
  1

EFFECT OF FUEL TEMPERATURE ON IN-NOZZLE CAVITATION AND SPRAY FORMATION 

OF LIQUID HYDROCARBONS AND ALCOHOLS FROM A REAL-SIZE OPTICAL INJECTOR 

FOR DIRECT-INJECTION SPARK-IGNITION ENGINES 

 

P.G. Aleiferis*, J. Serras-Pereira and A. Augoye 

Department of Mechanical Engineering, University College London, UK 

 

T.J. Davies and R.F. Cracknell 

Shell Global Solutions (UK), Ltd., Thornton, UK 

 

D. Richardson 

Jaguar Advanced Powertrain Engineering, Coventry, UK 

 

*Author for Correspondence: 

Dr. Pavlos Aleiferis 

University College London 

Department of Mechanical Engineering 

Torrington Place, London WC1E 7JE, UK 

Tel: +44-(0)20-76793862, Fax: +44-(0)20-73880180 

E-mail: p_aleiferis@meng.ucl.ac.uk 

 

 

Full length article accepted for publication in the International Journal of Heat and Mass Transfer 



  2

ABSTRACT 

High-pressure multi-hole injectors for direct-injection spark-ignition engines offer some great benefits in 

terms of fuel atomisation, as well as flexibility in fuel targeting by selection of the number and angle of the 

nozzle holes. The flow through the internal passages of injectors is known to influence the characteristics of 

spray formation. In particular, understanding how in-nozzle cavitation phenomena can be used to improve 

atomisation is essential for improving mixture preparation quality under homogeneous or stratified engine 

operating conditions. However, no data exist for injector-body temperatures representative of real engine 

operation, especially at low-load conditions with early injection strategies that can also lead to phase change 

due to fuel flash boiling upon injection. This challenge is further complicated by the predicted fuel stocks 

which will include a significant bio-derived component presenting the requirement to manage fuel flexibility. 

The physical/chemical properties of bio-components, like various types of alcohols, can differ markedly 

from gasoline and it is important to study their effects. This work outlines results from an experimental 

imaging investigation into the effects of fuel properties, temperature and pressure conditions on the extent of 

cavitation, flash boiling and, subsequently, spray formation. This was achieved by the use of real-size 

transparent nozzles, replica of an injector from a modern direct-injection spark-ignition combustion system. 

Gasoline, iso-octane, n-pentane, ethanol and butanol were used at 20, 50 and 90 °C injector body 

temperatures for ambient pressures of 0.5 bar and 1.0 bar in order to simulate early homogeneous injection 

strategies for part-load and wide open throttle engine operation. The fuel matrix also included a blend of 

10% ethanol with 90% gasoline (E10) because the vapour pressure of E10 is higher than the vapour pressure 

of either ethanol or gasoline and the distillation curve of E10 reflects strongly this effect. Therefore, the 

distillation curves of the fuels, the vapour pressures, as well as density, viscosity and surface tension were 

obtained and the Reynolds, Weber, Ohnesorge and Cavitation numbers were considered in the analysis. The 

in-nozzle flow regime and spray formation was found to be sensitive to the fuel temperature and gas pressure 

as a result of the vapour pressure and temperature relationships. 
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NOMENCLATURE 

Ca  Fluid Dynamics Cavitation Number 

CN  Pressure Ratio Cavitation Number 

d  Diameter 

L  Length of Nozzle Hole 

  Dynamic Viscosity of Liquid 

ρ  Density 

p  Pressure 

p∞  Reference Pressure 

pg  Gas Pressure 

pinj  Injection Pressure 

pv  Vapour Pressure 

Re  Reynolds Number 

  Surface Tension 

T  Temperature 

T∞  Reference Temperature 

u  Velocity 

U∞  Reference Velocity 

W  Width 

 

ABBREVIATIONS 

ASTM  American Society for Testing and Materials 

CAD  Computer Aided Design 

DISI  Direct Injection Spark Ignition 

DVPE  Dry Vapour Pressure Equivalent 

RPM  Revolutions Per Minute 
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INTRODUCTION 

INJECTORS AND CAVITATION 

When heat is supplied to a liquid at a constant pressure, after a period of time, the liquid experiences a phase 

change into vapour. When this occurs, the liquid is said to have undergone boiling. In contrast, when phase 

change occurs as a result of pressure drop of the flowing liquid at a constant temperature, cavitation is said to 

have taken place. Cavitation is a phenomenon that is mainly encountered in hydraulic equipment such as 

hydro-turbines, pumps, valves and ship propellers where hydrodynamic effects result in regions of flow 

experiencing a pressure which falls below the vapour pressure of the liquid at that particular temperature, 

causing the formation of bubbles or foam at suitable nucleation sites. In a hypothetical flow where the liquid 

cannot resist any tension, vapour bubbles would appear immediately when the pressure reached the vapour 

pressure. However, nucleation does not typically happen instantaneously due to varying levels of nuclei 

present in the test liquid (e.g. from contaminant gas or otherwise) and the fact that growth rates are finite, 

requiring a certain ‘residence time’.  

