C7), 

155.99 (C6/C7), 136.42 (C2/C5), 132.94 (C2/C5), 129.52 (C4), 121.62 (C3),20.89 (C1); LC-MS m/z (ES+) 192 

([M+H]+, 100 %).  

7.1.13 {4-amino-6-[(4-methylphenyl)amino]-1,3,5-triazin-2-yl}methanol (10)  

 

This compound was prepared following a previously reported method.211 A fresh solution of 37 % 

NaOMe in MeOH was prepared directly before use by dissolving sodium (160 mg) in anhydrous 

MeOH (1 mL) under an Ar filled condenser. To a solution of 11 (500 mg, 2.20 mmol, 1.0 eq) in 

anhydrous MeOH (2.5 mL), NaOMe (350 µL, 37 % w/v in MeOH, 2.29 mmol, 1.04 eq) was added. The 

reaction was further diluted with MeOH (20 mL) and stirred for 3 hours at RT. Ethyl glycolate (252 
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µL, 2.65 mmol, 1.2 eq) was then added dropwise and the reaction was refluxed overnight. After 

cooling, the crude product was concentrated in vacuo and subsequent purification by silica gel 

chromatography (hexane: EtOAc, 2:8) afforded 10 (90 mg, 39 %) as a colourless solid: Rf 0.3 (hexane 

/ EtOAc, 2:8); 1H NMR (400 MHz, MeOD) δH 7.67 – 7.51 (m, 2H, C3H), 7.26 – 7.11 (m, 2H, C4H), 4.37 

(s, 2H, C9H2), 2.32 (s, 3H, C1H3); 13C NMR (101 MHz, MeOD) δC 176.6 (C6/ C7/ C8), 166.8 (C6/ C7/ C8), 

164.2 (C6/ C7/ C8), 136.3 (C2 /C5), 132.5 (C2 /C5), 128.7 (C4), 120.7 (C3), 63.2(C9), 19.5 (C1); LC-MS m/z 

(ES+) 232 ([M+H]+, 100 %). 

7.1.14 {4-amino-6-[(4-methylphenyl)amino]-1,3,5-triazin-2-yl}methyl 4-nitrobenzoate 
(Tz9)  

 

This compound was prepared following a previously reported method.211 To a solution of 10 (13 mg, 

0.056 mmol, 1.0 eq) and triethylamine (17 µL, 0.124 mmol, 2.2 eq) in anhydrous DCM (5 ml), 4-

nitrobenzoyl chloride (10.4 mg, 0.056 mmol, 1 eq) was added and the reaction was refluxed 

overnight. On cooling, the crude mixture was washed with brine (2 × 5 mL), dried over NaSO4, 

filtered, and concentrated in vacuo. Subsequent purification by silica gel chromatography (hexane: 

EtOAc, 1:1) afforded Tz9 (15 mg, 70 %) as a colourless solid: Rf 0.3 (hexane / EtOAc, 1:1);1H NMR 

(400 MHz, DMSO-d6) δH 9.40 (s, 1H, NH), 8.47 – 8.37 (m, 2H, C13H), 8.34 – 8.20 (m, 2H, C12H), 7.70-

7.30 (m, 2H, C3H), 7.25- 6.55 (m, 4H, C4H / NH2), 5.14 (s, 2H, C9H2), 2.16 (s, 3H, C1H3); 13C NMR (101 

MHz, DMSO-d6) δC 172.5 (C6/ C7/ C8/ C10), 167.0 (C6/ C7/ C8/ C10), 164.5 (C6/ C7/ C8/ C10), 164.4 (C6/ C7/ 

C8/ C10), 150.8, 137.4 (C2/ C5), 135.4 (C2/ C5), 131.4 (C12), 129.1 (C4), 124.4 (C13), 120.6 (C3), 66.0 (C9), 

20. 8 (C1) ; LC-MS m/z (ES+) 381 ([M+H]+, 100 %).HRMS m/z (ES+) found 381.1310 [M+H]+, expected 

381.1311. 
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7.1.15 N-(4-iodophenyl)imidodicarbonimidic diamide (20) 

 

A mixture of 4-iodoaniline (935 mg, 4.27 mmol, 1.0 eq) and dicyandiamide (359 mg, 4.27 mmol, 1.0 

eq) was dissolved in aqueous HCl (3 M, 1.4 mL) and heated at 90 °C overnight. The reaction was 

allowed to cool, and the resulting precipitate isolated by suction filtration. The solid was washed 

with THF (5 mL), hexane (5 mL) and acetone (5 mL) before being dried in vacuo to afford 20 (816 mg, 

63 %) as a pale purple HCl salt: 1H NMR (400 MHz, DMSO-d6) δH 9.92 (s, 1H, NH), 7.66 – 7.57 (m, 2H, 

C3), 7.40 (s, 4H, NH), 7.26 – 7.17 (m, 2H, C2), 7.10 (s, 2H, NH); 13C NMR (101 MHz, DMSO-d6) δC 161.8 

(C5 / C6), 155.2 (C5 / C6), 139.2 (C4), 137.7 (C2), 123.2 (C3), 87.2 (C1); LC-MS m/z (ES+) 304 ([M+H]+, 100 

%).HRMS m/z (ES+) found 304.0063 [M+H]+, expected 304.0069. 

7.1.16 {4-amino-6-[(4-iodophenyl)amino]-1,3,5-triazin-2-yl}methanol (21) 

 

A fresh solution of 37 % NaOMe in MeOH was prepared directly before use by dissolving sodium 

(160 mg) in anhydrous MeOH (1 mL) under an Ar filled condenser. To a solution of 20 (200 mg, 0.66 

mmol, 1.0 eq) in anhydrous MeOH (20 mL), NaOMe (100 µL, 37 % w/v in MeOH, 0.69 mmol, 1.04 eq) 

was added. The reaction was further diluted with MeOH (20 mL) and stirred for 3 hours at RT. Ethyl 

glycolate (150 µL, 0.79 mmol, 2.4 eq) was then added dropwise and the reaction was refluxed 

overnight. The resulting precipitate was washed by trituration in cold methanol (2 × 5 mL) and dried 

in vacuo to afford 21 (180 mg, 80 %) as a colourless solid: Rf 0.7 (MeOH / H2O, 1:1);1H NMR (400 

MHz, DMSO-d6) δH 9.65 (s, 1H,NH), 7.70 – 7.50 (m, 4H, C1, C2), 7.12 (bs, 2H, NH2), 4.21 (s, 2H, C3H2); 

LC-MS m/z (ES+) 344 ([M+H]+, 100 %).  
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7.1.17 {4-amino-6-[(4-ethynylphenyl)amino]-1,3,5-triazin-2-yl}methanol (15) 

 

A 2 mL microwave vial was charged with 21 (50 mg, 0.14 mmol, 1 eq), bis(triphenylphosphine) 

palladium(II) dichloride (5 mg, 0.007 mmol, 0.05 eq) and copper iodide (1.3 mg, 0.007 mmol, 0.05 

eq) before being sealed, evacuated, and filled with Ar gas. The vial was evacuated and refilled with 

Ar a further 2 times before DMF was added (1.5 mL), followed by triethylamine (40 µL, 0.28 mmol, 2 

eq). The reaction was stirred for 5 min, before ethynyltrimethylsilane (25 µL, 0.18 mmol, 1.2 eq) was 

added and the reaction was heated at 100 °C overnight. Once cooled, the reaction was quenched 

with water (20 mL), and extracted with EtOAC (2 × 20 mL). The combined organic layers were filtered 

through Celite and concentrated in vacuo. The resulting crude material was re-suspended in a slurry 

of K2CO3 (20 mg, 0.14 mmol, 1 eq) in MeOH (5 mL) and stirred overnight at RT. Solvent removal in 

vacuo afforded 15 (26.2 mg, 63.7 %) as a colourless salt .This intermediate was carried through 

without further purification. Crude analysis: Rf 0.6 (100 % EtOAc); LC-MS m/z (ES+) 242 ([M+H]+), 100 

%). 

