
elifesciences.org

RESEARCH ARTICLE

Stochastic modelling, Bayesian inference,
and new in vivo measurements elucidate
the debated mtDNA bottleneck
mechanism
Iain G Johnston1, Joerg P Burgstaller2,3, Vitezslav Havlicek4, Thomas Kolbe5,6,
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Abstract Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during

mammalian development through a highly debated mechanism called the mtDNA bottleneck.

Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We

produce a new, physically motivated, generalisable theoretical model for mtDNA populations during

development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using

approximate Bayesian computation and mouse data, we find most statistical support for

a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNA turnover,

meaning that the debated exact magnitude of mtDNA copy number depletion is flexible. New

experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical

predictions of this model. We analytically solve a mathematical description of this mechanism,

computing probabilities of mtDNA disease onset, efficacy of clinical sampling strategies, and effects

of potential dynamic interventions, thus developing a quantitative and experimentally-supported

stochastic theory of the bottleneck.

DOI: 10.7554/eLife.07464.001

Introduction
Mitochondria are vital energy-producing organelles within eukaryotic cells, possessing genomes

(mitochondrial DNA, mtDNA) that replicate, degrade and develop mutations (Rand, 2001; Wallace

and Chalkia, 2013). MtDNA mutations have been implicated in numerous pathologies including fatal

inherited diseases and ageing (Lightowlers et al., 1997; Wallace, 1999; Poulton et al., 2009;

Wallace and Chalkia, 2013). Combatting the buildup of mtDNA mutations is of paramount

importance in ensuring an organism’s survival. Substantial recent medical, experimental, and media

attention has focused on methods to remove (Bacman et al., 2013) or prevent the inheritance of

(Bredenoord et al., 2008; Poulton et al., 2009; Craven et al., 2010; Poulton et al., 2010;

Burgstaller et al., 2015) mutated mtDNA in humans.
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One means by which organisms may ameliorate the mtDNA damage that builds up through

a lifetime is through a developmental process known as bottlenecking. Immediately after fertilisation,

a single oocyte (which may contain >105 individual mtDNAs) may have a nonzero mtDNA mutant load

or heteroplasmy (the proportion of mutant mtDNA in the cell). As the number of cells in the

developing organism increases, the intercellular population then acquires an associated heteroplasmy

variance, that is, the variance in mutant load across the population of cells (Figure 1A), allowing

removal of cells with high heteroplasmy and retention of cells with low heteroplasmy. Intense and

sustained debate exists as to the mechanism by which this increase of heteroplasmy variance occurs.

Several experimental results in mice suggest that, during development, the copy number of mtDNA

per cell in the germ cell line drops dramatically to ∼102, reducing the effective population size of

mitochondrial genomes (Cree et al., 2008; Wai et al., 2008). One postulated bottlenecking

mechanism is that this low population size accelerates genetic drift and so increases the cell-to-cell

heteroplasmy variance (Bergstrom and Pritchard, 1998; Aiken et al., 2008; Cree et al., 2008;

Wonnapinij et al., 2010), which was first observed to generally increase from primordial germ cells

through primary oocytes to mature oocytes (Jenuth et al., 1996). However, independent

experimental evidence (Wai et al., 2008) suggests that heteroplasmy variance increases negligibly

during this copy number reduction, though this interpretation has been debated (Samuels et al.,

2010). Wai et al. (2008) shows heteroplasmy variance rising during folliculogenesis, after the mtDNA

copy number minimum has been passed. In yet another picture, supported by conflicting

experimental results (Cao et al., 2007, 2009), heteroplasmy variance increases with a less pronounced

eLife digest Mitochondria are structures that provide vital sources of energy in our cells. DNA

contained within mitochondria encodes important mitochondrial machinery, and most human cells

contain hundreds or thousands of mitochondrial DNA molecules in addition to the DNA that is stored

in the nucleus. Mitochondrial DNA is inherited from mothers via the egg, and the details of this

inheritance are poorly understood. This question is important because inherited mistakes in

mitochondrial DNA can have detrimental consequences on health, with links to fatal diseases and

many other conditions.

An unfertilised egg cell contains many copies of mitochondrial DNA molecules; some may have

mutations and some may not. After fertilisation, the egg divides, the number of cells in the

developing embryo increases, and the number of mitochondrial DNA molecules per cell changes. If

the original egg cell contained defective mitochondrial DNA, some of these new cells end up

containing more defective copies than others, leading to cell-to-cell differences in the developing

embryo. This potentially allows cells with the greatest number of defective mitochondria to be

eliminated. The increase in this cell-to-cell variability is called ‘bottlenecking’, and its mechanism

remains highly debated.

Johnston et al. have now used tools from maths, statistics and new experiments to address this

debate, in the light of several studies that measured the mitochondrial DNA content in developing

mice. This approach allowed a new theoretical model of mitochondrial DNA during the growth of an

organism to be produced, which encompasses a wide range of existing theories and allows them to

be compared. This model starts from the viewpoint that the hundreds or thousands of mitochondrial

DNA molecules in a cell can be thought of as a population undergoing random ‘birth’ and ‘death’,

and it allows the first statistical comparison of the many proposed bottleneck mechanisms.

Johnston et al. find support for two ways that cells segregate mitochondria as they multiply, and

show that the decrease in the number of mitochondrial DNA molecules during bottlenecking is

flexible. This reconciles a debate amongst previous studies. These findings are confirmed using new

experimental data from mice, which are genetically distinct from existing studies, illustrating the

generality of the model’s findings. Furthermore, an analytic mathematical description that describes

in detail how bottlenecking might work is produced.

Finally, Johnston et al. provide examples using this new theoretical model to suggest therapeutic

strategies for diseases caused by mitochondrial DNA mutations. Future work will need to test these

suggestions, and link mathematical understanding of mitochondria with healthcare data.
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decrease in mtDNA copy number (a minimum copy number >103 in mice), solely through random

effects associated with partitioning at cell divisions. Clearly a consensus on this important mechanism

is yet to be reached.

Important existing theoretical work on modelling the bottleneck has assumed a particular

underlying mechanism (Bergstrom and Pritchard, 1998; Wolff et al., 2011) or derived statistics of

mtDNA populations (Chinnery and Samuels, 1999; Elson et al., 2001; Wonnapinij et al., 2008,

2010) without explicitly considering changing mtDNA population size, or the discrete nature of the

mtDNA population: effects which may powerfully affect mtDNA statistics. To capture these effects it is

necessary to employ a ‘bottom-up’ physical description of mtDNA as populations of individual,

discrete elements subject to replication and degradation, as in, for example, (Chinnery and Samuels,

1999) and (Capps et al., 2003). Exploring the bottleneck also requires explicitly modelling

partitioning dynamics throughout a series of cell divisions, over which population size can change

dramatically. While previous simulation work (Cree et al., 2008; Poovathingal et al., 2009) has taken

such a philosophy with specific model assumptions, we are not aware of such a study allowing for the

wide variety of replication and partitioning dynamics proposed in the literature; we further note that

replication-degradation-partitioning mtDNA models are yet to be fully described analytically. Nor is

there a general quantitative framework under which different proposed bottleneck mechanisms can

be statistically compared given extant data (although statistical analyses focusing on particular

mechanisms and individual sets of experimental results have been used throughout the literature, for

example, using a Bayesian approach under a particular bottleneck model to infer model bottleneck

size [Marchington et al., 1998]). Combined developments in theory and inference are therefore

required to make progress on this important question.

We remedy this situation by constructing a general model (features and parameters described in

Figure 1) for the population dynamics of the bottleneck, able to describe the range of proposed

mechanisms existing in the literature. Using experimental data on mtDNA statistics through

development (Jenuth et al., 1996; Cao et al., 2007; Cree et al., 2008; Wai et al., 2008), we use

approximate Bayesian computation (Beaumont et al., 2002; Toni et al., 2009; Sunnåker et al., 2013;

Figure 1. The mitochondrial bottleneck, and elements of a general model for bottlenecking mechanisms. (A) The mitochondrial DNA (mtDNA) bottleneck

acts to produce a population of oocytes with varying heteroplasmies from a single initial oocyte with a specific heteroplasmy value. During development,

mtDNA copy number per cell decreases (by a debated amount, which we address; see Main text) then recovers, suggesting a ‘bottleneck’ of cellular

mtDNA populations. (B) Cellular mtDNA populations during the bottleneck are modelled as containing wildtype and mutant mtDNAs. MtDNAs can

replicate and degrade within a cell cycle, with rates λ and ν respectively. (C) At cell divisions, the mtDNA population is partitioned between two daughter

cells either deterministically, binomially, or through the binomial partitioning of mtDNA clusters. (D) Symbols used to represent quantities and model

parameters used in the Main text, and their biological interpretations.

DOI: 10.7554/eLife.07464.003

Johnston et al. eLife 2015;4:e07464. DOI: 10.7554/eLife.07464 3 of 44

Research article Computational and systems biology | Genes and chromosomes

http://dx.doi.org/10.7554/eLife.07464.003
http://dx.doi.org/10.7554/eLife.07464


Johnston, 2014) to rigorously explore the statistical support for each mechanism, showing that

random mtDNA turnover coupled with binomial partitioning of mtDNAs at cell divisions is highly

likely, and that the debated magnitude of mtDNA copy number reduction is somewhat flexible.

Subsequently, we confirm the predictions of this model by performing new experimental measure-

ments of heteroplasmy statistics in mice with an mtDNA admixture, including a wild-derived

haplotype, that is genetically distinct from previous studies. We then analytically solve the equations

describing mtDNA population dynamics under this mechanism and show that these results allow us to

investigate potential interventions to modulate the bottleneck (suggesting that upregulation of

mtDNA degradation may increase the power of the bottleneck to avoid inherited disease; we discuss

potential strategies for such an intervention) and yield quantitative results for clinical questions

including the timescales and probabilities of disease onset, and the efficacy of strategies to sample

heteroplasmy in clinical planning.

Results

A general mathematical model encompassing proposed bottlenecking
mechanisms
We will consider three different classes of proposed generating mechanisms for the mtDNA

bottleneck: those proposed in Cao et al. (2007); Cree et al. (2008) and Wai et al. (2008). We will

refer to these mechanisms by their leading author name. The Cree mechanism involves random

replication and degradation of mtDNAs throughout development, and binomial partitioning of

mtDNAs at cell divisions. The Cao mechanism involves partitioning of clusters of mtDNA at each cell

division, thus providing strong stochastic effects associated with each division. We consider a general

set of dynamics through which this cluster inheritance may be manifest, including the possibility of

heteroplasmic ‘nucleoids’ of constant internal structure (Jacobs et al., 2000), sets of molecules or

nucleoids within an organelle, homoplasmic clusters, and different possible cluster sizes (see

Appendix 1). The Wai mechanism involves the replication of a subset of mtDNAs during

folliculogenesis. We note that this latter mechanism can be manifest in several ways: (a) through

slow random replication of mtDNAs (so that, in any given time window, only a subset of mtDNAs will

be actively replicating) or (b) through the restriction of replication to a specific subset of mtDNAs at

some point during development. We will refer to these different manifestations as Wai (a) and Wai (b)

respectively. The Wai (a) mechanism and the Cree model can both be addressed in the same

mechanistic framework (with potentially different parameterisations): if the rate of random replication

in the Cree model is sufficiently low during folliculogenesis, only a subset of mtDNAs will be actively

replicating at any given time during this period, thus recapitulating the Wai (a) mechanism

(see Appendix 1). We will henceforth combine discussion of the Wai (a) and Cree mechanisms into

what we term the birth-death-partition (BDP) mechanism.

We seek a physically motivated mathematical model for the bottleneck that is capable of

reproducing each of these mechanisms. Our general model for the bottleneck (detailed description in

‘Materials and methods’) involves a ‘bottom-up’ representation of mtDNAs as individual intracellular

elements capable of replication and degradation (Figure 1B) with rates λ and ν respectively.

A parameter S determines whether these processes are deterministic (specific rates of proliferation) or

stochastic (replication and degradation of each mtDNA is a random event). These rates of replication

and degradation of mtDNA are likely strongly linked to mitochondrial dynamics within cells, through

the action of mitochondrial quality control (Twig et al., 2008; Hill et al., 2012) modulated by

mitochondrial fission and fusion (Detmer and Chan, 2007; Youle and van der Bliek, 2012; Hoitzing

et al., 2015), which can act to recycle weakly-perfoming mitochondria (Mouli et al., 2009; Twig and

Shirihai, 2011). This quality control can be represented through the degradation rates assigned to

each mtDNA species, which may differ (for selective quality control) or be identical (for non-selective

turnover).

The proportion of mtDNAs capable of replication is controlled by a parameter α in our model,

dictating the proportion of mtDNAs that may replicate after a cutoff time T. Thus, if α = 1, all mtDNAs

may replicate; if α < 1, replication of a subset proportion α of mtDNAs is enforced at this cutoff time.

At cell divisions, mtDNAs may be partitioned either deterministically, binomially, or in clusters

according to a parameter c (Figure 1C).
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The copy number of mtDNA per cell is observed to vary dramatically during development, with

dynamic phases of copy number depletion and different rates of subsequent recovery observed.

Additionally, cell divisions occur in the germline at different rates during development, with cells

becoming largely quiescent after primary oocytes develop. To explicitly model these different

dynamic regimes, and the behaviour of mtDNA copy number during each, we include six different

dynamic phases throughout development, each with different rates of replication and degradation

(labelled with subscript i labelling the dynamic phase: hence λ1, ν1,…,λ6, ν6), and allowing for different

rates of cell division or quiescence. This protocol enables us to explicitly model effects of changing

population size throughout development rather than assuming dependence on a single, coarse-

grained effective population size; and to include the effects of specific and varying cell doubling times.

A summary of symbols used in our model and throughout this article is presented in Figure 1D.

Our model, with suitable parameterisation, can thus mirror the dynamics of the Cree and Wai (a)

mechanisms (stochastic dynamics and binomial partitioning, which we refer to as the BDP mechanism);

the Cao mechanism (clustered partitioning); and Wai (b) mechanism (deterministic dynamics,

restricted subset of replicating mtDNAs). The Cao mechanism, partitioning of clusters of mtDNA

molecules, represents the expected case if mtDNA is partitioned in colocalised ‘nucleoids’ within each

organelle (or in other sub-organellar groupings). The size of mtDNA nucleoids is debated in the

literature (Bogenhagen, 2012; Kukat and Larsson, 2013; Wallace and Chalkia, 2013) (although

recent evidence from high-resolution microscopy suggests that nucleoid size is generally <2 (Jakobs

and Wurm, 2014), consonant with recent evidence that individual nucleoids may be homoplasmic

[Poe et al., 2010]); our model allows for inheritance of homoplasmic or heteroplasmic nucleoids of

arbitrary characteristic size c, thus allowing for a range of sub-organellar mtDNA structure. We discuss

the impact of mixed or fixed nucleoid content in Appendix 1.

