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Abstract 17 

 18 

Sintered red clay ceramic is used to produce hollow bricks which are manufactured in enormous 19 

quantities in Spain. They also constitute a major fraction of construction and demolition waste. The 20 

aim of this research was to investigate the properties and microstructure of alkali-activated cement 21 

pastes and mortars produced using red clay brick waste. The work shows that the type and 22 

concentration of alkali activator can be optimised to produce mortar samples with compressive 23 

strengths up to 50 MPa after curing for 7 days at 65 °C. This demonstrates a new potential added 24 

value reuse application for this important waste material.     25 

 26 

Keywords: Ceramic waste (D), Waste Management (E), alkali-activated binder (D), mechanical 27 

properties (C). 28 
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2 
 

1. Introduction 1 

 2 

Red clay brick waste (RCBW) originating primarily from demolished brick walls represents 3 

approximately 54 wt.% of construction and demolition waste in Spain [1]. As previously reported [2], 4 

almost 30 million tonnes of structural ceramics and 608 million m2 of tiles were manufactured by the 5 

Spanish ceramics industry in 2006. According to Pacheco-Torgal and Jalali [3], the amount of waste 6 

generated by the European ceramic industry is typically 3-7% by weight of total production, suggesting 7 

that millions of tonnes of RCBW are generated in Spain each year.  8 

 9 

Significant quantities of RCBW are currently used as road sub-base in landscaping and as a coarse 10 

aggregate for the production of structural and non-structural concrete [3-5]. The use of sintered clay 11 

ceramics as a cementitious material to partially replace Portland cement (PC) clinker has also been 12 

investigated. The manufacture of Portland cement requires high amounts of energy (850 kcal per kg of 13 

clinker) and involves the emission of typically 0.8-1 Tonne of CO2 per Tonne of clinker produced [6]. 14 

Different alternatives have been proposed to reduce the environmental impact of cement and these 15 

include reusing waste materials to produce low-CO2 cement binders. In the study by Puertas et al. 16 

[6,7] ceramic waste materials were used to produce PC clinker, while other studies [3,8,9] investigated 17 

the potential of clay ceramics as a supplementary cementitious material. While only a portion of 18 

cement is replaced in these applications (usually 10 35 %), binders based on alkali-activation can be 19 

produced entirely or almost entirely from waste materials. In alkali-activation reactions alumino-silicate 20 

minerals are dissolved by a highly alkaline solution prior to precipitation reactions that form a gel 21 

binder [10]. The gel formed by alkali-activation of sintered clay is generally a zeolite precursor 22 

containing tetrahedral SiO4 and AlO4
- in randomly distributed polymeric chains, cross-linked by 23 

bridging oxygen atoms. The negative charge on the AlO4
- group is balanced by alkali metal cations, 24 

typically Na+ and/or K+ [11-13]. 25 

 26 

The use of alumino-silicate minerals such as metakaolin, ground blast furnace slag and fly ash to 27 

produce alkali-activated cements has been extensively reported [12,14-17] and there is increasing 28 

interest in investigating the suitability of using other materials. Different wastes containing silica and 29 

alumina, such as hydrated-carbonated cement [18], glass [19], fluid catalytic cracking catalyst 30 

residues (FCC) [20] and waste ceramic materials [21,22] have been alkali-activated. In the work by 31 
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Puertas et al. [21], ceramic wastes were activated using NaOH and sodium silicate solution. Although 1 

compressive strengths between 7 and 13 MPa were achieved, it was concluded that further research 2 

was required to understand the influence of process parameters on the final properties of the binders 3 

developed.  4 

 5 

This research aimed to optimise alkali-activation of RCBW and understand the influence of the type 6 

and concentration of alkali activator used on the mechanical strength and microstructure of the binders 7 

formed. 8 

 9 

2. Experimental   10 

 11 

2.1. Materials  12 

  13 

As-received RCBW was crushed to give a granular material with particles less than 4 mm in diameter. 14 

This was dry milled using a porcelain ball mill with alumina milling media for 40 minutes to increase 15 

the specific surface area [22]. The particle size distribution of milled RCBW shown in Fig. 1 was 16 

determined using laser diffraction (Mastersizer 2000, Malvern Instruments). This indicates a mean 17 

particle size of approximately 20.9 m, a d90 (90% of volume less than this size) of 56.2 m and a d10 18 

value of 1.2 µm. 19 

  20 

The chemical composition of milled RCBW shown in Table 1 was determined by x-ray fluorescence 21 

