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ABSTRACT 1 

This paper analyses how the effects of fixed speed cameras on road casualties vary across 2 

sites with different characteristics and evaluates the criteria for selecting camera sites. A total 3 

of 771 camera sites and 4787 potential control sites are observed for a period of 9 years across 4 

England. Site characteristics such as road class, crash history and site length are combined 5 

into a single index, referred to as a propensity score. We first estimate the average effect at 6 

each camera site using propensity score matching. The effects are then estimated as a function 7 

of propensity scores using local polynomial regression. The results show that the reduction in 8 

personal injury collisions ranges from 10% to 40% whilst the average effect is 25.9%, 9 

indicating that the effects of speed cameras are not uniform across camera sites and are 10 

dependent on site characteristics, as measured by propensity scores. We further evaluate the 11 

criteria for selecting camera sites in the UK by comparing the effects at camera sites meeting 12 

and not meeting the criteria. The results show that camera sites which meet the criteria 13 

perform better in reducing casualties, implying the current site selection criteria are rational.  14 

 15 
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1. INTRODUCTION 1 

Speed limit enforcement cameras were first introduced in the UK in 1991 and were 2 

extended widely in the last decade. Numerous studies have been conducted to investigate the 3 

effect of safety cameras, and results show that the implementation of safety cameras has 4 

reduced vehicle speed and casualty numbers near camera sites (e.g. Mountain et al.,2005;  5 

Gains et al., 2004; Gains et al., 2005; Li et al., 2013). Despite the wealth of empirical 6 

evidence it remains unclear how such effects may vary across sites, referred to as 7 

heterogeneity of treatment effect (HTE). The hypothesis is that the variation in treatment 8 

effects is related to the differences in site characteristics, specifically the extent to which site 9 

characteristics meet treatment assignment criteria. The main objective of this study is to 10 

analyse how the site characteristics influence the effects of fixed speed cameras, and identify 11 

the locations which have benefited most from treatment.  12 

Although the importance of HTE has been widely recognized in causal analysis, most 13 

previous studies on speed cameras usually report an average treatment effect (ATE), which 14 

neglects the fact that the effects of speed cameras may differ systematically by site 15 

characteristics. This is due in part to the fact that causal approaches for exploring HTE, used 16 

routinely in other areas of science such as medicine and epidemiology, have not yet been 17 

adopted in road safety studies. Understanding HTE has important implications for policy 18 

making. Treatments or trials, such as speed cameras, are usually costly. For example, the 19 

annual cost of safety cameras is around ₤100 million for 2003/04 in the UK (Gains et al., 20 

2005). It is desirable that the treatment is operated in a way that maximises effectiveness with 21 

limited resources. By revealing patterns of HTE, policy makers can assign treatments to units 22 

most likely to benefit from the treatment, so as to improve the cost-effectiveness of 23 

intervention. In this paper we tackle this issue by applying and developing causal approaches 24 

for estimating heterogeneous treatment effects of speed cameras on road casualties. 25 

The paper is organized as follows. The literature review is presented in Section 2. The 26 

method and data used in the analysis are described in Section 3 and Section 4. The results are 27 
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presented and discussed in Section 5. The conclusions are given in the final section. 1 

 2 

2. LITERATURE REVIEW 3 

Several studies have been conducted to analyse the effects of speed enforcement 4 

cameras on safety (Christie et al., 2003; Mountain et al., 2004; Cunningham et al., 2008; Shin 5 

et al., 2009; Jones et al., 2008). In general, these studies show that the implementation of 6 

speed cameras has significantly reduced vehicle speeds and the number of casualties near 7 

camera sites. There are two outstanding issues, however, which have yet to be fully addressed 8 

in the previous evaluations of the effects of speed cameras on road casualties. 9 

The first issue regards the selection of the reference or control group. Most studies to 10 

date have used before-and-after methods with control groups (Gains et al., 2004; Christie et 11 

al., 2003; Cunningham et al., 2008; Jones et al., 2008). In these studies, a group of similar 12 

sites is usually selected as the control group in order to account for the general trend in 13 

casualties. However, this method is unable to control for effects of regression to mean (RTM), 14 

also known as selection bias, which is a type of bias due to a flaw in the sample selection 15 

process. The impact of the RTM is that it can make random variation appear as real change 16 

caused by treatments and therefore overestimate the effect of a safety treatment. 17 

A reference or control group is usually required to estimate the counterfactual 18 

outcomes of the treatment group. However, treated and untreated units may differ in the 19 

absence of any treatment due to confounding characteristics, which affect both potential 20 

outcomes and treatment participation. In other words, confounding characteristics of units that 21 

are treated may differ in some systematic way from those that are not treated, and those 22 

characteristics also may have a bearing on the incidence of selection bias and the severity of 23 

its impact. This means that only untreated units with similar confounding characteristics to the 24 

treated can be used to approximate the counterfactual outcomes of the treatment group. 25 

However, in previous research, not only is there insufficient justification of the selection of 26 

control groups, how the treatment and control groups are matched is also unclear.  27 
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The propensity score matching (PSM) method is proposed by Rosenbaum and Rubin 1 