7.1.18 {4-amino-6-[(4-ethynylphenyl)amino]-1,3,5-triazin-2-yl}methyl 4-nitrobenzoate 
(T1) 

 

Crude intermediate 15 was dissolved in anhydrous THF (10 mL), with triethylamine (43 µL, 0.31 

mmol, 2.2 eq). 4-nitrobenyzoyl chloride (26 µL, 0.14 mmol, 1 eq) was added, and the reaction was 

refluxed overnight. THF was removed in vacuo and the crude mixture dissolved in DCM (10 mL), 
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washed with brine (2 × 10 mL), dried over Na2SO4, filtered, and concentrated in vacuo. Subsequent 

purification by silica gel chromatography (hexane: EtOAc, 1:1) afforded T1 (3.6 mg, 6.4 %) as a 

colourless solid: Rf 0.2 (hexane / EtOAc, 1:1); 1H NMR (500 MHz, DMSO-d6) δH 9.73 (s, 1H, NH), 8.43 – 

8.26 (m, 4H, C13H, C14H), 8.16 (dd, J = 8.4 Hz, 2H, impurity), 7.84 – 7.59 (m, 2H, C4H), 7.33-6.99 (m, 

4H, NH, C5H) 6.65 (s, 1H), 5.17 (s, 2H, C10H), 4.01 (s, 1H, C1H); 13C NMR (limited assignment from 

HSQC and HMBC, 126 MHz, DMSO-d6) δC 172.8, 164.6, 150.9, 149.3, 135.4, 131.8 (C5), 131.5, 130.9 

(C13 / C14), 130.2 (impurity), 123.8 (C13 / C14), 123.0 (impurity), 119.4 (C4), 79.4 (C1), 65.4 (C10); LC-MS 

m/z (ES+) 391 ([M+H]+, 100 %);HRMS m/z (ES-ToF) found 391.1167 [M+H]+, expected 391.1155. 

7.1.19 4-nitro-3-(prop-2-yn-1-yloxy)benzoic acid (12) 

 

The following procedure was adapted from a previously reported method.281 A mixture of propargyl 

alcohol (100 mg, 0.54 mmol, 1.0 eq) and NaHMDS (1.30 mL of a 1 M solution in THF, 1.30 mmol, 2.4 

eq) was stirred for 10 min at RT under N2. 3-fluoro-4-nitrobenzoic acid was suspended in anhydrous 

THF (0.50 mL), and added drop wise to the reaction flask. The reaction was stirred overnight at RT, 

after which time the solvent was removed in vacuo. The resulting pale yellow solid was washed with 

2 % HCl and dried under vacuum to afford 12 (52.8 mg, 44 %) as a pale yellow solid. The product was 

found to be pure by TLC analysis: Rf 0.6 (EtOAc, 1 % AcOH); 1H NMR (400 MHz, MeOD) δH 7.95 (d, J = 

1.5 Hz, 1H, C6H), 7.82 (d, J = 8.3 Hz, 1H, C4H), 7.70 (dd, J = 8.3, 1.5 Hz, 1H, C3H), 4.97 (d, J = 2.4 Hz, 2H, 

C8H2), 3.09 (t, J = 2.4 Hz, 1H, C10H); 13C NMR (101 MHz, MeOD) δC 167.2 (C1), 149.8 (C2 / C5 / C7), 142.8 

(C2 / C5 / C7), 137.0 (C2 / C5 / C7), 124.5 (C3), 122.0 (C6), 116.1 (C4), 77.1 (C10), 76. 9(C9), 56.8 (C8); LC-

MS m/z (ES+) 220 ([M+H]+, 100 %);HRMS m/z (ES-) Found: 220.0254, expected 220.0246. 
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7.1.20 {4-amino-6-[(4-methylphenyl)amino]-1,3,5-triazin-2-yl}methyl 4-nitro-3-(prop-2-
yn-1-yloxy)benzoate (T2) 

 

To a suspension of 12 (21.0 mg, 0.10 mmol, 1.1 eq) in anhydrous toluene (10 mL) under N2, thionyl 

chloride (50 µL, 0.73 mmol, 8.5 eq) was added. The reaction mixture was heated to 75 °C under N2 

for 2 hr, after which time the solvent was removed in vacuo. The crude material was then 

resuspended in anhydrous DCM (5 mL), 10 (20 mg 0.09 mmol, 1.1 eq) and triethylamine (24 µL, 0.17, 

2.0 eq) was added, and the reaction refluxed overnight, resulting in the formation of a precipitate. 

The solvent was removed in vacuo and the crude mixture was dissolved in EtOAC (10 mL) before 

being washed with 2 % HCl (2x 10 mL), brine (1 × 10 mL), dried over MgSO4, filtered, and 

concentrated in vacuo. Subsequent purification by silica gel chromatography (hexane: EtOAc, 1:1) 

afforded T2 (30.9 mg, 74.9 %) as an off white solid: Rf 0.2 (hexane / EtOAc, 1:1); 1H NMR (400 MHz, 

DMSO-d6) δH 9.39 (s, 1H, NH), 8.07 (d, J = 8.3 Hz, 1H, C13H), 7.96 (d, J = 1.6 Hz, 1H, C15H), 7.82 (dd, J = 

8.3, 1.6 Hz, 1H, C12H), 7.74-7.25 (m, 2H, C3H), 7.26-6.46 (m, 4H, C4H, NH), 5.38 – 4.96 (m, 4H, C9H2, 

C17H2), 3.71 (bs, 1H, C19H), 2.17 (bs, 3H, C1); 13C NMR (101 MHz, DMSO-d6) δC 172.0 (C10), 166.5 

(C6/C7/C8), 163.9 (C6/C7/C8), 153.4, 151.7, 149.3, 142.9, 136.9, 134.0, 131.1, 128.6, 125.2 (C15), 122.6 

(C12), 120.2 (C3 /C4), 116.2 (C13), 79.9 (C19), 77.7 (C9), 57.3 (C17), 20.3 (C1); LC-MS m/z (ES+) 435 

([M+H]+, 100 %); HRMS m/z (ES+) found 435.1413 [M+H]+ , expected 435.1417. 
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7.1.21 4-nitro-3-(prop-2-yn-1-ylamino)benzoic acid (13)  

 

The following procedure was adapted from a previously reported method.280 A solution of 3-fluoro-

4-nitro-benzoic acid (100 mg, 0.54 mmol, 1 eq) and propargylamine (2 mL of a 40 % aqueous 

solution, 13.5 mmol, 25 eq) was heated at 85 °C overnight. The reaction mixture was cooled to RT, 

acidified with aqueous 2 % HCl (dropwise) and extracted with EtOAc (3 × 10 mL). The combined 

organic fraction was washed with 2 % HCl (3 × 10 mL), dried over NaSO4, filtered, and concentrated 

in vacuo to afford 13 (86.2 mg, 72.6 %) as an orange solid. The product was found to be pure by TLC 

analysis: Rf 0.7 (EtOAc, 1 % AcOH);1H NMR (400 MHz, MeOD) δH 8.25 (d, J = 8.8 Hz, 1H, C4H), 7.81 (d, 

J = 1.7 Hz, 1H, C6H ), 7.35 (dd, J = 8.8, 1.7 Hz, 1H, C3H), 4.26 (d, J = 2.5 Hz, 2H, C8H2 ), 2.72 (t, J = 2.5 

Hz, 1H, C10H); 13C NMR (101 MHz, MeOD) δC 166.8 (C1), 143.6 (C2 / C5 / C7), 137.0 (C2 / C5 / C7), 134.5 

(C2 / C5 / C7), 126.3 (C3), 116.1 (C4 /C6 ), 115.8 (C4 /C6 ), 79.0 (C9), 71.8 (C10), 31.6 (C8); LC-MS m/z (ES+) 

221 ([M+H]+, 100 %); HRMS m/z found 221.0567 [M+H]+, expected 221.0557. 

