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Abstract

Pertussis is a contagious respiratory disease which mainly affects young children and
can be fatal if left untreated. The World Health Organization estimates 16 million
pertussis cases annually worldwide resulting in over 200,000 deaths. It is prevalent
mainly in developing countries where it is difficult to diagnose due to the lack of
healthcare facilities and medical professionals. Hence, a low-cost, quick and easily
accessible solution is needed to provide pertussis diagnosis in such areas to contain an
outbreak. In this paper we present an algorithm for automated diagnosis of pertussis
using audio signals by analyzing cough and whoop sounds. The algorithm consists of
three main blocks to perform automatic cough detection, cough classification and
whooping sound detection. Each of these extract relevant features from the audio
signal and subsequently classify them using a logistic regression model. The output
from these blocks is collated to provide a pertussis likelihood diagnosis. The
performance of the proposed algorithm is evaluated using audio recordings from 38
patients. The algorithm is able to diagnose all pertussis successfully from all audio
recordings without any false diagnosis. It can also automatically detect individual
cough sounds with 92% accuracy and PPV of 97%. The low complexity of the
proposed algorithm coupled with its high accuracy demonstrates that it can be readily
deployed using smartphones and can be extremely useful for quick identification or
early screening of pertussis and for infection outbreaks control.

Introduction 1

Pertussis, also called whooping cough, is a contagious respiratory disease caused by 2

Bordetella pertussis bacteria in lungs and airways [1]. Its early symptoms include 3

persistent dry coughs that progress into intense spells of coughing. This is usually, but 4

not always, followed by a whooping sound due to the patient gasping for air. It mainly 5

affects infants and young children and can be fatal if left untreated. The latest World 6

Health Organization official report on the disease (2008) estimated 16 million cases of 7

pertussis annually worldwide resulting in approximately 200,000 deaths [2]. Estimates 8

from Public Health Agency of Canada report an even higher prevalence with up to 40 9

million cases each year resulting in 400,000 deaths [3]. Further, about 95% of the 10

pertussis cases have occured in developing countries where pertussis is considered to 11

be major cause of infant deaths [2]. 12

A trained doctor can confirm pertussis diagnosis, in mostly unvaccinated cases, by 13

listening to the cough sounds and asking about other symptoms. The gold standard, 14
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however, is a culture test performed by collecting nasopharyngeal specimens. 15

Alternative to this are the polymerase chain reaction (PCR) test, and blood analysis 16

with serology. However, all these laboratory tests are expensive, time-consuming and 17

may not be available, particularly in rural areas and developing countries. This can 18

hinder effective and timely treatment of patients and risks worsening their condition 19

as well as further spreading of the infection to others. 20

A low-cost, quick and easily accessible solution is needed to provide pertussis 21

diagnosis to people in developing nations where its prevalence, and mortality rate due 22

to pertussis, is highest. Such a system needs to be fully automated, user-friendly, and 23

highly accurate so that there are no barriers to its adoption and deployment. With the 24

smartphone usage steadily rising in developing countries [4], this serves as an ideal 25

platform on which such an automated system can be developed. This paper proposes 26

a complete automatic pertussis diagnosis algorithm based on automatic segmentation 27

and classification of cough and whoop sounds. When implemented on an embedded 28

device or a smartphone, it can analyze audio signals obtained from the built-in 29

microphone and provide prompt diagnostic result. This ability to provide pertussis 30

diagnosis by processing audio signals on a smartphone can be extremely helpful to 31

deliver timely and efficient treatment to places and people with limited or no access to 32

healthcare. 33

In this paper, we propose a pertussis identification algorithm that is able to 34

automatically segment individual cough and whoop sounds and subsequently classify 35

them and present a pertussis diagnosis. The aim is to develop an algorithm using little 36

computational resources to allow the algorithm to be deployed on low–cost 37

smartphones particularly in areas where healthcare services are substandard. 38

Review of Cough Detection and Classification 39

Algorithms 40

Cough detection is an active research area in which several researchers have proposed 41

methods for identifying cough sounds from audio recordings. These methods can be 42

divided into three main categories: 1) automatic cough detection and segmentation 43

(without classification), 2) automatic classification of coughs that are already detected, 44

and 3) diagnosis of an illness based on the cough sound and type. 45

For automatic cough segmentation, Martinek et al. [5] extracted several time, 46

frequency and entropy features and used a decision tree to discriminate between 47

voluntary cough sounds and speech. They used data from 20 subjects, with 46 coughs 48

from each subject, and reported median sensitivity and specificity values of 100% and 49

95% respectively. However, their method is subject–dependent since the subjects are 50

required to cough at the beginning of each recording in order to obtain individual 51

cough signal patterns. Barry et al. [6] used linear predictive coding (LPC) coefficients 52

with a probabilistic neural network (PNN) classifier to create an automatic cough 53

counting tool called Hull Automatic Cough Counter (HACC). This successfully 54

discriminated between cough and non–cough events from 33 subjects with a sensitivity 55

of 80% and specificity of 96%. Tracey et al. [7] developed an algorithm for cough 56

detection to monitor patient recovery from tuberculosis. They extracted MFCCs from 57

the audio signals of 10 test subjects. These were used to detect coughs with a 58

combination of artificial neural network (ANN) and support vector machine (SVM) 59

classifiers achieving an overall sensitivity of 81%. In both these methods the total 60

number of coughs in the dataset were not reported. Swarnkar et al. [8] used other 61

spectral features such as formant frequencies, kurtosis, and B–score together with 62

MFCC features for cough detection. These were fed into a neural network resulting in 63

