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IMPORTANCE Low-density lipoprotein cholesterol (LDL-C)–lowering alleles in or near NPC1L1
or HMGCR, encoding the respective molecular targets of ezetimibe and statins, have
previously been used as proxies to study the efficacy of these lipid-lowering drugs. Alleles
near HMGCR are associated with a higher risk of type 2 diabetes, similar to the increased
incidence of new-onset diabetes associated with statin treatment in randomized clinical trials.
It is unknown whether alleles near NPC1L1 are associated with the risk of type 2 diabetes.

OBJECTIVE To investigate whether LDL-C-lowering alleles in or near NPC1L1 and other genes
encoding current or prospective molecular targets of lipid-lowering therapy (ie, HMGCR,
PCSK9, ABCG5/G8, LDLR) are associated with the risk of type 2 diabetes.

DESIGN, SETTING, AND PARTICIPANTS The associations with type 2 diabetes and coronary
artery disease of LDL-C-lowering genetic variants were investigated in meta-analyses of
genetic association studies. Meta-analyses included 50 775 individuals with type 2 diabetes
and 270 269 controls and 60 801 individuals with coronary artery disease and 123 504
controls. Data collection took place in Europe and the United States between 1991 and 2016.

EXPOSURES Low-density lipoprotein cholesterol–lowering alleles in or near NPC1L1, HMGCR,
PCSK9, ABCG5/G8, and LDLR.

MAIN OUTCOMES AND MEASURES Odds ratios (ORs) for type 2 diabetes and
coronary artery disease.

RESULTS Low-density lipoprotein cholesterol–lowering genetic variants at NPC1L1 were
inversely associated with coronary artery disease (OR for a genetically predicted 1-mmol/L
[38.7-mg/dL] reduction in LDL-C of 0.61 [95% CI, 0.42-0.88]; P = .008) and directly
associated with type 2 diabetes (OR for a genetically predicted 1-mmol/L reduction in LDL-C
of 2.42 [95% CI, 1.70-3.43]; P < .001). For PCSK9 genetic variants, the OR for type 2 diabetes
per 1-mmol/L genetically predicted reduction in LDL-C was 1.19 (95% CI, 1.02-1.38; P = .03).
For a given reduction in LDL-C, genetic variants were associated with a similar reduction in
coronary artery disease risk (I2 = 0% for heterogeneity in genetic associations; P = .93).
However, associations with type 2 diabetes were heterogeneous (I2 = 77.2%; P = .002),
indicating gene-specific associations with metabolic risk of LDL-C-lowering alleles.

CONCLUSIONS AND RELEVANCE In this meta-analysis, exposure to LDL-C-lowering genetic
variants in or near NPC1L1 and other genes was associated with a higher risk of type 2 diabetes.
These data provide insights into potential adverse effects of LDL-C-lowering therapy.
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T reatment with statins, the pharmacological agents of
choice for low-density lipoprotein cholesterol (LDL-
C)–lowering therapy in cardiovascular prevention,1,2

is associated with weight gain and a higher incidence of
new-onset type 2 diabetes.3-5 Ezetimibe, an inhibitor of the
LDL-C transporter Niemann-Pick C1-Like 1 (NPC1L1),6,7 has
been approved as a lipid-lowering agent, but it is unclear
whether its use will be associated with an adverse metabolic
risk profile.

There is considerable interest in predicting the efficacy
and safety of therapeutic targets early in the drug develop-
ment process. Drug targets with supporting human genetic
evidence have been shown to have lower attrition rates dur-
ing drug development.8 Variation in genes encoding drug
targets has been used to predict both the efficacy and safety
of pharmacological perturbation of those targets.9,10 In par-
ticular, LDL-C-lowering alleles in HMGCR,5,11 which encodes
the molecular target of statins, have been successfully used
as genetic proxies to study the effects of these drugs.5,11 Fur-
thermore, LDL-C-lowering alleles in HMGCR are associated
with higher risk of type 2 diabetes and higher body mass
index (BMI) in genetic studies,5 similar to the safety profile
of statins in meta-analyses of randomized clinical trials
(RCTs).3-5

The efficacy of adding ezetimibe to simvastatin in sec-
ondary cardiovascular prevention was supported by the
Improved Reduction of Outcomes: Vytorin Efficacy Interna-
tional Trial (IMPROVE-IT).6,7 Immediately before and after
the publication of the trial results, studies were reported
describing the use of genetic variants at NPC1L1 to predict the
efficacy of NPC1L1 inhibition in the prevention of coronary
events.11,12 The purpose of this study was to use naturally
occurring LDL-C-lowering alleles at NPC1L1 to investigate the
potential associations between NPC1L1 inhibition and the risk
of type 2 diabetes. Alleles that lower LDL-C in or near genes
encoding other current or prospective molecular targets of
LDL-C-lowering therapy were studied.