7.1.22 {4-amino-6-[(4-methylphenyl)amino]-1,3,5-triazin-2-yl}methyl 4-nitro-3-(prop-2-
yn-1-ylamino)benzoate (T3) 

 

To a suspension of 13 (21.0 mg, 0.10 mmol, 1.1 eq) in anhydrous toluene (10 mL) under N2, thionyl 

chloride (50 µL, 0.73 mmol, 8.5 eq) was added. The reaction mixture was heated to 75 °C under N2 

for 2 hr, after which time the solvent was removed in vacuo. The crude material was then 
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resuspended in anhydrous DCM (5 mL), 10 (20 mg 0.09 mmol, 1.1 eq) and triethylamine (24 µL, 0.17, 

2 eq) was added, and the reaction refluxed overnight, resulting in the formation of a precipitate. The 

solvent was removed in vacuo and the crude mixture dissolved in EtOAc (10 mL) before being 

washed with 2 % HCl (2x 10 mL), brine (1 × 10 mL), dried over MgSO4, filtered, and concentrated in 

vacuo. Subsequent purification by silica gel chromatography (hexane: EtOAc, 1:1) afforded T3 (26.2 

mg, 63.7 %) as a yellow solid: Rf 0.3 (hexane / EtOAc, 1:1); 1H NMR (400 MHz, DMSO-d6) δH 9.40 (s, 

1H, NH), 8.39 (t, J = 6.1 Hz, 1H, NH), 8.24 (d, J = 8.8 Hz, 1H, C13H), 7.72 (d, J = 1.8 Hz, 1H, C15H), 7.67 – 

7.40 (m, 2H, C3H), 7.33 (dd, J = 8.8, 1.8 Hz, 1H, C12H ), 7.27-6.54 (m, 4H, C4H, NH), 5.11 (s, 2H, C9H2), 

4.25 (d (weak), J = 6.1, 2H, C17H2), 3.22 (s, 1H, C19H), 2.16 (s, 3H, C1H3); 13C NMR (101 MHz, DMSO-d6) 

δC 172.1 (C10), 166.5 (C6/C7/C8), 164.5(C6/C7/C8), 163.9 (C6/C7/C8), 143.5, 136.9, 135.7, 134.1, 130.9, 

128.6 (C3/C4/C13), 127.0 (C3/C4/C13), 120.2 (C3/C4), 116.4 (C12/C15), 115.8 (C12/C15), 80.1 (C18), 74.4 

(C19), 65.5 (C9), 31.9 (C17), 20.3 (C1); LC-MS m/z (ES+) 434 ([M+H]+, 100 %); HRMS m/z (ES+) found 

434.1595 [M+Na]+, expected 434.1577. 

 

7.1.23 4-nitro-3-(propan-1-yloxy)benzoic acid (23) 

 

The following procedure was adapted from a previously reported method.281 A mixture of propanol 

(50µL, 0.65 mmol, 1.2 eq) and NaHMDS (1.30 mL of a 1 M solution in THF, 1.30 mmol, 2.4 eq) was 

stirred for 10 min at RT under N2. 3-fluoro-4-nitrobenzoic acid (100 mg, 0.54 mmol, 1.0 eq) was 

suspended in anhydrous THF (0.50 mL), and added dropwise to the reaction flask. The reaction was 

stirred overnight at RT, after which time the solvent was removed in vacuo. The resulting pale yellow 

solid was washed with 2 % HCl and dried under vacuum to afford 23 (93.8 mg, 76 %) as a pale yellow 

solid. The product was found to be pure by TLC analysis: Rf 0.6 (EtOAc, 1 % AcOH); 1H NMR (400 

MHz, MeOD) δH 7.95 – 7.81 (m, 2H, C4H, C6H), 7.81 – 7.68 (m, 1H, C3H), 4.18 (t, J = 6.3 Hz, 2H, C8H), 

1.87 (sextet, J = 6.9 Hz, 2H, C9H), 1.09 (t, J = 7.4 Hz, 3H, C10H); 13C NMR (101 MHz, MeOD) δC 166.3 

(C1), 151.4, 142.8, 135.3, 124.5 (C3), 121.1 (C6), 115.2 (C4), 71.0 (C8), 22.0 (C9), 9.3(C10); LC-MS m/z 

(ES+) 224 ([M+H]+, 100 %); HRMS m/z (ES-) found 224.0551[M-H]-, expected 224.0559. 
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7.1.24 {4-amino-6-[(4-methylphenyl)amino]-1,3,5-triazin-2-yl}methyl 4-nitro-3-
(propan-1 yloxy)benzoate (T2c) 

 

To a suspension of 23 (22.0 mg, 0.10 mmol, 1.1 eq) in anhydrous toluene (10 mL) under N2, thionyl 

chloride (50 µL, 0.73 mmol, 8.5 eq) was added. The reaction mixture was heated to 75 °C under N2 

for 4 hr, after which time the solvent was removed in vacuo. The crude material was then 

resuspended in anhydrous DCM (5 mL), 10 (20 mg 0.09 mmol, 1.0eq) and triethylamine (24 µL, 0.17, 

2.0 eq) was added, and the reaction refluxed overnight. The mixture was diluted with EtOAC (5 mL) 

before being washed with 2 % HCl (2x 10 mL), brine (1 × 10 mL), dried over MgSO4, filtered, and 

concentrated in vacuo. Subsequent purification by silica gel chromatography (hexane: EtOAC, 1:1) 

afforded T2c (24.0 mg, 57.7 %) as a colourless solid: Rf 0.3 (hexane / EtOAC, 1:1); 1H NMR (400 MHz, 

DMSO-d6) δH 9.47 (s, 1H, NH), 8.04 (d, J = 8.3 Hz, 1H, C13H), 7.87 – 7.71 (m, 2H, C12H, C15H ), 7.74-6.54 

(m,6H, C3H, C4H, NH2), 5.15 (s, 2H, C9H2), 4.16 (m, 2 H, C17H2) 2.17 (s, 3H, C1H3), 1.73 (sextet, J = 6.9 

Hz, 2H, C18H2), 0.96 (t, J = 7.4 Hz, 3H, C19H3);13C NMR (101 MHz, DMSO-d6) δC 166.3 (C10), 164.5 

(C6/C7/C8), 164.2 (C6/C7/C8), 151.3, 143.1, 137.2, 134.6, 129.0, 125.5 (C12/C15), 122.0 (C12/C15), 120.8 

(C3/C4), 116.0 (C13), 71.5 (C17),65.5 (C9), 22.2 (C18), 20.8 (C1), 10.6 (C19); LC-MS m/z (ES+) 439 ([M+H]+, 

100 %); HRMS m/z (ES+) found 439.1746 [M+H]+, expected 439.1730. 
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7.1.25 Ethyl 2,5-dioxo-2,5-dihydro-1H-pyrrole-1-carboxylate (29)  

 

The following procedure was adapted from a previously reported method.310 A solution of 

maleimide (1.00 g, 10.40 mmol, 1.0 eq) in EtOAc (20 mL) was cooled to 5 °C. N-Methylmorpholine 

(1.26 mL, 11.44 mmol, 1.1 eq) was added, followed by dropwise addition of ethyl chloroformate (1 

mL, 10.40 mmol, 1.0 eq) in EtOAc (10 mL). The reaction was stirred at RT for 1 hr, before being 

diluted with EtOAc (50 mL), washed with brine (2x 50 mL), dried over MgSO4, filtered, and 

concentrated in vacuo. Subsequent purification by silica gel chromatography (hexane: EtOAc, 1:3) 

afforded 29 (1.19 g, 68 %) as a colourless solid: Rf 0.7 (hexane / EtOAc, 1:3); 1H NMR (400 MHz, 

CDCl3) δH 6.83 (s, 2H, C1H), 4.42 (q, J = 7.1 Hz, 2H, C4H2), 1.39 (t, J = 7.1 Hz, 3H, C5H3); 13C NMR (101 

MHz,CDCl3) δC 165.8 (C2), 147. 6 (C3), 135.2 (C1), 64.0 (C4), 14.1 (C5); m/z (ES+) 170 ([M+H]+, 50 %). 

7.1.26 Tris(3-maleimidopropyl)amine (Trap C) 

 

The following procedure was adapted from a previously reported method.310 Tris(3-aminopropyl) 

amine (120 µL, 0.59 mmol, 1.0 eq) in a saturated solution of NaHCO3 in THF/ H2O (1:1 v/v, 4 mL) was 

cooled to 0 °C. On addition of 29 (300 mg, 1.77 mmol, 3.0 eq) the reaction was diluted with further 

saturated solution of NaHCO3 in THF/ H2O (1:1 v/v, 17 mL) and stirred for 4 hr at 0 °C. The solution 

was extracted with EtOAc (3 × 80 mL), washed with brine (3 × 80 mL), dried over MgSO4, filtered, and 

concentrated in vacuo. Subsequent purification by silica gel chromatography (hexane: EtOAc, 1:3) 

afforded Trap C (112 mg, 44.4 %) as a colourless solid: Rf 0.5 (hexane / EtOAc, 1:3); 1H NMR (400 

MHz, CDCl3) δH 6.68 (s, 6H, C1H), 3.60 – 3.51 (m, 6H, C3H2), 2.39 (t, J = 7.3 Hz, 6H, C5H2), 1.68 (tt, J = 
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7.3, 6.3 Hz, 6H, C4H2); 13C NMR (101 MHz,CDCl3) δC 170.8(C2), 134.1 (C1), 51.1 (C5), 36.2(C3), 26.0 (C4); 

LC-MS m/z (ES+) 429 ([M+H]+, 100 %); HRMS m/z (ES+) found 429.1789 [M+H]+, expected 429.1774.  
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7.2 Peptide synthesis  

7.2.1 General SPPS procedures 

Resins, synthesis grade reagents, Fmoc protected amino acids, and pseudoproline building blocks 

were purchased from Novobiochem or Sigma-Aldrich and used without further purification. Resins 

were preloaded with Fmoc-Gly-OH and the loading estimated using standard procedures.312 Solid 

phase peptide synthesis was undertaken manually or was automated using an Invatis ResPep SL 

system. 