(XRF). RCBW contains high levels of SiO2 and Al2O3, which are essential for alkali-activation, together 22 

with moderate amounts of CaO and MgO. The amorphous content, determined following UNE EN 23 

196-2, was around 35%, which is close to that obtained by Puertas et al. [21] for waste red clay tiles. 24 

According to Baronio and Binda [23], the amorphous content of bricks sintered between 800 ºC and 25 

1000ºC [9] originates at temperatures between 600°C and 900°C, due to loss of the combined water in 26 

clay minerals, which causes breakdown of the crystalline clay network, with the silica and alumina 27 

forming a disordered, amorphous phase. Pereira-de-Oliveira et al. [9] report that the amorphous 28 

content determines the degree of pozzolanic activity.  29 

  30 
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The mineralogical composition of RCBW was determined by x-ray diffraction (XRD, Philips 1 

diffractometer PW1710 with Cu K  radiation, 40 kV and 20 mA, 2  from 5-55º). The data in Fig. 2 2 

shows that quartz (SiO2) is the major crystalline phase. Albite (NaAlSi3O8), calcite (CaCO3), anorthite 3 

(CaAl2Si2O8) and sanidine ((K,Na)(Si,Al)4O8) were also present as minor constituents [3,8,21]. The 4 

particle morphology of milled RCBW was examined using scanning electron microscopy (SEM, JEOL 5 

JSM-6300) and this indicates mainly irregularly shaped particles as shown in Fig. 3.  6 

 7 

Sodium hydroxide pellets (98% purity, Panreac), water and sodium silicate (Merck, SiO2=28%, 8 

Na2O=8%, H2O=64%) were used to prepare alkali-activating solutions. 9 

  10 

2.2. RCBW paste and mortar sample preparation  11 

The alkaline activating solutions were prepared by dissolving NaOH pellets in water and adding the 12 

required amount of sodium silicate solution. The concentration of Na+ provided by NaOH and sodium 13 

silicate ranged from 2.5 to 10 molal (mol.kg-1).  14 

  15 

Table 2 summarizes the mix proportions investigated in this research. Mixes are coded where 16 

w is the amount of water per 100g of RCBW, m is the molality of Na+ in the activating solution and r is 17 

the SiO2/Na2O molar ratio in the activating solution.  18 

 19 

Alkali-activated RCBW paste samples were obtained by mixing ground RCBW with the required 20 

alkaline solution for 4 minutes. Samples were cast in plastic containers, sealed and stored in a 21 

thermostatically controlled bath at 65 °C. 22 

 23 

Alkali-activated RCBW mortar samples were prepared by mixing RCBW with activating solution for 2 24 

minutes. Siliceous sand (4.36 modulus fineness with maximum particle diameter of 2 mm) was then 25 

added using sand/RCBW ratios of 3/1 and 2/1, as shown in Table 2. Mixing continued for a further 3.5 26 

minutes and the mortar samples formed were then placed in a mould and vibrated for 4 minutes. 27 

Samples were stored at 65 ºC at a relative humidity of 90-95% for 3 and 7 days. 28 

 29 

 30 

  31 
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5 
 

2.3. Sample testing 1 

The compressive strengths of alkali-activated RCBW mortar samples were determined following UNE 2 

EN 196-1. The porosity of the mortars was evaluated by mercury intrusion porosimetry (MIP, AutoPore 3 

IV 9500) using pressures between 2 psia (13782Pa) to 32989 psia (227.4 MPa), equivalent to pores 4 

with diameters ranging from 91.2 microns to 5.5 nm. Pressures were converted to equivalent pore 5 

widths using the Washburn equation, assuming a contact angle of 130º. 6 

 7 

The microstructure of RCBW paste samples was examined using SEM-EDX (JEOL JSM-6300). X-ray 8 

diffraction (XRD) was used to identify mineralogical phases (Philips diffractometer PW1710 with Cu K  9 

radiation, 40 kv and 20 mA, 2  from 5-55º). Fourier transformed infrared spectroscopy (FTIR) analysis 10 

of the nanostructure of the materials obtained was conducted with a Mattson Genesis II spectrometer. 11 

The KBr pellet method was used to prepare the samples, with spectra collected in transmittance mode 12 

from 1500 to 400 cm-1. 13 

 14 

Thermogravimetry (TG, 850 Mettler-Toledo) was used to investigate weight loss of samples under a 15 