Methods
Study Design
The association of LDL-C-lowering polymorphisms near
NPC1L1 with the risk of type 2 diabetes was investigated in
meta-analyses of genetic association studies. The associa-
tions of LDL-C-lowering alleles in or near genes encoding other
current or prospective molecular targets of LDL-C-lowering
therapy11 (ie, HMGCR, PCSK9, ABCG5/G8, LDLR) with type 2
diabetes, coronary artery disease, and continuous cardiometa-
bolic traits were studied. A summary of the studies included
in each analysis appears in eTable 1 in the Supplement.

Participants
The association of LDL-C-lowering alleles with type 2 dia-
betes was estimated in a meta-analysis of 50 775 individ-
uals with type 2 diabetes and 270 269 controls from the
European Prospective Investigation into Cancer and Nutri-
tion (EPIC)–InterAct study (a case-cohort study nested with-

in the EPIC study, which was a cohort study of 500 000
European participants followed-up for an average of 8
years),13 the UK Biobank study,14 and the DIAbetes Genetics
Replication And Meta-analysis (DIAGRAM).15 An additional
11 studies (4496 cases and 50 677 controls) previously
reported by Swerdlow et al5 were included in the analyses of
the association with type 2 diabetes of rs12916 in HMGCR
(eFigure 1 in the Supplement). The combined association of
NPC1L1 genetic variants in subgroups by age, sex, and BMI
was analyzed in 14 657 unrelated cases of type 2 diabetes
and 118 854 controls from the EPIC-InterAct study and the
UK Biobank study with available individual-level genotyp-
ing data.

EPIC-InterAct
Eight of the 10 constituent EPIC cohorts agreed to take part in
the EPIC-InterAct study, leaving 455 680 participants for
screening. Individuals were excluded from EPIC-InterAct if
they did not have stored blood (n = 109 625) or information
on diabetes status (n = 5821; 1.3% of participants screened for
inclusion). From the remaining 340 234 participants, 12 403
individuals who developed type 2 diabetes during follow-up
constituted the incident case group of EPIC-InterAct and a
random group of 16 154 individuals free of diabetes at base-
line constituted the subcohort group of EPIC-InterAct.13

Subcohort participants were previously shown to be repre-
sentative of eligible EPIC participants within each country.13

Data on 20 831 participants with available genotyping (with
no overlap with DIAGRAM15) were included in the main
analysis. Data on the 22 494 participants (including partici-
pants overlapping with DIAGRAM) with available genotyping
were included in subgroup analyses. Type 2 diabetes status
was available for all participants. Individuals without geno-
type data were excluded from the study. Data collection took
place between 1991 and 2016. Participant characteristics and
genotyping methods have been previously reported in
detail13 and are summarized in Table 1 and eTable 2 in the
Supplement.

The UK Biobank Study
The UK Biobank study is a population-based cohort of
500 000 people aged 40 to 69 years who were recruited from

Key Points
Question Are low-density lipoprotein cholesterol
(LDL-C)–lowering alleles at NPC1L1 or other genes associated with
the risk of type 2 diabetes?

Findings In a meta-analysis of genetic association studies
including 50 775 individuals with type 2 diabetes and 270 269
controls, LDL-C-lowering polymorphisms at NPC1L1 were
associated with a statistically significant odds ratio of 2.42
for type 2 diabetes per genetically predicted reduction
of 1 mmol/L (38.7 mg/dL) in LDL-C. Low-density lipoprotein
cholesterol–lowering polymorphisms at HMGCR and PCSK9 were
associated with a higher risk of diabetes.