A BDP model of mtDNA dynamics has most statistical support given
experimental measurements
We take data on mtDNA copy number in germ line cells in mice from three experimental studies (Cao

et al., 2007; Cree et al., 2008; Wai et al., 2008). We also use data from two experimental studies on

heteroplasmy variance in the mouse germ line during development (Jenuth et al., 1996; Wai et al.,

2008). These heteroplasmy variance studies employ intracellular combinations of the same pairing of

mtDNA haplotypes (NZB and BALB/c), modelling two different mtDNA types within a cellular

population. These data, by convention (Samuels et al., 2010), are normalised by heteroplasmy level h,

giving

V′ðhÞ= VðhÞ
EðhÞð1−EðhÞÞ; (1)

where normalised variance V′ðhÞ is a quantity that will be often used subsequently. This normalised

variance controls for the effect of different or changing mean heteroplasmy, and thus allows

a comparison of heteroplasmy variance among samples with different mean heteroplasmies and

subject to heteroplasmy change with time. We use a time of 100 dpc to correspond to mature oocytes

(see ‘Materials and methods’). We take data on cell doubling times from a classical study (Lawson and

Hage, 1994) (see ‘Materials and methods’). A possible summary of these data (although they provoke

ongoing debate; see ‘Discussion’) is that, as shown in Figure 2A, the existing data on normalised

heteroplasmy variance shows initially low variance until ∼7.5 dpc (days post conception, which we use

as a unit of time throughout), rising to intermediate values between 7.5 and 21 dpc, gradually rising

further subsequently to become large in the mature oocytes of the next generation. In Figure 2A, and

throughout this article, experimentally measured data will be depicted as circular or polygonal points,

and inferred theoretical behaviour will be depicted as lines or shaded regions.

Figure 2A shows mtDNA population dynamic trajectories resulting from optimised parameter-

isations of each of the mechanisms we consider (see ‘Materials and methods’). In Figure 2B we show

posterior probabilities on each of these mechanisms. These posterior probabilities give the inferred

statistical support for each mechanism, derived from model selection performed with approximate

Bayesian computation (ABC) (Beaumont et al., 2002; Toni et al., 2009; Sunnåker et al., 2013;

Johnston, 2014) using uniform priors. ABC involves choosing a threshold value dictating how close

a fit to experimental data is required to accept a particular model parameterisation as reasonable. In
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our case, this goodness-of-fit is computed using a comparison of squared residuals associated with

the trajectories of mean mtDNA copy number and normalised heteroplasmy variance (see ‘Materials

and methods’ and Appendix 1). Each of the experimental measurements corresponds to a sample

variance, derived from a finite number of samples of an underlying distribution of heteroplasmies, and

therefore has an associated uncertainty and sampling error (Wonnapinij et al., 2010). The reasonably

small sample sizes used in these sample variance measurements are likely to underestimate the

underlying heteroplasmy variance (the target of our inference). Our ABC approach naturally addresses

these uncertainties by using summary statistics derived from sampling a set of stochastic incarnations

of a given model, where the size of this set is equal to the number of measurements contributing to

the experimentally-determined statistic (see ‘Materials and methods’). Figure 2B clearly shows that as

the ABC threshold is decreased, requiring closer agreement between the distributions of simulated

and experimental data, the posterior probability of the BDP model increases, to dramatically exceed

those of the other models. This increase indicates that the BDP model is the most statistically

supported, and capable of providing the best explanation of experimental data (which can be

inutitively seen from the trajectories in Figure 2A). We note that ABC model selection automatically

Figure 2. Different mechanisms for the mtDNA bottleneck. (A) Trajectories of mean copy number EðmÞ and

normalised heteroplasmy variance VðhÞ arising from the models described in the text, optimised with respect to

data from experimental studies. Birth-death-partition (BDP) denotes the BDP model, encompassing Cree and Wai

(A) mechanisms. Left plots show trajectories during development; right plots show behaviour in mature oocytes in

the next generation. * denotes measurements in mature oocytes, modelled as 100 dpc (see ‘Materials and

methods’). (B) Statistical support for different mechanisms from approximate Bayesian computation (ABC) model

selection with thresholds ϵ1,2,3,4 = 75, 60, 50, 45. As the threshold decreases, forcing a stricter agreement with

experiment (thinner, darker columns), support converges on the BDP model.

DOI: 10.7554/eLife.07464.004
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takes model complexity into account, and conclude that the BDP mechanism is the best supported

proposed mechanism for the bottleneck. Briefly, this result arises because the BDP model produces

increasing variance both due to early cell division stochasticity and later random turnover. By contrast,

the Cao model alone only increases variance in early development when cell divisions are occurring.

Qualitatively, this behaviour through time holds regardless of cluster (nucleoid) size and regardless of

whether clusters are heteroplasmic or homoplasmic (allowing heteroplasmic clusters decreases the

magnitude of heteroplasmy variance but not its behaviour through time, see Appendix 1). The Wai (b)

model alone similarly only increases variance at a single time point (later, during folliculogenesis).

In Wai et al. (2008), visualisations of cells after BrU incorporation show that a subset of

mitochondria retain BrU labelling, which the authors suggest indicates that a subset of mtDNAs are

replicating. In Appendix 1, we show that the BDP model also results in the observation of only

a subset of replicating mtDNAs over the timeframe corresponding to these experimental results.

These observations thus correspond to results expected from the random turnover from the BDP

model. We also note the mathematical observation that the Wai (b) mechanism requires the

replication of <1% of mtDNAs during folliculogenesis to yield reasonable heteroplasmy variance

increases (Figure 2A shows the optimal case with α = 0.006; optimal fits to data generally show 0.005

< α < 0.01), and the proportions of loci visible in Wai et al. (2008) are substantially higher than this

required 1% value.

We show in Appendix 1 that the heteroplasmy statistics corresponding to binomial partitioning

also describe the case where the elements of inheritance are heteroplasmic clusters, where the

mtDNA content of each cluster is randomly sampled from the population of the cell (either once, as an

initial step, or repeatedly at each division). This similarity holds broadly, regardless of whether the

internal structure of clusters is constant across cell divisions or allowed to mix between divisions. The

BDP model, in addition to describing the partitioning of individual mtDNAs, also thus represents the

statistics of mtDNA populations in which heteroplasmic nucleoids are inherited (Jacobs et al., 2000),

or individual organelles containing a mixed set of mtDNAs or nucleoids are inherited, regardless of

the size of these nucleoids (see ‘Discussion’).

Parameterisation and interpretation of the BDP model
Having used ABC model selection to identify the BDP model as the most statistically supported, we

can also use ABC to infer the values of the governing parameters of this model given experimental

data. Figure 3A,B shows the trajectories of mean copy number and mean heteroplasmy variance

resulting from model parameterisations identified through this process. Figure 3C shows the inferred

behaviour of mtDNA degradation rate ν in the model, a proxy for mtDNA turnover (as the copy

number is constrained). Turnover is generally low during cell divisions, allowing heteroplasmy variance

to increase due to stochastic partitioning. Turnover then increases later in germ line development,

resulting in a gradual increase of heteroplasmy variance after birth until the mature oocytes form in

the next generation.

Figure 3D shows posterior distributions on the copy number minimum and total turnover (see

‘Materials and methods’) resulting from this process; posteriors on all other parameters are shown in

Appendix 1. Substantial flexibility exists in the magnitude of the copy number minimum, illustrating that

observed heteroplasmy variance can result from a range of bottleneck sizes from ∼200 to >103; going

some way towards reconciling the conflict between Cao et al. (2007) and Cao et al. (2009) and Cree

et al. (2008) andWai et al. (2008). The total amount of mtDNA turnover (presented as σ =∑​ 6
i=3νiτ′i , the

product of turnover rate and the time for which this rate applies, summed over quiescent dynamic

phases; for example, a turnover rate of 0.1 hr−1 for 30 days yields σ = 0.1 × 24 × 30 = 72) is constrained

more than the specific trajectory of mtDNA turnover rates, showing that a variety of time behaviours of

turnover are capable of producing the observed heteroplasmy behaviour.

Experimental verification of the BDP model
The bottleneck mechanism identified through our analysis has several characteristic features which

facilitate experimental verification. Key among these are the prediction that heteroplasmy variance

acquires an intermediate (nonzero, but not maximal) value as a result of the copy number bottleneck,

then continues to increase due to mtDNA turnover in later development. Our theory also produces

quantitative predictions regarding the structure of heteroplasmy distributions at arbitrary times.
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The existing data that we used to perform inference and model selection display a degree of

internal heterogeneity, coming from several different experimental groups. Furthermore, these data

represent statistics resulting from a single pairing of mtDNA types, and it is thus arguable how

conclusions drawn from them may represent the more genetically diverse reality of biology.

Burgstaller et al. (2014) recently addressed this issue of a limited number of mtDNA pairings by

producing novel mouse models involving mixtures of standard and several new, unexplored, wild-

derived haplotypes which capture a range of genetic diversity. To test the applicability and generality

of our predictions, we have perfomed new experimental measurements of germline heteroplasmy

variance in these model animals under a consistent experimental protocol (see ‘Materials and

methods’). We use the ‘HB’ mouse line from Burgstaller et al. (2014) pairing a wild-derived mtDNA

haplotype (labelled ‘HB’ after its source in Hohenberg, Germany) with C57BL/6N; we refer to this

model as ‘HB’.

Heteroplasmy measurements were taken in oocytes sampled from mice at ages 24–61 dpc (see

‘Materials and methods’ and Appendix 1; raw data in Figure 4—source data 1). The statistics of these

measurements yielded EðhÞ, VðhÞ and V′ðhÞ as previously. This age range was chosen to address the

regions with most power to discriminate between the competing models; the existing V′ðhÞ data is

most heterogeneous around 20–30 dpc and the later datapoints allow us to detect developmental

heteroplasmy behaviour after the copy number minimum. Figure 4A shows these V′ðhÞ measure-

ments. The qualitative behaviour predicted by the BDP mechanism is clearly visible: variance around

birth (after the copy number bottleneck) is low but non-zero, subsequently increasing with time. The

ability of the BDP model to account for the magnitudes and time behaviour of heteroplasmy variance

Figure 3. Parameterisation of the BDP model and inferred details of bottleneck mechanism. Trajectories of (A) mean

copy number EðmÞ and (B) normalised heteroplasmy variance V′ðhÞ resulting from BDP model parameterisations

sampled using ABC with a threshold ϵ = 40. * denotes measurements in mature oocytes, modelled as 100 dpc (see

‘Materials and methods’). Note: the range in (B) does not correspond to a credibility interval on individual

measurements, but rather on an expected underlying (population) variance, from which individual variance

measurements are sampled. We thus expect to see, for example, several measurements lower than this range due to

sampling limitations (see text). (C) Posterior distributions on mtDNA turnover ν with time. (D) Posterior distribution

on min EðmÞ, the minimum mtDNA copy number reached during development. (E) Posterior distribution on

σ =∑​ 6
i=3τ′iνi , a measure of the total amount of mtDNA turnover.

DOI: 10.7554/eLife.07464.005

Johnston et al. eLife 2015;4:e07464. DOI: 10.7554/eLife.07464 8 of 44

Research article Computational and systems biology | Genes and chromosomes

http://dx.doi.org/10.7554/eLife.07464.005
http://dx.doi.org/10.7554/eLife.07464


Figure 4. Predictions and experimental verification of the BDP model. (A) New V′ðhÞ measurements from the HB

mouse system, with optimised fits for the BDP, Wai (b) and Cao models. (B) Posterior probabilities of each model

given this data under decreasing ABC threshold: ϵ = {50, 40, 30, 25}. (C) All V′ðhÞ measurements from the HB model

(points) with inferred V′ðhÞ behaviour from ABC applied to the BDP model (red curves). As in Figure 3, this range

Figure 4. continued on next page
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more satisfactorily than the alternative models is shown by the model fits in Figure 4A. We explored

these new data quantitatively through the same model selection approach used for the existing data.

As shown in Figure 4B, the BDP mechanism again experiences by far the strongest statistical support

in this genetically different system.

Figure 4C shows the result of our parameteric inference approach using these V′ðhÞ measurements

coupled with the EðmÞ measurements used previously (employing our assumption that modulation of

copy number by heteroplasmy in this non-pathological haplotype is small). Strikingly, the quantitative

behaviour of V′ðhÞ with time inferred from the HB model (red) matches the previous behaviour inferred

from the NZB/BALB/c system (blue) very well, suggesting that our theory is applicable across a range of

genetically distinct pairings. We note that the shaded region in Figure 4C corresponds to credibility

intervals around the mean behaviour of V′ðhÞ, and the fact that individual V′ðhÞ datapoints (subject to
fluctuations and sampling effects) do not all lie within these intervals is not a signal of poor model choice.

An analogous situation is the observation of a scatter of datapoints outside the range of the standard

error on the mean (s.e.m.), which does not imply a mistake in the s.e.m. estimate. The difference

between the trace in Figure 4A and the mean curve in Figure 4C arises because Figure 4A shows the

behaviour of the model under a single, optimised parameterisation, whereas Figure 4C shows the

distribution of model behaviours over the posterior distributions on parameters: the meanV′ðhÞ trace of

this distribution is comparable but not equivalent to that from the single best-fit parameterisation.

To confirm more detailed predictions of our model, we also examined the specific distributions of

heteroplasmy in our new measurements. Given a mean heteroplasmy and an organismal age, the

parameterised BDP model predicts the structure of the heteroplasmy distribution (see ‘Materials and

methods’ and next section). We parameterised the model using V′ðhÞ values from a subset of half of

the new measurements (chosen by omitting every other sampled set when ordered by time).

Figure 4D shows a comparison of measured heteroplasmy distributions with a 95% bound from the

parameterised BDP model. We then tested the predictions of the parameterised model against the

other half of new measurements. 8 of the test measurements (2.4%) fell outside the inferred 95%

bound from the training dataset, illustrating a good agreement with distributional predictions.

The Anderson-Darling test was used to compare the distribution of heteroplasmy in sampled oocytes

with distributions predicted by our theory (given age and mean heteroplasmy); no set of samples

showed significant (p < 0.05) departures from the hypothesis that the two distributions were identical.

Some example distributions are presented in Figure 4D (i), (ii), (iii).

The BDP model is analytically tractable
Importantly, the BDP model yields analytic solutions for the values of all genetic properties of

interest, using tools from stochastic processes (detail in ‘Materials and methods’ and Appendix 1).

These results facilitate straightforward further study and fast predictions of timescales and

probabilities of interest. The full theoretical approach is detailed in Appendix 1, and equations for

Figure 4. Continued

does not correspond to a credibility interval on individual measurements, but rather on an expected underlying

(population) variance, from which individual variance measurements are sampled. The inferred behaviour strongly

overlaps with the inferred behaviour for the BALB/c system (blue curves), suggesting that the BDP model applies to

a genetically diverse range of systems. (D) Heteroplasmy distributions. The transformation

h′=−ln
��ðh−1 − 1ÞEðhÞ=ð1−EðhÞÞ�� (Burgstaller et al., 2014) is used to compare distributions with different mean

heteroplasmy. Red jitter points are samples from sets used to parameterise the BDP model; red curves show the

95% range on transformed heteroplasmy with time inferred from these samples. Blue jitter points are samples

withheld independent from this parameterisation; their distributuions fall within the independently inferred range.

Insets show, in untransformed space, distributions of the withheld heteroplasmy measurements (blue) compared to

parameterised predictions (red); no withheld datasets show significant support against the predicted distribution

(Anderson-Darling test, p < 0.05).

DOI: 10.7554/eLife.07464.006

The following source data is available for figure 4:

Source data 1. Individual heteroplasmy measurements in the HB mouse model contributing to the new

heteroplasmy variance data used to test our theory.

DOI: 10.7554/eLife.07464.007
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the mean and variance of mtDNA populations and heteroplasmy are given in the Methods. In

Figure 2A we illustrate that these analytic results provide an excellent match to the numeric results

of stochastic simulation, a result that holds across all BDP model parameterisations. It is also

straightforward to calculate the fixation probability Pðm=0Þ, which allows us to characterise all

heteroplasmy distributions that arise from the bottlenecking process, even when highly skewed (see

‘Materials and methods’ and Appendix 1). We have thus obtained analytic solutions for the time

behaviour of mtDNA copy number and heteroplasmy throughout the bottleneck with no

assumptions of continuous population densities or fixed population size, under a physical model

with the most statistical support given experimental data.