(Rosenbaum and Rubin, 1983) for selecting control groups and estimating causal effects. The 2 

PSM method has been widely used as a tool of evaluation in econometrics (Heckman et al., 3 

1997; Hirano and Imbens, 2001; Dehejia, 2005; Dehejia and Wahba, 2002; Kurth et al., 2006; 4 

Lechner, 2001; Abadie and Imbens, 2004; Abadie and Imbens, 2009). Recently, this approach 5 

has been introduced and employed in evaluation studies of road safety measures (e.g. Li et al., 6 

2013; Sasidharan and Donnell, 2013). We will discuss PSM in the next section. 7 

The second issue arising from these studies is that only ATE is estimated, however, 8 

neglecting the fact that treatment effects can differ across the treated population. The ATE 9 

provides useful information, but policy makers also care about effects within specific 10 

subpopulations. Since road safety measures are usually costly, it is desirable that treatments 11 

are assigned to areas or units which are most likely to benefit from the treatment. A good 12 

knowledge of the pattern of treatment effects can help policy makers to make optimal 13 

decisions with limited resources. Most previous studies on the effect of speed cameras, 14 

however, focus on the average benefit, ignoring the fact that the impact may vary across sites 15 

with different characteristics.  16 

Several approaches to estimating HTE based on the propensity scores have been 17 

proposed and applied in a few quantitative sociological studies. For example, Xie et al. (2012) 18 

discuss a practical approach to studying HTE as a function of treatment propensity under the 19 

unconfoundedness assumption. Three methods, one parametric and two non-parametric, are 20 

described for analysing interactions between treatment effects and the treatment propensity. 21 

They apply the three methods to estimate the effects of college attendance on women’s 22 

fertility based on the work by Brand and Davis (2011). This study applies the approaches 23 

introduced by Xie et al. (2012) to estimate HTE of speed cameras on road casualties. 24 

 25 

3. METHODS  26 

In this section, we first introduce the propensity score and the conditions under which 27 
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it can be used to evaluate the effect of interventions. Then two approaches based on the 1 

propensity score are discussed for ATE and HTE estimation. 2 

 3 

3.1 Propensity Score Matching  4 

The treatment indicator is defined as Ti=1 if unit i receives the treatment and Ti =0 5 

otherwise. Yi(T) denotes the potential outcome for unit i, where i=1,…, N and N denote the 6 

total population. For instance, E[Y(0)|T=1] is the expected value of the outcome Y of treated 7 

units when not exposed to the treatment. The treatment effect for unit i can be described as: 8 

δi=Yi(1)-Yi(0)  (Individual Treatment Effect) 9 

The fundamental problem of causal inference is that it is impossible to observe the 10 

outcomes of the same unit i in both treatment conditions at the same time (Holland, 1986). In 11 

practice, control groups are usually selected from untreated units to construct counterfactual 12 

outcomes for treated units. However, since the treatment assignment is usually not random 13 

and affected by pre-treatment variables, there can be systematic differences between treated 14 

and untreated units, and they can affect the potential outcomes, Y.  15 

The basic idea behind matching is to match each treated unit to untreated units with 16 

the same values on observed characteristics, such as a vector of control variables X. The 17 

matching approach becomes more difficult to implement as the number of observed control 18 

variables used increases, however. This obstacle can be overcome by matching on a single 19 

index instead of multiple dimensions. The most well-known index is the propensity score, 20 

which is the probability that a unit is selected into the treatment group conditional on 21 

confounding variables. Conditional on the propensity score, differences in observed outcomes 22 

between the two groups can be solely attributed to the intervention impacts.  23 

The validity of this approach rests on two assumptions, conditional independence 24 

assumption (CIA) and overlap assumption, which can be described as: 25 

(Y(1), Y(0))⊥T|P(X), ∀X (Conditional independence assumption) 26 

0<P(T=1|X) <1 (Overlap assumption) 27 
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For a full discussion of these assumptions please see Abadie and Imbens (2009). It is 1 

important to check the validity of the assumptions before estimating the treatment effects. 2 

There are several methods for checking these two assumptions and assessing the matching 3 

quality. We will discuss this in detail later.  4 

Because linear probability models produce predictions outside the [0, 1] bounds of 5 

probability, logit and probit models are usually used to estimate propensity scores. For binary 6 

treatment, logit and probit models usually yield similar results, hence the choice between 7 

them is not critical. Please refer to the paper by Smith (1997) for further discussion of this 8 

point. In this paper, a logit model is used: 9 

P (T=1│X) = EXP(α+β′X)
1+EXP(α+β′X)

 10 

Where α is the intercept and β’ is the vector of regression coefficients. The selection 11 

of control variables included in PSM will be discussed in section 4. 12 

 13 

3.2 Inferences on Treatment Effects 14 

Here we discuss propensity score matching and regression methods for estimating 15 

ATE and HTE under the unconfoundedness assumption. 16 

 17 

3.2.1 Average Treatment Effects 18 

Once the propensity score is estimated, the most straightforward approach for 19 

estimating treatment effects is matching. In general, the treatment effect can be estimated as 20 