PLOS 2/19



a sensitivity of 93% and a specificity of 94% for a test dataset consisting of 342 coughs 64

from 3 subjects only. Amrulloh et al. [9] used ANN classification to develop a cough 65

detector using a non–contact recording system for pediatric wards achieving sensitivity 66

and specificity values of 93% and 98% respectively using over 1400 cough sounds from 67

14 subjects. Matos et al. [10] extracted thirteen MFCCs which were classified using a 68

Hidden Markov Model (HMM). Their test dataset consisted of 2155 coughs from 9 69

subjects and their method resulted in 82% sensitivity for cough detection. The total 70

number of false detections was not reported, however, the average false positives per 71

hour was 7 with a high variance between subjects. Liu et al. [11] used Gammatone 72

Cepstral Coefficient (GMCC) features with SVM classification of 903 coughs from 4 73

subjects resulting in sensitivity and specificity of 91% and 95% respectively. Lucio et 74

al. [12] extracted 79 MFCC and Fast Fourier Transform (FFT) coefficients and used 75

k-Nearest Neighbor (kNN) for classification. From a dataset acquired from 50 76

individuals, their algorithm achieved sensitivity of 87% in classifying 411 cough sounds 77

with specificity of 84%. Larson et al. [13] presented a method of cough detection using 78

the built-in microphone of a mobile phone for data collection. Their algorithm, which 79

was not implemented on the phone, used random forest classification with a maximum 80

for 500 decision trees achieving 92% sensitivity on over 2500 cough sounds from 17 81

subjects. All of these methods aim to identify cough segments from audio recordings 82

without the ability to classify them into specific cough types. 83

Classification of cough sounds is helpful in identifying the underlying cause of 84

coughs so that the right treatment can be offered to the patients. Several algorithms 85

for automatic cough classification have been published to identify various cough types 86

but all of them rely on manual segmentation of cough sounds before automatic 87

classification can be performed. Chatrzarrin et al. [14] studied the different phases of 88

dry and wet coughs and found the second phase of dry coughs to have lower energy 89

compared to wet coughs. They also noted that, during this phase, most of the signal 90

power is contained between 0-750 Hz in case of wet coughs and 1500-2250 Hz in case 91

of dry coughs. Using a simple thresholding method, they successfully identified 14 wet 92

and dry coughs with 100% accuracy. Swarnkar et al. [15] used a Logistic Regression 93

Model (LRM) based classifier to discriminate between dry and wet coughs from 94

pediatric patients with different respiratory illnesses. They used several features 95

including B–score, non-gaussianity, formant frequencies, kurtosis, zero crossing rate 96

and MFCCs. For a test database with 117 coughs from 18 subjects, they reported 97

sensitivities of 84% and 76% for detecting wet and dry coughs respectively. Kosasih et 98

al. [16] developed an algorithm for automatic diagnosis of childhood pneumonia by 99

assessing cough sounds and crackles. They used MFCCs, non–gaussianity index and 100

wavelet features with a LRM classifier to differentiate between pneumonia and 101

non–pneumonia cough sounds. Their method achieved sensitivity and specificity of 102

81% and 50% respectively for a total of 375 cough samples from 25 subjects. Specific 103

to pertussis coughs, Parker et al. [17] studied the performance of three different 104

classifiers for their classification. They used audio files of pertussis cough sounds 105

available on the internet to create a dataset consisting of 16 non-pertussis cough 106

signals and 31 pertussis cough signals. From this data, the cough sounds were then 107

manually isolated and divided into three parts for which 13 MFCC features and the 108

energy level were extracted. These features were subsequently classified using an ANN, 109

a random forest classifier and a kNN classifier. For each of these classifiers the false 110

positive error was 7%, 12% and 25% respectively while the false negative error was 8%, 111

0% and 0% respectively. 112

From the review above, it can be concluded that while there are algorithms for 113

cough detection and specific cough classification, none of them perform fully 114

automatic cough detection and classification. Further, there has been only one 115
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algorithm reported for pertussis cough classification which also relies on manual 116

segmentation of cough sounds prior to classification. Additionally, most of the 117

high-performing cough detectors use complex classifiers making them unsuitable for 118

use resource-constrained devices. 119

Material and Methods 120

A typical episode of whooping cough involves intense coughing, usually but not always, 121

followed by the characteristic whooping sound. Hence, in order to identify a pertussis 122

case, two main sounds are helpful: cough sound and the whooping sound. While 123

whooping sound is quite specific to pertussis, cough sounds have a lot of variance 124

depending on the cause of cough. Hence, it is important to distinguish between the 125

different cough types after a cough sound gets detected. 126

The pertussis diagnosis algorithm proposed in this paper, following the 127

aforementioned approach, is shown in Fig 1. For the development of this algorithm, a 128

total of 38 different audio recordings were acquired from publicly available sources 129

with duration between 10–169 seconds and an average of 48.7 seconds per 130

recording.(Table 1). These include 20 recordings of patients with pertussis cough, 11 131

with croup and other types of cough, and 7 of cough containing wheezing sounds 132

corresponding to other diseases such as bronchiolitis and asthma. Of the 38 recordings, 133

14 are from infants aged 0-2 years, 18 from children aged 3-18 years and 6 from adults 134

aged of over 19 years in age. Information about the exact laboratory test used to 135

obtain the diagnosis for these recordings is, unfortunately, not available. Prior to any 136

processing, all recordings were resampled to a frequency of 16000 Hz . This is because 137

all the required information is contained below 8000 Hz, which is half of the new 138

sampling rate. The audio signals were then divided into frames of 320 ms for 139

processing with a 50% overlap between subsequent frames. 140

Fig 1. Block diagram of the automatic pertussis identification algorithm.