Mitochondrial turnover, degradation, and selective pressures exert
quantifiable influence on heteroplasmy variance
We can use our theory to explore the dependence of bottleneck dynamics on specific biological

parameters. We first explore the effects of modulating mtDNA turnover by varying λ and ν in concert,

corresponding to an increase in mtDNA degradation balanced by a corresponding increase in mtDNA

replication. This increased mtDNA turnover increases the heteroplasmy variance (see Figure 5A) due

to the increased variability in mtDNA copy number from the underlying random processes occurring

at increased rates. We find that increasing mtDNA degradation ν without increasing λ also increases

heteroplasmy variance, in addition to decreasing the overall mtDNA copy number (Figure 5B).

Applying this unbalanced increase in mtDNA degradation without a matching change in replication

has a strong effect on mtDNA dynamics as it corresponds to a universal change in the ‘control’ applied

to the system, analogous, for example, to changing target copy numbers in manifestations of relaxed

replication (Chinnery and Samuels, 1999). The simple model we use does not include feedback, and

controls mtDNA dynamics solely through kinetic parameters. Perturbing the balance of these

parameters thus strongly affects the expected behaviour of the system. As we discuss later,

elucidation of the specific mechanisms by which control is manifest in mtDNA populations will require

further research, but these numerical experiments attempt to represent the cases where

a perturbation is naturally compensated for (matched changes, Figure 5A) and where it is not

(unbalanced change, Figure 5B).

These results suggest that an artificial intervention increasing mitochondrial degradation may

generally be expected to increase heteroplasmy variance during development. An increase in mtDNA

degradation is expected to either directly increase heteroplasmy variance (Figure 5B) if mtDNA

populations are weakly controlled, or to provoke a compensatory, population-maintaining increase in

mtDNA replication, thus increasing mtDNA turnover, which also acts to increase variance (Figure 5C) if

mtDNA populations are subject to feedback control. The increase in variance through either of these

pathways will increase the power of cell-level selection to remove cells with high heteroplasmy and thus

purify the population. For this reason, we speculate that mitochondrial degradation may represent

a potential clinical target to address the inheritance of mtDNA disease (more detail in Appendix 1).

Our model also allows us to explore the effect of different mtDNA types experiencing different

selective pressures, by setting λ1 ≠ λ2 (mutant mtDNA experiences a proliferative advantage or

disadvantage). Such a selective difference causes changes in both mean heteroplasmy and

heteroplasmy variance, as shown in Figure 5C (e.g., if heteroplasmy decreases towards zero,

heteroplasmy variance will also decrease, as the wildtype is increasingly likely to become fixed). We

do not focus further on selection in this study, noting that selective pressures are likely to be specific

to a given pair or set of mtDNA types and are not generally characterised well enough to perform

satisfactory inference. However, we do note that our theory gives a straightforward prediction for the

functional form of mean heteroplasmy when nonzero selection is present, a sigmoid with slope set by

the fitness difference (see ‘Materials and methods’).

Probabilities of exceeding threshold heteroplasmy values
A key feature of mtDNA diseases is that pathological symptoms usually manifest when heteroplasmy

in a tissue exceeds a certain threshold value, with few or no symptoms manifested below this

threshold (Rossignol et al., 2003). The probability and timescale with which cellular heteroplasmy

may be expected to exceed a given value is thus a quantity of key interest in clinical planning of

mtDNA disease strategies.
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In our model, the probability, as a function of time, of a cell containing m1 wildtype and m2 mutant

mtDNAs can be straightforwardly derived. The resultant analytic expression involves a hypergeometric

function, also an important mathematical element in expressions describing mtDNA statistics based

on classical population genetics (Kimura, 1955;Wonnapinij et al., 2008). The probability of obtaining

a given heteroplasmy can therefore be computed as a sum over all copy number states that

correspond to that heteroplasmy. However, as hypergeometric functions are comparatively

unintuitive and computationally expensive, we here employ an approximation to the distribution of

heteroplasmy based upon the above moments that are straightforwardly calculable from our model.

This approximation involves fixation probabilities for each mtDNA type and a truncated Normal

distribution for intermediate heteroplasmies (see ‘Materials and methods’). In Appendix 1 we show

that this approximation corresponds well to the exact distributions calculated using the hyper-

geometric function. We underline that exact heteroplasmy distributions are straightfoward to

compute using our approach: we use the truncated Normal approximation as it represents the exact

distribution well, is more intuitively interpretable, and is computationally very inexpensive.

Figure 5. Quantitative influences and clinical results from our bottlenecking model. (A–C) Trajectories of copy

number EðmÞ and normalised heteroplasmy variance V′ðhÞ resulting from perturbing different physical parameters.

Trajectory C labels the ‘control’ trajectory resulting from a fixed parameterisation; black dots show experimental

data; * denotes measurements from primary oocytes, modelled at 100 dpc. (A) Increasing (T+) and decreasing (T−)

mtDNA turnover (both mtDNA replication and degradation) by 20%. (B) Increasing (M+) and decreasing (M−) mtDNA

degradation throughout development by a constant value (2 × 10−4, in units of day−1), while keeping replication

constant. (C) Applying a positive (S+) and negative (S−) selective pressure to mutant mtDNA by 5 × 10−6 day−1.

(D) Probability of crossing different heteroplasmy thresholds h* with time, starting with initial heteroplasmy h0 = 0.3.

(E) Probability distributions over embryonic heteroplasmy h given a measurement hm from preimplantation sampling

(** hm = 0.1; *** hm = 0.4) at different times.

DOI: 10.7554/eLife.07464.008
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Using this approach, the probability with time of a cell exceeding a threshold heteroplasmy h* can

be straightforwardly computed for any initial heteroplasmy, allowing rigorous quantitative elucidation

of this important clinical quantity (see ‘Materials and methods’). Figure 5D illustrates this computation

by showing the analytic probability with which thresholds h* = 0.4, 0.5, 0.6 are exceeded at a time t,

given the example initial heteroplasmy h = 0.3. These results serve as a simple example of the power

of our modelling approach: any other specific case can readily be addressed. Our theory thus allows

general quantitative calculation of the probability (and timescale) that any given heteroplasmy

threshold will be exceeded, given knowledge of the initial (or early) heteroplasmy.

Developmental sampling of embryonic heteroplasmy
We next turn to the question of estimating heteroplasmy levels in a developed organism by sampling

cells during development. This principle, clinically termed preimplantation genetic diagnosis

(Steffann et al., 2006; Poulton et al., 2009), assists in clinical planning by allowing inference of

the specific heteroplasmic nature of the embryo itself rather than a population average of an affected

mother’s oocytes (Treff et al., 2012). However, the complicated and stochastic nature of the

bottleneck makes this inference a challenging problem.

Given a heteroplasmy measurement from sampling hm, accurate preimplantation diagnosis is

contingent on knowledge of the distribution PðhjhmÞ, that is, the probability that the embryonic

heteroplasmy is h given that a measurement hm has been made. We can use our modelling framework

and Bayes’ theorem (see ‘Materials and methods’) to obtain a formula for this conditional probability,

allowing a rigorous probability to be assigned to inferences from preimplantation sampling. Here, as

above, we employ the truncated Normal approximation for the heteroplasmy distribution, noting that

the exact treatment using hypergeometric functions is straightforward but more computationally

expensive. Figure 5E illustrates this process by showing the probability distributions on embryonic

heteroplasmy when measurements hm = 0.1 or 0.4 have been taken at different times during

development. The increasing heteroplasmy variance through development means that substantially

greater uncertainty is associated with heteroplasmy values inferred using measurements taken at later

times. In conclusion, although care must be taken in applying this reasoning to cell types in which, for

example, mitochondrial and cell turnover rates differ from those assumed here, or differentiation

leads to tissue-specific selective factors acting on the mtDNA population, this formalism provides

a general means of rigorously inferring embryonic heteroplasmy through genetic diagnosis sampling.

Discussion
We have used a general stochastic model and approximate Bayesian computation with the available

experimental data on developmental mtDNA dynamics to show that the bottleneck is most likely

manifest through stochastic mtDNA dynamics and partitioning, with increased random turnover later

during development, a mechanism which we can describe exactly and analytically (Figure 6). We

emphasise that the bottom-up construction of our model from physical first principles both increases

the flexibility and generality of our model, allowing different mechanisms to be compared together,

and providing information on mtDNA dynamics throughout development rather than estimating an

overall effect. We note that even though our model cannot represent the full microscopic truth

underlying the mtDNA bottleneck, its ability to recapitulate the wide range of extant experimental

measurements suggest that its study may yield useful insights into the effects of different treatments

and perturbations on the bottleneck.

A key debate in the literature has focussed on the magnitude of the bottleneck. Some studies

(Aiken et al., 2008; Cree et al., 2008) have observed a depletion of mtDNA copy number during the

bottleneck to minima around several hundred; other studies (Cao et al., 2007, 2009) have observed

that mtDNA copy number remains >103. Our study shows that observed increases in heteroplasmy

variance (Jenuth et al., 1996;Wai et al., 2008) can be achieved across this range of potential minimal

mtDNA copy numbers, meaning that the much-debated magnitude of mtDNA copy number

reduction is not the sole critical feature of the bottleneck, in agreement with arguments from Cao

et al. (2007, 2009); Wai et al. (2008). We find that the role of stochastic mtDNA dynamics can play

a key role in determining heteroplasmy variance without additional mechanistic details, in keeping

with approaches proposed by Cree et al. (2008). The mechanism with the most statistical support is

thus consistent with aspects from all existing proposals in the literature.
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We have shown that, of the models proposed in the literature, a BDP model, proposed after

Cree et al. (2008) and compatible with an interpretation of Wai et al. (2008), is the individually most

likely mechanism, and capable of producing experimentally observed heteroplasmy behaviour. We

cannot, given current experimental evidence, discount hybrid mechanisms, where BDP dominates the

population dynamics but small contributions from other mechanisms provide perturbations to this

behaviour, and propose experiments to conclusively distinguish between these cases (see Appendix

1). As the expected statistics of mtDNA populations undergoing inheritance of heteroplasmic mtDNA

clusters is very similar to those undergoing binomial partitioning of mtDNAs (see Appendix 1), the

inheritance of heteroplasmic nucleoids (as opposed to individual mtDNAs) is not excluded by our

findings, though other recent experimental evidence suggests that this situation may be unlikely

(Poe et al., 2010; Jakobs and Wurm, 2014). We contend that the most likely situation may involve

the partitioning of individual organelles, containing a mixture of homoplasmic nucleoids of

characteristic size <2. Notably, this case (inheritance of heteroplasmic groups, likely with fluid

structure due to mixing of organellar content and mitochondrial dynamics), gives rise to statistics

which our binomial model reproduces (see Appendix 1).

As mentioned in the model description, it is likely that mitochondrial dynamics (fission and fusion of

mitochondria) (Detmer and Chan, 2007) play a role in determining natural mtDNA turnover, and

Figure 6. Model for the mtDNA bottleneck. A summary of our findings. (A) There is most statistical support for

a bottlenecking mechanism whereby mtDNA dynamics is stochastic within a cell cycle, involving random replication

and degradation of mtDNA, and mtDNAs are binomially partitioned at cell divisions. (B) This mechanism results in

heteroplasmy variance increasing both due to stochastic partitioning at divisions and due to random turnover. The

absolute magnitude of the copy number bottleneck is not critical: a range of bottleneck sizes can give rise to

observed dynamics. Random turnover of mtDNA increases heteroplasmy variance through folliculogenesis and

germline development.

DOI: 10.7554/eLife.07464.009
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particularly mtDNA turnover in the presence of pathological mutations (Nunnari and Suomalainen, 2012),

through the mechanism of mitochondrial quality control (Twig et al., 2008; Twig and Shirihai, 2011).

Mitochondrial dynamics may also influence the elements of partitioning, through changes in the

connectivity of the mitochondrial network. In our current model, these influences are coarse-grained into

descriptions of the dynamic rates of mtDNA replication and degradation, and the characteristic elements

that are partitioned at divisions. These physical parameters, as opposed to the more microscopic details of

mitochondrial dynamics, are expected to be the key determinants of heteroplasmy statistics through

development. Accounting for how these parameters, which summarize the relevant outputs of

mitochondrial dynamics, connect to details of microscopic models of mitochondrial dynamics is an

important future research direction to be addressed when more quantitative data is available.

The experimental data used to parameterise the first part of our study was taken from four studies

in mice. Observation of similar dynamics in salmon (Wolff et al., 2011) points towards the bottleneck

being a conserved mechanism in vertebrates. We also note that our results in mice are broadly

consistent with findings from recent experiments in other organisms, suggesting that in primates and

humans, heteroplasmy variance may increase at early developmental stages (Monnot et al., 2011;

Lee et al., 2012), and that partitioning of mitochondria is binomial in HeLa cells (Johnston et al.,

2012). As more studies become available on human mtDNA behaviour during development we will

test our model’s applicability and its clinical predictions. We note that the results of a recent study of

human preimplantation sampling (Treff et al., 2012) found that earlier measurements provided

strong predictive power of mean heteroplasmy, about which substantial variation was recorded in the

offspring—both of which results are consistent with the application of our model to theoretical

sampling considerations. In addition, recent observations that the m.3243A > G mutation in humans

both increases mtDNA copy number during development (Monnot et al., 2013), and displays a less

pronounced increase of heteroplasmy variance (Monnot et al., 2011) than other mutations, are

consistent with the link between heteroplasmy variance and mtDNA copy number in our theory.

The combination of modern stochastic and statistical treatments that we have employed provides

a generalisable and powerful way to recapitulate experimental data and rigorously deduce underlying

biological mechanisms. We have used this combination to explore pertinent questions regarding the

mtDNA bottleneck (and others have used a similar philosophy to numerically explore mtDNA point

mutations [Poovathingal et al., 2009]): we hope to convince the reader that such methodology may

be appropriate to explore other problems involving stochastic biological systems. We have used new

experimental measurements to confirm our theoretical findings, illustrating the beneficial and

powerful coupling of mathematical and experimental approaches to address competing hypotheses

in the literature. Our detailed elucidation of the bottleneck allows us to propose further experimental

methodology to address the current unknowns in our theory, including the specifics of mtDNA

partitioning at cell division and the roles of selective differences between mtDNA types; importantly,

we also propose a strategy to investigate our claim that our most supported model is compatible with

the subset-replication picture of mtDNA dynamics. We list these experiments in full in Appendix 1.

Finally, we believe that the theoretical foundation for mtDNA dynamics that we have produced allows

increased quantitative rigour in the predictions and strategies involved in mtDNA disease therapies,

illustrated by the above application of our theory to problems in mtDNA sampling strategies, disease

onset timescales, and interventions to increase the power of the bottleneck.

Materials and methods

General model for mtDNA dynamics
Our ‘bottom-up’ model represents individual mtDNAs as elements which replicate and degrade either

randomly or deterministically according to the model parameterisation. Consonant with experimental

studies showing that it is often a single mutant genotype that dominates the non-wildtype mtDNA

population of a cell (Khrapko et al., 1999), we consider two mtDNA types (wildtype and mutant),

though our model can readily be extended to more mtDNA types. We denote the number of ‘wild-

type’ mtDNAs in a cell as m1 and the number of ‘mutant’ mtDNAs as m2. The heteroplasmy of a cell is

then h=
m2

m1 +m2
, that is, the population proportion of mutant mtDNA.
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MtDNA dynamics within a cell cycle
Individual mtDNAs are capable of replication and degradation, with rates denoted λ and ν

respectively. According to a binary categorical parameter S, these events may be deterministic (S = 0;

the mtDNA population replicates and degrades by a fixed amount per unit time) or Poisson processes

(S = 1; each individual mtDNA randomly replicates and degrades with average rates λ and ν).