Yi(1)-Yj(i)(0), where Yj(i) is the outcome for the control unit j that is matched with the treated 21 

unit i. In general, there are four mostly used matching algorithms: nearest neighbour matching, 22 

caliper and radius matching, stratification and interval matching, kernel and local linear 23 

matching. For detailed discussion of these matching algorithms, please refer to the work by 24 

Heinrich et al. (2010). 25 

Then the effects can be calculated by averaging the differences in outcomes between 26 

treated units and matched control units.  27 
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δATE= E[Y(1)-Y(0)|T=1]=1
N
∑ (Y𝑖𝑖(1) − Y𝑗𝑗(𝑖𝑖)(0))N
i=1  1 

A number of statistical software programs are available to perform matching and 2 

evaluate average effects. A frequently used program, psmatch2, has been developed by 3 

Leuven and Sianesi (2003) and can be installed in Stata.  4 

 5 

3.2.2 Heterogeneous Treatment Effects 6 

We now discuss the approach for estimating HTE using a smoothing method (Xie et 7 

al., 2012). The procedures can be illustrated as following steps. 8 

(1) The first step is to estimate propensity scores for all units in treated and control 9 

groups as discussed in ATE estimation.  10 

(2) In this step, each treated unit is matched to a control unit or multiple units with 11 

similar propensity scores. The treatment effect for each treated unit can be obtained by taking 12 

the differences in outcomes between treated units and matched control units. 13 

(3) Given sufficient observations it is possible to fit curves and surfaces to data by 14 

smoothing. One widely used approach to smoothing data is local polynomial regression. The 15 

curve depicts how treatment effects change against propensity scores. Specifically, individual 16 

treatment effects estimated in step (2) can be described as a function of the propensity score: 17 

δHTE=f(P(X)) 18 

Where P(X) is the propensity score given observed control variables X, f(P(X)) is 19 

assumed as a polynomial function, which can be expressed as: 20 

f(P(X)) = μ0 + μ1P(X) + μ2P(X)2 + μ3P(X)3 …. + μmP(X)m 21 

The best fitting power, m, is selected by maximizing the likelihood of this equation. 22 

 23 

4. DATA 24 

4.1 Control Variables Included in PSM  25 

The validity of PSM largely relies on the CIA, (Y(1), Y(0))⊥T|X, where X is a vector 26 

of confounders. Only variables that affect both treatment participation and potential outcomes 27 
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should be included in the propensity score model. Discussions are available regarding 1 

variables choice when using propensity score methods (Heckman et al., 1997; Rubin and 2 

Thomas, 1996; Brookhart et al., 2006; Bryson et al., 2002; Augurzky and Schmidt, 2000). 3 

The inclusion of control variables would be less complicated if criteria for treatment 4 

assignment were available. Where such criteria are not available, it is still possible to choose 5 

control variables based on previous empirical findings. In this study two sets of variables are 6 

chosen for inclusion in PSM. 7 

 8 

4.1.1 Variables suggested in the handbook for camera site selection 9 

Currently, in the UK, formal site selection guidelines for fixed speed camera sites 10 

exist (Gains et al., 2004), as shown below. 11 

(1) Site length: Between 400-1500 metres. 12 

(2) Number of fatal and serious collisions (FSCs): at least 4 FSCs per km in the last 13 

three calendar years. 14 

(3) Number of personal injury collisions (PICs): at least 8 PICs per km in the last 15 

three calendar years. 16 

(4) 85th percentile speed at collision hot spots: 85th percentile speed at least 10% 17 

above speed limit. 18 

(5) Percentage over the speed limit: at least 20% of drivers are exceeding the speed 19 

limit. 20 

A site is defined as a stretch of road that has a fixed speed camera or has had one in 21 

the past. A site length is the distance between two points within which collisions, casualties 22 

and speeds are measured and camera enforcement takes place. For fixed cameras the choice 23 

of a monitoring length for collisions was difficult as there has, until recently, been very little 24 

information available concerning the likely area of influence of cameras and there is no 25 

standard monitoring length. Different authorities use different site lengths although 500m 26 

either side of the camera has probably been most common (Gains et al., 2004). In this study, 27 



10 
Haojie Li 
Daniel Graham 
camera sites data is collected from eight English administrative districts, where different site 1 

lengths are selected by local authorities. Although site lengths vary slightly, they can be 2 

categorized into three bands: 200m, 500m and 1km. The segments are centered on the camera 3 

for most sites. If a segment meets a major junction or another segment, the segment lengths 4 

are not even on both sides, e.g. 200m upstream and 800m downstream. 5 

The first three guidelines can be thought of as primary criteria and the latter two as 6 

secondary criteria (Gains et al., 2005). Secondary criteria such as the 85th percentile speed and 7 

percentages of vehicles over the speed limit are not normally publically available for all sites 8 

on UK roads, however, because data concerning speeds are not routinely collected for road 9 

sections before they have been selected for further investigation and possible remedial 10 

treatment. Whether the exclusion of the speed information will lead to bias in estimates 11 

depends on the extent to which the speed variables play a part in site selection. The models 12 

used in this study were based on data for 771 cameras sites throughout the UK. These roads 13 

can be reasonably assumed to be representative of the typical speed distribution throughout 14 

the UK. National data suggests that, for typical 30 mph roads, speed distributions and 15 

percentages of speeding are very similar to those at the sites with speed cameras (Gains et al., 16 