Meaning These data provide insights into potential adverse
effects of LDL-C-lowering therapy.
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2006 through 2010 from several centers across the United
Kingdom.14 The association of genetic variants with preva-
lent type 2 diabetes was estimated in 6627 cases and 143 765
controls of the UK Biobank study data set who had available
genotype data. Genotyping was attempted in 152 770 indi-
viduals and failed in only 480 instances (0.3%). Among a
total of 152 290 participants with available genotype data,
type 2 diabetes status was adjudicated in 150 392 (98.8%)
participants. Type 2 diabetes was defined on the basis of self-
reported physician diagnosis at nurse interview or digital
questionnaire, age at diagnosis older than 36 years, and use
of oral medications for diabetes. Data collection took place
between 2006 and 2016. Participant characteristics and
genotyping information appear in Table 1 and eTable 2 in the
Supplement.

DIAGRAM
DIAGRAM is a research consortium that published the larg-
est meta-analysis of genome-wide association studies for
type 2 diabetes in individuals of European descent.15 Type 2
diabetes association results were made publicly available
for up to 34 840 cases and 114 981 controls from 38 genetic
association studies with a case-control or cohort design.15

Fifty percent of the participants were women and the aver-
age age was 55 years.15 Imputation was performed using the
HapMap reference panel.15 Participant exclusion criteria
encompassed duplicate samples, relatedness, mismatch
between self-reported and genotype-determined sex, outly-

ing heterozygosity and non-European descent. Type 2 dia-
betes status was available in all participants. Data collection
took place between 2002 and 2012. Participant characteris-
tics are reported in Table 1 and further characteristics of the
studies included in the DIAGRAM meta-analysis were
reported previously.15

The likelihood of bias for studies participating in this
meta-analysis was deemed low on the basis of (1) the low
proportion of participants with missing data on exposure
or outcome, (2) the high-quality genotyping or imputation
of genetic variants included in the study (eTable 2 in the
Supplement), (3) the low likelihood of bias by case status
in genotyping errors or genotype misclassification, (4) the
consideration that if any nondifferential misclassification of
exposure or outcome occurred, it would result in a bias
toward the null, and (5) the consideration that genetic vari-
ants are less likely to be affected by confounding or reverse
causality.16,17 On this basis, studies were deemed suitable
for pooling by meta-analysis.

Pooling of Other Data
For the genetic variants included in these analyses, LDL-C
association estimates were obtained from genetic associa-
tion results in up to 188 577 participants of the Global Lipids
Genetics Consortium.18 In addition to type 2 diabetes, the as-
sociation of these LDL-C-lowering alleles with coronary ar-
tery disease and continuous cardiometabolic traits was esti-
mated in large meta-analyses of genome-wide association

Table 1. Participants of the EPIC-InterAct Study, the UK Biobank Study, and DIAGRAM

EPIC-InterAct Study
Countries: Multiple in Europe
Type of Genotyping Chip:
Illumina 660w Quad
and Illumina CoreExome Chip
Imputation Panel: Haplotype
Reference Consortium

UK Biobank Study
Countries: United Kingdom
Type of Genotyping Chip:
Affymetrix UK Biobank Axiom Array
Imputation Panel: 1000 Genomes
Phase 3 Plus UK10K

DIAGRAM
Countries: Europe and United Statesa

Type of Genotyping Chip: Multipleb

Imputation Panel: HapMap

Type 2 Diabetes Controls Type 2 Diabetes Controls Type 2 Diabetes Controls
No. of participants 10 071c 12 423c 6627 143 765 34 840 114 981

Age, mean (SD), y 56 (8) 52 (9) 60 (7) 56 (8) 59 (10) 54 (14)

Female sex, No. (%) 5037 (50) 7713 (62) 2349 (35) 77 397 (54) 14 621 (42) 60 377 (53)

Current smokers, No. (%) 2830 (28) 3240 (26) 811 (12) 18 149 (13) NA NA

Body mass index, mean (SD)d 29.7 (4.8) 25.8 (4.1) 31.9 (5.9) 27.3 (4.7) 29.7 (5.9) 26.5 (4.5)