A parameter α controls the proportion of mtDNAs capable of replication: α = 1 allows all mtDNAs to

replicate throughout development, α < 1 enforces a subset proportion α of replicating mtDNAs a time

cutoff T after conception.

MtDNA dynamics at cell divisions
A parameter c (cluster size; a non-negative integer) dictates the partitioning of mtDNAs at cell

divisions. When c = 0, partitioning is deterministic, so each daughter cell receives exactly half of its

parent’s mtDNA. For c > 0, partitioning is stochastic. When c = 1, partitioning is binomial: each

mtDNA has a 50% chance of being inherited by either daughter cell. When c > 1, the parent cell’s

mtDNAs are grouped in clusters of size c before division. Each cluster is then partitioned binomially,

with a 50% chance of being inherited by either daughter cell.

Different dynamic phases through development
The mtDNA population changes in different ways as development progresses, first decreasing, then

recovering, then slowly growing. We include the possibility of different ‘phases’ of mtDNA dynamics

in our model to capture this behaviour. Each phase j has its own associated pairs of λj, νj parameters

and may either be quiescent (involving no cell divisions) or cycling (encompassing nj cell divisions).

Thus, we may have an initial cycling phase with low mtDNA replication rates, so that copy number falls

for several cell divisions, then a subsequent ‘recovery’ cycling phase with higher replication rates so

that mtDNA levels are amplified, then quiescent phases as cell lineages are identified. We allow six

different phases, with the first two fixed as cycling phases with the above doubling times, and the final

phase fixed to include no mtDNA replication (representing the stable, final occyte state).

Initial conditions
The initial conditions of our model involve an initial mtDNA copy numberm0 (the total number of mtDNAs

in the fertilised oocyte) and an initial heteroplasmy h0 (the fraction of these mtDNAs that are mutated).

Data acquisition
We used three datasets for mtDNA copy number during mouse development: Cao et al. (2007); Cree

et al. (2008); and Wai et al. (2008). We use two datasets for heteroplasmy variance during

development: Wai et al. (2008) and Jenuth et al. (1996). By convention, we use the normalised

versions of heteroplasmy variance (i.e., measured variance divided by a factor h(1 − h)). Where the

measurements were not given explicitly in these publications, we manually analysed the appropriate

figures to extract the numerical data. For these values, we used data from correspondence regarding

the Wai study (reply to [Samuels et al., 2010]), and manually normalise the Jenuth dataset. The Jenuth

dataset contains measurements taken in ‘mature oocytes’ with no time given; we assume a time of

100 dpc for these measurements, though this time is generalisable and does not qualitatively affect

our results. All values are presented in Appendix 1. Data on cell doubling times in the mouse germ line

is taken from Lawson and Hage (1994), suggesting that doubling times start with an interval of every

7 hr, then after around 8.5 days post conception (dpc) increase to 16 hr, before the onset of

a quiescent regime around 13.5 dpc (roughly consistent with the estimate of ∼25 divisions between

generations in the female mouse germ line [Drost and Lee, 1995]).

Simulation, model selection, and parametric inference
We use Gillespie algorithms, also known as stochastic simulation algorithms (Gillespie, 1977), to

explore the behaviour of our model of the bottlenecking process for a given parameterisation. For

a given model parameterisation, the Gillespie algorithm is used to simulate an ensemble of 103

possible realisations of the time evolution of mtDNA content, and the statistics of this ensemble are

recorded. The experimental data we use is derived from sets of measurements of different sizes; to

compare simulation data with an experimental datapoint i corresponding to a statistic derived from ni
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measurements, we sampled a random subset of ni of the 103 simulated trajectories (all datapoints but

one have n ≪ 103), and used this subset to derive the simulated statistic for comparison to datapoint i

(Johnston, 2014).

To fit the different models to experimental data we define a distance measure, a sum-of-squares

residual between the EðmÞ (in log space) and VðhÞ dynamics produced by our model and observed in

the data, weighted to facilitate comparison of these different quantities (Johnston, 2014). We also

constrain copy number to be <5 × 105 at all points throughout development, rejecting parameter-

isation that disobey this criterion. Metropolis MCMC was used to identify the best-fit parameterisation

according to this distance function. For statistical inference, we use approximate Bayesian

computation (ABC), a statistical approach that has successfully been applied to parametric inference

and model selection in dynamical systems (Toni et al., 2009) to infer posterior probability

distributions both for individual models and the parameters of the models given experimental data.

ABC samples posterior probability distributions on parameters that lead to behaviour within a certain

threshold distance of the given data; these posteriors are shown to converge on the true posteriors as

the threshold value decreases to zero (see Appendix 1). We employed an MCMC sampler with

randomly-selected initial conditions. For further details, including priors, thresholds and step sizes

used in ABC, see Appendix 1. Minimum copy number was recorded directly from the resulting

trajectories; our measure of total turnover σ is defined as σ =∑​ 6
i=3τ′iνi , the sum over quiescent

dynamic phases of the product of degradation rate and phase length.

Creation of heteroplasmic mice
Heteroplasmic mice were obtained from a heteroplasmic mouse line (HB) we created previously

by ooplasmic transfer (Burgstaller et al., 2014). This mouse line contains the nuclear DNA of the

C57BL/6N mouse, and mtDNAs both of C57BL/6N and a wild-derived house mouse. Both mtDNA

variants belong to the same subspecies, Mus musculus domesticus. For details on sequence

divergence (see Burgstaller et al., 2014).

Isolation and lysis of oocytes
Mice were sacrificed at the indicated ages by cervical dislocation. Ovaries were extracted and

immediately placed in cryo-buffer containing 50% PBS, 25% ethylene glycol and 25% DMSO

(Sigma–Aldrich, Austria) and stored at −80˚C. For oocyte extraction, ovaries were placed into a drop

of cryo-buffer and disrupted using scalpel and forceps. Oocytes were collected and remaining

cumulus cells were removed mechanically by repeated careful suction through glass capillaries.

Prepared oocytes were then washed in PBS before they were individually placed into compartments

of 96-well PCR plates (Life Technologies, Austria) containing 10 μl of oocyte-lysis buffer (Lee et al.,

2012) (50 mM Tris-HCl, [p.H 8.5], 1 mM EDTA, 0.5% tween-20 [Sigma–Aldrich, Austria] and 200 μg/ml

Proteinase K [Macherey–Nagel, Germany]). Samples covered stages from primary oocytes of 3 day-

old mice up to mature oocytes of 40 day-old mice. Samples were lysed at 55˚C for 2 hr, and incubated

at 95˚C for 10 min to inactivate Proteinase K. The cellular DNA extract was finally diluted in 190 μl Tris-
EDTA buffer, pH 8.0 (Sigma–Aldrich, Austria). 3 μl were used per qPCR reaction.

Heteroplasmy quantification by Amplification Refractory Mutation
System (ARMS)-qPCR
Heteroplasmy quantification was performed by ARMS-qPCR, an established method in the field

(Steinborn et al., 2000; Paull et al., 2013; Tachibana et al., 2013), as described in Burgstaller et al.

(2014). The study was conducted according to MIQE (minimum information for publication of

quantitative real-time PCR experiments) guidelines (Bustin et al., 2009; Burgstaller et al., 2014).

The proportion between HB derived and C57BL/6N mtDNA was determined by ARMS-qPCR assays

based on a SNP in mt-rnr2 (Burgstaller et al., 2014). These assays were normalised to changes in the

input mtDNA amount by consensus assays, located in conserved regions of mt–Co2 and mt–Co3

(see Appendix 1). For the calculation of mtDNA heteroplasmy, the assay detecting the minor allele

(C57BL/6N or wild-derived <50%) was always used. If both specific assays gave values >50% (which

can happen around 50% heteroplasmy), the mean value of both assays was taken. All qPCR runs

contained no template controls (NTCs) for all assays; these were negative in 100%. Further

experimental details available in Appendix 1.
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Analytic model
In the BDP model, processes within a cell cycle constitute a birth-death process which can be solved

using generating functions (Gardiner, 1985). For binomial partitioning, the generating function for

the system after an arbitrary number of divisions has a recursive structure (Rausenberger and

Kollmann, 2008; Johnston and Jones, 2015) and an analytic solution can be obtained through

solving a Riccati recurrence relation. This reasoning also extends to the different phases of replication

and degradation, allowing an exact generating function to be constructed for an arbitrary point in the

bottleneck. Derivatives of this generating function are then used to obtain moments of the

distributions of interest. The full procedure is given in Appendix 1. Recall that we assume that the

bottlenecking process consists of a series of dynamic phases, which may either involve cycling cells

(and hence cell divisions) or quiescent cells. The expression for mean mtDNA copy number Eðm; tÞ at
time t is:

Eðm; tÞ=m0e
ðt−τ*Þ ∏

phases  i

eðniτi+τ′iÞðλi−νiÞ

2ni
; (2)

where ni is the number of cell divisions in phase i (0 for quiescent phases), τi is the length of a cell cycle

in cycling phase i, τ′i is the time spent in quiescent phase i (0 for cycling phases), and τ* =Σiðniτi + τ′iÞ,
so that t − τ* is the time since the last cell division. Eðm; tÞ is thus intuitively interpretable as a product

of the initial copy number with the effects of halving at each cell division, and the copy number

evolution through past and current cell cycles and quiescent phases.

The expression for the variance is lengthier, taking the form

Vðm; tÞ= ΦEðm; tÞ
∏phases  i4

ni ðeðλi − νiÞτi − 2Þ2ðλi − νiÞ2
+Eðm; tÞ−Eðm; tÞ2; (3)

where Φ is a lengthy, though algebraically simple, function of all physical parameters, which we

derive and present in Appendix 1. Once the means and variances associated with mutant and

wild-type mtDNAs have been determined (for brevity, we write these as μ1 ≡ Eðm1; tÞ; σ21 ≡Vðm1; tÞ
and μ2 ≡ Eðm2; tÞ; σ22 ≡Vðm2; tÞ), the relations below can be used to compute heteroplasmy

statistics:

EðhÞ= μ2
μ1 + μ2

≡ μh; (4)

VðhÞ= μ2h

 
σ22
μ22

−
2σ22

μ2ðμ1 + μ2Þ
+

σ21 + σ22
ðμ1 + μ2Þ2

!
: (5)

Selection
The predicted mean heteroplasmy at time t assuming a constant selective pressure (though this

assumption can straightforwardly be relaxed) is given by Equation 4, which, given Equation 2,

straightforwardly reduces to

EðhÞ= 1

1+ 1−h0
h0

e−Δλt
; (6)

where h0 is initial heteroplasmy and Δλ is the increase (or decrease, if negative) in replication rate of

mutant over wild-type mtDNA. Equation 6 predicts that mean heteroplasmy in the presence of

selection will follow a sigmoidal form (as expected from population dynamics [Futuyma, 1997], by the

constraint that h0 must lie between 0 and 1, and by the intuitive fact that heteroplasmy changes slow

down as these limits are approached).

Threshold crossing
The probability of heteroplasmy exceeding a certain threshold h* is simply given by integrating

the probability distribution of heteroplasmy between h* and 1. The exact distribution

of heteroplasmy can be written as a sum over hypergeometric functions; however, for computa-

tional efficiency and interpretability, we employ an approximation to this distribution involving
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the truncated Normal distribution and fixation probabilities. As shown in Appendix 1,

the distribution of heteroplasmy, taking possible fixation into account, can be well

approximated by

PðhÞ= ð1− ζ1 − ζ2ÞN ′
�
h j μ; σ2�+ ζ1δðhÞ+ ζ2δðh−1Þ; (7)

where N ′ is the truncated Normal distribution (truncated at 0 and 1), μ and σ2 are found numerically

given our model results for EðhÞ andVðhÞ, and ζ1 ≡Pðh=0Þ and ζ2 ≡Pðh=1Þ are fixation probabilities,

also straightforwardly calculable from our model. The probability of threshold crossing for 0 < h* < 1 is

then

P
�
h> h*

�
= ð1− ζ1 − ζ2Þ

�
1−

1

2

�
1+ erf

��
h* −EðhÞ�. ffiffiffiffiffiffiffiffiffiffiffiffiffi

2VðhÞ
p ��	

+ ζ2: (8)

Inference from heteroplasmy measurements
Given a sampled measurement heteroplasmy hm, the probability Pðh0jhmÞ that embryonic

heteroplasmy is h0 is given by Bayes’ theorem Pðh0jhmÞ=Pðhmjh0ÞPðh0Þ=PðhmÞ. Assuming a uniform

prior distribution on embryonic heteroplasmy (though this can be straightforwardly generalised), we

thus obtain Pðh0jhmÞ=Pðhmjh0Þ=
R
​ 1
0Pðhmjh0′Þdh0′, and using the above expression for the

heteroplasmy,

Pðh0 j hmÞ=
ð1− ζ1 − ζ2ÞN ′

�
hm
�� μ; σ2�+ ζ1δðhmÞ+ ζ2δðhm −1ÞR 1

0 dh0′ð1− ζ1 − ζ2ÞN ′ðhm j μ; σ2Þ+ ζ1δðhmÞ+ ζ2δðhm − 1Þ
; (9)

where μ, σ2, ζ1, ζ2 are functions of h0: μ, σ
2 may be found numerically and the ζ values are analytically

calculable (see Appendix 1).
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Appendix 1

Data from experimental studies
Table 1 contains the datapoints used in this study. These data are taken from Tables 1, 2 of

Cree et al. (2008) (labelled ‘Cao’); Tables 1, 2 of Cao et al. (2007); Appendix figure 1 of Wai

et al. (2008) and Appendix figure 1 of the following correspondence (reply to Samuels et al.,

2010) (labelled ‘Wai’); and Table 2 of Jenuth et al. (1996) (labelled ‘Jenuth’). Convention in the

literature suggests that normalisation of measured heteroplasmy variance values, performed by

division by a factor h(1 − h), allows comparison of variance values from lines with diverse

absolute heteroplasmies: the Wai data from correspondence is already normalised, and we

manually normalised the Jenuth data using the h values present.