The first step for automated pertussis identification involves feature extraction 141

from non-silent parts of an audio recording. Several features are extracted from each 142

frame including time-domain features, frequency-domain features and Mel Frequency 143

Cepstral Coefficients (MFCCs). These are subsequently used for cough detection, 144

cough classification and whooping sound detection. The design and functionality of 145

each block in the proposed algorithm is explained in the following sections. 146

Sound Event Detection 147

Prior to the detection of any cough and whooping events, a sound detector is used to 148

remove the silent sections of the audio recordings. This ensures that all further audio 149

processing is performed only on signals where there is some sound and also helps in 150

reducing the processing load and decreases the algorithm runtime. It is implemented 151

by comparing the standard deviation of each frame to the mean of the standard 152

deviation in each recording. By setting a threshold for the minimum frame standard 153

deviation the silent parts in a recording can be removed. An example of the result this 154

approach achieves can be seen in Fig 2 where the sound events can be clearly 155

distinguished from the silent parts of the recording. 156

Fig 2. An example showing the output of sound event detection scheme where the
non-silent parts of the recording have been successfully identified (areas under blue
lines).
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Table 1. List of data sources for cough sounds.

No Source Link Type Age Group Length (s)

TR1 https://www.youtube.com/watch?v=l-sNgKgAucI Pertussis Adult 32

TR2 https://workspace.imperial.ac.uk/rodriguez-villegas-lab/Public/whooping-cough/TR2.mp3 Pertussis Infant 10

TR3 https://www.youtube.com/watch?v=TIV460AQUWk Pertussis Infant 139

TR4 https://www.youtube.com/watch?v=wuvn-vp5InE Pertussis Infant 10

TR5 www.whoopingcough.net/cough-child-muchwhooping.wav Pertussis Child 26

TR6 www.whoopingcough.net/paroxysm.wav Pertussis Child 35

TR7 https://www.youtube.com/watch?v=31tnXPlhA7w Pertussis Adult 56

TR8 https://www.youtube.com/watch?v=FIsQjsUJSiM Pertussis Adult 113

TR9 https://www.youtube.com/watch?v=Rmlo2to0ogs Pertussis Child 72

TR10 http://streaming.cdc.gov/vod.php?id=7ffe0c683b0dc2765090991b8f8018c920120904104432647 Pertussis Child 15

TR11 http://www.youtube.com/watch?v=xwOfOgY8Ye8 Croup Infant 123

TR12 http://www.youtube.com/watch?v=ID5KlHVJ91M Croup Child 16

TR13 http://www.youtube.com/watch?v=Qbn1Zw5CTbA Croup Infant 169

TR14 https://www.youtube.com/watch?v=Ro7HfT8oM8k Unknown NP Child 13

TR15 https://www.youtube.com/watch?v=8HWwSi1h0pw Unknown NP Child 20

TR16 https://www.youtube.com/watch?v=pAHDqQRDPCk Bronchiolitis Infant 73

TR17 https://www.youtube.com/watch?v=RFwr_zbgJII Bronchiolitis Infant 61

TE1 https://www.youtube.com/watch?v=AIVt3e5EVtc Pertussis Child 86

TE2 https://www.youtube.com/watch?v=KZV4IAHbC48 Pertussis Child 51

TE3 www.whoopingcough.net/whoop-child-slightwhoop.wav Pertussis Child 16

TE4 www.whoopingcough.net/wc-adult.wav Pertussis Adult 21

TE5 www.whoopingcough.net/images/whooping%20cough%2030%20second%20mpg.mpg Pertussis Child 30

TE6 www.whoopingcough.net/images/videochildwhoop3.wmv Pertussis Child 92

TE7 https://www.youtube.com/watch?v=VX98aiYpmW4 Pertussis Infant 106

TE8 https://www.youtube.com/watch?v=yv4GUrI0Cw4 Pertussis Child 37

TE9 https://www.youtube.com/watch?v=zuK4honWVsE Pertussis Infant 26

TE10 https://www.youtube.com/watch?v=PFNvGqw9HKY Pertussis Child 13

TE11 https://www.youtube.com/watch?v=_vgOOuBKKu8 Croup Child 58

TE12 https://www.youtube.com/watch?v=3eJQAdkW1Aw Unknown NP Child 62

TE13 https://www.youtube.com/watch?v=iQit0aZ_Sbg Unknown NP Child 15

TE14 https://www.youtube.com/watch?v=fWUoarRzAwY Unknown NP Child 42

TE15 https://www.youtube.com/watch?v=gus1GHeS7IE Unknown NP Infant 16

TE16 https://www.youtube.com/watch?v=IYllzXfvkmY Bronchitis Adult 53

TE17 https://www.youtube.com/watch?v=IE_6K-ZfI64 Bronchiolitis Infant 39

TE18 https://www.youtube.com/watch?v=GlzCDxaBB6w Croup Infant 12

TE19 https://www.youtube.com/watch?v=ooohsSgm5GM Asthma Adult 33

TE20 https://www.youtube.com/watch?v=5kAWlNZ-I_I Bronchiolitis Infant 44

TE21 https://www.youtube.com/watch?v=SsxsiISkLZA Bronchiolitis Infant 15

TRx - Training data; TEx - Test data; NP - Non-pertussis.