2004). It is probably because that speeding is endemic on 30mph roads and the speed criteria 17 

for site selection are not particularly restrictive. For example, in 1998, an average of 70% of 18 

cars on 30mph roads in GB exceeds the speed limit with a mean speed of 33 mph (Mountain 19 

et al., 2005). Since the speed criteria would be met on most 30mph roads, there is no reason to 20 

suppose that the speed related criteria played much part in selecting 30mph camera sites. This 21 

is also broadly the case for 40mph zones. It is reasonable to assume that there is no significant 22 

difference in the speed distribution between the treated and untreated groups and hence 23 

exclusion of the speed data will not affect the accuracy of the propensity score model. 24 

Selection of speed camera sites, therefore, is primarily based on site length and 25 

collision history, both of which are also important predictors in road safety analysis. 26 

Pre-treatment casualty records are valuable control variables because they are important 27 
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predictors of treatment entry and subsequent outcomes in post-treatment period. The road 1 

length is also an important exposure variable to obtain risk estimates in road safety analysis. 2 

In addition, it is suggested that drivers may choose alternative routes to avoid speed cameras 3 

sites (Allsop, 2010; Mountain et al., 2004). Collision reduction at camera sites may include 4 

the effect induced by a reduced traffic flow. The benefits of speed cameras will therefore be 5 

overestimated without controlling for the change in traffic flow. The effect due to traffic flow 6 

is controlled for in this study by including the annual average daily traffic (AADT) in the 7 

propensity score model. 8 

 9 

4.1.2 Variables suggested as important factors affecting road casualties 10 

Notwithstanding the guidelines discussed above there are sites not meeting the 11 

criteria which may still be treated as enforcement sites for one or more of the other reasons, 12 

such as community concern, collision frequency and engineering factors (DfT, 2005). In other 13 

words, there are unknown factors that affect treatment assignment but are not explicitly 14 

described in the handbook for camera site selection. As suggested by Rubin and Thomas 15 

(1996) and Brookhart et al. (2006), unless there is consensus that the variable is unrelated to 16 

treatment assignment, variables that affect potential outcomes should be included, because 17 

they decrease the variance of the estimated treatment effect without increasing bias. Hence 18 

variables suggested as important factors when analysing road casualties at camera sites are 19 

also considered. Thus variables further included in the propensity score model are: speed limit, 20 

road class (e.g. Motorway, A road, B road, Minor road) and the number of minor junctions 21 

within the site length, which have been suggested as important factors when estimating the 22 

safety impact of speed cameras (Mountain et al., 2005; Gains et al., 2005; Christie et al., 23 

2003). The data set used is Ordnance Survey (OS) Meridian TM 2 for the period from 24 

1999-2007, so the variance in road characteristics over time is controlled for.  25 

 26 

4.2 Sample Size 27 
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Due to data restrictions, 771 camera sites from the following eight English 1 

administrative districts were included in the treatment group: Cheshire, Dorset, Greater 2 

Manchester, Lancashire, Leicester, Merseyside, Sussex and West Midlands. All speed cameras 3 

are designed to measure the speed of approaching vehicles, or departing vehicles, or both, 4 

depending upon the type of camera. It is possible that drivers may decelerate and accelerate 5 

abruptly before and after the camera sites. This is known as the “kangaroo” effect and is 6 

another manifestation of collision migration (Mountain et al, 2005; Christie et al., 2003). To 7 

control for this effect, in this study the effects of speed camera are investigated in both 8 

directions no matter which type of the camera is. Control sites, which have never had a 9 

camera in the past and are at least 1.5km from any camera site, are randomly chosen in these 10 

districts to ensure that they are not affected by speed cameras. A total of 4787 sites without 11 

cameras covering all site length bands are used as potential control sites for matching. In the 12 

following section, a series of tests are used to check whether the control group can provide 13 

adequate matches. 14 

 The established dates for camera sites range from 2002 to 2004: 215 sites in 2002, 15 

352 sites in 2003 and 204 sites in 2004. To ensure that three years data before and after are 16 

available for all camera sites, nine years data from 1999 to 2007 are used in this study. Whilst 17 

concerns have been raised about the completeness and reliability of accident data in STATS19, 18 

in the case of casualties at speed camera sites, given the nature of such sites, it is likely that all 19 

casualties were captured and that the data is therefore reliable and complete.  20 

 21 

5. HTE OF SPEED CAMERA ON ROAD CASUALTIES 22 

5.1 Estimation of Propensity Scores 23 

The first step is to estimate propensity scores for all treated and untreated units. Table 24 