Table 1. Source data used in this study

Time/dpc EðmÞ N Source study

0 2.5e5 22 Cree†

0.29 2.5e5 18 Cree†

0.58 5.8e4 9 Cree†

0.73 6.3e4 19 Cree†

0.88 4.8e4 33 Cree†

1.31 1.8e4 11 Cree†

7.5 4.5e2 596 Cree‡

8.5 1.1e3 165 Cree‡

10.5 1.6e3 96 Cree‡

14.5 1.8e3 2615 Cree‡, §

0 1.7e5 42 Cao†

0.29 7.1e4 32 Cao†

0.58 4.8e4 32 Cao†

0.88 2.1e4 32 Cao†

5.5 1.5e3 85 Cao‡, §

6.5 1.6e3 43 Cao‡, §

7.5 2.0e3 53 Cao‡, §

7.75 2.0e3 42 Cao‡, §

8.5 2.1e3 82 Cao‡, §

9.5 2.2e3 93 Cao‡, §

10.5 2.1e3 74 Cao‡, §

11.5 2.0e3 67 Cao‡, §

12.5 1.9e3 124 Cao‡, §

13.5 2.1e3 71 Cao‡, §

8.5 2.8e2 20 Wai#

9.5 2.5e3 20 Wai#

10.5 2.8e3 20 Wai#

12.5 4.0e3 20 Wai#

14.5 5.8e3 20 Wai#

16.5 2.4e3 20 Wai#

25 5.0e3 20 Wai#

29 1.0e4 20 Wai#

Table 1. Continued on next page
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Table 1. Continued

Time/dpc EðmÞ N Source study

32 3.0e4 20 Wai#
46 6.5e4 20 Wai#

Time/dpc V′ðhÞ N Source study

7.5 5.2e-6 12 Jenuth¶

7.5 0.008 4 Jenuth¶

7.5 0.004 3 Jenuth¶

7.5 0.008 5 Jenuth¶

23 0.039 40 Jenuth¶

23 0.032 37 Jenuth¶

23 0.040 35 Jenuth¶

23 0.038 35 Jenuth¶

23 0.037 34 Jenuth¶

23 0.021 48 Jenuth¶

23 0.026 45 Jenuth¶

* 0.140 26 Jenuth¶, **

* 0.017 24 Jenuth¶, **

* 0.144 31 Jenuth¶, **

* 0.021 49 Jenuth¶, **

* 0.033 31 Jenuth¶, **

8.5 0.016 20 Wai††, ‡‡

8.5 0.018 20 Wai††, ‡‡

9.5 0.018 20 Wai††, ‡‡

10.5 0.017 20 Wai††, ‡‡

10.5 0.025 20 Wai††, ‡‡

10.5 0.008 20 Wai††, ‡‡

12.5 0.017 20 Wai††, ‡‡

13.5 0.014 20 Wai††, ‡‡

13.5 0.015 20 Wai††, ‡‡

13.5 0.020 20 Wai††, ‡‡

13.5 0.021 20 Wai††, ‡‡

14.5 0.004 20 Wai††, ‡‡

16.5 0.015 20 Wai††, ‡‡

25.0 0.002 20 Wai††, ‡‡

25.0 0.002 20 Wai††, ‡‡

29.0 0.013 20 Wai††, ‡‡

29.0 0.027 20 Wai††, ‡‡

32.0 0.016 20 Wai††, ‡‡

32.0 0.023 20 Wai††, ‡‡

35.0 0.026 20 Wai††, ‡‡

35.0 0.029 20 Wai††, ‡‡

50.0 0.039 20 Wai††, ‡‡

51.1 0.043 20 Wai††, ‡‡

65.0 0.026 20 Wai††, ‡‡
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†Data referenced by number of cells post–conception is assigned a time measurement assuming the 7 hr → 16

hr doubling times from Lawson and Hage (1994).

‡Mean copy number taken directly from tabulated data.

§(Weighted) average over germline cell classes presented at this time point.

#Extracted from data in figures; n not explicitly available so estimated as n = 20 from accompanying histograms

and discussion.

¶Manually normalised from given data.

**Data from mature oocytes in next generation: time in dpc not available.

††Extracted from data in figure in correspondence following study.

‡‡n not explicitly available so estimated as n = 20 from accompanying histograms and discussion in original

paper.

DOI: 10.7554/eLife.07464.010

Table 2. New heteroplasmy measurements from the HB model system

Age 3 3 4 4 4 4 8 8 9 9 9 24 37 37 40
n 25 30 21 13 13 11 30 34 20 17 36 25 24 20 20

EðhÞ 0.501 0.419 0.183 0.337 0.382 0.354 0.301 0.559 0.193 0.245 0.049 0.457 0.566 0.276 0.238

VðhÞ 0.00256 0.00359 0.00824 0.01308 0.00913 0.00461 0.00350 0.00631 0.00408 0.00301 0.00097 0.00625 0.01000 0.00913 0.00662

V′ðhÞ 0.0102 0.0147 0.0551 0.0585 0.0387 0.0202 0.0167 0.0256 0.0262 0.0163 0.0210 0.0252 0.0407 0.0457 0.0364

h × 100 40.8 26.5 7.4 16.7 26.9 25.1 18.2 38.7 8.3 13.3 1.7 32.5 38.0 12.8 8.9

43.4 30.6 7.6 23.1 28.8 25.7 22.0 41.7 9.3 16.9 1.7 32.6 39.2 13.8 12.1

44.1 31.8 7.9 24.0 29.4 29.1 23.7 43.9 10.8 20.1 1.8 37.1 45.9 15.9 13.9

44.2 33.2 9.6 24.4 29.8 30.8 23.9 46.4 13.5 20.2 1.9 37.1 50.9 16.6 15.7

46.6 36.4 9.7 26.8 30.2 36.5 24.6 47.5 13.5 20.2 2.0 38.0 51.0 20.3 18.8

46.7 37.7 10.3 27.0 36.7 36.7 25.9 47.9 15.8 21.3 2.8 39.5 51.7 20.6 19.1

46.9 37.9 12.4 28.6 37.1 38.2 26.0 49.5 16.3 23.7 2.8 40.0 51.7 21.8 19.5

47.4 38.7 14.3 39.8 40.2 38.3 26.2 51.4 16.4 24.9 2.9 41.1 51.8 23.6 20.8

48.0 39.2 14.8 40.4 40.5 40.4 26.3 51.5 18.4 25.2 2.9 43.0 52.0 23.8 22.5

48.4 39.5 16.0 41.9 43.6 43.6 26.9 52.8 18.7 26.2 3.0 43.7 54.1 26.2 22.7

48.5 39.7 17.0 42.9 45.8 44.8 26.9 52.8 20.7 27.0 3.0 43.7 54.2 28.3 23.2

48.7 41.4 17.1 50.1 46.7 – 27.8 52.9 20.7 27.3 3.0 44.2 54.4 29.6 23.4

49.3 42.1 18.6 52.8 60.5 – 28.9 53.2 21.3 27.6 3.0 44.5 54.9 32.6 27.8

50.3 42.6 19.7 – – – 29.1 53.2 21.8 27.8 3.3 46.3 55.3 33.1 28.9

50.5 42.7 20.8 – – – 29.7 53.5 23.8 28.2 3.3 46.6 55.7 33.1 29.4

50.6 42.7 25.7 – – – 29.9 53.9 24.2 30.0 3.5 47.0 57.2 34.5 30.1

50.8 42.9 25.7 – – – 30.1 54.2 26.5 36.7 3.5 49.1 57.5 38.4 30.9

51.2 43.8 26.4 – – – 30.7 55.2 26.5 – 3.7 49.8 59.9 40.5 34.8

53.7 44.5 28.3 – – – 31.3 56.0 26.8 – 3.8 50.1 61.1 42.2 35.2

54.5 44.7 35.6 – – – 31.7 56.2 32.1 – 3.8 51.8 64.8 43.9 39.4

55.0 44.8 39.3 – – – 32.6 57.1 – – 4.0 53.0 69.9 – –

56.2 45.9 – – – – 33.0 57.3 – – 4.0 54.3 74.1 – –

56.6 47.0 – – – – 33.4 59.8 – – 4.9 55.7 76.1 – –

59.0 47.6 – – – – 33.6 60.0 – – 5.5 55.7 76.5 – –

62.0 48.7 – – – – 34.7 60.1 – – 5.8 66.2 – – –

– 48.7 – – – – 34.9 61.3 – – 5.9 – – – –

– 48.8 – – – – 35.3 61.3 – – 6.0 – – – –

– 48.9 – – – – 35.8 62.1 – – 6.1 – – – –

– 49.1 – – – – 41.2 65.6 – – 6.7 – – – –

– 49.7 – – – – 48.5 67.1 – – 7.9 – – – –

– – – – – – – 68.3 – – 8.2 – – – –

– – – – – – – 69.2 – – 8.3 – – – –

– – – – – – – 69.4 – – 8.5 – – – –

– – – – – – – 70.1 – – 8.8 – – – –

– – – – – – – – – – 11.6 – – – –

– – – – – – – – – – 16.6 – – – –

Heteroplasmy measurements and statistics from the HB model system. Ages are given in days after birth.

DOI: 10.7554/eLife.07464.011
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Appendix figure 1. Heteroplasmy variance in a model system under several different group-inheritance

regimes.VðhÞ over many cell divisions when the elements of inheritance are heteroplasmic or homoplasmic

groups of different size. Groups may be quenched (Q; constituents remain the same across cell divisions) or

unquenched (UQ; constituents are randomly resampled from the cellular population each cell cycle); for

homoplasmic clusters, an unquenched protocol yields identical results to the quenched protocol. VðhÞ
behaviour differing from binomial partitioning (c = 1) is only observed for homoplasmic groups with c ≥ 2.

Points for heteroplasmic groups are slightly offset in the x-direction for clarity.

DOI: 10.7554/eLife.07464.012

Where data in the original studies were presented as a function of number of cells in

a developing organism, as opposed to an explicit function of time, we have assigned times

using the 7 hr → 16 hr doubling times from Lawson and Hage (1994). Other sources assume

a 15 hr doubling time throughout early development: using the data interpreted in this way did

not lead to a qualitative difference in our conclusions and very little quantitative change in

posterior distributions (data not shown). Some datapoints did not have associated or readily

available sample sizes N: for these datapoints we estimated N using available evidence in the

publication. To check for dependence on these values of N we performed our inference

process with a range of alternative N values and with a test case where N was set to 100 for

every datapoint: all results and posteriors were qualitatively similar, showing a lack of strong

dependence of our conclusions on the specific numbers of samples involved in deriving the

experimental measurements (data not shown).

Heteroplasmic and homoplasmic clusters
The specific units of inheritance of mtDNA have been debated in the literature for decades. The

smallest possible unit of inheritance is a single mtDNA molecule; some studies have

hypothesised that the unit of inheritance consists of groups of mtDNA molecules. Within this

picture, debate exists as to whether these groups are semi-permanent associations of

molecules (which we will refer to as ‘quenched’ sets) or more fluid transient colocalisations of

molecules (which we refer to as ‘unquenched’). Furthermore, the size of these units is debated,

with estimates ranging from an average size of 1.4–10 mtDNA molecules (Bogenhagen, 2012;

Kukat and Larsson, 2013), and it is unknown whether the mtDNAs within a group are strictly

homoplasmic or if heteroplasmic groups are possible, although current evidence, at the finest

resolution, points towards homoplasmic groups of size <2 (Gilkerson et al., 2008; Poe et al.,

2010; Wallace and Chalkia, 2013; Jakobs and Wurm, 2014).
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We will classify these different pictures with three parameters. First, the characteristic size c of

an mtDNA group. Second, a classifier denoting whether these groups are quenched (in the

sense that the individual constituents of a group remain the same over many cell divisions) or

unquenched (in the sense that the individual constituents of a group may change between cell

divisions). Third, a classifier denoting whether groups are necessarily homoplasmic, or if

heteroplasmy is permitted.

An early hypothesis from Jacobs et al. (2000) considered ‘nucleoids’ which correspond to

quenched heteroplasmic groups with c > 1, retaining their internal structure across cell divisions

and containing different mtDNA types. If the mitochondrial organelle is the unit of inheritance,

we may expect unquenched heteroplasmic groups with c > 1, as mitochondrial dynamics act to

mix the content of the mitochondrial system between cell divisions, but organelles are likely to

contain more than one mtDNA molecule. If nucleoids are the units of inheritance and, as

current understanding suggests, nucleoids are small and homoplasmic (if mtDNA indeed exists

in groups at all), the appropriate picture is c ≃ 1, homoplasmic groups.

Here we show that the heteroplasmy statistics resulting from these different pictures of

grouped inheritance collapse onto two representative cases: first, that corresponding to

homoplasmic clusters with c > 1, and second, that corresponding to c = 1 (binomial

inheritance). Quenching—whether mtDNA content can remix within nucleoids—is shown to be

unimportant in determining heteroplasmy statistics. Our model for these different situations is

as follows. We consider a cellular population as consisting of a set of mtDNA molecules,

existing in groups of size c. During a cell cycle, the population of groups doubles

deterministically (we ignore random birth-death dynamics in this model, in order to focus on

partitioning dynamics), so that every group produces one exact copy of itself. For unquenched

simulations, a new set of groups is then formed by resampling the individual mtDNA

constituents of the cell. For quenched simulations (representing the situation postulated in

Jacobs et al. (2000)), the existing groups remain intact. At cell divisions, groups are binomially

partitioned between the two daughter cells.

The model is initialised with a cell containingm0 mtDNAs, split into (1 − h)m0 wild-type and hm0

mutant molecules. These mtDNAs are clustered into m0/c groups, according to the cluster

picture under consideration (i.e., homoplasmic or heteroplasmic clusters). We simulate the

subsequent doubling then partitioning of this system through cell divisions many times,

assuming a constant cell cycle length, and record the cell-to-cell heteroplasmy variance

with time.

Appendix figure 1 shows the resultant heteroplasmy variance trajectories for different cases

(with h0 = 0.1; other initial heteroplasmies showed similar behaviour). The first striking result is

that the inheritance of heteroplasmic groups produces the same heteroplasmy variance as

binomial partitioning, regardless of cluster size. This behaviour is due to the balance between

stochasticity associated with the makeup of, and partitioning of, groups. A small number of

large groups will experience substantial partitioning noise, but larger heteroplasmic groups are

more likely to faithfully represent the overall cell heteroplasmy. As identified in Jacobs et al.

(2000), the inheritance of heteroplasmic groups thus provides a means to facilitate local

mtDNA complementation while provoking no increase in heteroplasmy variance beyond that

associated with binomial partitioning of elements at divisions.

We also observe that quenched populations behave in the same way as unquenched

populations. In the case of homoplasmic groups, this result is obvious, as a set of homoplasmic

nucleoids of a given size can only be constructed in one way for a given number of mtDNA

molecules of different types. For heteroplasmic groups, this result implies that resampling the

cellular population to produce a new group produces a negligible amount of additional

stochasticity compared to that already present in the random makeup and inheritance of

groups. Thus, the only determinant factors of heteroplasmy variance related to the inheritance

of groups are whether groups are homoplasmic or heteroplasmic, and, if the former, the

characteristic size of groups.
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These results illustrate that the binomial inheritance model can also describe the statistics

associated with heteroplasmic nucleoids of arbitrary size, over a timescale of several dozen cell

divisions (suitable to describe the developmental process). The theoretical long-term behaviour

of these systems involves some more subtleties. At much longer times, the probability that all

mtDNA types become extinct in a cell is not negligible. When complete extinction cannot be

ignored, heteroplasmy statistics become poorly defined. This extinction timescale is shorter for

cluster inheritance than for binomial inheritance, as a greater variability in copy number (though

not in heteroplasmy) results from each division for larger clusters. However, our simulations

indicate that as long as the heteroplasmy variance associated with heteroplasmic clusters

remains well defined, it matches that resulting from binomial inheritance.

We propose that a reasonable view may be that individual mitochondrial fragments, including

several small, homoplasmic nucleoids, are the likely elements of inheritance at partitioning.

Furthermore, there is likely some movement of these nucleoids within the mitochondrial

network, and fission and fusion likely mean that a given mtDNA will not be associated with the

same static mitochondrial element in perpetuity. In this case, the picture of an unquenched,

heteroplasmic group of mtDNAs—those contained within a discrete element of the

mitochondrial system—seems most reasonable. We can thus speculate that, as demonstrated

by the previous results, the precise size of mitochondrial fragments at partitioning is not

important for the heteroplasmy dynamics (nor indeed is whether they are quenched or

unquenched). Our simple binomial partitioning model is thus consistent with what one might

consider the most physiologically plausible model, and indeed with any models not involving

large and strictly homoplasmic groups as the elements of mitochondrial inheritance.