7.2.2 Fmoc Deprotection 

The resin was swelled in DMF for 10 min. After removal of DMF by filtration, the resin was treated 

with 20 % piperidine (v/v) in DMF (3 × 2 mL) for 5 min. After each treatment the resin was washed 

with DMF (3 × 2 mL), DCM (3 × 2 mL) and further DMF (3 × 2 mL). 

7.2.3 Peptide synthesis 

7.2.3.1 Manual coupling 

Fmoc deprotected resin (typically 20 µM) was swelled in DMF for 10 min. The amino acid (5.0 eq. for 

natural amino acids, 3.0 eq. for unnatural amino acids) was activated by shaking with coupling 

reagent (5.0 eq. HBTU for natural amino acids, 3.0 eq. HATU for unnatural amino acids) and DIPEA 

(10.0 eq. for natural amino acids, 6.0 eq. for unnatural amino acids) in DMF (1 mL) for 10 min. The 

activated reagent mixture was then added to the drained resin and shaken for 1 hour at RT. The 

mixture was then removed by filtration, and the resin washed with DMF (3 × 2 mL), DCM (3 × 2 mL) 

and further DMF (3 × 2 mL). All coupling reactions were performed twice. After the final coupling of 

a given peptide synthesis, the resin was washed with DMF (3 × 2 mL), DCM (3 × 2 mL), MeOH (3 × 2 

mL), and Et2O (3 × 2mL) before being dried overnight in vacuo. 

7.2.3.2 Automated coupling 

The resin (20 µmol per well) was swelled in DMF for 10 min prior to Fmoc deprotection (3 × 20 % 

piperidine (v/v) in DMF, 400 µL, 10 min) followed by washing with DMF. In a separate mixing tube, 

the incoming amino acid (5.0 eq. for natural amino acids, 3.0 eq. for unnatural amino acids, both as a 

0.5 M solution in NMP) was activated with coupling reagent (5.0 eq. HBTU for natural amino acids, 

3.0 eq. HATU for unnatural amino acids, both as a 0.5 M solution in DMF) and NMM (10 eq for 

natural amino acids, 6.0 eq. for unnatural amino acids). The activated reagent mixture was added to 

the swelled resin and left for 40 min. All couplings were performed in duplicate. The resin was then 
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washed with DCM (2 × 400 µL) and DMF (8 × 400 µL) before proceeding to the next Fmoc 

deprotection and coupling cycle. Once the final amino acid had been coupled, the resin was Fmoc 

deprotected and washed with DMF (3 × 2 mL), DCM (3 × 2 mL), MeOH (3x 2 mL), and Et2O (3 × 2 mL) 

before being dried overnight in vacuo. 

7.2.4 N-terminal manipulations 

7.2.4.1 Acetylation 

Fmoc deprotected resin (typically 20 µM) was swelled in DMF for 10 min and then treated with a 

mixture of 10 % Ac2O, 20 % DIPEA in DMF (1 mL) for 1h. The resin was then washed with DMF (3 × 2 

mL), DCM (3 × 2 mL), MeOH (3 × 2 mL), and Et2O (3 × 2 mL) before being dried overnight in vacuo. 

7.2.4.2 TAMRA labelling  

Fmoc Deprotected resin (typically 20 µM) was swelled in DMF for 10 min. 

5(6)-carboxytetramethylrhodamine (1.5 eq.) was activated by shaking with HATU (1.49 eq.) and 

DIPEA (3 eq.) in DMF (1 mL) for 10 min. The activated reagent mixture was added to the drained 

resin and shaken for 2 hour at RT. The mixture was then removed by filtration, and the resin washed 

with DMF (3 × 2 mL), DCM (3 × 2 mL) and further DMF (3 × 2 mL) before the coupling was repeated 

with addition of fresh activated reagent. The resin was washed with DMF (3 × 2 mL), DCM (3 × 2 mL), 

MeOH (3 × 2 mL), and Et2O (3 × 2 mL) before being dried overnight in vacuo. 

7.2.5 Resin displacement 

7.2.5.1 Cleavage with side chain deprotection 

A premixed deprotection cocktail (95 % TFA, 2.5 % TIS, 2.5 % H2O, 1.5 mL) was added to dried resin 

(20 µM) and shaken for 3 hr at RT. The solution was filtered and the resin was washed with 

additional deprotection cocktail (2 mL). The solution was concentrated under a flow of N2 before 

peptide precipitation on addition of ice cold tBME (10mL). The mixture was centrifuged (4000 g, 4 °C, 

10 min), filtered, and the pellet washed with further tBME (2 × 10 mL) before being dried overnight 

in vacuo prior to preparative LC-MS purification. 

7.2.5.2 Mild cleavage preserving side chain protecting groups 

This method is suitable for acid sensitive resins such as 2-chlorotrityl chloride. Dried resin was 

shaken with HFIP in DCM (20 % v/v, 1 mL) for 30 min. The solution was filtered and the resin washed 

with DCM (2 mL). The combined solution was concentrated in vacuo and the crude residue was 

stored at 4 °C. 



163 

7.2.6 In solution C-terminal electrophilic trap incorporation 

To the crude residue resulting from mild resin displacement (Section 7.2.5.2), PyBop (5 eq) and 

trimethylamine (10 eq) in DCM (4mL) were added. The reaction was stirred for 5 min before either 

VS or VME (5 eq) was added and the reaction stirred overnight. The solution was diluted with DCM 

(20 mL), washed with 1 M KHSO4 (2 × 20 mL) and dried in vacuo. Side chains were removed as 

described in Section 7.2.5.1 prior to preparative LC-MS purification. 

 

 

 



164 

7.2.7 Peptide Characterisation 

 

Peptide Sequence MW 
(g/mol) 

ES+ peaks (Da) Retention 
time 
(min) 

Accurate mass (Da) Scale 
and 
Yield  

Solvent 
stock 

Pg-12-mer-
VS  

Ac-Pg-STLHLVLRLRG-VS 1517.9 507 (+3), 760 (+2) 
 

10.3 F: +2 = 759.9238 (M = 1517.8476) 
E: M = 1517.8501 

40 µM, 
8.2 %  

H2O 

Pg-12-mer-
VME  

Ac-Pg- STLHLVLRLRG-VME 1497.9 501 (+3), 750 (+2) 
 

10.6 F: +2 = 749.9379 (M = 1497.8758) 
E: M = 1497.8779 

40 µM, 
16.6 %,  

H2O 

12-mer-VS  Ac-STLHLVLRLRG-VS 1422.8 476 (+3),713 (+2) 
 

1.1 (6.6) F: +2 = 712.4081 (M = 1422.8162) 
E: M = 1422.8130 

40 µM, 
2.8 % 

DMSO 

12-mer-VME  Ac-STLHLVLRLRG-VME 1402.8 469 (+3),703 (+2) 
 

0.7 (7.06) F: +2 = 702.4234 (M = 1402.8468) 
E: M = 1402.8408 

40 µM,  
13 % 

DMSO 

12-mer Ac-STLHLVLRLRGG 1362.8 456 (+3), 683 (+2) 
 

11.7 F: +2 = 682.4046 (M = 1362.8092) 
E: M = 1362.8096 

50 µM, 
8.8 % 

DMSO 

T-12-mer TAMRA- STLHLVLRLRGG 1732.9 435 (+4), 579 (+3) 
868 (+2) 

12.2/12.7 F: +2 = 867.4806 (M = 1732.9612) 
E: M = 1732.9413 

20 µM, 
20 % 

DMSO 

T-15-mer TAMRA-QKESTLHLVLRLRGG 2118.1 425 (+5), 531 (+4) 
708 (+3) 

11.6/11.9 F: +2 = 1060.0673 (M = 2118.1346) 
E: M = 2118.1375 

20 µM, 
30 % 

DMSO 

NLS  PKKKRKV-Pg-STLHLVLRLRG-VME 2320.5 465 (+5), 581 (+4) 
774 (+3) 