1 shows that all control variables except “minor road” are significant in the estimation of the 25 

propensity scores. This is probably because there are only 19 observations for speed cameras 26 

installed on minor roads in the study sample. “Motorway” is excluded due to collinearity. It is 27 
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also worth noting that only the number of FSCs is positively correlated to propensity scores, 1 

while the number of PICs is not. This indicates that local authorities put more values on the 2 

number of FSCs than PICs in practice, which is also consistent with the rules described in the 3 

handbook (DfT, 2005). The result, in general, confirms that the control variables included in 4 

the propensity score model are important in predicting the possibility of being selected as 5 

camera sites. The estimation model shows a low Pseudo R2 value. As Westreich et al. (2011) 6 

emphasized, however, the primary purpose of the propensity score model is not to predict 7 

treatment assignment, but to balance control variables in order to control for confounding.  8 

9 
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TABLE 1 Propensity Score Model Check 1 

 
Coef.  (Std. Err.) z P>z [95% Conf. Interval] 

Number of minor junctions 0.023 (0.007) 3.33 0.001 0.009 0.036 
AADT in baseline years 1.30E-05 (2.36E-06) 5.52 0.000 8.40E-06 1.76E-05 
PICs in baseline years -0.013 (0.003) -4.13 0.000 -0.019 -0.007 
FSCs in baseline years 0.159 (0.018) 8.67 0.000 0.123 0.194 
Site length -0.141 (0.064) -2.20 0.028 -0.267 -0.015 
A Road -0.377 (0.128) -2.95 0.003 -0.627 -0.126 
B Road -0.307 (0.135) -2.27 0.023 -0.572 -0.042 
Minor Road -0.078 (0.193) -0.40 0.686 -0.457 0.301 
Speed Limit 30mph 1.017 (0.101) 10.11 0.000 0.820 1.214 
Speed Limit 40mph 0.594 (0.106) 5.61 0.000 0.387 0.802 
Constant -1.876 (0.168) -11.14 0.000 -2.206 -1.546 
Pseudo R Square: 0.28 AIC: 2145.4      
Observations: 5558 

      
 

 2 

5.2 Tests of Matching Quality 3 

We first check the validity of the propensity score matching method before estimating 4 

the effects of speed cameras. There are two routine tests, one of which is through a visual 5 

inspection of the propensity score distribution for both the treatment and control groups. The 6 

region of common support is defined as the area where the support of the propensity scores 7 

overlaps for the treated and control groups. Units within the region of common support is 8 

called “on support”, and vice versa. Figure 1 shows the distribution of propensity scores for 9 

both groups. We observe 771 sites and 4787 sites for the treatment and the potential control 10 

groups respectively, with only seven treated sites are off support and discarded1. Table 2 is 11 

also provided as a supplement to Figure 1. It can be seen that camera and control sites have 12 

common support with scores below 0.65. For scores between 0.65-0.7, only control sites are 13 

observed, while camera sites with a score greater than 0.7 are off support. Therefore there is 14 

sufficient overlapping of the distributions between camera and potential control sites.  15 

                         
1 Due to the small percentage of “off support” treated units (0.9%), the green columns are not clear. However, 
they can be seen if Figure 1 is sufficiently enlarged. 
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 1 

FIGURE 1 Propensity score distribution 2 

  3 
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TABLE 2 Summaries of Propensity Scores for Treated and Untreated Groups 1 

Propensity 
Score 

Treated Untreated 
  Obs. Mean Min Max Obs. Mean Min Max 

0-0.05 20 0.036  0.014  0.049  718 0.024  0.007  0.049  
0.05-0.1 71 0.078  0.052  0.099  930 0.074  0.050  0.099  
0.1-0.15 123 0.130  0.101  0.149  914 0.128  0.100  0.149  
0.15-0.2 216 0.173  0.150  0.199  1267 0.173  0.150  0.199  
0.2-0.25 147 0.223  0.200  0.249  546 0.221  0.200  0.249  
0.25-0.3 77 0.272  0.251  0.299  238 0.272  0.250  0.299  
0.3-0.35 40 0.325  0.301  0.348  97 0.322  0.301  0.349  
0.35-0.4 21 0.369  0.350  0.394  42 0.369  0.351  0.399  
0.4-0.45 18 0.422  0.402  0.443  11 0.423  0.400  0.448  
0.45-0.5 12 0.478  0.461  0.490  5 0.473  0.455  0.482  
0.5-0.55 10 0.520  0.500  0.539  4 0.524  0.504  0.542  
0.55-0.6 7 0.572  0.555  0.597  4 0.562  0.553  0.591  
0.6--0.65 2 0.635  0.628  0.642  2 0.624  0.614  0.633  
0.65-0.7 0 -------     9 0.682  0.672  0.691  
0.7-0.75 2 0.741  0.736  0.746  0 -------     
0.75-0.8 2 0.769  0.759  0.778  0 -------     
0.8-0.85 1 0.815  0.815  0.815  0 -------     
0.85-0.9 2 0.880 0.862  0.897  0 -------     

 