Feature Extraction 157

At the initial stages of algorithm development, a large number of features were 158

extracted from the audio signals to study their discriminating abilities. From this 159

initial set of features, that are explained below, the top performing ones were selected 160

based on their usefulness in detecting and classifying cough and whoop sounds 161

separately. 162

Mel-Frequency Cepstral Coefficient 163

The complex cepstrum is defined as the Fourier transformed logarithm of the signal 164

spectrum [18]. The coefficients that represent this transformation are called cepstral 165

coefficients c[n] and can be obtained using Eq 1 for a signal with power spectrum S(ω). 166
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log(S(ω)) =

∞
∑

n=−∞

c[n]e−jnω (1)

A total of 13 MFCCs were extracted for the proposed algorithm, including the 167

zeroth order MFCC, using the melcepst function in VOICEBOX speech processing 168

toolbox [19] for Matlab [20]. Additionally, the first and second derivative coefficients 169

were also extracted, such that there were a total of 39 MFCC features. 170

Zero-crossing Rate 171

Zero-crossing rate represents the frequency of sign-changes in a signal [21] and is 172

calculated using Eq 2. It results in higher values for noisy and high frequency signals 173

where sign changes are more frequent. 174

ZCR =
1

T − 1

T−1
∑

t=1

I{stst−1 < 0} (2)

Crest Factor 175

Crest factor is the ratio of the value of a peak in a waveform relative to its root mean 176

square (RMS) value. Calculated using Eq 3, it gives a measure of the intensity of 177

detected peaks. 178

CF =
|x|peak
xrms

(3)

Energy Level 179

Energy level of an audio frame is calculated as the RMS of the frame using Eq 4. 180

Since cough is an explosive sound, it will have bursts of energy increase in short time. 181

EnergyLevel =

√

∑N−1
n=0 x(n)2

N
(4)

Dominant/Maximum Frequency (MaxF) 182

Dominant/maximum frequency is the value of the frequency bin at which the 183

maximum power of the signal is found. Since the whooping sound has a significantly 184

higher dominant frequency compared to the cough sound because of its higher pitch, 185

this feature can be useful to distinguish between these two types of sounds. 186

Spectral Roll-Off (SRO) 187

Spectral roll-off determines the point below which most energy of a signal is contained 188

and is useful in distinguishing sounds with different energy distributions. Both the 189

cough and whooping sounds have different spectral roll-off frequencies since most 190

energy in the cough sound is concentrated in the earlier sections of the frequency 191

spectrum. 192
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Spectral Skewness / Asymmetric Coefficient (SAC) 193

Spectral skewness or asymmetric coefficient is a measure of the asymmetry in the 194

power spectrum of a signal about its mean (µ) and is useful in understanding if the 195

power distribution in PSD estimate will have more density in lower or higher 196

frequency. A negative skewness coefficient means that the distribution of the spectrum 197

is left-tailed, while a positive coefficient signifies a right-tailed distribution. SAC is 198

computed as the third moment divided by the cube of the standard deviation, as 199

shown in the equation below. 200

SAC =

(

E(x− µ)

δ

)3

(5)

Spectral Kurtosis Coefficient (SKC) 201

Spectral kurtosis coefficient is also a measure of the peak of the power spectrum and, 202

similar to SAC, it can be used to describe the shape of the probability distribution of 203

the energy in the power spectrum of a signal. A high kurtosis denotes more extreme 204

infrequent deviation. From this feature, the power distribution peak, shoulder, and 205

tail of the PSD estimate can be measured. SKC is computed by using the fourth 206

moment as shown in Eq 6. 207

SKC =

(

E(x− µ)

δ

)4

(6)

Spectral Centroid (SC) 208

Spectral centroid represents the equivalent of the center of mass in a spectrum and is 209

computed as a weighted mean of the spectrum as shown in Eq 7 where f(n) is the 210

frequency bin and while x(n) is the PSD estimate. 211

SC =

∑N−1
n=0 f(n)x(n)
∑N−1

n=0 x(n)
= µ1 (7)

Spectral Spread (SSp) 212

Spectral spread is a measure of the spread of a spectrum with respect to its mean. 213

Also called spectral width, it is computed using Eq 8 where the moment µ is defined 214

using Eq 9 [22]. 215

SS =
√

µ2 − SC2 =
√

µ2 − µ2
1 (8)

µi =

∑N−1
n=0 f(n)ix(n)
∑N−1

n=0 x(n)
(9)

Spectral Decrease (SD) 216

Spectral decrease represents the rate of spectral decrease and is calculated as follows. 217
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SD =
1

∑N

n=2 x

N
∑

n=2

x(n)− x(1)

n− 1
(10)

Spectral Flatness (SF) 218

Spectral flatness determines the flatness of a spectrum by comparing its geometric 219

with the arithmetic mean. Also called tonality coefficient and calculated using Eq 11, 220

it helps to quantify how noise-like a sound is. 221

SF =
e(

1

N

∑
n
log(x(n)))

1
N

∑

n x(n)
(11)

Spectral Slope (SSl) 222

Spectral slope measures the decreasing slope of a spectrum and indicates how quickly 223

the power of a spectrum goes down towards high frequencies. Based on [23], it can be 224

computed by linear regression of the spectrum as shown below. 225

SSl =
1

∑

n x(n)

N
∑

n f(n)x(n)−
∑

n f(n)
∑

n x(n)

N
∑

n f
2(n)− (

∑

n f(n))
2 (12)