10.1 n.d 20 µM, 
 1.7 % 

H2O 

CCP1 [R-Ahx-R]3-Pg- STLHLVLRLRG-
VME 

2731.7 
 

456 (+6), 547 (+5) 
684 (+4) 

9.7 n.d 20 µM, 
4.2 % 

H2O 

CCP2 [R-Ahx-R]3-ILFQMKWHK- 
STLHLVLRLRG-VME 

3943.4 439 (+9), 494 (+8) 
564 (+7), 659 (+6) 

10.7 n.d 20 µM, 
2.3 % 

H2O 

Table 5: Summary of characterisation data obtained for peptide probes and inhibitors. For accurate mass, F = Found mass, E= expected mass. 
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7.3 Biochemical methods 

7.3.1 General methods 

Ultra pure water was obtained using a MilliQ® Millipore water purification system. SDS-PAGE was 

carried out on 12 % Bis-Tris unless otherwise stated, using NuPAGE® LDS sample loading buffer and 

Precision plus protein standard all blue marker (Bio-Rad). In-gel fluorescence was measured using 

either an ETTAN Dige or a Typhoon FLA 9500 Imager (both GE Healthcare). Chemiluminescence was 

recorded using a LAS-4000 imaging system (GE Healthcare). Absorbance was measured using a 

SpectraMax M2/M2e microplate reader (Molecular devices). Cell culture media and reagents were 

obtained from Sigma-Aldrich. AzTB was synthesised as previously reported.189 NEM (Sigma-Aldrich), 

IA (Sigma-Aldrich), DTT (AGTC Bioproducts), and Biotin-Ahx-Ub-VME (UbiQ) were purchased. 

Epirubicin was provided as a 3.4 nM stock in DMSO by Eric Lam.  

7.3.2 Cell culture 

HeLa and MCF7 cells were grown in DMEM supplemented with 10 % v/v FBS in a humidified 5 % CO2 

atmosphere at 37 °C. During normal passaging, cells were detached from the plate with 0.5 % 

trypsin. Cells were grown to 70-90 % confluence prior to treatment.  

7.3.3 Cell lysis 

The protein concentration of all lysates was determined using the BioRad Protein assay following the 

manufacturer’s instructions and using a BSA produced standard absorbance curve. 

7.3.3.1 Shear Lysis 

The culture media was aspirated and the cells washed twice with PBS. Lysis buffer (50 mM HEPES, 

pH 7.2, 10 mM NaCl, 5 mM MgCl2, 1 mM DTT, 1 × EDTA-free complete protease inhibitor (Roche 

Diagnostics), was added to the plate and the cells were scraped into an Eppendorf on ice and shear 

force lysed (25 G needle). The lysates were centrifuged (17 000 g, 20 min), their protein 

concentration determined, and stored at -80 °C until further use. 

7.3.3.2 SDS-free fractionation 

Buffers are as described in Table 6. The culture media was aspirated and the cells washed twice with 

PBS. Fresh PBS (1 mL) was then added and the cells scraped into an Eppendorf tube on ice. The cells 

were pelleted (1000 g, 5 min) and the supernatant discarded. The cells were then resuspended in 

buffer 1 (200 µL), followed by addition of buffer 2 (200 µL) and rotated at 4 °C for 15 min. The 
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samples were spun gently (720 g, 1 min) and the supernatant transferred to a clean eppendorf. The 

pellet was gently washed with 100 µL of buffer 3, spun (720 g, 1 min), and the supernatant 

transferred to the clean eppendorf. This is the cytoplasmic fraction. To the remaining pellet, buffer 4 

(500 µL) was added and the samples were rotated at 4 °C for 1 hr and then centrifuged (17000 g, 

10m min). The supernatant was retained as the nuclear extract. The protein concentration of each 

fraction was determined, and the samples stored at -80 °C until further use. 

Buffer 1 25 mM HEPES, 5 mM KCl, 0.5 mM MgCl2, 1 mM DTT, 1 × EDTA-free complete protease 
inhibitor  

Buffer 2 Buffer 1 plus 1 % NP-40 

Buffer 3 1:1 mixture of buffer 1 and 2 

Buffer 4 25 mM HEPES, 350 mM NaCl, 10 % sucrose, 1 mM DTT, 1 × EDTA-free complete 
protease inhibitor 

Table 6: Buffers used during SDS-free fractionation 

7.3.3.3 SDS-free whole cell lysis 

The culture media was aspirated and the cells washed twice with PBS. Lysis buffer (1 % Triton X-100, 

1 × EDTA-free complete protease inhibitor (Roche Diagnostic) in PBS), was added to the plate and 

the cells were scraped into an Eppendorf on ice and left for 20 min. The lysates were centrifuged (17 

000 g, 20 min), their protein concentration determined, and stored at -80 °C until further use. 

7.3.3.4 Whole cell lysis 

The following lysis protocol was used following in-cell labelling assays only. The culture media was 

aspirated and the cells washed twice with PBS. Lysis buffer (1 % Triton X-100, 0.1 % SDS, 1 × EDTA-

free complete protease inhibitor (Roche Diagnostis) in PBS), was added to the plate and the cells 

were scraped into an Eppendorf on ice and left for 20 min. The lysates were centrifuged (17 000 g, 

20 min), their protein concentration determined, and stored at -80 °C until further use. 

7.3.4 In-cell labelling assays  

Total DMSO was normalised for each experiment (≤ 2 %). For experiments with PYR-41-P, Cysteine-

free DMEM was employed for probe incubations. 

7.3.4.1 Probe labelling 

Probes were diluted in DMEM to a relevant concentration and incubated at 37 °C for 5 min. In some 

cases, cells were pre-incubated with NEM (200 µM) in DMEM for 20 min at 37 °C prior to addition of 

probe. The cell media was aspirated and replaced with the probe containing media (≤ 0.5 % DMSO 

final concentration) for a defined time period prior to cell lysis as described in Section 7.3.3.4. 
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7.3.4.2 Competition studies 

Inhibitors of interest were diluted in DMEM to a relevant concentration and incubated at 37 °C for 5 

min. The cell media was aspirated and replaced with inhibitor containing media (DMSO final 

concentration of 0.5 – 1 % for small molecule probes, 2 % for peptide studies due to poor solubility 

of competitors) and incubated at 37 °C for 30 min. After this time, the media was removed, probe 

was added to the media at a relevant concentration and media was gently pipetted back onto the 

plate. Plates were incubated at 37 °C for a further 30 min (1 hr for peptide studies) prior to cell lysis 

as described in Section 7.3.3.4. 

7.3.5 In-lysate labelling assays 

Lysate was generated using methods described in Section 1.3.3.1 and Section 1.3.3.2. For DDR 

studies, cells were treated with either 1 µM or 0.1 µM epirubicin in DMEM (0.2 % DMSO final 

concentration) for 6 and 24 hr prior to cell lysis. 

7.3.5.1 Probe labelling 

Typically, 40 μg of lysate was incubated with a relevant concentration of probe (< 2 % DMSO final 

concentration) in a total volume of 40 μL. In some cases, lysate was pre-incubated with 10 mM NEM 

for 20 min at RT prior to addition of probe. The mixtures were incubated at 37 °C for 1 hr. Protein 

was subsequently precipitated using either the ice cold MeOH or MeOH/CHCl3 method (Table 7), air-

dried, and resuspended in 2 % SDS in PBS (1 mg/mL) prior to CuAAC (see Section 7.3.6).  

7.3.5.2 Competition studies 

Typically, 40 μg of lysate was incubated with an inhibitor of interest at a relevant concentration in a 

total volume of 40 μL. The mixtures were incubated at 37 °C for 30 min, before a fixed concentration 

of probe was added (< 2 % DMSO final concentration) and the mixtures were incubated at 37 °C for a 

further 1 hr. Protein was subsequently precipitated using either the ice cold MeOH or MeOH/CHCl3 

method (Table 7), air-dried, and resuspended in 0.2 % SDS (1 mg/mL) in PBS prior to CuAAC (see 

Section 7.3.6). 