Waist-to-hip ratio 0.92 (0.09) 0.85 (0.09) 0.95 (0.08) 0.87 (0.09) NA NA

Blood pressure, mean (SD), mm Hg

Systolic 144 (20) 132 (19) 141 (17) 138 (19) NA NA

Diastolic 87 (11) 82 (11) 82 (10) 82 (10) NA NA

Cholesterol, mean (SD), mmol/L

Low-density lipoprotein 4.0 (1) 3.8 (1) NAe NAe NA NA

High-density lipoprotein 1.2 (0.4) 1.5 (0.4) NAe NAe NA NA

Triglycerides, median (IQR), mmol/L 1.7 (1.2-2.5) 1.1 (0.8-1.6) NAe NAe NA NA

Abbreviations: DIAGRAM, DIAbetes Genetics Replication And Meta-analysis;
EPIC, European Prospective Investigation into Cancer and Nutrition;
IQR, interquartile range; NA, not available.

To convert high-density and low-density lipoprotein cholesterol to mg/dL,
divide by 0.0259.
a There was a small South Asian component of the study, which accounts for

2.44% of participants.
b Chips included Affymetrix Human SNP Array 6.0; Illumina HumanHap 300,

300/370, and 550; Affymetrix Genechip 500K and MIPS 50K; and the
Cardio-Metabolchip.

c There were 9308 cases of type 2 diabetes and 11 523 controls included in the
main analysis of the association of genetic variants with type 2 diabetes after
the exclusion of participants overlapping with DIAGRAM.

d Calculated as weight in kilograms divided by height in meters squared.
e Measurement of blood lipid concentrations is ongoing. The data release is

planned for the end of 2016.
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studies. For coronary artery disease, data were from the Coro-
nary ARtery DIsease Genome wide Replication and Meta-
analysis (CARDIoGRAM) plus the Coronary Artery Disease
(C4D) Genetics (CARDIoGRAMplusC4D) Consortium meta-
analysis (60 801 cases and 123 504 controls).19 For glycemic
traits, including fasting glucose20,21 (n = 133 010), glucose level
2 hours after an oral glucose challenge20,22 (n = 42 854) and
fasting insulin levels20,21 (natural-logarithm transformed;
n = 108 557), data were from the Meta-Analysis of Glucose and
Insulin-related traits Consortium (MAGIC).20-22 For anthropo-
metric traits, including BMI (n = 333 495) and waist-to-hip ra-
tio (n = 224 047), data were from the Genetic Investigation of
ANthropometric Traits (GIANT) Consortium.23,24 Details ap-
pear in eTable 1 in the Supplement.

In exploratory analyses, the burden of protein-truncating
and probably deleterious missense variants in NPC1L1, HMGCR,
PCSK9, ABCG5, ABCG8 and LDLR was estimated from exome
sequencing studies of 8373 cases with type 2 diabetes and 8466
controls (Type 2 Diabetes Multi-Ethnic Sequencing [T2D-
GENES] Consortium, Genetics of Type 2 Diabetes [GoT2D]
Consortium, DIAGRAM Consortium. May 26, 2016; http://www
.type2diabetesgenetics.org/).

Selection of Genetic Variants
The combined association of 2 LDL-C-lowering genetic vari-
ants near NPC1L1 with type 2 diabetes constituted the pri-
mary analysis of the study (Table 2). These variants were
identified as having distinct effects on LDL-C levels in approxi-
mate conditional analyses using the GCTA software25,26

(description appears below and in eFigure 2 in the Supple-
ment). In sensitivity analyses, the combined association of 5
LDL-C-lowering alleles near NPC1L1 (previously used to pre-
dict the efficacy of ezetimibe11) was investigated (eTable 3 in
the Supplement).

For comparison with NPC1L1, other LDL-C-lowering
alleles in or near genes encoding other current or prospective
molecular targets of LDL-C-lowering therapy (ie, HMGCR,
PCSK9, ABCG5/G8, LDLR) were studied.11 Three LDL-C-
lowering polymorphisms in or near HMGCR, previously dem-
onstrated to mimic the efficacy and metabolic effects of
statins,5,11 were analyzed (Table 2). At the ABCG5/G8 and
LDLR loci, polymorphisms previously used to investigate
genetic relationships between LDL-C and coronary artery
disease11 were studied (Table 2). At the PCSK9 locus, in addi-
tion to the rs11591147 (p.R46L) variant (Table 2), the com-
bined association of up to an additional 8 likely independent
LDL-C-lowering polymorphisms was investigated (eFigure 3
in the Supplement). Genetic variants included in the analyses
were strongly and specifically associated with LDL-C (eFigure
4 in the Supplement).