Spectral Standard Deviation (SSD) 226

Spectral standard deviation is a commonly used feature that measures the standard 227

deviation of the PSD. 228

Band Power (BP) 229

Band power represents the average power in a specific frequency band. It is calculated 230

by integrating the PSD estimate using rectangle approximation method. 231

Cough detection 232

It is important to understand the characteristics of a cough sound before any attempt 233

of its detection is made. A cough sequence is started by a mechanical or chemical 234

stimuli and is ended when the unwanted substances are removed from the airways [24]. 235

The acoustic features of a cough sound depends on the airflow velocity as well as the 236

dimensions of vocal tract and airways [24]. This makes it possible to detect or classify 237

a cough sound based on the acoustic features since these features are dependent on the 238

cause of cough. 239

In order to perform cough detection from the audio signal, the features described in 240

the earlier section are used as predictors in a logistic regression model (LRM). This 241

cough sound detection model is trained using 10 pertussis and 7 non-pertussis 242

recordings from the database. The cough sounds in each recording are manually 243

segmented and clearly marked to allow for binary classification. The top nine features 244

are then selected using sequential feature selection since addition of further features 245

result in very small changes to the model deviance. The final list of features used for 246

this classifier is shown in Table 2 in order of maximum deviance minimization. 247
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Table 2. List of features used for cough sound detection.

No. Feature

1 MFCC
2 Crest Factor
3 Spectral Flatness
4 Band Power
5 Spectral Roll Off
6 Max Frequency
7 Spectral Standard Deviation
8 Spectral Kurtosis
9 Spectral Slope

Cough classification 248

Chung et al. [25] classified cough sounds based on five different categories: behavioral, 249

pathological, duration, effect and grade of coughs. Whooping cough, which is the 250

focus of this work, is considered to be a pathological cough. The types of cough based 251

on pathology, aside from whooping cough, are dry cough, wet cough, hacking, throat 252

or chest irritation and nasal drip. However, a whooping cough is basically a series of 253

dry coughs followed by whooping sound making it somewhat similar to the coughs in 254

other conditions. Thus, it is important to clearly distinguish whooping cough from 255

other conditions with dry cough as a symptom, such as croup or bronchiolitis. 256

From observing a cough sound signal in time domain Morice et al. [26] concluded 257

that there are three types of cough patterns. This includes 3-phased cough (which is 258

the most common type of cough sound signal) [27], 2-phased cough, and peal cough. 259

For a 3-phased cough, Korpas et al. [28] concluded that the first phase of the cough is 260

due to turbulent airflow which itself is caused by narrowed airways. This leads to 261

vibrations in the airway as well as the lung tissue. In case of whooping cough, the 262

airways will be filled with a lot of thick mucus which may cause stronger vibrations as 263

the airways become narrower. Subsequently, this may lead to higher power during the 264

first phase of the cough. The second phase of the cough is caused by the airflow in the 265

trachea, while the final phase is induced by the adduction of the vocal fold at the end 266

of the second phase [28]. 267

The cough sounds detected are quite generic and may result from a number of 268

different medical conditions. This section describes how the detected cough sounds are 269

classified to determine if they are the kind of dry coughs that are specific to pertussis. 270

A separate logistic regression model is used to perform the classification of the isolated 271

cough events. From the dataset, half of the cough events are used to train the LRM 272

and the other half are used for testing. The features extracted from the training set 273

include all the time and frequency domain features listed earlier with 13 MFCCs 274

including the zeroth coefficient. Each isolated cough event is divided into three 275

same-length sections following the 3-phased cough model and a total of 30 features are 276

extracted from each section. With these features, an LRM classifier is used to 277

determine whether the isolated cough sounds are of the kind that is heard in pertussis 278

or not. However, not all of the detected cough sounds are used for the automatic 279

classification. Some of the extracted sound events have length that are not typical of a 280

cough sound. Only sound events with length typical to a cough sound are selected to 281

be used in the automatic classification while others are discarded by setting a 282

threshold for duration. The final result of this classifier is the percentage of cough 283

events classified as a pertussis case relative to the total number of coughs. 284
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Whooping sound detection 285

Although the whooping sound normally follows an episode of coughing, it is not 286

necessarily present in all cases of pertussis nor in every spell of coughing, especially in 287

the case of infants. However, in cases where this sound is present, its detection helps 288

to improve the diagnosis of pertussis and improve the overall accuracy an automated 289

classifier. 290

The design of the whooping sound detector follows a similar pattern to the cough 291

detector. Of the 38 recordings in the database, 10 pertussis and 7 non-pertussis 292

recordings are used to create the training set. The MFCCs, time and frequency 293

domain features listed earlier are extracted from these recordings to create a feature 294

vector for a logistic regression model. 295

For feature selection, the features are added one by one to minimize the model 296

deviance at each step. Once the reduction in deviance becomes very small with each 297

additional feature, this process is stopped and only the top 12 features are used. This 298

ensures the use of minimum number of features to achieve the highest classification 299

performance. Table 3 lists the features used in order of maximum deviance 300

minimization. 301

Table 3. List of features used for whooping sound detection.