7.3.6 CuAAC and in-gel fluorescence 

Typically, 40 µg lysates were adjusted to 1 mg/mL in the presence of 0.2 % SDS. A premixed ‘click 

cocktail’ (100 μM AzTB, 1 mM CuSO4, 1 mM TCEP, 100 μM TBTA final concentrations) was added and 

the reactions were shaken vigorously at RT for 1 hr, before being quenched by 10 mM EDTA. The 

protein was precipitated either using the ice cold MeOH or MeOH/CHCl3 method (Table 7), Protein 
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was subsequently air-dried and resuspended in 36 μL of 2 % SDS in PBS. To a 10 µg portion (9 µL) 4 × 

working SDS sample loading buffer (for reducing gels, sample loading buffer contained 4 % β-

mercaptoethanol) was added (4 μL) and the mixtures were boiled at 96 °C for 6 min. Samples were 

resolved by SDS-PAGE and visualised by in-gel fluorescence. Gel loading was verified using 

Coomassie stain.  

Ice cold MeOH precipitation MeOH/ CHCl3 precipitation 

1. Add 10 × volume ice cold MeOH 

2. Store overnight at -80 C 
3. Pellet protein (17000 g, 20 min) 
4. Remove MeOH and Wash (10 × MeOH) 
5. Pellet (17000 g, 10 min) 
6. Remove MeOH and air-dry 

 

1. Add 2 × volume MeOH, vortex 
2. Add 0.5 × volume CHCl3, vortex 
3. Add 1 × volume H2O, vortex 
4. Spin sample (17000 g, 5 min) 
5. Remove aqueous laye 
6. Wash (10 xMeOH) 
7. Pellet (17000 g, 10 min) 
8. Wash (1 mL MeOH) and pellet (17000 g, 

10 min) 
9. Remove MeOH and air-dry 

 
Table 7: Protein precipitation protocols 

7.3.7 Western blot analysis 

Proteins were transferred onto PVDF membrane by wet transfer using Tris-glycine transfer buffer 

supplemented with 0,1 % SDS, 10 % MeOH, or an iBlot® Gel Transfer Device (ThermoFisher). 

Membranes were washed with TBS-T (1 × TBS, 0.1 % Tween-20) and blocked (5 % milk powder in 

TBS-T, 1h) before incubating with primary antibody diluted in 3 % milk in TBS-T (see Table 8 for 

antibody specific dilutions) either overnight (4 °C) or for 1 hr at RT. The membrane was then washed 

(3 × 5 min, TBS-T) and incubated with secondary antibody at the appropriate dilution in 3 % milk in 

TBS-T for 1 hr at RT. For NeutrAvidin-HRP blots, membranes were blocked with 3 % BSA and the 

protein-conjugate diluted in 0.3 % BSA. The membrane was washed (4 × 5 min, TBS-T) and 

developed with Luminata crescendo Western HRP substrate (Millipore). 

Antibody 
  

Supplier Cat.no Dilution Secondary  /clonal 

Anti-γ-H2A.X Cell signalling 97185 1:1000 rabbit mono 

Anti-Tubulin Santa Cruz sc-53646 1:200 Mouse mono 

Anti-mouse  Advansta R-05071-500 1:20,000 n/a - 

Anti-Rabbit Advansta R-05072-500 1:10,000 n/a - 

NeutrAvidin-HRP  
(Biotin binding protein conjugate) 

Invitrogen A2664 1:2000 n/a - 

Table 8: Antibodies and protein conjugates used in western blot studies. 
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7.3.8 Live cell imaging  

MCF7 cells were seeded in 12 well plates at ~50 % confluence for live cell imaging applications. T-12-

mer, T-15-mer, and 12-mer were separately diluted in DMEM to 10 µM and incubated at 37 °C for 5 

min. The cell media was then aspirated and replaced with the probe containing media (≤ 0.5 % 

DMSO final concentration) for 1 hr. Hoechst nuclear stain (ThermoFisher) was diluted in Hank’s PBS 

(8.12 µM final concentration). The cell media was aspirated, replaced with this staining solution and 

further incubated for 30 min. The cells were then gently washed with Hank’s PBS before imaging 

using Cy3 and DAPI filters with a Zeiss Z1 observer microscope. All imaging was performed with the 

help of Ernest So (Imperial College London). 

7.3.9 E2-E3 trap assembly 

For the following experiments, SDS-PAGE was carried out using pre-cast 4-12 % gradient Bis-Tris gels 

(Expedeon). 

7.3.9.1 Mono-Ubiquitin incorporation 

To UbG76C, (1 µL, 4 mg/mL) in MBS buffer (18.5 µL, 20 mM MES, 150 mM NaCl, 0.5 mM TCEP, pH 

6.5) on ice, Trap C (0.5 µL of a 500 mM solution in DMSO) was added. The solution was mixed gently 

and incubated for 3 min at 0 °C, before continuing to the ligase addition step described in Section 

7.3.9.2. For analysis, DTT was added (1 µL, 20 mM, 1mM final concentration) to quench the reaction. 

4 × working SDS sample loading buffer was added (7 μL) and the samples were resolved by SDS-

PAGE and visualised by Coomassie stain. 

7.3.9.2 E2 / E3 ligase additions  

Following incubation on ice as described in Section 7.3.9.1, excess maleimide was removed using a 

Zebra™ 7 kDa MWCO Spin Desalting column (Thermo Scientific) following the manufacturer’s 

protocol. UbcH7 (1.5 µL, 5.6 mg/mL) and a selected HHARI fragment (HH94-397 (W379A), 5.2 µL, 3.2 

mg/mL; or R2, 1.5 µL ,15.7 mg/mL) was then added and incubated for a further 2 min at 0 °C. DTT 

was added (1 µL, 20 mM, 1mM final concentration) to quench the reaction. 4 × working SDS sample 

loading buffer was added (7 μL) and the samples were resolved by SDS-PAGE and visualised by 

Coomassie stain. 
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7.4 Chemical proteomics 

7.4.1 General methods 

R10K8 DMEM media was purchased from Dundee life products and supplemented with 10 % v/v 

dialysed FBS (Sigma-Aldrich). During normal passaging, R10K8 labelled cells were detached using a 

trypsin free cell dissociation buffer (Sigma-Aldrich). All proteomic buffers were prepared fresh and 

filtered (0.2 µM) before use. Work areas were cleaned with 70 % IMS and hair tied back to avoid 

sample contamination. Protein LowBind tubes (Eppendorf) were used for all CuAAC, pull down and 

stage tipping applications. 

7.4.2 Lysate preparation 

7.4.2.1 Non-labelled lysate 

Non-R10K8 labelled cell lysates used for non-quantitative, LFQ, or Spike-in proteomic experiments 

were prepared as described in Section 7.3.4. 

7.4.2.2 Spike-in SILAC standard formation 

Cells were grown in DMEM growth media containing 13C 15N labelled arginine and 13C 15N labelled 

lysine (R10K8) for > 5 passages to ensure sufficient incorporation of heavy label. Further, cells were 

started from a frozen stock which had previously been shown to be >97 % heavy amino acid 

incorporated.287 This level of incorporation is sufficient for SILAC applications.313 For in-cell labelling, 

the spike-in standard was formed by treating these cells with probe at a defined concentration in 

R10K8 DMEM for 30 min or 1 hr (≤ 0.5 % DMSO final concentration). The experiment was performed 

on a large scale (at least 10x 10 cm plates) in order to produced sufficient standard for use in all 

proteomic experiments for a given probe. Cells on each plate were lysed as described in Section 

7.3.3.4 and pooled into a single ‘master spike’ prior to protein concentration determination.  

For in lysate analysis of Pg-12-mer-VME, cells were heavy incorporated as described above and lysed 

as described in sections 7.3.3. Enough plates were lysed in order to produce a sufficient quantity of 

standard for use in all proteomic experiments for a given probe (typically 10 × 10 cm plates). The 

spike-in standard was formed by treating this lysate with probe (50 µM) for 1 hr. Protein was 

subsequently precipitated by the MeOH/CHCl3 method (Table 7), air-dried, and resuspended in 0.2 % 

SDS in PBS. 
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7.4.3 Capture and enrichment of MS-based proteomics 

Preliminary analysis of PYR-41-P, Pg-12-mer-VS and Pg-12-mer-VME in-lysate labelling was 

performed without replicates on a 100 µg scale. All other samples were prepared in biological 

replicates, with non-SILAC samples prepared on a 400 µg scale and Spike-in SILAC samples prepared 

on a 600 µg scale. Samples were subjected to CuAAC as before (see Section 7.3.6) with the following 

modifications: CuAAC was undertaken at a protein concentration of 2 mg/mL; lysate was pre-mixed 

(in a defined ratio of spike-in standard: non labelled sample) prior to CuAAC for spike-in SILAC 

samples. After precipitating and air-drying, the protein pellet was re-suspended in 2 % SDS / PBS at 

10 mg/mL before being diluted 10 × with PBS (1 mg/mL, 0.2 % SDS / PBS final concentration). 