N2 atmosphere, using sealed pin holed aluminium crucibles at a heating rate of 10 ºC min-1, from 35 16 

ºC to 600 ºC. Samples were analyzed after 3 and 7 days of curing at 65 ºC (relative humidity 90-95%). 17 

Samples for TG and XRD analyses were crushed using a pestle and mortar and passed through a 125 18 

sieve. Hydration reactions were inhibited by immersing samples in acetone and then placing them 19 

in the oven at 60ºC for 30 minutes. 20 

 21 

3. Results and discussion 22 

 23 

3.1. Compressive strength 24 

 25 

3.1.1. Effect of NaOH concentration 26 

 27 

Fig. 4 shows the effect of NaOH concentration (molality: 2.5, 5, 7 and 10) on the compressive strength 28 

of RCBW mortars prepared at a constant water to binder (w/b) ratio of 0.45. The best alkali-activated 29 

samples were obtained using 5.0 molal NaOH ( 45/5.0/0.0 ) after curing for 7 days, while the 30 

mechanical properties decreased significantly for higher concentrations of NaOH. This concentration 31 
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6 
 

is close to the optimum established by Puertas et al. [21] who also showed that mechanical properties 1 

did not exhibit significant differences when the type or amount of activator was varied. The existence 2 

of an optimum concentration was previously reported by Palomo et al. and Tashima [24, 25] for alkali- 3 

activated fly ash and vitreous calcium silico-aluminates, respectively. According to Barbosa et al. [26], 4 

the optimum concentration of activator depends on the precursor, and must be sufficient to balance 5 

the charges of the Si and Al tetrahedral, without providing an excess of NaOH, that may cause the 6 

formation of carbonate salts resulting from atmospheric carbonation. 7 

 8 

3.1.2. Influence of SiO2/Na2O ratio 9 

 10 

Fig. 5 shows the compressive strengths of RCBW mortars prepared using a constant 5 molal NaOH 11 

concentration with different SiO2/Na2O molar ratios (0.73, 1.46, 1.60), for samples cured at 65 ºC for 3 12 

and 7 days. The compressive strength increases as the amount of sodium silicate increased. 13 

However, higher silicon contents increased the mortar viscosity and reduced setting time. It was 14 

impossible to produce mortars with a SiO2/Na2O molar ratio higher than 1.60 for samples with 5 molal 15 

NaOH because these samples set within a few seconds of mixing. Results are in agreement with 16 

previous studies [20,25,27] where compressive strength generally increase with the addition of more 17 

activator. According to Pacheco-Torgal et al. [11], this is due to the presence of sodium silicate in the 18 

activating solution which increases the Si/Al ratio, accelerating the geopolymerization process. Provis 19 

et al. [27] used dilatometry measurements to prove that the optimum amount of silica depends on the 20 

precursor, and must be appropriate to form a highly cross-linked alumino-silicate network and avoid 21 

the presence of unreacted silica.  22 

 23 

3.1.3 Influence of Na concentration for a constant SiO2/Na2O ratio 24 

 25 

Fig. 6 summarises the compressive strength data of mortars with a constant SiO2/Na2O molar ratio 26 

(1.60) and different sodium concentrations, cured at 65 ºC for 3 and 7 days. Although the compressive 27 

strength remained almost the same after curing for 3 days for all mortars (14-17 MPa), the mix 28 

prepared using 7 molal Na+ exhibited good workability and gave the highest strengths of 28 MPa after 29 

7 curing days. These results are consistent with previous studies in which the compressive strength 30 

was found to depend not only on the SiO2/Na2O ratio but also on the activator/binder ratio [17,28,29]. 31 
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7 
 

This is related to the optimum concentration of activator for the RCBW. As discussed in sections 3.1.1 1 

and 3.1.2, the Na+ concentration increases as the sodium silicate content is increased in the alkali-2 

activating solution.  3 

 4 

3.1.4 Influence of water/binder (w/b) ratio 5 

 6 

The effect of w/b ratio for different Na concentrations on compressive strength is summarized in Fig. 7. 7 

For the lowest w/b mixes (except 30/7.0/2.00 ) the amount of Na+ and SiO2 with respect to the RCBW 8 

was constant and equal to those prepared for mix 45/7.0/1.60  at 3.15 mol of Na+ and 2.52 mol of 9 