Approximate conditional analyses on large-scale LDL-C
association data from the Global Lipids Genetics Consortium18

using the GCTA software25,26 were performed to identify dis-
tinct association signals for LDL-C at the NPC1L1 and PCSK9
loci. This approach uses genetic association results in addi-
tion to the linkage disequilibrium pattern in a reference popu-
lation to estimate the association of genetic variants in a re-
gion after accounting for 1 or more index genetic variants. In

doing so, the software allows for the identification of likely in-
dependent association signals in a given region using result-
level data. At the PCSK9 locus, in a smaller sample of indi-
viduals with individual-level genotypes, formal conditional
analyses of the association with LDL-C of polymorphisms af-
ter adjusting for rs11591147 genotype status were conducted
(eFigure 3 in the Supplement).

Genetic Reference Information
The HUGO Gene Nomenclature Committee27 (http://www
.genenames.org) gene names of the investigated genes were
HGNC:7898 (NPC1L1), HGNC:5006 (HMGCR), HGNC:20001
(PCSK9), HGNC:13886 (ABCG5), HGNC:13887 (ABCG8), and
HGNC:6547 (LDLR). Genomic coordinates reported in this
article represent the chromosome and physical position of
genetic variants according to the Human Reference Genome
Build 37 (http://www.ncbi.nlm.nih.gov/projects/genome
/assembly/grc/). Polymorphism names reported in the
manuscript represent rsID entries from dbSNP release 147 (http:
//www.ncbi.nlm.nih.gov/SNP/).

Statistical Analysis
Genetic association data for the meta-analyses were either
generated or gathered from available sources at the MRC
Epidemiology Unit, University of Cambridge. For each
genetic variant and outcome, inverse variance–weighted
meta-analysis using fixed-effect models was used to obtain
pooled estimates. The I2 statistic was used to quantify
heterogeneity. For each gene, associations of LDL-C-lowering
genetic variants and outcomes were estimated using Mende-
lian randomization statistical methods.17 Estimates of genetic
variant to LDL-C and genetic variant to outcome associations
were used to calculate estimates for the LDL-C reduction to
outcome association at each gene.17 When multiple genetic
variants at a given gene were included in the model, esti-
mates were pooled with a weighted generalized linear regres-
sion method that accounts for the correlation between
genetic variants.17 The correlation values were obtained from
the SNAP software28 or from the 1000 Genomes Project
phase 3 data on individuals of European ancestry (http:
//browser.1000genomes.org/; eTable 4 in the Supplement).
Results were scaled to represent the odds ratio (OR) per
1-mmol/L (38.7-mg/dL) for the genetically predicted reduction
in LDL-C. Absolute risk differences were estimated assuming
that the incidence rate of type 2 diabetes in the EPIC-InterAct
study subcohort would be the baseline incidence rate in
unexposed individuals (ie, 3.76 incident cases per 1000
person-years of follow-up).13 This baseline rate was then
multiplied by the OR estimated from genetic analyses
to obtain the at-risk incidence rate. The absolute risk difference
estimate was the at-risk incidence rate minus the baseline
incidence rate. Absolute risk differences were expressed
in incident events per 1000 person-years for a 1-mmol/L
genetically predicted reduction in LDL-C. Statistical analyses
were conducted using Stata version 14.1 (StataCorp), R version
3.2.2 (R Foundation for Statistical Computing), and METAL
version 2011-03-25.29 A 2-tailed P < .05 was considered
statistically significant.
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Results