No. Feature

1 MFCC
2 Spectral Standard Deviation
3 Crest Factor
4 Spectral Spread
5 Spectral Skewness
6 Spectral Flatness
7 Spectral Roll Off
8 Zero Crossing Rate
9 Band Power

10 Spectral Slope
11 Spectral Kurtosis
12 Max Frequency

Pertussis Diagnosis 302

The results from cough detection followed by classification and whooping sound 303

detection are collated in order to provide the final pertussis identification. If a 304

whooping sound is detected in an audio recording, then the case is identified as a 305

pertussis even if the pertussis cough ratio is low. If there is no whooping sound 306

detected, the identification result is obtained from the pertussis cough ratio obtained 307

from the cough classifier. Without the whooping sound, if the pertussis cough ratio is 308

greater than 0.5 then the case is classified as pertussis. 309

Results 310

There are three different instances of classification being performed in the algorithm 311

before the final pertussis diagnosis is determined. The first one is the identification of 312

individual cough instances to determine whether an audio sound is in fact a cough 313

sound or not. Once this is complete, the next stage involves classification of these 314

cough sounds. A parallel classifier attempts to identify the presence of whooping 315
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sounds. These results are then used to mark a recording as either pertussis or 316

non-pertussis. 317

In this section the results of all these classifiers are presented individually to assess 318

their performance on both training and test data sets using the following metrics [29]. 319

1. Sensitivity, which represents the fraction of correctly identified positive cases. 320

2. Specificity, which represents the fraction of negatives cases being correctly 321

rejected. 322

3. Positive Predictive Value (PPV), which represents the proportion of 323

positive results that are correctly detected. 324

4. Negative Predictive Value (NPV), which represents the proportion of 325

negative results that are correctly rejected. 326

To calculate the metrics above, TP (True Positives) is the number of instances 327

correctly detected as either cough or whooping sound (depending on the classifier), FP 328

(False Positives) is the number of incorrectly scored instances, TN (True Negatives) is 329

the number of instances correctly rejected, and FN (False Negatives) is the number of 330

incorrectly rejected instances. For pertussis diagnosis, the PPV and NPV are the most 331

important metrics since they indicate the degree of confidence with which a diagnosis 332

is made. 333

Cough detection 334

Fig 3 shows an example of several cough instances being detected from an audio 335

recording. The dotted lines show the reference cough frames in the recording while the 336

solid lines show the frames classified as cough sound by the logistic regression model. 337

In this example there are a total of ten actual cough events of which nine are detected 338

(true positives) while one goes undetected and is counted as a false negative. 339

Fig 3. An example illustrating the output of cough detection with red lines showing
the reference cough frames and blue lines showing the detected cough frames.

Table 4 shows the overall cough detection performance across all test recordings as 340

well as the individual performance for each of the 21 recordings. It shows the total 341

coughs present in each audio recording of the test dataset and the fraction of correctly 342

detected coughs. Of the total 414 cough events across 21 recordings, 85% of them are 343

correctly detected with a combined PPV of 85%. In most cases with pertussis the 344

sensitivity values are more than 80% individually with an average of 89% except in 345

case 2 where the sensitivity is 65%. This is because of the recording consists of other 346

people speaking at the time of cough events making it difficult to detect the cough 347

sounds individually. However, the high specificity and low number of false positives 348

indicate that the classifier is still able to reject other sounds which are not cough with 349

a high accuracy. Further. in non-pertussis cases (11-21), the sensitivity values are 350

generally lower. This is due to the lower number of reference cough sounds resulting in 351

greater changes in overall sensitivity even when a smaller number of coughs are not 352

detected. 353

Cough classification 354

Once the cough sounds are detected, they are checked to see if they are similar to the 355

cough sound that is generally observed in pertussis. For this, the classifier is trained 356
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Table 4. Performance of the algorithm for cough sound detection using test
data.

Case Diag TP TN FP FN Sen (%) Spe (%) PPV(%) NPV(%)

1 P 59 342 4 4 93.65 98.84 93.65 98.84
2 P 36 125 3 19 65.45 97.66 92.31 86.81
3 P 15 45 1 0 100.00 97.83 93.75 100.00
4 P 6 86 7 0 100.00 92.47 46.15 100.00
5 P 13 131 1 3 81.25 99.24 92.86 97.76
6 P 67 302 8 0 100.00 97.42 89.33 100.00
7 P 21 544 19 1 95.45 96.63 52.50 99.82
8 P 15 165 0 10 60.00 100.00 100.00 94.29
9 P 17 87 0 0 100.00 100.00 100.00 100.00

10 P 12 41 2 1 92.31 95.35 85.71 97.62
11 NP 1 335 0 5 16.67 100.00 100.00 98.53
12 NP 7 354 5 1 87.50 98.61 58.33 99.72
13 NP 4 72 1 2 66.67 98.63 80.00 97.30
14 NP 1 247 0 3 25.00 100.00 100.00 98.80
15 NP 8 67 1 0 100.00 98.53 88.89 100.00
16 NP 7 208 1 5 58.33 99.52 87.50 97.65
17 NP 12 162 8 1 92.31 95.29 60.00 99.39
18 NP 5 54 0 0 100.00 100.00 100.00 100.00
19 NP 13 152 0 1 92.86 100.00 100.00 99.35
20 NP 21 176 3 2 91.30 98.32 87.50 98.88
21 NP 12 40 0 4 75.00 100.00 100.00 90.91

Total 352 3735 64 62 85.02 98.32 84.62 98.37

Diag - indicates whether recording has pertussis (P) or non-pertussis (NP) diagnosis.
TP - true positives; TN - true negatives; FP - false positives; FN - false negatives.
Sen - sensitivity; Spe - specificity; PPV - positive predictive value; NPV - negative predictive value.

using cough sounds that are manually isolated from the audio recordings. Half of the 357

manually segmented cough sounds are used for training the model and the other half 358

for testing. The average performance achieved for the cough sound classification into 359

either pertussis or non-pertussis cough is shown in Table 5. All of the metrics indicate 360

a good classification performance except NPV which is slightly lower at 80%. This is 361

perhaps due to the presence of more pertussis cough sounds in the database. 362

Table 5. Performance of the algorithm for cough classification using test
data.