SiO2 per kg of ceramic waste. Consequently, the concentration Na+ in the solution increased for 10 

mixtures with w/b ratio of 0.40 (8 molal) and 0.35 (9 molal). Two main results are observed. The 11 

compressive strength increases as the w/b ratio decreases when the activator/binder and SiO2/Na2O 12 

ratios are kept constant ( . According to Lampris et al. [17], this 13 

implies that a 0.35 w/b ratio provides sufficient water to effectively wet all the grains of the source 14 

material, which react with the activating solution. As observed by Komnitsas et al. [30], the reduction in 15 

compressive strength when the water volume is increased is due to the water not being consumed 16 

during hydration resulting in increased porosity.  17 

 18 

For every concentration of Na+, the compressive strength increased as the w/b ratio decreased 19 

( - 45/9.0/1.60 -  This effect was observed after both 3 and 7 20 

days curing, and means that reduced amounts of reagents were used at lower w/b ratios. This is an 21 

important result from both an environmental and economic point of view, because the compressive 22 

strength increased while reducing the Na+/binder and SiO2/binder ratios.  23 

 24 

The binder/sand ratio (b/s) was modified in sample 30/7.0/ in order to increase the workability of 25 

the fresh mortar and this allowed the SiO2/Na2O ratio to be increased to 2.0. A significant improvement 26 

in compressive strength was observed, especially for samples cured for 3 days (42.3 MPa), when 27 

compared to gave the best results with a w/b ratio of 0.45. For this mix, 28 

with the lowest w/b ratio, only 2.1 mol of Na+ and 4.2 mol of SiO2 were used per kilogram of RCBW. It 29 

can be concluded that the amount of water is the dominant parameter in achieving high compressive 30 

strengths.  31 
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8 
 

3.2 Mercury intrusion porosimetry  1 

 2 

Porosity studies were carried out on selected mortars. These were samples 3 

1.60  with a constant w/b ratio which had the highest compressive strengths for the samples 4 

with and without sodium silicate addition.  5 

 6 

The total porosity of mortars was reduced when sodium silicate was added to the activating solution: 7 

19.8% for s  (without sodium silicate), and 12.0% 1.60  (with 8 

sodium silicate). Therefore, higher durability alkali-activated RCBW samples with sodium silicate can 9 

be expected due to the reduced ability of aggressive chemical agents to penetrate the microstructure. 10 

These values are close to those previously reported for Portland cement pastes and mortars with 11 

similar water-to-cement (w/c) ratios. Cook and Hover [31] observed a minimum total porosity of 16.0% 12 

for Portland cement paste specimens mixed with a w/c ratio of 0.3 and cured for 56 day, and higher 13 

values when increasing the w/c ratio and reducing the curing time (56% for a w/c of 0.7 cured for 1 14 

day). Similar results were reported by Willis et al. [32], who observed a total porosity of 16 and 23% for 15 

mortars with a w/c ratio of 0.4 and 0.6, respectively. 16 

 17 

Figure 8 shows the pore size distribution for the mortar samples analyzed. There are significant 18 

differences between the volume percentages. The capillary porosity was higher for the sample 19 

activated with NaOH, with a total volume of 75-80% in the 10nm-1µm range, while this was only 40-20 

45% for the mortar containing sodium silicate. The volume of air voids in the 1-10 µm range was 21 

higher for the mortar containing sodium silicate, which could be attributed to the high viscosity of the 22 

paste, which allows greater air retention in the mix. These results are contrary to those previously 23 

reported by Sindhunata et al. [33], who observed smaller pore sizes with increasing additions of 24 

soluble silicate to the activating solution. After analyzing the hydration mechanisms of Portland cement 25 

and inorganic polymer pastes, Lloyd et al. [34] also concluded that larger pores may be expected in 26 

samples activated without silicate. In Portland cement pastes C-S-H gel grows outwards from the 27 

surface of hydrating cement grains, forming C-S-H g c28 

pores, which are much larger and are the remains of originally water-filled spaces that have not 29 

become filled with C-S-H gel [35]. The growth of C-S-H gel in alkali-activated systems occurs through 30 

the sample, which explains the absence of capillary pores, as much of the volume between the 31 
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9 
 

particles fills concurrently with C-S-H gel to form the hardened binder structure. However, in the 1 

absence of dissolved silicate the mechanism of inorganic polymer gel formation is more similar to that 2 

of Portland cement, i.e. growth of reaction products outwards from the surface of the binder grains, 3 

and therefore capillary pores may be expected in samples activated only with NaOH. However, it was 4 

observed that, unlike the capillary pores present in Portland cement pastes, these pores were 5 

separated by regions of C-S-H gel. Access to these pores, via the smaller pores of the gel, would 6 