A balancing test is performed to assess the matching quality as this test can verify that the 2 

treatment is independent of the control variables after matching. Table 3 shows the t-test of 3 

differences in variable means before and after the matching. It can be seen that all control 4 

variables are balanced between the treatment and matched control groups. Consequently the 5 

bias due to the differences in observable characteristics is reduced. In addition, the balance 6 

test can be also used to check the distribution of control variables between treatment and 7 

control groups. For example, Figure 2 shows the density plots of “PICs in baseline years” and 8 

“number of minor junctions” for treatment and control groups before and after matching, 9 

which indicate that the propensity score matching can balance not only the means but also the 10 

distribution of control variables.  11 
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TABLE 3 Checking the Variables Balance between Groups Before and After Using 1 

Nearest Neighbours (k=5) Matching 2 

  Mean  %reduced t-test 
Variable Sample Treated Control %bias |bias| t p>|t| 
Number of minor junctions Unmatched 5.4578 3.5233 35.6 97.6 10.84 0.000 
 Matched 5.3307 5.2852 0.8 0.16 0.873 
AADT in baseline years Unmatched 19039 18020 10.1 88.3 2.52 0.012 
 Matched 19049 19168 -1.2 -0.22 0.823 
PICs in baseline years Unmatched 12.722 8.3347 34.7 99.2 9.60 0.000 
 Matched 12.510 12.474 0.3 0.05 0.959 
FSCs in baseline years Unmatched 1.8431 1.0391 41.7 97.6 12.63 0.000 
 Matched 1.7969 1.7773 1.0 0.18 0.861 
Site length Unmatched 0.7118 0.7009 2.3 -137.2 0.59 0.554 
 Matched 0.7094 0.7353 -5.4 -1.05 0.294 
A Road Unmatched 0.7276 0.7984 -16.7 74.2 -4.47 0.000 
 Matched 0.7279 0.7096 4.3 0.79 0.427 
B Road Unmatched 0.2101 0.1613 12.6 89.3 3.37 0.001 
 Matched 0.2096 0.2148 -1.3 -0.25 0.803 
Minor Road Unmatched 0.0376 0.0230 8.5 82.2 2.42 0.016 
 Matched 0.0378 0.0404 -1.5 -0.26 0.792 
Speed Limit 30mph Unmatched 0.7575 0.5118 52.7 97.9 12.90 0.000 
 Matched 0.7565 0.7513 1.1 0.24 0.813 
Speed Limit 40mph Unmatched 0.1219 0.1828 -17.0 97.9 -4.14 0.000 
 Matched 0.1224 0.1237 -0.4 -0.08 0.938 

 

 3 

 4 

Figure 2 Density plots of “PICs in baseline years” and “number of minor junctions” 5 
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5.3 HTE of Speed Cameras on Road Casualties 1 

The aim of this study is to evaluate how site characteristics influence the effects of 2 

fixed speed cameras. We estimate HTE of speed cameras on road casualties using smoothing 3 

methods in this section.  4 

We first estimate average treatment effects using five different matching methods. In 5 

this study, the matching algorithms used are: K-nearest neighbours matching (K=1), 6 

K-nearest neighbours matching (K=5), radius matching (caliper=0.05), stratification matching 7 

and kernel matching (caliper=0.05). The effects of speed cameras are estimated as absolute 8 

numbers and percentages.  9 

The next step is to estimate HTE. The treated and control units are first matched via 10 

kernel matching (caliper=0.05). The treatment effect for each treated unit is estimated by 11 

taking the difference in outcomes between matched pairs. Smooth curves through the data 12 

points of individual treatment effects are plotted using local polynomial regressions. Local 13 

linear and quadratic are employed instead of higher-degree polynomials which may tend to 14 

overfit the data.  15 

The results from local linear and quadratic regressions are very similar. The first three 16 

graphs in Figure 3 show approximately U-shape curves of HTE on PICs and FSCs. It is worth 17 

noting, however, for camera sites with higher propensity scores, the pool of potential control 18 

sites is not as large as those with lower scores. This may influence the matching quality. In 19 

addition, the sample size of such camera sites is also small, only accounting for 5% of the 20 

population. This may also have an impact on the estimates. To get a clearer pattern of HTE, 21 

we thus exclude the sites with propensity scores higher than 0.32 (0.95 quantile) and 22 

re-examine the pattern of HTE as shown in the three graphs at the bottom of Figure 3.  23 

We then compare ATE and HTE of speed cameras on PICs and FSCs. As shown in 24 

Table 4, the average reduction in annual PICs is around 1.1 per km. The estimation of HTE in 25 

this study, however, suggests that the reduction in annual PICs ranges from 0.5 to 3 per km. 26 

The reduction in PICs as percentages ranges from 10% to 40%, whilst the average treatment 27 
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effect on PICs as percentage is 25.9%. In terms of the effect on FSCs, the annual reduction in 1 

FSCs is estimated to be 0.13 per km on average, while the approximate number varies from 2 

-0.1 to 0.4 per km in HTE estimation. The average reduction in FSCs as percentages is about 3 