Alternatively, following Biotin-Ahx-Ub-VME incubation, excess probe was removed by buffer 

exchange (1 mg/mL, 0.2 % SDS / PBS final concentration) using an Amicon® Ultra 10 kDa MWCO Spin 

filter.  

For sample enrichment, 30 µL of NeutrAvidin agarose resin (Thermo Scientific) was pre-washed (0.2 

% SDS / PBS, 3 × 300 µL). Beads were gently vortexed (1min) and collected by centrifugation (3000 g, 

2 min). Samples were then added to the resin and incubated with gentle shaking for 2 hr at RT. The 

supernatant was removed, and the beads were washed consecutively with: 1 % SDS in PBS (3 × 300 

µL); 4M Urea in PBS (2 × 300 µL); 50 mM AMBIC (5 × 300 µL).  

7.4.4 On bead reduction, alkylation and digest 

The washed beads were reduced with 10 mM DTT / 50 mM AMBIC (50 µL total volume), spun down 

briefly and incubated with shaking at 55 °C for 30 min. The samples were then spun briefly and 

washed with further 50 mM AMBIC (2 × 300 µL). Exposed cysteines were alkylated by addition of 10 

mM IA / 50 mM AMBIC (50 µL total volume) and incubation in the dark without shaking for 30 min. 

The samples were then washed with further 50 mM AMBIC (2 × 300 µL), treated with trypsin (5 µL, 

0.2 mg/mL, Promega) in 50 mM AMBIC (50 µL) and digested overnight shaking at 37 °C. Following 

digestion 50 mM AMBIC was added (80 µL), the samples were shaken (10 min), spun down (3 000 g, 

2 min) and the supernatant retained. The beads were further washed by shaking with 0.1 % TFA / 

H2O (80 µL, 10 min), spun down (3 000 g, 2 min) and the supernatant retained. The combined 

supernatants were desalted by stage tipping using SDB-XC (Styrene Divinyl Benzene) extraction 

disks, eluted with 79 % MeCN / H2O and dried in vacuo.314 Dried peptides were stored at -80 °C. 
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7.4.5 LC/MS/MS 

7.4.5.1 Sample preparation 

Prior to LC/MS/MS runs, the dried peptide residues were resuspended in 0.5 % TFA / 2 % MeOH in 

H2O (20 µL), spun down (13 000 g, 10 min) and the supernatant transferred into auto-sampler vials.  

7.4.5.2 LC/MS/MS data acquisition  

All analysis was performed on an Easy nLC-1000 system coupled to a QExactive mass spectrometer 

via an easy-spray source (all Thermo Fisher Scientific). Typically, 3 µL sample injections were 

employed for enriched samples. Samples were separated using a reverse phase Acclaim PepMap 

RSLC column (50 cm × 75 μm inner diameter, Thermo Fisher Scientific) across a 2 hr acetonitrile 

gradient in 0.1 % formic acid at a flow rate of 250 nL/min. The QExactive mass spectrometer was 

operated in data-dependent mode with survey scans acquired at a resolution of 75,000 at m/z 200 

(transient time 256 ms). Up to the top 10 most abundant isotope patterns with charge +2 from the 

survey scan were selected with an isolation window of 3.0 m/z and fragmented by HCD with 

normalized collision energies of 25 W. The maximum ion injection times for the survey scan and the 

MS/MS scans (acquired with a resolution of 17,500 at m/z 200) were 250 and 80 ms, respectively. 

The ion target value for MS was set to 106
 and for MS/MS to 105, and the intensity threshold was set 

to 8.3 × 102. 

7.4.5.3 Data analysis 

The raw data file obtained from each LC-MS/MS acquisition was processed using MaxQuant 

software (version 1.3.0.5). Peptides were identified from the MS/MS spectra by searching against 

the Homo sapiens UniProtKB database, using the Andromeda search engine. Cysteine 

carbamidomethylation was set as a fixed modification, whilst methionine oxidation and N-terminal 

acetylation were set as variable modifications. The multiplicity of the search was to set to: 1 for LFQ 

quantification; 2 for spike-in SILAC quantitation. Heavy labels present were selected (R10 and K8) for 

spike-in SILAC. All other parameters were used as pre-set by the software. Label free quantification 

was performed using a built in algorithm with the ‘match between runs’ (across a 2 min time 

window) enabled. Peptides and proteins were identified utilising a 0.01 false discovery rate, with 

“Unique and razor peptides” mode selected for both identification and quantification of proteins 

(razor peptides are uniquely assigned to protein groups and not to individual proteins). At least 2 

razor + unique peptides were required for valid quantification. 

Data outputted from MaxQuant was analysed using a combination of Perseus version 1.5 and 

Microsoft Office Excel 2010. For all data sets, protein identifications by MaxQuant based on 
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‘contaminants’, ‘only identified by site’ and ‘reverse’ were filtered out in the first instance. Further 

filtering only allowed inclusion of a protein target if it was identified in at least two biological 

replicates.  

For LFQ quantification, the filtered intensities were logarithmised (Log2), and missing values 

(representing low abundance measurements) were replaced with random numbers imputed from a 

normal distribution chosen to best simulate low abundance values. A student’s T-test was applied to 

determine statistical significance. For spike-in SILAC experiments, the generated H/L ratios were 

logarithmised (Log2), and normalised against their column median prior to averaging across 

biological replicates. Relative ratio changes on competition were determined by normalising all 

ratios to the probe only control sample. A relative ratio change >1.5 fold (equivalent to Log2 > 0.58) 

was deemed a sufficient threshold for target identification. A student’s T-test was applied across 

replicates with 0.05 FDR to determine statistical significance of competition.  

The gene names of targets of interests were inputted into the STRING database (http://string-

db.org/) to generate interaction networks to determine the enrichment of GO annotations. Raw 

data and data analysis is available as electronic files for further reference. Please refer to Appendix 

Table 1.  

http://string-db.org/
http://string-db.org/


174 

7.5 Fragment-Based Drug Discovery (FBDD) workflow 

7.5.1 Differential Scanning Fluorimetry (DSF) 

The DSF assay was performed with indicated concentrations of P37 and fragment, in 96 well semi-

skirted real time PCR plates, using a Stratagen MX3005p qPCR machine (Agilent technologies). All 

experiments were performed using filtered DSF buffer (50 mM HEPES, 150 mM NaCl, 1 mM DTT, 

pH 7.5). 

7.5.1.1 Fragment screen 

The Ro3 fragment library (Maybridge) was stored in sealed 96 well ‘master plate’ arrays as 100 mM 

DMSO stocks at RT under a N2 atmosphere using a FluidX system. The first and final lanes contained 

100 % DMSO, to allow the inclusion of negative control readings. A DSF buffer solution (2 mL) 

containing SYPRO® Orange dye (5 µL of 5000x stock in DMSO) and P37 (2.5 µM) was arrayed (16 µL) 

into a clean PCR plate. To a clean 96 well ‘daughter plate’, ultra-pure H2O (4.5 µL) was dispensed, 

followed by the fragment array (0.5 µL, 10 mM final concentration). The diluted fragments and 

controls were then arrayed (4 µL) onto the PCR plate (Figure 1) and mixed (10 × SYPRO® Orange, 

2 µM P37, 2 mM fragment, 2 % DMSO final concentrations). Fluorescence was measured in each 

well over a 25-95 °C gradient. 

 

Figure 70: Layout of Library plates and subsequent DSF assay plates. 

7.5.1.2 Data analysis and triage 

Data was analysed using an Excel Script for DSF analysis, publically available from the Structural 

genomics consortium (SGC): ftp:ftp.sgc.ox.ac.uk/pup/biophysics. Tm shifts were calculated by fitting 

2 µM p37 

+  

10 × Sypro®Orange 

+ 

2 mM fragment 

2 % DMSO  

(- ve control) 
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the data to the Boltzmann equation in Graphpad Prism 5 software. Assay data was deemed high 

quality for plates where the standard deviation of the control reading was ≤ 0.1°C. Any fragments 

with a ΔTm value > 4 s.d from the control was carried through the workflow as a possible hit 

fragment. Hit were grouped by structural similarity using ChemBiofinder Std 13.0 software. 

Representative fragments from each promising structural group were selected and carried forward 

for NMR validation. 