. Consequently, the MIP results may be misrepresenting the 7 

pore size distribution [32,33,35]. This is because the pore size measurement in based on the diameter 8 

of access throat through which the mercury penetrates the pore. 9 

 10 

3.3 Thermogravimetric analysis 11 

 12 

Table 3 shows thermogravimetric analysis data giving the total weight loss of pastes cured for 3 and 7 13 

days. A general increase in water loss with curing time is observed, which may be associated with a 14 

greater degree of alkali-activation [20]. Weight loss generally increases with Na+ concentration which, 15 

according to Bernal et al. [36], can be related to a higher degree of chemically bounded water and OH- 16 

groups, provided by NaOH, in the binding phase. Samples with the same SiO2/Na2O ratio (1.60) gave 17 

similar thermogravimetric loss without a specific trend. The reduction in the w/b ratio did not decrease 18 

the total weight loss, suggesting that the water molecules and OH- groups bonded to the geopolymer 19 

matrix are not related to the initial mix water. 20 

 21 

As observed in Fig. 9, all paste samples showed a peak weight loss between 120 and 150 ºC which, 22 

according to several authors [20,25, 36], is attributed to free or loosely bound water present in these 23 

samples. As shown in Fig. 9a, among the pastes activated without sodium silicate, only sample 24 

45/5.0/0.0  presented two peaks in the DTG curve. Although Stakebake [37] associated the second 25 

peak centred at 185 ºC to a weight loss from zeolitic phases, these could not be clearly identified by 26 

XRD. In the studies performed by Bernal et al. [36] signals related to zeolitic reaction products could 27 

not be distinguished by thermogravimetry, because they tend to show a broad dehydration peak in the 28 

same temperature range attributed to the loosely bound water present in the samples (60-160 ºC).  29 

 30 
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10 
 

Thermogravimetric data for alkali-activated RCBW paste samples using sodium hydroxide and sodium 1 

silicate are shown in Fig. 9b. These tend to have a broader first peak when the amount of reagents is 2 

increased. The second peak can only be clearly distinguished for lower SiO2/Na2O ratio paste (0.73), 3 

and it progressively overlaps with the first peak when the concentration of the solution is increased. 4 

According to Duxson et al. [13], this is because zeolitic-like phases are less likely to form in highly 5 

concentrated solutions due to increased difficulties in phase transport and reorganization. 6 

 7 

3.4 X-ray diffraction studies 8 

 9 

Fig. 10 shows XRD diffraction data for pastes and 1.60  after curing for 7 days at 10 

65 ºC. The XRD data for the as-received RCBW is shown for comparison. The quartz phase was 11 

found to be largely unreactive [12], and remained in the sample after the alkali-activation process. 12 

Paste showed a peak that did not appear in the raw material, denoting the formation of 13 

natrite (N, Na2CO3). This did not appear in samples prepared with sodium silicate. Results are in 14 

agreement with thermogravimetry data reported by Provis et al. [27], who observed that silicate-15 

activated samples presented low mass loss between 200 ºC and up to approximately 800 ºC. 16 

However, hydroxide-activated samples showed an additional mass loss, which was attributed to the 17 

decomposition of carbonates, resulting from atmospheric carbonation formed during the preparation of 18 

the samples prior to analyses. Bernal et al. [36] attributed the DTG peaks observed at temperatures 19 

between 650 °C and 670 °C and 770 to 790 °C to carbonates. 20 

 21 

Previous studies [12,13] have demonstrated that crystalline phases are less likely to form when 22 

sodium silicate solutions are used because high SiO2 concentrations confer greater stability to the 23 

amorphous phases. Despite authors such as Duxson et al. [13] and Criado et al. [28] having noted the 24 

formation of semi-crystalline to crystalline phases from the geopolymeric gel, usually zeolitic in nature, 25 

these could not be clearly identified in these samples.  26 

 27 

3.5 Scanning electron microscopy  28 

 29 

Fracture surfaces of alkali-activated RCBW pastes are shown in Fig. 11. RCBR particles can be 30 

observed, indicating that some larger particles had only partially reacted during alkali-activation as 31 
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complete reaction depends on the particle size. This has led to the development of different 1 

morphologies, giving rise to a heterogeneous microstructure containing unreacted ceramic waste 2 

particles surrounded by alkali-activation reaction products. It seems that smaller particles were 3 

completely dissolved by the alkali solution, while the larger ones are only partially reacted. The 4 

strengthening or weakening effect will depend on whether the particles themselves are strong or 5 

weak, and also whether they are bonded on the surfaces to the matrix. Studies performed by Yungsen 6 

et al. [38] showed that the unreacted particles reduced the compressive strength while Kourti et al. 7 