LDL-C-Lowering Alleles at NPC1L1
and Risk of Type 2 Diabetes
Alleles that lower LDL-C at the NPC1L1 locus were inversely
associated with coronary artery disease (OR for a genetically
predicted 1-mmol/L [38.7-mg/dL] reduction in LDL-C of 0.61
[95% CI, 0.42-0.88]; P = .008) and directly associated with
type 2 diabetes both individually (Table 2) and collectively
(OR for a genetically predicted 1-mmol/L reduction in LDL-C
of 2.42 [95% CI, 1.70-3.43], P < .001; estimated absolute risk
difference, 5.3 incident cases per 1000 person-years for a
1-mmol/L genetically predicted reduction in LDL-C; Figure).
For both polymorphisms, estimates of the association with
type 2 diabetes were consistent across the studies included in
the meta-analysis (eFigure 1 in the Supplement). In the
periphery of the NPC1L1 locus, approximately 400 kilobases
from the lead rs2073547 polymorphism, there was a known
association signal for type 2 diabetes and glycemic traits
near the GCK gene.15,20,21 After accounting for variation in
GCK, the association with type 2 diabetes at NPC1L1 did not
change (eTable 3 in the Supplement). Association estimates
remained unchanged when modeling the association of 5
polymorphisms previously used by Ference et al11 as a proxy
for NPC1L1 inhibition (eTable 3). In 14 657 cases of type 2 dia-
betes and 118 854 controls for whom we had access to
individual-level genotyping data, there was no evidence of
heterogeneity in the association between NPC1L1 alleles and
type 2 diabetes in analyses stratified by age, sex, or BMI
(eFigure 5 in the Supplement). In exome-sequencing associa-
tion results, there was no evidence of enrichment with

NPC1L1 protein truncating alleles in cases with type 2 diabe-
tes compared with controls (OR of 1.12 [95% CI, 0.88-1.43] for
type 2 diabetes among individuals carrying a truncating
allele [P = .34]), but missense variants in NPC1L1 predicted to
be probably deleterious were overrepresented in individuals
with type 2 diabetes compared with controls (OR, 1.26 [95%
CI, 1.07-1.47]; P = .005).

Associations With Type 2 Diabetes at Other Genes
As previously reported,5,11 LDL-C lowering alleles at HMGCR
were associated with type 2 diabetes and coronary artery dis-
ease in opposite directions (Table 2 and Figure). An associa-
tion of the loss-of-function p.R46L (rs11591147) variant in
PCSK9 with higher risk of type 2 diabetes was found (OR of
1.19 [95% CI, 1.02-1.38] for type 2 diabetes per 1-mmol/L
genetically predicted LDL-C reduction [P = .03]; estimated
absolute risk difference, 0.7 incident cases per 1000 person-
years for a 1-mmol/L genetically predicted reduction in
LDL-C). At PCSK9, analyses of the LDL-C association data
suggested the presence of distinct association signals. In for-
mal conditional analyses, there was evidence of at least 2 dis-
tinct association signals (rs11591147 and rs471705; eFigure 3).
Using the GCTA software,25,26 approximate conditional
analyses suggested the presence of 9 distinct association sig-
nals (rs11591147 plus 8 additional genetic variants; eFigure 3
in the Supplement). Inclusion of these additional signals gave
similar associations with type 2 diabetes as the p.R46L vari-
ant alone (OR of 1.21 [95% CI, 1.04-1.41] for type 2 diabetes
per 1-mmol/L genetically predicted reduction in LDL-C using
rs11591147 plus rs471705 [P = .01] and OR of 1.16 [95% CI,
1.03-1.31] using rs11591147 plus the 8 additional polymor-
phisms [P = .02]; eTable 3 in the Supplement). The associa-

Figure. Association of Low-Density Lipoprotein Cholesterol (LDL-C)–Lowering Genetic Variants With Coronary Artery Disease and Type 2 Diabetes

P Value

4.01.0 2.00.4
Odds Ratio (95% CI) per LDL Reduction

of 1 mmol/L (38.7 mg/dL)

No. of
Genetic
Variants

Type 2 diabetes

Odds Ratio
(95% CI)

9 × 10–72NPC1L1 2.42 (1.70-3.43)
.0033HMGCR 1.39 (1.12-1.73)

.031PCSK9 1.19 (1.02-1.38)

.291ABCG5/G8 1.15 (0.89-1.48)

.051LDLR 1.13 (1.00-1.29)
Coronary artery disease

.0082NPC1L1 0.61 (0.42-0.88)
9 × 10–53HMGCR 0.62 (0.49-0.79)
7 × 10–61PCSK9 0.60 (0.48-0.75)
1 × 10–61ABCG5/G8 0.54 (0.42-0.69)
1 × 10–131LDLR 0.57 (0.49-0.66)