10% using naive before-after method. However, this effect becomes insignificant after using 4 

matching methods.  5 

Although the propensity score is a useful index in the sense that it simplifies matching, 6 

it is not available to decision makers. Furthermore, treatment decisions are made based on the 7 

criteria (a set of observables) rather than propensity scores. Thus it is important to investigate 8 

how the distribution of treatment effects is related to treatment assignment criteria.9 
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Table 4 Average Effects of Speed Cameras on Annual PICs/FSCs per km 1 

 
Effects on annual PICs per km in absolute numbers Effects on annual PICs per km in percentage 

Matching Methods Changes 
(PICs/year/km)  S. E. T-Stat 

No. of 
Camera 
Sites 

No. of 
Control 
Sites 

Percentage 
Changes  S. E. T-Stat 

No. of 
Camera 
Sites 

No. of 
Control 
Sites 

Unmatched -1.441 0.131 -11.02 771 4787 -30.70% 0.041 -7.5 726 4077 
K-nearest Neighbours Matching (K=1) -1.035 0.21 -4.92 764 663 -29.70% 0.051 -5.83 726 600 
K-nearest Neighbours Matching (K=5) -1.068 0.168 -6.33 764 2923 -24.60% 0.034 -7.21 726 2625 
Radius Matching (Caliper=0.05) -1.081 0.155 -6.97 769 4626 -25.20% 0.031 -7.99 724 3921 
Stratification Matching -1.042 0.15 -6.96 769 4628 -24.70% 0.029 -8.48 725 4078 
Kernel Matching (Bandwidth=0.05) -1.117 0.147 -7.61 771 4626 -25.10% 0.032 -7.89 726 4077 
Average Effect -1.068 

 
  

 
-25.90% 

 
   

                      

 
Effects on annual FSCs per km in absolute numbers Effects on annual FSCs per km in percentage 

Matching Methods Changes 
(FSCs/year/km)  S. E. T-Stat 

No. of 
Camera 
Sites 

No. of 
Control 
Sites 

Percentage 
Changes  S. E. T-Stat 

No. of 
Camera 
Sites 

No. of 
Control 
Sites 

Unmatched -0.342 0.037 -9.25 771 4787 -9.90% 0.043 -2.3 512 2435 
K-nearest Neighbours Matching (K=1) -0.141 0.06 -2.34 771 663 -5.20% 0.052 -0.99 512 409 
K-nearest Neighbours Matching (K=5) -0.124 0.049 -2.5 771 1676 -6.20% 0.047 -1.31 512 2435 
Radius Matching (Caliper=0.05) -0.131 0.046 -2.82 769 4626 -3.85% 0.043 -0.89 509 2435 
Stratification Matching -0.135 0.044 -3.05 769 4628 -3.76% 0.043 -0.87 509 2437 
Kernel Matching (Bandwidth=0.05) -0.131 0.046 -3.01 771 4626 -3.54% 0.046 -0.82 509 2435 
Average Effect -0.132 

   
  -4.51% 

    
 

 2 
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FIGURE 3 HTE of speed cameras by propensity scores
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5.4 Criteria for Proposed Camera Sites 1 

In this section we evaluate the criteria for selecting camera sites in the UK. We 2 

assume that the main factor affecting camera sites selection is historical casualties (Gains et 3 

al., 2004; DfT, 2005). It is worth noting that the rules for proposed fixed speed camera sites 4 

are slightly different in the handbook published by DfT (2005). Most rules are consistent with 5 

the criteria described in the four-year report (Gains et al., 2004). However, a criterion termed 6 

“total value required” is introduced in this handbook. That is, “new camera sites will be 7 

selected using an assessment that includes the level of fatal, serious and slight collisions. The 8 

combined level of collisions will be expressed as numerical scale” (DfT, 2005). For example, 9 

Fatal and serious injury collision = 5 (i.e. 2 serious collision = 10) 10 

Slight injury collision = 1 (i.e. 5 slight collisions = 5). 11 

The total value required is 22 per km for proposing fixed camera on a road with a 12 

speed limit of 40 mph or less. This criterion is termed as risk values for clarity in this study. 13 

The risk values are excluded in the propensity score models to avoid perfect multicollinearity 14 

with the number of PICs and FSCs. The risk values, however, are treated as the primary 15 

criterion to be evaluated in this study to avoid the complexity due to multiple criteria. 16 

It is possible that the rules are not strictly complied with in practice. And sites not 17 

meeting the criteria may still be selected as exceptional sites for other reasons, such as 18 

community concern and engineering factors. Therefore treated sites meeting and not meeting 19 

the criteria are both included in the sample. The idea is to compare the treatment effects 20 

between these two groups of treated sites. If the treatment is more effective at the sites not 21 

meeting the criteria, then we may conclude that the criteria for selecting camera sites are not 22 

optimized. There are 414 observations out of 771 camera sites with risk values higher than 22 23 

per km. 24 

The patterns of treatment effects across the risk values are described in Figure 4, 25 

where the required minimum risk value for installing speed cameras is also marked. Smooth 26 

curves are plotted using local linear and quadratic polynomial regressions. The speed cameras 27 
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show no effects or negative effects on reducing PICs and FSCs where risk values are lower 1 

than 22 per km. In contrast, significant reductions on both PICs and FSCs are observed at 2 