Metric Value (%)

Sensitivity 92.38
Specificity 90.00

PPV 96.50
NPV 79.84

Table 6 shows that while the NPV is high for infants, it is much lower for children. 363

For this age agroup, the PPV is alse low despite a high sensitivity. This represents an 364

area where more work is needed to improve the classifier performance. It is possible to 365

explore age-dependent features in order to achieve higher accuracy. 366

The performance of this cough classifier is also assessed in combination with the 367

cough detection block which automatically detects the individual cough instances. 368
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Table 6. Cough classification performance by age group.

Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Infants 92.59 92.86 94.94 89.66
Children 93.00 70 69.88 50.00
Adults 89.36 92.31 97.67 70.59
Overall 92.38 90.00 96.50 79.84

The number of coughs, for each test case, that are classified as pertussis cough as a 369

fraction of the total number of detected coughs is then computed. This is a number 370

between 0 and 1 that gives a fair probability of pertussis diagnosis based on a large 371

number of coughs for an individual. These results are shown in Table 7 which clearly 372

demonstrates a significantly higher percentage of pertussis coughs being classified in 373

cases which are already diagnosed with pertussis. 374

Table 7. Performance of the algorithm
for cough classification together with
cough sound detection using test data.

Case Diag Pertussis Cough Ratio

1 P 0.98
2 P 0.70
3 P 1.00
4 P 0.67
5 P 0.91
6 P 1.00
7 P 0.90
8 P 1.00
9 P 0.93

10 P 1.00
11 NP 0.00
12 NP 0.50
13 NP 0.00
14 NP 0.00
15 NP 0.22
16 NP 0.00
17 NP 0.46
18 NP 0.25
19 NP 0.25
20 NP 0.00
21 NP 0.33

Diag - indicates whether recording has pertussis (P)
or non-pertussis (NP) diagnosis.

Whooping sound detection 375

Fig 4 shows an example of whooping sound detection being performed where the 376

dashed lines represent the reference whooping sound while the solid lines show the 377

whooping sound as detected by the algorithm. In this example, there are four frames 378

with whooping sound of which two are correctly detected by the algorithm and two are 379

incorrectly rejected. 380
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Fig 4. An example illustrating the output of whooping sound detection with red lines
showing the reference whooping sound frames and blue lines showing the detected
whooping sound frames.

While the example shows a clear case of pertussis with the presence of whooping 381

sound, there are some recordings in the test dataset lacking this whooping sound 382

despite being diagnosed as pertussis. Further, no whooping sound is present in the 383

recordings of non-pertussis cases. The complete results of the whooping sound detector 384

for recordings from the test data set are shown in Table 8. The overall sensitivity in 385

this case is 73% with the PPV value of 87%. In pertussis cases, there are two 386

recordings without the presence of any whooping sound and both of these result in no 387

false positives being detected by the classifier. Of the remaining eight, at least some of 388

the whooping sound segment gets detected in six cases. In non-pertussis cases, there is 389

no false detection of whooping sound resulting in specificity of 100% in all cases. 390

Table 8. Performance of the algorithm for whooping sound detection using test data.

Case Diag Whoop TP TN FP FN Sen (%) Spe (%) PPV(%) NPV(%)

1 P Y 1 528 0 0 100.00 100.00 100.00 100.00
2 P Y 15 234 2 0 100.00 99.15 88.24 100.00
3 P N 0 99 0 0 - 100.00 - 100.00
4 P Y 1 113 0 2 33.33 100.00 100.00 98.26
5 P Y 4 165 0 0 100.00 100.00 100.00 100.00
6 P Y 1 565 0 1 50.00 100.00 100.00 99.82
7 P Y 0 640 0 5 0.00 100.00 - 99.22
8 P Y 0 229 0 1 0.00 100.00 - 99.57
9 P Y 5 127 2 1 83.33 98.45 71.43 99.22

10 P N 0 82 0 0 - 100.00 - 100.00
11 NP N 0 364 0 0 - 100.00 - 100.00
12 NP N 0 387 0 0 - 100.00 - 100.00
13 NP N 0 95 0 0 - 100.00 - 100.00
14 NP N 0 265 0 0 - 100.00 - 100.00
15 NP N 0 102 0 0 - 100.00 - 100.00
16 NP N 0 332 0 0 - 100.00 - 100.00
17 NP N 0 248 0 0 - 100.00 - 100.00
18 NP N 0 75 0 0 - 100.00 - 100.00
19 NP N 0 207 0 0 - 100.00 - 100.00
20 NP N 0 275 0 0 - 100.00 - 100.00
21 NP N 0 95 0 0 - 100.00 - 100.00

Total 27 5227 4 10 72.97 99.92 87.10 99.81

Diag - indicates whether recording has pertussis (P) or non-pertussis (NP) diagnosis.
Whoop - indicates whether recording has whooping sound; Y - Yes; N- No.
TP - true positives; TN - true negatives; FP - false positives; FN - false negatives.
Sen - sensitivity; Spe - specificity; PPV - positive predictive value; NPV - negative predictive value.

Pertussis Diagnosis 391

The complete pertussis identification results for the test data are shown in Table 9. 392

From the table, it can be seen that all cases have been successfully identified as either 393

pertussis or non-pertussis. In cases 1-10 (with pertussis diagnosis), six cases have been 394

identified because the presence of whooping sounds have been detected. In the other 395

four, the pertussis cough ratio is greater than 0.5 indicating a high likelihood of 396
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pertussis. For non-pertussis cases, the cough ratio is either zero or very low for all 397

except case 12 which is on the border. The identification threshold can be increased if 398

a more strict detection criterion is desired. 399

Table 9. Performance of the algorithm for pertussis diagnosis using test data.