Parametric inference for bottlenecking dynamics
Our model is a function of the parameter set θ = {νi, λi, ni, τi, S, α, T, c, h0, m0, δλ}. For reference,

the meanings of these parameters are (as in Figure 1D in the Main text): replication (λi) and
degradation (νi) rates; number of cell divisions (ni) and cell cycle length (τi) in each dynamic

phase i; deterministic or stochastic dynamics label (S = 0, 1 respectively); a proportion α of

mtDNAs capable of replication after threshold time T; deterministic (c = 0), binomial (c = 1) or

clustered (c > 1) partitioning at divisions; initial heteroplasmy h0 and initial copy number m0; δλ
is an additional parameter allowing a possible difference in replicative rates between mutant

and wildtype mtDNA: this is zero unless otherwise stated. For the following parameters we use

uninformative uniform priors on the given interval: λi, νi ∈ [0,1] hr−1; S ∈ {0,1}; α ∈ [0.005,1]; T ∈
[0,100] day; c ∈ [0,100] day; h0 ∈ [0,1]; m0 ∈ [0,106]. The following values are fixed from

experimental studies (Lawson and Hage, 1994; Drost and Lee, 1995): n1 = 29; n2 = 7; τ1 = 7

hr; τ2 = 16 hr. λ6 = 0 hr−1 is fixed to avoid mtDNA proliferation after development; h0 = 0.2 is

fixed as an intermediate value as heteroplasmy variance measurements are generally

normalised; δλ, a parameter allowing a difference in replicative rates between mutant and

wildtype mtDNAs, is fixed at zero throughout as we ignore selective pressure. The parameter τi
for i > 2 is used to determine the length of time spent in different quiescent phases and is

subject to the uniform prior τi ∈ [0, 50] day.

Given these priors, we use an approximate Bayesian computation (ABC) approach to build

a posterior distribution over the parameters in our bottlenecking model (Toni et al., 2009).

ABC involves using a summary statistic ρðθ;D Þ to compare the available data D to the

predictions of a model given parameters θ. If parameter sets are sampled from the set for which

ρ ≤ ϵ, where ϵ is a threshold difference between the resulting model behaviour and

experimental data, the posterior distribution Pðθjρðθ;D ≤ ϵÞÞ is sampled, which is argued to

sufficiently approximate PðθjD Þ for suitably small ϵ (Marjoram et al., 2003).

We define a residual sum-of-squares difference between the results of a simulated model and

experimental data (Johnston, 2014):
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ρðθ;D Þ=∑
Nm

i = 0

�
logEθ

�
m j t = t

ðiÞ
D ;m

�
− logED

�
m j t = t

ðiÞ
D ;m

��2
+∑

Nh

i = 0

A1

�
Vθ

�
h j t = t

ðiÞ
D ;h

�
−VD

�
h j tðiÞD ;h

��2
;

(1)

where D denotes experimental data. We thus amalgamate experimental results of two types:

mean mtDNA copy number (with Nm data points measuring ED ðmÞ at times t
ðiÞ
D ;m), and mean

and variance of heteroplasmy (with Nh data points measuring VD ðhÞ at times t
ðiÞ
D ;h). The sets of

data for EðmÞ and VðhÞ contain different numbers of points and are of different absolute

magnitudes. We compensate for these differences by using the logarithms of copy number

measurements (as these values span several orders of magnitude), and weighting parameter

A1 = 103. This weighting parameter compensates for the different magnitudes and number of

datapoints in each class of measurement, ensuring that the contribution to the total residual

from each set of data is of comparable magnitude. Our summary statistic thus records

a residual sum-of-squares difference between experiment and simulation values for logEðmÞ
and VðhÞ at each time point where an experimental measurement exists.

We performed our model selection process using several different alternative protocols,

including comparing logarithms of VðhÞ measurements (in contrast to the raw values) and

varying A1 over orders of magnitude from 102–104 (corresponding to unbalanced weighting,

favouring EðmÞ and VðhÞ data respectively). In all cases, the BDP model identified in the Main

text experienced substantially more support than any alternative. For inference involving the

new dataset from the HB model system, we use the default protocol above and set A1 = 3 × 103

to account for the threefold decrease in available V′ðhÞ datapoints.
We use an MCMC implementation of ABC, whereby we construct a Markov chain θi, where each

state consists of a set of trial parameters to be assessed. We create θi+1 by perturbing each

parameter within θi with a perturbation kernel consisting of a Normal distribution on each

parameter with standard deviations between 0.1–1% of the width of the prior (varied as the

model depends more sensitively on some parameters than others). In the case of discrete

parameter c, a continuous representation c′ is used and varied in the MCMC approach, with

c = º100c′c. We accept θi+1 as the new state of the chain if ρðθi+1;D Þ≤ ϵ. We ran 106 MCMC

iterations for ABC model selections and checked convergence by running five instances of each

simulation for different random number seeds.

For the initial optimisation of model fitting, we ran 106 MCMC steps using the protocol above

but accepting a move according to the Metropolis–Hastings protocol (Hastings, 1970),

recording the parameterisation leading to the lowest recorded residual. In this case we used

uninformative initial conditions, with identical choices for all rate parameters, corresponding to

an inaccurate trajectory of copy number and heteroplasmy variance. For model selection, we

used the protocol above, with a different set of parameters θM for each model M, with each

MCMC step proposing a random model from the Cao alone, Wai alone, and BDP set described

in the text, as in the SMC ABC model selection protocol proposed in Toni et al. (2009). We

record the proportion of accepted steps involving each model type. The parameterisations

found through initial optimisation were used as initial conditions in the ABC model selection

and inference simulations.

Initial optimisation identified parameterisations all displaying residuals under ϵ = 50. We chose

ϵ = {45, 50, 60, 75} for the ABC model selection simulations to display the varying degrees of

support for each model as stricter agreement with experiment was enforced. We chose ϵ = 40

for the ABC inference of BDP model parameterisation to ensure these models all displayed

better fits to data than the alternative models. In Appendix figure 2 we illustrate the

distribution of squared residuals for the BDP model under a range of ϵ values.

Johnston et al. eLife 2015;4:e07464. DOI: 10.7554/eLife.07464 29 of 44

Research article Computational and systems biology | Genes and chromosomes

http://dx.doi.org/10.7554/eLife.07464


Appendix figure 2. Residual distributions at different ABC thresholds ϵ. The distribution of squared

residuals corresponding to individual experimental datapoints compared to an ensemble of simulated

trajectories for (top) logEðmÞ (bottom) VðhÞ. The VðhÞ residuals are scaled by A1 = 103 to ensure that the

two sets of measurements are compared on a quantitatively equal footing. As ϵ is decreased (ϵ1,2,3,4 = 40,

50, 75, 100), distributions of residuals from accepted trajectories tighten around zero.

DOI: 10.7554/eLife.07464.013

Posteriors for all variables and datasets
In Appendix figure 3 we display all posterior distributions for all parameters resulting from our

ABC approach assuming the BDP model. There is substantial variability in the possible

timescales and magnitudes of random turnover associated with each random dynamic phase

i > 2, exemplified by the complicated and bimodal structure of the posteriors on these

parameters. This variability reflects the fact that an increase in heteroplasmy variance can be

achieved through a variety of specific mtDNA trajectories, and current experimental data is

insufficient to distinguish specific time behaviours within this variety. However, the total

contribution of each random phase to the overall dynamics is more constrained, as shown in the

posterior distribution on a measure of total random turnover σ =∑​ 6
i=3τ′iνi . This quantity is the

sum over all later phases of the product of the length of that phase and the rate of random

turnover, thus giving a measure of total random turnover. The fact that this posterior is more

tightly constrained than the posteriors on individual ti, νi parameters suggests that the required

mtDNA turnover can be achieved through a range of specific dynamic trajectories from the

inferred mechanism: for example, the exact time at which random mtDNA turnover sharply

increases is currently flexible (though constrained to lie around 25 dpc) without more detailed

data. This flexibility is also observed in the trajectories of posterior distributions in the Main

text.
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Appendix figure 3. Posterior distributions on model parameters. The posterior distributions on individual

model parameters, assuming the inferred BDP bottlenecking mechanism. Replication rates are presented

as κ = λ − ν, thus representing overall proliferation rates of mtDNA. Units are omitted for clarity. Pale, single-

values distributions correspond to parameter values fixed within the model (κ6 = 0 to prevent mtDNA

proliferation after development; τ1 = 7 hr, τ2 = 16 hr fixed by data on cell doubling times; h0 = 0.2 fixed for

simplicity as heteroplasmy variances are normalised; δλ = 0 fixed to avoid varying selective pressure). The

‘turnover’ parameter, described in the text, is ∑​ 6
i=3τ′iνi , a measure of the total random turnover in the

mtDNA population.

DOI: 10.7554/eLife.07464.014

Experimental measurements
Table 2 contains the measurements of heteroplasmy h, mean heteroplasmy EðhÞ, raw and

normalised heteroplasmy variance VðhÞ and V′ðhÞ, and number of datapoints n, from the HB

model system. Experimental procedures are described in ‘Materials and methods’; further

specifics follow.

Consensus assays:

Co2-f: GCCAATAGAACTTCCAATCCGTATAT,

Co2-r: TGGTCGGTTTGATGTTACTGTTG,

Co2-FAM: CTGATGCCATCCCAGGCCGACTAA-BHQ1 (Amplicon length: 136 bp);

Co3-f: TCTTATATGGCCTACCCATTCCAA,

Co3-r: GGAAAACAATTATTAGTGTGTGATCATG,

Co3-FAM: TTGGTCTACAAGACGCCACATCCCCT-BHQ1 (Amplicon length: 103 bp).

ARMS-assays:

16SrRNA2340(3)G-f: AATCAACATATCTTATTGACCaAG (haplotype C57BL/6N),

16SrRNA2340(3)A-f: AATCAACATATCTTATTGACCgAA (haplotype HB);

16SrRNA2458-r: CAC CAT TGG GAT GTC CTG ATC,
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16SrRNA-FAM: FAM-CAA TTA GGG TTT ACG ACC TCG ATG TT-BHQ-1. (Amplicon length:

142 bp).

Every qPCR run consisted of one consensus and an ARMS assay.

Master-mixes for triplicate qPCR reactions contained 1× buffer B (Solis BioDyne, Estonia);

4.5 MgCl2 for the ARMS and the Co3 consensus assays, and 3.5 mM MgCl2 for the Co2

consensus assay; 200 M of each of the four deoxynucleotides (dNTPs, Solis BioDyne, Estonia),

HOT FIREPol DNA polymerase according to the manufacturers instructions (Solis BioDyne,

Estonia), 300 nM of each primer and 100 nM hydroloysis probe (Sigma–Aldrich, Austria). Per

reaction 12 μl of master-mix and 3 μl DNA were transferred in triplicates to 384-well PCR plates

(Life Technologies, Austria) using the automated pipetting system epMotion 5075TMX

(Eppendorf, Germany). Amplification was performed on the ViiA 7 Real-Time PCR System using

the ViiA 7 Software v1.1 (Life Technologies, USA). DNA denaturation and enzyme activation

were performed for 15 min at 95˚C. DNA was amplified over 40 cycles consisting of 95˚C for

20 s, 58˚C for 20 s and 72˚C for 40 s for both assays.

The standard curve method was applied. Amplification efficiencies were determined for each

run separately by DNA dilution series consisting of DNA from wild-derived mice, harbouring

the respective analysed mtDNA. Typical results: slope = −3.665, −3.562, −3.461, −3.576; mean

efficiency = 0.87, 0.9, 0.94, 0.90; and Y-intercept = 32.2, 28.3, 33.8, 34.5; for the consensus Co2,

consensus Co3, C57BL/6N and HB assays respectively. Coefficient of correlation was >0.99 in all

assays in all runs. All target samples lay within the linear interval of the standard curves. To test

for specificity, in each run a negative control sample, that is, a DNA sample of a mouse

harbouring the mtDNA of the non-analysed type in the heteroplasmic mouse (i.e., C57BL/6N or

HB mtDNA) was measured. All assays could discriminate between C57BL/6N and HB mtDNA at

a minimum level of 0.2%. Target sample DNA was tested for inhibition by dilution in Tris-EDTA

buffer (Sigma–Aldrich, Austria), pH 8.0.

Bottlenecking mechanisms and further experimental elucidation
Here we summarise potential mechanisms for the bottleneck that conflict with our statistical

interpretation, highlighting the reasons for the conflict. We also propose further experiments

that would efficiently provide more evidence to distinguish these hypotheses.

Other proposed mechanisms

Random partitioning of homoplasmic mtDNA clusters
Cao et al. (2007) suggests a less powerful depletion of mtDNA copy number during early

development than assumed by other studies, with heteroplasmy variance increase instead

being explained by the partitioning of clusters of mtDNA at cell divisions. However, the time

period over which Wai et al. (2008) and Jenuth et al. (1996) observe increasing heteroplasmy

variance corresponds to a situation in which germ line cells are largely quiescent, immediately

suggesting that partitioning at cell divisions cannot explain increasing variance (as cell divisions

do not occur). Furthermore, results from our model suggest that, unless these clusters are very

small, this mechanism would immediately lead to a rather higher and sharper increase in

heteroplasmy variance than observed.

Replication of a specific subset of mtDNAs during folliculogenesis
Wai et al. (2008) proposes a mechanism in which only a subset of mtDNAs replicate during

folliculogenesis. There are several specific dynamic schemes by which this mechanism could be

manifest. The first that we consider involves the following scenario: at some point during

development, around the start of folliculogenesis, a specific subset of mtDNAs in each cell is

‘marked’ as able to replicate (we next consider the case in which this subset is more plastic with

time). In this case, the effect of ‘switching off’ replication of a subset of mtDNAs depends on the

balance of replication and degradation rates of the mtDNA population:
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c Low replication, low degradation. In this case, the population stays largely static; the
switching off of replication has little effect, and the heteroplasmy variance cannot increase to
the levels observed in experiment.

c Low replication, high degradation. In this case, the high degradation rate ensures that the
non-replicating mtDNAs are removed from the cell, providing a ‘bottleneck’ as only the
replicating mtDNAs remain. However, this regime yields a transient period of mtDNA copy
number depletion, while the non-replicating mtDNAs are degrading but the (small)
population of replicating agents remains low. This copy number depletion is not observed.

c High replication, high degradation. In this case, non-replicating mtDNAs are removed and
replicating mtDNAs are capable of fast enough replication to survive the transient drop in
copy number. However, the rates associated with this mechanism are necessarily high
enough such that the increase in heteroplasmy variance is very sharp, notably more so than
the smooth increase with time observed in experiment (see, e.g., Figure 2 in the Main text).

c Combined subset replication, and/or heteroplasmic cluster inheritance, with and random
dynamics. Our approach does not provide support against a model combining our inferred
mechanism (increased random turnover of mtDNAs) with some other dynamic schemes,
namely (a) that in which only a subset of mtDNAs may replicate during folliculogenesis,
and/or (b) where heteroplasmic mtDNA clusters, rather than individual mtDNAs, are the
units of inheritance. A combination with (a) would allow the reduction of the key parameters
associated with each: so the rate of random turnover could be lower, and the proportion of
replicating genomes larger, than in the case of the pure incarnations of those respective
mechanisms. This scheme may thus provide a viable alternative—however, it requires an
introduction of two coupled mechanisms, which experimental data currently cannot
disambiguate. For this reason and for parsimony, we report the case where random
dynamics alone are responsible, and below suggest experimental protocols to further
elucidate this possible link or its absence. A combination with (b) is possible and cannot be
discounted using the available data, as the trajectories of heteroplasmy variance under (b)
and under binomial inheritance are the same. We propose observations of mitochondrial
ultrastructure and mtDNA localisation during development to resolve this remaining
mechanistic question.

Observation of a subset of replicating genomes
Wai et al. (2008) performs BrU labelling to observe the proportion of mitochondria replicating

in primary oocytes between P1-4 (21–25 dpc on our time axis). The observations contained

therein (Appendix figure 2 in Wai et al., 2008) show a small subset of BrU-labelled

mitochondrial foci compared to the overall population of mitochondria labelled with another

dye. Here we show that this observation is compatible with (and expected from) our proposed

model of random mtDNA turnover.