Coronary artery disease data are from 60 801 cases with coronary artery
disease and 123 504 controls from the Coronary ARtery DIsease Genome wide
Replication and Meta-analysis (CARDIoGRAM) plus the Coronary Artery Disease
(C4D) Genetics (CARDIoGRAMplusC4D) Consortium.19 Type 2 diabetes data are
from 50 775 cases of type 2 diabetes and 270 269 controls from European
Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct study,13 the
UK Biobank study,14 and the DIAbetes Genetics Replication And Meta-analysis

(DIAGRAM).15 In addition to the EPIC-InterAct study,13 the UK Biobank study,14

and DIAGRAM,15 type 2 diabetes association analyses of rs12916 at HMGCR
included 11 studies (4496 cases and 50 677 controls) previously reported by
Swerdlow et al.5 Therefore, the sample size of HMGCR genetic variants
association with type 2 diabetes was 55 271 cases of type 2 diabetes and
320 946 controls. All results are scaled to represent the odds ratio per 1-mmol/L
(38.7-mg/dL) genetically predicted reduction in LDL-C.
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tion with type 2 diabetes of LDL-C-lowering alleles at the
ABCG5/G8 and LDLR loci did not reach statistical signifi-
cance. There was no evidence of association with type 2 dia-
betes for missense variants predicted to be probably deleteri-
ous or protein truncating alleles in the HMGCR, PCSK9,
ABCG5, ABCG8 and LDLR genes (eTable 5 in the Supple-
ment), but the 95% CIs around the risk estimates were gener-
ally wide, reflecting the low prevalence of these genetic vari-
ants and the relatively small sample size of this analysis.

Evidence of Gene-Specific Associations
With Risk of Type 2 Diabetes
In analyses of the association with disease risk of a given ge-
netically predicted reduction in LDL-C, there was a similar re-
duction in coronary artery disease risk across genes (I2 for
heterogeneity in genetic associations = 0%, P = .93). How-
ever, for the same reduction in LDL-C, the association with type
2 diabetes risk differed by gene (I2 = 77.2%, P = .002). The dif-
ferent magnitudes and directions of association of LDL-C-
lowering alleles with continuous glycemic and anthropomet-
ric traits suggested gene-specific mechanisms underlying the
altered risk of type 2 diabetes (eFigure 6 in the Supplement).
For example, at the HMGCR locus there were associations with
BMI and waist-to-hip ratio, whereas at the PCSK9 locus there
were associations with higher fasting glucose levels and 2-hour
glucose levels (eFigure 6).

Discussion
In this meta-analysis, exposure to LDL-C-lowering genetic
variants in or near the NPC1L1 gene was associated with a
higher risk of type 2 diabetes. This finding is consistent
with the results of a small-scale open-label RCT showing
increased glycated hemoglobin in association with ezetimibe
treatment.30 Blazing et al31 reported that the addition of
ezetimibe to simvastatin for secondary cardiovascular pre-
vention in IMPROVE-IT resulted in a small and not statisti-
cally significant increase in risk of new-onset diabetes (9%
relative risk increase per 1-mmol/L [38.7-mg/dL] reduction in
LDL-C). However, the IMPROVE-IT results may not be suffi-
cient to rule out an effect of inhibiting NPC1L1 on diabetes
risk because (1) some of the effects of NPC1L1 inhibition may
be apparent only after several years of treatment; (2) the risk
of type 2 diabetes in individuals with a history of acute coro-
nary syndrome yet free from type 2 diabetes in IMPROVE-IT
may not reflect that of the general population on which this
genetic analysis is based; (3) limited compliance to drug
treatment, as observed in IMPROVE-IT,7 may dilute etiologi-
cal effect estimates. By analogy, the association of statin
treatment with higher risk of diabetes was only demonstrable
in a meta-analysis of several RCTs including more than
90 000 individuals.3 Therefore, these results warrant the
continued monitoring of the glycemic effects of ezetimibe in
RCTs and clinical practice, particularly in a primary preven-
tion setting.