sites with risk values higher than 22 per km.  3 

It is suspected that treatment evaluation at black spot sites with high casualty record 4 

may suffer the RTM effect. That is, the reduction in casualties can be caused by random 5 

variation rather than the effects of speed cameras. In this study, by controlling for the RTM 6 

effect using PSM, Figure 4 shows that treatment effects increase as risk values increase, 7 

suggesting that speed cameras are more effective at sites with higher historical casualties 8 

records. However, an opposite trend is observed for sites with risk values higher than 90 per 9 

km. This is probably due to the small sample size, which are 31 for the control sites compared 10 

to 48 for the treated sites. 11 

In addition, the third column of Figure 4 shows the distribution of treatment effects 12 

for camera sites meeting and not meeting the criterion (risk values>=22). The horizontal axis 13 

indicates the effects of speed cameras on collisions, while the percentages are shown on the 14 

vertical axis. It can be seen that the pattern for camera sites with risk values greater than 22 is 15 

more skewed left, indicating a better performance in reducing casualties. According to the 16 

above results, we can conclude that it is reasonable to use risk values of 22 per km as the main 17 

criterion for selecting speed camera sites. 18 
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 1 

FIGURE 4 HTE on PICs and FSCs by risk values2 
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6. DISCUSSIONS AND CONCLUSIONS 1 

As an important part of the UK Government’s ten year road safety strategy, the 2 

national safety camera programme is expected to regulate driving speeds and reduce 3 

casualties. It would be very rash to conclude that safety cameras are uniformly effective in 4 

reducing road casualties. However, a series of issues related to speed cameras have never 5 

been touched before, such as how effectiveness varies by site characteristics and under what 6 

conditions speed cameras perform most effectively. To date there has been no independent 7 

study using advanced state-of-the-art causal methodologies to answer these questions. This 8 

study contributes to the literature by applying causal models to estimate heterogeneous 9 

treatment effects of speed cameras on road safety. 10 

We hypothesize that the responses to the treatment may vary due to differences in site 11 

characteristics measured by propensity scores. Local polynomial regressions are employed to 12 

plot smooth curves of individual treatment effects, providing us the pattern of treatment 13 

effects as a continuous function of propensity scores. The HTE estimation is then compared 14 

with ATE of speed cameras on PICs and FSCs. It shows that the reduction in personal injury 15 

collisions ranges from 10% to 40% whilst the average effect is 25.9%, indicating that the 16 

effects of speed cameras are not uniform across camera sites and are dependent on site 17 

characteristics, as measured by propensity scores. Hence a treatment decision based on the 18 

average treatment effect for the entire population can be misleading. Furthermore, since speed 19 

cameras are usually costly, it is desirable that the programme is operated in a way that 20 

maximizes effectiveness with limited resources. By revealing patterns of HTE, policy makers 21 

can install speed cameras at sites most likely to benefit from the treatment, so as to improve 22 

the cost-effectiveness of the programme. Although the cost-effectiveness is not evaluated, the 23 

methodology introduced and estimation results presented in this paper have laid a foundation 24 

for future study. 25 

The issues of selecting control groups to account for confounding factors and how the 26 

treatment and control groups are matched are critical in assessing the impacts of road safety 27 
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measures. This can be seen particularly when assessing the effects on road casualties due to 1 

the introduction of speed cameras in the UK. This paper introduced the PSM method to 2 

account for these two issues. The results show that the characteristics of the treatment and 3 

control groups are well balanced after matching. Therefore, the authors suggest that the 4 

selection of such a control group can be used in any road traffic safety analysis where a safety 5 

measure has been implemented, not simply for assessing the impacts of speed cameras. 6 

Camera sites are selected based on certain criteria, such as the number of KSIs and 7 

PICs in the baseline years. It remains unclear, however, whether such criteria are optimized 8 

for effectiveness. This study evaluates the criteria for selecting camera sites in the UK by 9 

comparing the effects on treated sites meeting and not meeting the criteria. To avoid the 10 

complexity due to multiple criteria, risk values are selected as the main criterion for 11 

evaluation. The distributions of camera effects between these two groups are compared. In 12 

general, it is found that camera sites which meet the criterion perform better in reducing 13 

casualties. Only 57 percent of the treated sites in the sample, however, meet the requirement 14 

for risk values. As we discussed earlier, although there are exceptional reasons for selecting 15 

sites not meeting the criteria, the results suggest that installing speed cameras at sites with risk 16 

values lower than 22 per km can be ineffective. What remains unclear is that whether the 17 

current criteria are optimized, e.g. the most cost-effective. Although this is beyond the scope 18 

of this study, it could be an interesting topic for future research. 19 
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Appendix 1 

Glossary 2 

AADT: Annual Average Daily Traffic 3 

ATE: Average Treatment Effect 4 

CIA: Conditional Independence Assumption 5 

FSC: Fatal and Serious Collisions 6 

HTE: Heterogeneous Treatment Effect 7 

PIC: Personal Injury Collisions 8 

PSM: Propensity Score Matching  9 

RTM: Regression to Mean 10 

 11 
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