Consider a population of mtDNAs replicating with rate λ and degrading with rate ν. We model

the BrU labelling assay as follows. At time t = 0, we begin the BrU labelling, which we

conservatively model as a perfect process, so that every mtDNA that replicates becomes

labelled. We continue this labelling until t = t*, when we observe the proportion of labelled

mtDNAs.

For simplicity, we will consider a fixed population of mtDNAs of size N, though this reasoning

extends to changing population size. We denote by l the number of labelled mtDNAs. After

BrU exposure, this number may change in three ways: (A) a replication event involving

a previously unlabelled mtDNA will produce two new labelled mtDNAs; (B) a replication event

involving a previously labelled mtDNA will produce one new labelled mtDNA; (C)

a degradation event involving a labelled mtDNA will remove one labelled mtDNA. The

dynamics of labelled mtDNA number during BrU exposure are given by

dl

dt
= ðAÞ+ ðBÞ+ ðCÞ; (2)

=2λðN− lÞ+ λl− νl: (3)
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Assuming that l = 0 at t = 0, the solution of this equation, for the number of labelled mtDNAs at

time t*, is

l=
2Nλ

λ+ ν

�
1−e−ðλ+νÞt*

�
: (4)

Assuming a constant population size requires λ = ν. The conclusions of this illustrative study

do not substantially change if we allow (λ ≠ ν) and hence an increasing or decreasing

population. We consider the values of λ and ν required to yield values of l comparable with

those found in Wai et al. (2008). We will roughly estimate these values, based on the

proportion of labelled foci observable, as l = 0.5 N for 24 hr BrU exposure (half of observed

mtDNAs being labelled) and l = 0.05 N for 2 hr BrU exposure (5% of observed mtDNAs being

labelled). A value of λ = ν = 0.014 hr−1 yields l = 0.49 N at t* = 24 hr and l = 0.055 N at t* = 2 hr.

Figure 3 in our Main text gives the posterior distribution on ν, characterising the rate of random

mtDNA turnover in our model, at different times. It can be seen that a value of ν = 0.35 day−1

comfortably falls within the region of high posterior density during the time range 21–25

dpc—lying immediately before the strong increase in random turnover that our model

subsequently predicts. Our inferred mechanism of random mtDNA turnover is thus compatible

with the observations of a labelled subset of mtDNAs in the BrU incorporation assay in Wai

et al. (2008)—we would expect to see roughly the observed labelling proportion simply due to

the likely rates of random mtDNA turnover inferred at that stage of development. Furthermore,

we can use this line of reasoning to produce a testable prediction: similar experiments

carried out several days later—when random mtDNA turnover is inferred to increase

substantially—should show a larger subset of labelled mtDNAs for the same BrU exposure.

Experimental elucidation
In Table 3 we list several classes of potential experimental protocols that would assist in further

elucidation of the bottlenecking mechanism and our predictions. Potentially useful results

include further characterisation of the microscopic detail underlying mtDNA dynamics during

development, confirmation of our random turnover model, assessing degree to which

heteroplasmy modulates copy number dynamics and exploring our predictions relating

mitophagy and bottlenecking power.

Table 3. Experiments for further elucidation of the mtDNA bottleneck

Measurement Purpose

MtDNA copy number before and after
cell divisions and/or variance of copy
number between daughter cells

To elucidate mechanism of mtDNA partitioning and whether
this partitioning is deterministic or stochastic

Copy number trajectories with different
mtDNA heteroplasmies

To assess the modulation of copy number dynamics by
mtDNA heteroplasmy via retrograde signalling

Measurement of mean heteroplasmy
through development, with a variety of
mtDNA type pairings

To assess and quantify to what extent selection modulates
mtDNA dynamics during germline development

Copy number measurements after
upregulation of mitophagy

To assess the presence and strength of compensatory
mechanisms that may act to preserve mtDNA copy
number—and hence whether upregulating mitophagy will
act to increase mtDNA turnover or simply lower copy number

Heteroplasmy variance after
upregulation of mitophagy

To assess the efficacy of mitophagy for increasing the power
of the bottleneck

Heteroplasmy distribution in cells after
the bottleneck from sampled/known
initial heteroplasmy

To confirm predictions for threshold crossing and statistics
between generations

BrU incorporation in oocytes between 30
and 40 dpc

To confirm the random turnover mechanism: we expect
a large proportion of BrU incorporation subset of mtDNAs to
be observed in this time period (see section ‘Observation of
a subset of replicating genomes’)

Table 3. Continued on next page
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Table 3. Continued

Measurement Purpose

Mitochondrial ultrastructure and mtDNA
localisation during development

To assess and characterise any potential modulation of the
size of units of mitochondrial inheritance by mitochondrial
dynamics through development, in particular, investigating
whether there is time-varying modulation of cluster size at
points of division

DOI: 10.7554/eLife.07464.015

Mitophagy regulation
The results from our model suggest a potential clinical pathway for increasing heteroplasmy

variance, and thus the power of the bottleneck to remove heteroplasmic cells. We have shown

that upregulation of mtDNA degradation (e.g., through increasing mitophagy) leads to lower

mtDNA copy numbers and greater heteroplasmy variance. It is unclear whether a given

treatment will have the sole effect of upregulating mitophagy: it seems likely that compensatory

mechanisms (which we do not explicitly model, but may include retrograde signalling [Chae

et al., 2013]) will engage to stabilise mtDNA copy number. However, such mechanisms would

most straightforwardly be expected to act through increasing mtDNA proliferation, thus having

the net effect of increasing mtDNA turnover. We have shown that such an increase in turnover

also increases the heteroplasmy variance in a population. We therefore propose that

upregulating mitophagy may be a fruitful pathway of investigation for increasing bottlenecking

power, either as a standalone effect or due to the action of compensatory mechanisms it may

invoke.

Speculatively, potential strategies to upregulate mitophagy may include the limited use of

uncouplers to accelerate the mitophagy normally involved in quality control (de Vries et al.,

2012); targetted chemical treatments with agents that have been identified as regulating

mitophagy, including glutathione in yeast (Deffieu et al., 2009) and C18-pyridium ceramide in

human cancer cells (Sentelle et al., 2012); modulation of mitochondrial ultrastructure and

dynamics to upregulate fission, intrinsically linked to the process of mitophagy (Youle and

Narendra, 2010; Twig and Shirihai, 2011); or the use of existing drugs which have been found

to modulate mitophagy, such as Efavirenz (Apostolova et al., 2011).

Heteroplasmy statistics
We have defined heteroplasmy by

h=
M2

M1 +M2
: (5)

To find statistics for this quantity we consider the Taylor expansion of a function f(X1, X2) of two

random variables X1, X2 about a point (μ1, μ2), where μi =EðXiÞ. We assume that the moments of

Xi are well-defined and both have zero probability mass at Xi = 0. The Taylor expansion is:

f ðX1;X2Þ= f ðμ1; μ2Þ+ f1ðμ1; μ2ÞðX1 − μ1Þ+ f2ðμ1; μ2ÞðX2 − μ2Þ+higher  order  terms; (6)

where fi denotes the derivative of f with respect to Xi. We truncate the expansion at first order

for later algebraic simplicity, noting that even with this level of precision, the agreement

between the resulting analysis and numerical simulation is excellent. Then

E
�
f ðX1;X2Þ

�
= E
�
f ðμ1; μ2Þ+ f1ðμ1; μ2ÞðX1 − μ1Þ+ f2ðμ1; μ2ÞðX2 − μ2Þ+…

�
: (7)

We note that EðXi − μiÞ=0, so

E
�
f ðX1;X2Þ

�
≃ f ðμ1; μ2Þ: (8)

Similarly,

V
�
f ðX1;X2Þ

�
=E
��

f ðX1;X2Þ−Eðf �X1;X2Þ
��2�

; (9)
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≃ E
��

f ðX1;X2Þ− f ðμ1; μ2Þ
�2�

; (10)

= E
��

f1ðμ1; μ2ÞðX1 − μ1Þ+ f2ðμ1; μ2ÞðX2 − μ2Þ
�2�

; (11)

and noting that EððXi − μiÞ2Þ=VðXiÞ we obtain

V
�
f ðX1;X2Þ

�
≃
�
f1ðμ1; μ2Þ

�2
VðX1Þ+

�
f2ðμ1; μ2Þ

�2
VðX2Þ+2f1ðμi ; μ2Þf2ðμ1; μ2ÞCðX1;X2Þ; (12)

where CðX1;X2Þ is the covariance of X1 and X2. If we now use f ðX1;X2Þ= X1

X2
, we have f1 = X2

−1,

f2 = −X1X2
−2; so

EðX1=X2Þ≃EðX1Þ=EðX2Þ; (13)

VðX1=X2Þ≃VðX1Þ


EðX2Þ2 + EðX1Þ2VðX2Þ



EðX2Þ4 −2EðX1ÞCðX1;X2Þ



EðX2Þ3: (14)

If X1 = M2 and X2 = M1 + M2, and M1 and M2 are independent (due to the lack of coupling

between the mtDNA species), CðX1;X2Þ=VðM2Þ, and so

EðhÞ= EðM2Þ
EðM1Þ+ EðM2Þ; (15)

VðhÞ=
�

EðM2Þ
EðM1Þ+EðM2Þ

	2

×

 
VðM2Þ
EðM2Þ2

−
2VðM2Þ

EðM2Þ
�
EðM1Þ+ EðM2Þ

�+ VðM1Þ+VðM2Þ�
EðM1Þ+ EðM2Þ

�2
!
: (16)

Derivation of analytic results for binomial model

Generating function within a cell cycle
To make analytic progress describing the mitochondrial content of quiescent cells, and within

a single cell cycle of dividing cells, we use a birth and death model to describe mitochondrial

evolution. Without cell divisions, the dynamics of a population of replicating and degrading

entities is given by the master equation

dPðm; tÞ
dt

= νðm+ 1ÞPðm+ 1; tÞ+ λðm− 1ÞPðm− 1; tÞ− ðν+ λÞmPðm; tÞ; (17)

Pðm; 0Þ= δmm0
; (18)

with P(m) the probability of observing the system with a copy number m at time t, and m0 the

initial copy number. The corresponding generating function, using the transformation

Gðz; tÞ= ∑
m
zmPðm; tÞ, obeys

∂Gðz; tÞ
dt

=
�
νð1− zÞ+ λ

�
z2 − z

�� ∂Gðz; tÞ
∂z

; (19)

Gðz; 0Þ= zm0 ; (20)

which is straightforwardly solved by

G0ðz; t jm0Þ=
�ðz− 1Þνeðλ− νÞt − λz+ ν

ðz−1Þλeðλ− νÞt − λz+ ν

	m0

; (21)

≡ ½gðz; tÞ�m0 ; (22)

where the 0 subscript signifies that no divisions have occurred, and we have specifically labelled

the base of G0 as g0 for later convenience.
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Generating function over cell divisions
We now consider a system undergoing cell divisions. Now, we have a population of organelles

with time evolution described by a generating function G= ½g�m0 and subject to binomial

partitioning at cell division. The probability distribution of m after a single cell division is:

P1ðm; t jm0Þ= ∑
∞

m1;b =0

∑
m1;b

m1;a =0

P0

�
m; t jm1;a

��m1;b

m1;a

	
2−m1;bP0

�
m1;b; τ jm0

�
; (23)

where mi,a, mi,b mean respectively the number of individuals after and before the ith cell

division, and the subscript in P0 denotes the fact that this function refers to time evolution within

a cell cycle (with no division). The sum takes into account all possible configurations of the

system up to the cell division then all possible configurations afterwards, with weighting

according to a binomial partitioning. This line of reasoning can straightforwardly be extended

to n cell divisions (Rausenberger and Kollmann, 2008):

Pnðm; t jm0Þ= ∑
∞

mn;b =0

∑
mn;b

mn;a = 0

… ∑
∞

m1;b = 0

∑
m1;b

m1;a =0

P0

�
m; t jmn;a

�
∏
n−1

i =1

Φi ; (24)

where Φi is a ‘probability propagator’ of the form

Φi =
�
mi;b

mi;a

	
2−mi;bP0

�
mi;b; τ jmi+1;a

�
; (25)

and mn+1,a ≡ m0. For clarity, we introduce the nomenclature:

∑
′

i;j

≡ ∑
∞

mi;b =0

∑
mi;b

mi;a = 0

… ∑
∞

mj;b =0

∑
mj;b

mj;a = 0

: (26)

Now consider the generating function of Pn:

Gnðz; t jm0Þ= ∑
m
zmPnðm; t jm0Þ; (27)

= ∑
m
∑
′

n;1

zmP0

�
m; t

��mn;a

�
∏
n−1

i =1

Φi ; (28)

= ∑
′

n;1

G0

�
z; t
��mn;a

�
∏
n−1

i =1

Φi ; (29)

= ∑
′

n−1;1

∑
∞

mn;b = 0

∑
mn;b

mn;a = 0

½g0ðz; tÞ�mn;a

�
mn;b

mn;a

	
2−mn;b

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
binomial  term

P0

�
mn;b; τ

��mn−1;a
�
∏
n−2

i =1

Φi ; (30)

= ∑
′

n− 1;1

∑
∞

mn;b =0

�
1

2
+
g0ðz; tÞ

2

	mn;b

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{
P0

�
mn;b; τ

��mn−1;a

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

generating  function with  transformed  variable

∏
n−1

i =1

Φi ; (31)

≡ ∑
′

n−1;1

G0

�
z′; τ

��mn−1;a
�zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
∏
n−2

i = 1

Φi ; (32)

where we have used the identity ∑​ b
a=0x

a

�
b
a

	
2−b ≡

�
1

2
+
x

2

	b

and changed variables

z′=
1

2
+
g0ðz; tÞ

2
. Comparing Equations 29, 32 and following this process by induction we can see

that the overall generating function is Gn = hm0

0 , where h is the solution to the recursive system

hi =g0

�
1

2
+
hi+1
2

; τ

	
; (33)
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hn =g0ðz; tÞ: (34)

hi is of the form
ahi+1 +b

chi+1 +d
(from Equation 21). This expression takes the form of a Riccati

difference equation and can be solved exactly after Brand (1955). The solution is straightfor-

ward but algebraically lengthy, and we defer presentation of the full procedure to a future

technical publication (Johnston and Jones, 2015). The overall solution is:

GCðz; t; nÞ= h0 =
2nðl− 2Þðλz− νÞ+ l′ðz−1Þ

��
λð2n − lnÞ− νlnðl− 2Þ��

λl′ðz− 1Þð2n + ln − ln+1Þ+2nðl− 2Þðλz− νÞ ; (35)

where the C subscript denotes cycling cells, and

l= eðλ−νÞτ; (36)

l′=eðλ−νÞt : (37)

Generating function for different phases
We now consider how to extend this reasoning to the overall bottlenecking process, which in

general may involve several phases of quiescent and cycling dynamics with different kinetic

parameters. We begin with the generating function bases gi(z, t) for each regime i. For

consistency with the above approach, we label phases starting from a zero index, so the first

phase corresponds to i = 0, and we use imax to denote the label of the final phase. Then we use

himax
=giðz; tÞ; (38)

hi =giðhi+1; 0Þ; (39)

Goverall = hm0

0 ; (40)

using induction over the different phases in the way we used induction over different cell cycles

above. Here we consider the changeover between regimes by using the generating function at

the start of the incoming phase.