Cavitation phenomena have been known to occur inside Diesel injectors for the past 50 years or so [1]. 

Cavitation can occur at the centre of vortices in a flow due to centrifugal static pressure differentials; vortical 

motion can occur not only because it is inherent in turbulent eddies but also because of the presence of both 

free and forced shedding vortices. This is particularly relevant inside injector nozzles where the flow can 

have vortex motion by design, e.g. rotational/swirling flow patterns upstream the nozzle hole, and/or because 

the flow must turn round sharp radii, e.g. at the inlet of the nozzle which can result in significant re-

circulation zones just downstream the inlet of the nozzle. Although cavitation is not desirable on many 

occasions since the collapse of the cavitation bubbles can have a negative effect on the mechanical integrity 

of the interacting components through surface erosion, cavitation in injection nozzles is recognised as a 

phenomenon that can be beneficial to the development of the fuel spray. This is due to the fact that the 

primary break-up and subsequent atomisation of the liquid fuel jet at the nozzle exit can be improved by the 

perceived disruption of the flow and enhanced turbulence caused by the cavitation patterns within the flow 

[2]. In addition, the dynamics of cavitation inside the nozzle is expected to enhance fuel atomisation through 

generation of smaller droplets which vaporise more rapidly, thus enhancing the fuel/air mixing and reducing 

ignition delay in Diesel engines. 

Multi-hole Diesel injector technology has illustrated the benefits of increasing fuel pressure on atomisation 

and this has led to the development of multi-hole injectors for gasoline Direct-Injection Spark-Ignition 

(DISI) engines. A multi-hole injector for DISI engines allows fuel to be injected through a number of small 

holes in the injector tip, whose position and angle can be varied in any required configuration to direct the 

fuel towards the spark plug or any other in-cylinder area of interest. This has led to the so-called ‘spray-

guided’ combustion system that has become the preferred choice for DISI engines due to demonstrated 

stability of performance under a wide range of operating conditions [3]. 

Most previous studies on multi-hole injectors have focused on cavitation imaging in optical models of 

scaled-up Diesel nozzles, with few studies on real-size nozzles and, moreover, with only limited work on 
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quantitative flow data in scaled-up or real Diesel injectors, e.g. by Aleiferis et al. [4] in a 20× model and by 

Tropea and co-workers in a real-size geometry [5, 6]. Research conducted in some real-size and model 

injectors with optical access has questioned the direct scaling of cavitation phenomena in injectors even 

when relevant non-dimensional parameters been matched on models. In one of the earliest studies on injector 

nozzles, Bergwerk [1] conducted experiments with simplified large scale-and real-size single-hole Diesel 

nozzles and observed that for the large-scale nozzle, increasing cavitation continuously led to a transition 

into hydraulic flip; on the contrary, increased cavitation brought about a more atomised spray. In a much 

later study, Arcoumanis et al. [7] made a critical comparison between large-scale and real-size Diesel 

nozzles and found that cavitation in models occurred in the form of foamy clouds of bubbles, similar to those 

of Soteriou et al. [8]; in real-size injectors though, cavitation appeared in the form of large clear voids, 

similar to those of Chaves et al. [9]. These results suggest that the nature of cavitation inception may change 

in scaled-up models and that bubble scaling factors are still not well understood.  

The different operating conditions of DISI engine injectors to those of Diesel engines highlight the 

importance of undertaking studies of fuel flow inside the nozzles of DISI injectors for a better understanding 

of their spray formation and mixture preparation characteristics. Previous studies of flow and cavitation in 

gasoline injectors are very few and have focused on scaled-up models, e.g. in a 10× model by Aleiferis et al. 

[10], or on single-hole pressure-swirl atomisers [11–14]. In general, cavitation was always found to produce 

a more broken-up spray; however, in extreme cases examined by Allen et al. [12] in pressure-swirl 

atomisers, cavitation filled the entire nozzle resulting in hydraulic flip which effectively reduced the 

atomisation ability of the nozzle. The rapid transitions from the initial onset of cavitation to the complete 

saturation of the nozzle showed the process to be highly unstable and difficult to control. Recently, Gilles-

Birth et al. [15, 16] investigated the effect of cavitation in multi-hole DISI injectors. They used a real injector 

coupled to a real-size optical nozzle with a single angled orifice 0.2 mm in diameter. They identified three 

types of cavitating structures: bubble, film and string cavitation. The latter was found for nearly all operating 

conditions and started at the injector needle due to strong rotational flow at the nozzle inlet, growing towards 

the nozzle exit but was very unstable in its development, shape and shot-to-shot repeatability. Film cavitation 

and supercavitation were the dominant modes, the former observed to have stronger regions on the top side 

of the nozzle as bubbles were created at the nozzle inlet and flushed away and the latter used to define 

conditions where bubbles completely filled the nozzle. 