7.5.2 WaterLOGSY experiment 

All experiments were performed in DSF buffer (see Section 7.5.1) at 298K (25 °C) using a Bruker 

Avance III 600 MHz spectrometer. 

7.5.2.1 Spectra acquisition and analysis 

In an NMR tube DSF buffer (450 µL) and D2O (45 µL, 10 % final concentration) were mixed and spun 

down. A 1D 1H spectrum of the buffer background was acquired and the system calibrated to 

maximise water suppression. The fragment (4.5 µL of 100 mM stock, 1 mM final concentration) was 

then added and the sample spun and mixed. A 1D 1H spectrum of the fragment ligand was acquired, 

followed by a 1D waterLOGSY spectrum. P37 (15 µL of 300 µM stock in DSF buffer, 10 µM final 

concentrations) was then added, the sample was spun and mixed, and a 1D waterLOGSY spectrum in 

the presence of protein was acquired. When necessary, a further waterLOGSY spectrum was 

recorded at higher protein concentration (additional 45 µL P37 and 0.5 µL Fragment, 40 µM and 

1mM final concentrations respectively). WaterLOGSY spectra of samples containing P37 alone (at 10 

and 40 µM, in DSF buffer, 10 % D2O) were also recorded to allow protein background subtraction. 

Following background subtractions, the 1H and waterLOGSY spectra of each fragment with and 

without protein were overlaid. For a given fragment, a positive inversion of any waterLOGSY in the 

presence of P37 was described as a validated hit. 

7.5.3 Micro-scale thermophoresis 

All experiments and analysis was undertaken at the Crick Institute (Mill Hill) with the help of Dr Steve 

Martin. 

7.5.3.1 P37 labelling 

P37 was labelled with NT-647-NHS fluorescent dye using a NT protein labelling kit (Monolith) with 

some adjustments to the manufacturer’s instructions. Briefly, the DSF buffer was exchanged for MST 

buffer (50 mM HEPES, 100 mM NaCl, 0.5 mM TCEP, pH 7.5). This P37 solution (10 µM, 100 µL) was 
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mixed with dye solution (200 µM, 100 µL) and incubated in the dark for 45 min. Excess dye was 

removed by gel filtration. The resulting labelled protein, P37-NT-647, was measured by absorbance 

spectroscopy and found to have a sufficient labelling efficiency of 33 % (6 µM protein 

concentration). A further ubiquitination assay was performed by Katrin Rittinger’s group to check 

labelled protein activity. Labelled and wild type P37 was separately incubated with UBA1, ATP, 

Ubch7 and Ub for 4 hours at 25 °C. Time course samples were separated by SDS-PAGE and visualised 

using Coomassie staining. 

7.5.3.2 Data acquisition and analysis 

0.05 % Tween was added to the MST buffer, to ensure good sample loading into the capillaries. A 

labelled protein stock (370 µL MST buffer, 10 µL DMSO, 20 µL P37-NT-647) was mixed and kept in 

foil on ice. 16 vials (100 µL eppendorfs) were labelled numerically. Fragment solution (20 µL, 10 mM 

in MST buffer, 2.5 % final DMSO concentration) was added to vial 1. MST buffer (10 µL) was added to 

vials 2-16. Half the solution in vial 1 (10 µL) was transferred to vial 2. Vial 2 was mixed by pipetting 

before solution transfer (10 µL) to vial 3. This serial dilution was repeated 15 times across all vials, 

with 10 µL being removed from the final vial to leave 10 µL. The labelled protein stock (10 µL) was 

added to each vial, mixing well by pipetting. Samples (100 nM labelled protein, 5 mM- 0.15 µM 

fragment, ~2.5 % DMSO final concentrations) were incubated for 5 min, the capillaries filled (~5 µL) 

and transferred into the Monolith NT.115 (Nanotemper technologies) for fluorescence reading at 

670 nm. Capillaries were spun to minimise background. Kd values were calculated from initial and 

thermophoretic fluorescence data by Steve Martin using Nanotemper analysis software.
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Appendices and spectra 

Appendix Table 1: List of electronic files available for further reference. For LC-MS/MS analysis, both raw 
(Output from MaxQuant search) and analysis data sheets are included. 

File A List of all known Ub and Ubl machinery and other proteins associated with Ub/Ubl 
conjugation. The list was assembled from Uniprot: (http://www.uniprot.org/) 

File 1 LFQ analysis of Pg-12-mer-VS and Pg-12-mer-VME probe targets in HeLa cell lysate. 
Results from shear force and chemical lysis approaches are included. 

File 2 LFQ analysis of Pg-12-mer-VME probe targets in fractionated MCF7 cell lysate. 
Methods with and without precipitation following CuAAC is compared. 

File 3 LFQ analysis of biotin-Ahx-Ub-vme (200 nM) in MCF7 cell lysate. 

File 4 Spike-in SILAC experiment of Pg-12-mer-VME (10 µM) in competition with 0, 20, and 
50 µM of 12-mer-vme in MCF7 cell lysate. Data analysis with averaged L/H ratios for 
each concentration normalised to no competition (12-mer-vme = 0 µM). GO-term 
analysis of competed targets was undertaken using STRING software. 
 

File 5 Spike-in SILAC experiment of Pg-12-mer-VME (10 µM) labelling in epirubicin (0, 0.1, 
and 1.0 µM) treated MCF7 cell lysate. Data analysis with averaged L/H ratios for each 
concentration normalised to no DNA damage (epirubicin = 0 µM). 
 

File 6 LFQ analysis of PYR-41-P (50 μM) and HeLa cell lysate. 

File 7 LFQ analysis of PYR-41-P (50 μM) and T2 (100 μM) probe labelling in MCF7 cells. 
Average LFQ intensities are shown. GO-term analysis was undertaken on the top 50 
targets ranked by LFQ intensity using STRING software. 
 

File 8 Spike-in SILAC experiment of PYR-41-P (25 µM) in competition with 0, 125, and 250 
µM of PYR-41 in MCF7 cells. Data analysis with averaged L/H ratios for each 
concentration normalised to no competition (PYR-41 = 0 µM). 
 

File 9 Spike-in SILAC experiment of T2 (20 µM) in competition with 0, 40, and 200 µM of 
T2c in MCF7 cells. Data analysis with averaged L/H ratios for each concentration 
normalised to no competition (T2c = 0 µM). 
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Appendix Figure 71: MS spectral analysis of fragment binding. P37 was incubated overnight in the absence 
(A) and presence (B) of fragment 18H9 and analysed by ES-TOF MS. Spectra show a mass shift 68 Da, 
indicating that 18H9 is covalently reacting with P37. 
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Appendix Figure2: Determining the ability of UbcH7 (E2) to form heterodimers with R2 and HH which are 
stable on SDS-PAGE analysis. Proteins were incubated on ice for 3 min, any interactions quenched on 
addition of DTT, samples separated and analysed by Coomassie staining.  
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NMR Spectra: Compound 2 
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NMR Spectra: VS (TFA salt) 
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NMR Spectra: Compound 3 
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NMR Spectra: VME (tosylate salt) 
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NMR Spectra: Compound 7 
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NMR Spectra: Compound 5 
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NMR Spectra: PYR-41 
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NMR Spectra: Compound 9 
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NMR Spectra: Compound 4 

 



 

206 

NMR Spectra: PYR-41-P 
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NMR Spectra: Compound 11 
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NMR Spectra: Compound 10 
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NMR Spectra: Tz9 
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NMR Spectra: Compound 20 
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NMR Spectra: Compound 21 
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NMR Spectra: T1 
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NMR Spectra: Compound 12 
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NMR Spectra: T2 
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NMR Spectra: Compound 13 
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NMR Spectra: T3 
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NMR Spectra: Compound 23 
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NMR Spectra: T2c 
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NMR Spectra: Compound 29 
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NMR Spectra: Trap C 
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LCMS Chromatograms and Spectra: Pg-12-mer-VS  
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LCMS Chromatograms and Spectra: Pg-12-mer-VME  
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LCMS Chromatograms and Spectra: 12-mer-VS 
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LCMS Chromatograms and Spectra: 12-mer-VME 
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LCMS Chromatograms and Spectra: 12-mer  
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LCMS Chromatograms and Spectra: T-12-mer 

 



 

227 

LCMS Chromatograms and Spectra: T-15-mer 
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LCMS Chromatograms and Spectra: NLS 
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LCMS Chromatograms and Spectra: CPP1 
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LCMS Chromatograms and Spectra: CPP2 
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