The appropriate generating function bases for quiescent (Equation 21) and cycling (Equation 35)

cells can be written as

gQðz; t jm0Þ=
�
AQz+BQ

CQz+DQ

	
; (41)

gCðz; t; n jm0Þ=
�
ACz+BC

CCz+DC

	
; (42)

with coefficients

AQ = νl′− λ; (43)

BQ = ν− νl′; (44)

CQ = λl′− l′; (45)

DQ = ν− λl′; (46)

AC =2nλðl+ l′− 2Þ− lnl′
�
λ+ νðl− 2Þ�; (47)

BC = lnl′
�
λ+ νðl− 2Þ�−2n

�
λl′+ νðl− 2Þ�; (48)

CC =−λlnl′ðl− 1Þ+ 2nλðl+ l′−2Þ; (49)
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DC = λlnl′ðl− 1Þ− 2n
�
λl′+ νðl−2Þ�; (50)

using, as before, l = e(λ − ν)τ and l′ = e(λ − ν)t. Note that the cycling coefficients reduce to the

quiescent coefficients when n → 0 and τ → 0. The values of the appropriate A, B, C, D

coefficients for a given dynamic phase thus follow straightforwardly from the kinetic parameters

of that phase, with the appropriate choice between quiescent and cycling parameters being

made.

If we now label these coefficients with a subscript denoting the appropriate phase of

bottlenecking, so that, for example, Ai is Equation 47 with λi, νi, ni replacing λ, ν, n, we can

write:

himax =
Aimax

z+Bimax

Cimax
z+Dimax

; (51)

hi =
Aihi+1 +Bi

Cihi+1 +Di
; (52)

goverall =h0: (53)

Following this recursion for n phases of bottlenecking and simplifying the resultant multi-layer

fraction gives rise to the solution

goverall =h0 =
A′z+B′
C′z+D′

; (54)

where �
A′ B′
C′ D′



= ∏

n

i = 1

�
Ai Bi

Ci Di



; (55)

from which Goverall =gm0

overall follows straightforwardly. The following results will be of assistance:

EðmÞ= d

dz

�
A′z+B′
C′z+D′

	m0
����
z=1

=
m0ðA′D′−B′C′Þ

�
A′+B′
C′+D′

	m0−1

ðC′+D′Þ2
; (56)

d2

dz2

�
A′z+B′
C′z+D′

	m0
����
z=1

=
m0ðB′C′−A′D′Þ

�
A′+B′
C′+D′

	m0�
B′C′ðm0 + 1Þ+A′

�
2C′+D′ð1−m0Þ

��
ðA′+B′Þ2ðC′+D′Þ2

;

(57)

=−

�
A′+B′
C′+D′

	
ðA′+B′Þ2

�
B′C′ðm0 + 1Þ+A′

�
2C′+D′ð1−m0Þ

��
EðmÞ: (58)

As Equations 43–46 can be thought of as special cases of Equations 47–50, we combine

Equations 47–50 into Equation 55, and, simplifying, we find the following relations:

A′+B′=C′+D′= ∏
phase i

2ni ðli −2Þðλi − νiÞ; (59)

A′D′−B′C′= ∏
phase i

2ni ðli −2Þ2lnii l′iðλi − νiÞ2; (60)

we then immediately obtain
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EðmÞ=m0 ∏
i

 
2ni ðli −2Þ2lnii l′iðλi − νiÞ2
4ni ðli −2Þ2ðλi − νiÞ2

!
; (61)

=m0 ∏
i

2−ni lnii l′i ; (62)

VðmÞ=−
�
B′C′ðm0 +1Þ+A′

�
2C′+D′ð1−m0Þ

��
∏i4

ni ðli − 2Þ2ðλi − νiÞ2
EðmÞ+EðmÞ−EðmÞ2; (63)

leaving us only with the problem of calculating the expression

ðB′C′ðm0 + 1Þ+A′ð2C′+D′ð1−m0ÞÞÞ in the variance calculation. We were not able to

dramatically simplify this expression and so, for clarity, write:

Φ=−
�
B′C′ðm0 +1Þ+A′

�
2C′+D′ð1−m0Þ

��
; (64)

which gives us:

VðmÞ= ΦEðmÞ
∏i4

ni ðli −2Þ2ðλi − νiÞ2
+EðmÞ−EðmÞ2: (65)

We note that Φ is just a notational simplification and is straightforwardly calculable by inserting

Equations 47–50 into Equation 55 then computing Equation 64.

Constant population size
For generality, we consider enforcing a constant population size in post-mitotic cells (not

undergoing divisions). This process involves setting λ = ν, so the net gain in mtDNA is zero. If

we write λ = ν + ϵ and take the limit ϵ → 0, Equation 21 becomes

Gc;postðz; tÞ=
�
νtz− z− νt

νtz− 1− νt

	m0

: (66)

To enforce a constant mean population size in mitotic cells, it is necessary to balance the

expected loss of mtDNA through repeated divisions with an expected increase during the cell

cycle. This balance can be accomplished by setting λ= ν+ ln2
τ . Writing λ= ν+ ln2

τ + ϵ and taking

the ϵ → 0 limit we obtain

Gc;mitoðz; tÞ=
�
2ντðz−1Þ−2t/τðz−1Þ�ðn1 +2Þντ+ n1ln2

�
+ zln4

2ντðz− 1Þ− 2t/τðz− 1Þðn1 + 2Þðντ+ ln2Þ+ zln4

	m0

: (67)

In both these cases, the same approach as above can be used to derive moments of the

resulting probability distributions.

Explicit distributions
The probability of observing exactly m mtDNAs of a given type can be found from the

generating function with

Pðm; tÞ= 1

m!

∂m

∂zm
Gðz; tÞ

����
z=0

: (68)

We can use Leibniz’ rule on a generating function of form G=
�
A′z+B′
C′z+D′

	m0

by setting

f ≡ ðA′z+B′Þm0 , g≡ ðC′z+D′Þm0 and writing

∂mG
∂zm

= ∑
k=0

m
�
m
k

	
∂kf
∂zk

∂ðm−kÞg
∂zðm−kÞ ; (69)
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= ∑
k=0

m
�
m
k

	
ðA′ÞkðA′z+B′Þm0−k m0!

ðm0 − kÞ!ðC′Þ
m−kðC′z+D′Þð−m0−m−kÞð−1Þm−k ðm0 +m− k −1Þ!

ðm0 −1Þ! :

(70)

Enforcing z = 0 and rewriting in terms of a hypergeometric function gives

Pðm; tÞ= 1

m!

ð−1ÞmðB′Þm0ðC′ÞmðD′Þ−m−m0ðm0 +m−1Þ!
ðm0 −1Þ! 2F1

�
−m; −m0; 1−m−m0;

A′D′
B′C′

	
: (71)

The distribution of heteroplasmy is then given by

PðhÞ= ∑
∞

m1 = 0

∑
∞

m2 = 0

P
�
m1; t j ð1− h0Þm0

�
Pðm2; t j h0m0ÞI

�
m2

m1 +m2
; h

	
; (72)

where I ðh′; hÞ is an indicator function returning 1 if h′ = h and 0 otherwise. Computing the

probability of observing a given heteroplasmy thus involves a sum, over all mtDNA states that

correspond to that heteroplasmy, of the probability of that state.

The evaluation of hypergeometric functions is more computationally demanding than that of

more common mathematical functions, and the infinite sums at first glance seem intractable.

However, in practise and using parameterisations from our inferential approach, vanishingly

little probability density exists at m1, m2 > 5 × 105, corresponding to the biological observation

that mtDNA copy number is very unlikely to exceed this value. Dynamic programming then

allows these sums to be performed straightforwardly.

Finally, the computation of Pðm=0; tÞ is important in our analysis of the characterisation of key

distributions using the first two moments (see below), where it appears as Pðm2 = 0; tÞ, the
probability of wildtype fixation. This is relatively straightforward to address analytically as when

m = 0, Equation 68 reduces to Pð0; tÞ= ��Goverall

��
z=0, which in the notation above is simply:

ζ≡Pð0; tÞ=
�
B′
D′

	m0

; (73)

where we introduce the notation ζ for fixation probability for later brevity. We could not

dramatically simplify the full expression so we leave it in this form and note that it can be readily

calculated (as above) by inserting Equations 47–50 into Equation 55 then computing

Equation 73.

Multiple species and heteroplasmy
The heteroplasmy h = m2/(m1 + m2) is straightforwardly addressable by considering the above

solutions for m1 and m2. We can also consider a more general case, in which we have four

species of mtDNA in our model: wildtype reproducing (m1), mutant reproducing (m2), wildtype

sterile (m3) and mutant sterile (m4). We assume that these species evolve in an uncoupled way

with time. The parameter h0, initial heteroplasmy, determines the initial proportion of mutant

genomes: h0 =
m20 +m40

m0
, where m0 = m10 + m20 + m30 + m40 is the total initial copy number of

mtDNA. The parameter α determines the proportion of genomes capable of reproducing:

α=
m10

m10 +m30
=

m20

m20 +m40
. We compute the time trajectories for all mi then calculate

heteroplasmy by setting M1 = m1 + m3, M2 = m2 + m4, respectively the total numbers of

wildtype and mutant mtDNAs, and using Equations 15, 16, where all means and variances are

straightforwardly extracted from the above analysis.

Characterisation of distributions of important quantities with
moments
We are interested in the probability with which heteroplasmy h exceeds a certain threshold

value h*. This probability can be computed using Equation 72 above, but the large sums of
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hypergeometric functions suggest that a simpler approximation of the heteroplasmy

distribution may be desirable, both for computational simplicity and intuitive interpretability.

We here explore how well distributions of copy number and, importantly, heteroplasmy are

characterised by quantities that are easily obtained from our analytic approaches without large

summations: specifically, low-order moments EðmÞ;VðmÞ, and fixation probabilities Pðm=0Þ.
For moderate initial heteroplasmy 0.7 > h0 > 0.3, all distributions are well matched by the

Normal distributions computed using the first two moments EðmÞ and VðmÞ. This match begins

to fail as initial heteroplasmy decreases or increases to the extent where fixation of one mtDNA

type becomes likely. The resultant non-negligible probability density at h = 0 and/or h = 1

represents a truncation point which forces skew on the distributions (particularly PðhÞ) and
weakens the Normal approximation.

We can make progress by considering PðhÞ to be a weighted sum of a truncated Normal

distribution N ′ðμ; σ2Þ (truncated at 0, 1; and with currently unknown parameters μ, σ) and two

δ-functions at h = 0 and h = 1 representing the fixation probability of wildtype and mutant

mtDNA respectively. If we write PN ′ðhÞ for the probability density at h of such a truncated

Normal distribution, we have:

PðhÞ= ð1− ζ1 − ζ2ÞPN ′ðhÞ+ ζ1δðhÞ+ ζ2δðh− 1Þ; (74)

where ζ1 =Pðm2 = 0; tÞ is the fixation probability of the wildtype and ζ2 =Pðm1 =0; tÞ is the

fixation probability of the mutant, expressions for which were computed previously in

Equation 73. Knowledge of the parameters μ, σ that describe the truncated Normal part of this

distribution will then provide us with a better estimate of PðhÞ.
We can use the relations EðhÞ= R ​hPðhÞdh and VðhÞ= R ​h2PðhÞdh−EðhÞ2. As δ(h) provides

a nonzero contribution to these integrals only when h = 0, the contribution from this part of

PðhÞ is always zero; then,

EðhÞ=
Z ​

h
�ð1− ζ1 − ζ2ÞPN ′ðhÞ+ ζ2δðh− 1Þ�dh; (75)

= ð1− ζ1 − ζ2ÞEðN ′Þ+ ζ2; (76)

VðhÞ=
Z ​

h2
�ð1− ζ1 − ζ2ÞPN ′ðhÞ+ ζ2δðh−1Þ�dh−EðhÞ2; (77)

= ð1− ζ1 − ζ2Þ
�
VðN h>0Þ+ EðN h>0Þ2

�
− EðhÞ2 + ζ2; (78)

where EðN ′Þ, VðN ′Þ are respectively the mean and variance of the truncated Normal

distribution, and in the final line we have used the fact that VðN ′Þ= R ​h2PN ′ðhÞdh−EðN ′Þ2.
Results are known (Greene, 2003) for moments of the truncated Normal distribution:

EðN ′Þ= μ+ σ
f ðα1Þ− f ðα2Þ
Fðα2Þ−Fðα1Þ; (79)

VðN ′Þ= σ2
 
1−

α1f ðα1Þ− α2f ðα2Þ
Fðα2Þ−Fðα1Þ −

�
f ðα1Þ− f ðα2Þ
Fðα2Þ−Fðα1Þ

	2
!
; (80)

where, in our case (with truncations at h = 0 and h = 1) α1 = −μ/σ, α2 = (1 − μ)/σ and

f ðxÞ= ð ffiffiffiffiffiffi
2π

p Þ−1expð−x2=2Þ and FðxÞ=1

2
ð1+ erfðx=

ffiffiffi
2

p
ÞÞ are respectively the p.d.f. and c.d.f. of

the standard Normal distribution. Given these expressions, we wish to invert these Equations

76, 78 to find μ and σ, the parameters underlying the truncated Normal distribution, given EðhÞ,
VðhÞ and ζ1;2 =Pðm2;1 =0Þ, which we can compute (see below). We have not been able to find

an analytic solution for these equations; however, numerically solving these equations is

computationally far cheaper than performing the numeric simulations required to better
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characterise the real distribution. We then obtain an expression for PðhÞ, which well matches

the exact distribution derived using Equation 72 (see Appendix figure 4).

Appendix figure 4. Comparison of truncated Normal approximation with exact heteroplasmy distribution.

Representations of heteroplasmy distributions at a time t = 21 dpc, with various starting heteroplasmies,

using (as an example) the maximum likelihood parameterisation emerging from the inference procedure in

the Main text. Dark lines and bars show exact distributions from Equation 72; pale lines and bars show

distributions arising from the truncated Normal distribution described in the text.

DOI: 10.7554/eLife.07464.016

Threshold crossing
The probability of crossing a threshold heteroplasmy h* with time is simply given by the

probability density in the region h > h*. We can then use the result

P
�
h> h*

�
= ð1− ζ1 − ζ2Þ

�
1−

1

2

�
1+ erf

��
h* − μ

�. ffiffiffiffiffiffiffiffi
2σ2

p ��	
+ ζ1

�
1− δ

�
h*
��

+ ζ2
�
1− δ

�
h* −1

��
;

(81)

for threshold crossing, which follows straightforwardly from considering the integrated density

of the model distribution (Equation 74) of h above h*, with parts from the error function

representing the definite integral of the truncated Normal part of the distribution, with

additional terms from wildtype fixation (if h* ≠ 0) and mutant fixation (if h* ≠ 1).

Inferring embryonic heteroplasmy
The probability that a sample measurement hm came from an embryo with heteroplasmy h0 can

be found from Bayes’ Theorem:

Pðh0 j hmÞ=Pðhm j h0ÞPðh0Þ
PðhmÞ : (82)

We assume a uniform prior distribution Pðh0Þ= ρ on embryonic heteroplasmy (though this can

be straightforwardly generalised). PðhmÞ is given by the integral over all possible embryonic

heteroplasmies of making observation hm, so we obtain
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Pðh0 j hmÞ= ρPðhm j h0ÞZ
​
1

0
dh0′ρPðhm j h0′Þdh0′

; (83)

=
ð1− ζ1 − ζ2ÞN ′

�
hm
�� μ; σ2�+ ζ1δðhmÞ+ ζ2δðhm − 1ÞR

​ 1
0dh0′

�ð1− ζ1 − ζ2ÞN ′ðhm j μ; σ2Þ+ ζ1δðhmÞ+ ζ2δðhm −1Þ�; (84)

where the μ, σ2 moments characterising the truncated Normal distribution are found

numerically as above (for each h0′ value in the integrand, which is performed numerically); and

ζ1, ζ2 are also functions of h0.
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