Case Diag Whooping Sound Pertussis Cough Ratio Pertussis Identification

1 P 1 0.98 P
2 P 1 0.70 P
3 P 0 1.00 P
4 P 1 0.67 P
5 P 1 0.91 P
6 P 1 1.00 P
7 P 0 0.90 P
8 P 0 1.00 P
9 P 1 0.93 P
10 P 0 1.00 P
11 NP 0 0.00 NP
12 NP 0 0.50 NP
13 NP 0 0.00 NP
14 NP 0 0.00 NP
15 NP 0 0.22 NP
16 NP 0 0.00 NP
17 NP 0 0.46 NP
18 NP 0 0.25 NP
19 NP 0 0.25 NP
20 NP 0 0.00 NP
21 NP 0 0.33 NP

Diag - indicates whether recording has pertussis (P) or non-pertussis (NP) diagnosis.

Discussion 400

In this paper, an algorithm for automated pertussis diagnosis is presented with 401

additional identification of other diagnostic features. The algorithm consists of 402

LRM-based classifiers for whooping sound detection, cough sound detection, and 403

cough sound classification. This algorithm represents the very first reported attempt 404

towards a fully automated end-to-end solution that incorporates automatic cough 405

detection and classification as well as whooping sound detection. As a result, no 406

manual segmentation of cough sounds need to be performed allowing the algorithm to 407

be used as a stand-alone solution in real-time. Additionally, it does not require any 408

person-specific tuning of thresholds, is computationally efficient and is resilient to 409

artifacts enabling unsupervised usage on smartphones under real-world conditions. 410

The main contribution of the work presented in this paper is a complete pertussis 411

diagnosis algorithm, however, the intermediate classifiers for cough detection, 412

classification and whooping sound detection can be used on their own for various 413

applications. 414

The cough detection part of the diagnosis algorithm presented here, if used on its 415

own, achieves performance that is comparable to other methods proposed in literature. 416

This is despite its lower complexity compared to other cough detection 417

methods [8, 10,11,30] that use HMM, SVM and neural networks for classification. 418

Algorithms for cough classification have also been published previously including 419
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those for pneumonia [16,31,32], wet and dry cough classification [14,15,33] and 420

asthma [34]. However, the only other study for pertussis cough classification is 421

published by Parker et al. [17]. This uses neural networks to classify coughs with 422

sensitivity and specificity of 93% and 92% respectively for 47 cough events only. In 423

comparison, the cough classifier part of the diagnosis algorithm proposed in this paper 424

uses significantly more cough events as part of the test data and achieves performance 425

comparable to that in [17]. Its performance can be improved further by incorporating 426

other types of coughs such as those in croup, bronchiolitis, asthma, and cold cough. 427

Additionally, the proposed cough classifier also computes the pertussis cough ratio 428

that minimizes the effects of misclassification at the final pertussis identification stage. 429

The whooping sound detection part of the diagnosis algorithm, when used 430

independently, has a very high specificity but is limited by its lower sensitivity. It 431

should be noted that whooping sound is categorized as a pathognomonic symptom for 432

pertussis. This means that whooping sound is a unique characteristic of pertussis. By 433

developing a high specificity detector, a pertussis case can be objectively confirmed by 434

the presence of a whooping sound. 435

The pertussis diagnosis algorithm proposed in this paper successfully identifies all 436

the cases correctly resulting in 100% accuracy. However, it has been tested on a 437

limited amount of test data consisting of 10 pertussis and 11 non-pertussis audio 438

recordings. Further, the laboratory confirmation methods to obtain diagnosis in this 439

data are not known. This is a limitation of the current preliminary study and further 440

work is needed for validation with more data and known lab classification methods. If 441

needed, the algorithm performance can also be enhanced by exploring the use of more 442

features and improved intermediate classifiers. However, the use of more complex 443

classifiers, such as neural networks, comes at the cost of added computational 444

complexity. Depending on where the algorithm is to be implemented, certain feature 445

extraction and classification methods can be computationally prohibitive. 446

Additionally, when implemented on a smartphone, a series of questions can be asked 447

to obtain user input which can supplement the decision-making process for the 448

diagnosis. These may include questions about the immunization status of an 449

individual, clinical symptoms that vary by age, lifestyle-related information e.g. 450

smoking habits, and questions about related prior problems. 451

While the main aim of the work presented in this paper is to target low-resource 452

areas for diagnosing pertussis where clinical facilities are limited, it has other clinical 453

and educational applications as well. It can be very useful to demonstrate and teach 454

students the differences between various kinds of cough sounds. Further, it can be 455

used for differential diagnosis of respiratory infections where symptoms of illnesses are 456

similar. For example, pertussis cases may be misdiagnosed as bronchiolitis with 457

further impacts such as missed antibiotic treatments. The use of our proposed method 458

allows for the possibility of distinguishing between these two despite their similar 459

symptoms otherwise. 460

Overall, the algorithm proposed in this paper achieves a high pertussis 461

identification performance with simple classification methods. This shows that a 462

pertussis cough can be automatically identified using its sound characteristics with a 463

high degree of confidence and can be implemented on mid-range smartphones. This is 464

particularly important in case of a whooping cough outbreak in locations where 465

sophisticated laboratory tests and specialists may not be available. When 466

implemented on a portable device, such as a smartphone or tablet, the algorithm can 467

be extremely useful for quick identification or early screening of pertussis and for 468

infection outbreaks control. 469
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