All previous experiments of cavitation in injections nozzles, particularly of multi-hole design, have been 

conducted at fixed temperature and with fixed liquids. In fact, several different liquids that have been used 

for such investigations include Diesel oils, calibration oils, unspecified hydrocarbon mixtures, white spirits 

and gasolines, all of which have widely different transport properties such as surface tension (), viscosity 

(), density (), boiling point and vapour pressure (pv). A major challenge in scaling is how to anticipate 

cavitation in one liquid, based on data obtained from another; since nuclei play an important role, scaling 

from one fuel to another would only be tentative, especially in the context of realistic engine operating 

conditions. More to the point, DISI injectors are mounted in an engine head where the fuel inside the injector 
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and the spray upon injection are both subjected to a wide range of conditions. For example, DISI injectors 

must inject fuel at conditions of low ambient pressure, typically from ~0.2 bar at low load with early 

injection strategies for homogeneous mixture formation, to ~5 bar for late-injection strategies under stratified 

engine operation, or even more under supercharged operation. Additionally, fuel temperatures can vary from 

below 0 °C to over 150 °C at the injector tip under high-load firing conditions. Although quite significant 

phenomena are coupled over this operation regime, very few experimental results exist to explain such 

effects in multi-hole type DISI engine nozzles. Specifically, for the case of low-load operation with fully-

warm engine conditions, fuel flash-boiling occurs as there is fast disruptive evaporation of the fuel upon 

injection due to the reduction of the fuel’s boiling temperature from the rapid depressurisation into the 

engine cylinder. This enhances the rate of evaporation but also leads to ‘spray collapse’ that draws the 

plumes close together under the injector tip and destroys the designed directionality of the plumes. It is very 

likely that over this regime, in-nozzle phase-change phenomena due to cavitation get immediately coupled to 

phase-change phenomena arising from boiling, altering the spray formation in a complex, currently 

unknown, manner. This mechanism can be better analysed with investigations using optical nozzles. 

Experimental results on the subject can also assist researchers in the area of computational fluid dynamics 

because although some models have been developed to predict cavitation and its effect on sprays, only 

models of limited applicability exist for multi-component fuels, especially at high fuel temperature and low 

gas pressure flash-boiling conditions.  

SPARK-IGNITION ENGINES AND BIOFUELS 

The challenge is further complicated by the predicted fuel stocks which will include a significant bio-derived 

component in order to strengthen sustainability and reduce CO2 emissions, presenting the immediate 

requirement to manage fuel flexibility. In the short term we need to ensure the bio-components are 

compatible with modern engines and to determine appropriate blend formulations. Understanding the effect 

of new bio-components on fundamental engine processes, such as spray formation, is an essential part of this 

challenge, especially in DISI engines that are very sensitive to fuel properties. Gasoline already contains 5% 

bio-ethanol (E5) in many countries and is compatible with existing combustion systems but its use will have 

only limited impact on CO2 emissions. Ethanol increases the octane rating of the fuel. This allows a more 

optimised spark timing in current vehicles and permits higher compression ratios to be employed in future 

engines, giving rise to higher thermodynamic efficiency. The high flame speed of ethanol and charge cooling 

benefits effects may also increase the thermodynamic efficiency, depending on the spark timing and injection 

strategy. There is pressure for the ethanol content of fuels to increase with some markets demanding much 

higher proportions (E85 or E100). The vapour pressure of an E5 or E10 blend is higher than the vapour 

pressure of either ethanol or gasoline as the mixture deviates from the ideal solution behaviour (Raoult’s 

law) due to the intermolecular forces. This deviation from Raoult’s law significantly alters the distillation 

curve of the blend in comparison to that of pure gasoline [17, 18]. For E100 certain issues can also arise at 

cold-start engine conditions due to the lack of volatility, but this is not a problem for E85. The chemistry of 

ethanol is very different from that of hydrocarbon fuels. For one thing ethanol is water soluble which 

necessitates rigorous procedures during fuel distribution. Additionally, not all components on the vehicle 
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which are compatible with hydrocarbons would necessarily be compatible with blends containing large 

amounts of ethanol. The volumetric energy density of ethanol is also lower than gasoline which poses a 

challenge for the engine calibrator in terms of controlling the injector pulse width. Other alkyl alcohols, such 

as butanol have also been suggested as possible gasoline components. Having twice as many carbon atoms as 

ethanol, butanol is more hydrocarbon-like in its properties. However butanol lags far behind ethanol in terms 

of commercial production. 