[19] found that unreacted glass could increase strength and toughness.  8 

 9 

As expected from XRD results, crystalline phases were developed in samples with 10 molal Na+ as 10 

shown in Fig. 11b. EDX analysis confirmed the high concentration of Na+ had produced sodium 11 

carbonate (natrite) by atmospheric carbonation [39]. This, together with the mechanical properties 12 

obtained, confirmed that this concentration of activator was in excess for this sample and this is 13 

deleterious to the alkali activation process [17]. Although the development of crystalline phases was 14 

observed in some samples as in Fig. 11d, these could not be clearly identified by XRD. 15 

 16 

3.6 Fourier transformed infrared spectroscopy (FTIR) 17 

 18 

Infrared spectra of the as-19 

at 65 ºC, are shown in Fig. 12. The spectra obtained were normalized in order to allow direct 20 

comparison between them. The presence of unreacted particles, previously observed by SEM and 21 

XRD, was corroborated by FTIR. According to Criado et al. [28], the quartz gives rise to a series of 22 

bands located at 1145, 1084, 796-778, 697, 668, 522 and 460 cm-1 in the IR spectrum. Although these 23 

bands persist after activation, a reduction in intensity is observed, which indicates that quartz has 24 

25 

implies greater reactivity, which leads to further development of the alkali-activation reaction products. 26 

These results are consistent with the lower porosity and improved compressive strength presented by 27 

the samples alkali-activated with sodium silicate. 28 

 29 

A wide and intense band appears from 950 cm-1 to 1200 cm-1. The interpretation of this region may 30 

be difficult, as bond vibrations of different compounds tend to overlap, producing a highly complex 31 
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spectrum. While in the unreacted RCBW this band appears at 1045 cm-1, in the activated samples it 1 

shifts to lower wave numbers ( 1011 cm-1). According to authors such as Rees et al. [40] and 2 

Hajimohammadi et al. [41], this shift occurs due to the formation of aluminosilicate gel, as the 3 

asymmetric stretching vibrations of the newly formed Si-O-T (T = Al, Si) bonds originate a new band 4 

growing at 960 cm-15 

the nature of the gel formed could not be clearly distinguished from FTIR results, due to the Al-6 

enriched gel phase band ( 1020 cm-1, from [41]), and the primary band of the Si-O-T bonds in the gel 7 

overlap. Furthermore, the bands associated with the vitreous phases of the raw material were also 8 

expected to appear in this region (950 cm-1 to 1100 cm-1 [28]). Although they could not be 9 

distinguished, the intensity was expected to decrease as the alumino-silicate gel formation proceeded.  10 

 11 

The bands appearing at 871 cm  and 1415 cm-1 in the raw material spectrum are associated with 12 

pure CaCO3 [42], attributed to out-of-plane deformation and asymmetric stretching vibrations, 13 

respectively. Both bands shift to higher wave numbers after the activation process which, according to 14 

Zaki et al. [43] relates to CO3
2- impurity species. This, together with the higher intensity of the peaks 15 

appearing in the spectrum 16 

XRD and SEM results, where the presence of Natrite (Na2CO3) was observed.  17 

 18 

No definite peaks were observed in the regions highlighted by Rees et al. [44] as zeolite characteristic 19 

regions. This is in good agreement with XRD results, and confirms that it is unlikely that the system 20 

contains significant quantities of zeolite nanocrystals. 21 

 22 

4. Conclusions 23 

 24 

This research has demonstrated that red clay brick waste (RCBW) can form alkali-activated cement 25 

pastes and mortars using NaOH and sodium silicate solution as activators. Although 26 

thermogravimetric analysis identified initial formation of zeolitic structures, these tend to disappear 27 

when the concentration of the alkaline solution increased. The optimum mix was found to be 28 

45/7.0/1.60 , and this gave compressive strengths close to 30 MPa after 7 curing days. The 29 

mechanical properties were further increased up to 50 MPa by optimising the w/b, b/s and SiO2/Na2O 30 

ratios.  31 
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Table 1. Chemical composition of RCBW material. 