The results of this study show that multiple LDL-C-
lowering mechanisms, including those mediated by the

molecular targets of available LDL-C-lowering drugs (ie, stat-
ins, ezetimibe, and proprotein convertase subtilisin/kexin
type 9 [PCSK9] inhibitors), are associated with adverse meta-
bolic consequences and increased type 2 diabetes risk. These
findings are consistent with other studies of the association
with type 2 diabetes of genetic scores aggregating multiple
polymorphisms affecting LDL-C and other lipid fractions.32

They are consistent with the observation that patients with
familial hypercholesterolemia are less likely to have type 2
diabetes.33 The genes that were associated both with lower
LDL-C levels and higher risk of type 2 diabetes have an effect
on LDL-C level by distinct pathways including cholesterol
absorption (NPC1L1),34 endogenous cholesterol synthesis
(HMGCR),35 and internalization of cholesterol-rich particles
into the cell (PCSK9).36,37 For a similar reduction in LDL-C,
the association with type 2 diabetes differed by gene, which
would be consistent with the mediation of their associations
by different mechanisms. Besseling et al33 have proposed
that an increased internalization of cholesterol into pancre-
atic beta cells may result in impaired secretion of insulin, a
hypothesis supported by murine experimental models.38

Alleles that lower LDL-C at HMGCR are associated with
higher levels of fasting insulin and BMI, suggesting an insulin
resistance-related mechanism.5 In contrast with early evi-
dence showing metabolic benefits of NPC1L1 knockout in
mice,39 recent studies suggest that its overexpression in the
liver may suppress gluconeogenesis and, therefore, that its
inhibition could perhaps enhance glucose production.40

Overall, these results indicate complex relationships between
the mechanisms that lead to lower LDL-C and metabolic risk.

Contrary to previous, smaller-scale investigations,41 there
were associations of the p.R46L variant in PCSK9 (rs11591147)
with a higher risk of type 2 diabetes, and higher fasting and
2-hour glucose. These associations have to be interpreted with
caution, given the level of statistical significance for the asso-
ciation and the context of multiple comparisons presented in
this study. This finding suggests that an effect of LDL-C-
lowering drugs on increased risk of diabetes might extend to
the newly developed PCSK9 inhibitors, encouraging further
genetic and clinical trial investigations.

In general, unlike the association of LDL-C-lowering alleles
with cardiovascular risk, the association of these alleles with
metabolic risk appears to be specific to particular genes, which
in turn might suggest that the adverse consequences of lipid-
lowering agents on diabetes risk could be specific to a particu-
lar drug target. This may have clinical implications for the fu-
ture of lipid-lowering therapy in the context of the increasing
number of approved drugs acting on different molecular tar-
gets. The overall safety profile of these drugs, including the
magnitude of risk of new-onset type 2 diabetes, may be rel-
evant to the choice of specific agent for subsets of the patient
population (eg, those at high risk for type 2 diabetes who are
candidates for lipid-lowering therapy).

A number of assumptions and potential limitations of the
genetic approach used in this study should be considered.
Mendelian randomization generally assumes that genetic vari-
ants are associated with the end point exclusively via the risk
factor of interest.16,17 The strong and specific association with
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LDL-C, the well-known role of target genes in LDL-C metabo-
lism and the use of conditionally distinct genetic variants at
given loci strengthen the validity of the genetic models used
in this study. Similar to previous examples,5,11,42 the aim of this
study was to use genetic variants that mimic the action of phar-
macological therapy and therefore pleiotropy (ie, the associa-
tion with variables other than LDL-C) may be more informa-
tive than concerning. For instance, HMGCR genetic variants
are associated with higher BMI, consistent with the effects on
body weight observed in RCTs of statins.5 However, the con-
sequences of modest reductions in LDL-C associated with LDL-
C-lowering alleles over several decades, as assessed in this
study, may differ from the short-term pharmacological inhi-

bition of a molecular target in RCTs or clinical practice. In ad-
dition, several of the included studies were population-
based and therefore association estimates from these studies
may not be applicable to patient groups in whom a particular
therapy is indicated.

Conclusions
In this meta-analysis, exposure to LDL-C-lowering genetic vari-
ants in or near NPC1L1 and other genes was associated with a
higher risk of type 2 diabetes. These data provide insights into
potential adverse effects of LDL-C-lowering therapy.
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