Oxide %Wt 

SiO2 49.9 

Al2O3 16.6 

Fe2O3 6.5 

CaO 9.7 

MgO 5.5 

Na2O 0.5 

TiO2 0.8 

MnO 0.1 

P2O5 0.2 

SO3 3.3 

K2O 4.4 

Other 0.2 

LOI 2.4 

 

 

 

Table 2. Mix proportions of alkaline activated mortars. 

Mix ( /m ) # w/b 
binder/sand, 

wt 
Na+, m SiO2/Na2O, r 

45/2.5/0.0 0.45 1:3 2.5 0.00 

45/5.0/0.0 0.45 1:3 5.0 0.00 

45/7.5/0.0 0.45 1:3 7.5 0.00 

45/10.0/ 0.0 0.45 1:3 10.0 0.00 

45/5.0/0.73 0.45 1:3 5.0 0.73 

45/5.0/1.46 0.45 1:3 5.0 1.46 

45/5.0/1.60 0.45 1:3 5.0 1.60 

45/6.0/1.60 0.45 1:3 6.0 1.60 

45/7.0/1.60 0.45 1:3 7.0 1.60 

45/8.0/1.60 0.45 1:3 8.0 1.60 

45/9.0/1.60 0.45 1:3 9.0 1.60 

40/8.0/1.60 0.40 1:3 8.0 1.60 

35/9.0/1.60 0.35 1:3 9.0 1.60 

30/7.0/2.00 0.30 1:2 7.0 2.00 
#  / sodium molality / (SiO2/Na2O) activator molar ratio  

 

 

 

Table



Table 3. Thermogravimetric total loss of weight in RCBW pastes cured at 65°C 

 Sample 

Weight loss at different  

Curing Ages 

3 days 7 days 

45/2.5/0.0 3.41 3.49 

45/5.0/0.0 7.26 9.15 

45/7.5/0.0 6.51 6.60 

45/10.0/ 0.0 7.56 8.34 

45/5.0/0.73 6.93 7.63 

45/5.0/1.46 5.26 6.77 

45/5.0/1.60 5.07 8.99 

45/6.0/1.60 6.81 9.99 

45/7.0/1.60 6.75 8.62 

45/8.0/1.60 7.41 8.09 

45/9.0/1.60 7.25 10.26 

40/8.0/1.60 7.01 9.84 

35/9.0/1.60 7.39 9.84 

30/7.0/2.00 7.42 7.86 
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CAPTIONS TO ILLUSTRATIONS: 

Fig.1. Particle size distribution curve of ground RCBW. 

 

Fig.2. X-Ray diffractogram of raw RCBW material. Q: Quartz (SiO2); A: Albite (NaAlSi3O8); An: Anortite 

(CaAl2Si2O8); S: Sanidine ((K,Na)(Si,Al)4O8); C: Calcite (CaCO3). 

 

Fig.3. SEM micrograph of ground RCBW. 

 

Fig.4. Influence of NaOH solution on compressive strength of alkali activated RCBW mortars cured 3 

and 7 days at 65ºC (  

 

Fig.5. Influence of SiO2/Na2O molar ratio on the compressive strength, for a constant 5 molal Na+ 

concentration (  

 

Fig.6. Influence of sodium concentration on compressive strength development, for a constant 

SiO2/Na2O molar ratio in the activating solution (

proportions according to Table 2). 

 

Fig.7. Influence of the w/b ratio on compressive strength of alkali activated RCBW mortars  

( els in the X-axis correspond to mix proportions according to Table 2). 

 

-axis labels in micrometers). 

 

Fig.9. Differential thermogravimetric curves for alkali activated RCBW pastes: a) with NaOH solution; 

b) with NaOH and sodium silicate solution. 

 

Fig.10. X-

for 7 days. Q: Quartz; N: Natrite; A: Albite. 

 

Fig.11. Scanning electron microscope images of RCBW alkali activated pastes cured for 7 days at 

65ºC: a) 45/5.0/0.0; b) 45/10/0.0, c) 45/9.0/1.60; d) 45/7.0/1.60. 

Figure
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Fig.12. FTIR spectra of RCBW and alkali-activated cured at 65ºC 

for 7 days. 
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