PRESENT CONTRIBUTION 

There are still limited experimental data which clarify the role that liquid transport properties, such as surface 

tension, viscosity, density, boiling point and vapour pressure, have on in-nozzle phenomena and overall 

spray development over a realistic range of DISI engine operating conditions. Analysis of the Cavitation, 

Reynolds and Weber numbers is significant in atomisation systems, but such non-dimensional parameters 

have yet to be characterised and studied fully in the context of DISI engine injector nozzles with traditional 

and alternative fuels that have different properties. There are also no experimental results of the interactions 

between cavitation and flash-boiling at extremes of pressures and temperatures using real-size optical 

nozzles with various types of fuels. Therefore, the main objective of this work was to investigate such effects 

for different fuels and conditions. This was achieved using real-size optical nozzles to simulate the flow in 

one of the holes of a real multi-hole injector used recently by the authors for macroscopic spray imaging and 

related engine studies [3, 19–23]. Specifically, two transparent real-size single-hole nozzles with different 

nozzle-hole diameters and lengths were developed and coupled to a real injector body that was mounted on a 

quiescent pressure chamber to allow simulation of typical DISI engine operating conditions. A series of 

experiments were conducted for visualization of the cavitation inside the injector nozzle and the resulting 

effect on spray development. The investigation was carried out for gasoline, n-pentane and iso-octane, as 

well as ethanol, butanol and E10, over a range of chamber pressures and fuel temperatures. 

EXPERIMENT APPARATUS AND PROCEDURE 

PRESSURE CHAMBER 

Cavitation and its effect on near nozzle spray were investigated using back lighting visualization. All fuel 

injection events were conducted in a quiescent pressure chamber. Its octagonal shape and its six optical 

windows enable simultaneous multi-technique characterisation such as imaging with back lighting or side 

lighting, and the use of off-axis techniques for droplet sizing and velocity measurements. Figure 1 shows 

picture of the pressure chamber. The chamber pressure was monitored by an absolute pressure sensor 

mounted in the lid of the chamber. The chamber’s gas temperature was monitored throughout the experiment 

by a K-type thermocouple mounted in the lid of the chamber with the sensing tip located near the injector 

mounting. A valve at the bottom of the pressure chamber enabled evacuation of liquid and vapour fuel as 

well as creating sub-atmospheric pressure within the chamber through its connection to a vacuum pump 

system. The chamber windows in the axis of imaging were regularly removed and cleaned for better image 

visualization. More details about the chamber can be found in [21]. 
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INJECTOR 

A multi-hole injector originally designed for vertical installation in a DISI engine head in close spacing 

arrangement with the spark plug of a gasoline engine was used for this investigation. The injector had six 

nozzle holes in an asymmetric arrangement with different angles with respect to the vertical axis. Figure 2 

shows a schematic of the injector and its spray plumes through two views. Plumes 1 and 6 had a 58.5° 

inclination with respect to the vertical axis and have been designed to pass on either sides of the spark plug 

i.e. one at the intake side and the other at the exhaust side of the engine. More details about the injector 

geometry, nozzle-hole angles and spray formation in a quiescent environment and in a running DISI engine 

can be found in previous studies by the current authors [3, 19–23]. The injector was fitted into a specially 

designed mount positioned at the centre of the upper lid of the pressure chamber. A band heater was attached 

to the injector to heat up its body temperature, replicating in-situ heating of injectors mounted in DISI engine 

heads. A thermocouple sensor provided feedback to a temperature controller which regulated the injector 

temperature as required by each experiment. The temperature measured was that of the injector body, as this 

was the best possible arrangement in obtaining the fuel temperature using the available apparatus. As a result 

of this, each time the system was heated to a particular test temperature and the temperature was held 

constant for an hour, allowing enough heat-soak for a uniform distribution of temperature within the whole 

injector mount mass, before spray imaging was conducted. More details about the injector mounting and 

heating arrangement can be found in previous studies [21–23]. In order to replicate in-cylinder injection 

conditions flow imaging was carried out with the injector housing at 20 °C and heated to temperatures of 50 

°C and 90 °C to simulate engine conditions from cold-start to fully warmed-up. Both atmospheric (1.0 bar) 

and sub-atmospheric (0.5 bar) gas conditions were investigated to simulate ‘full-load’ and ‘low-load’ engine 

operation with early injection strategies, i.e. with start of injection during the early part of the intake stroke 

for homogeneous mixture formation. The gas temperature was monitored at 20 °C throughout each 

experiment. 

OPTICAL NOZZLE 

For in-nozzle cavitation investigations, optical nozzles were manufactured from Perspex® and coupled to the 

body of the real injector described above and used for all investigations. The sides of the nozzle stem were 

made flat to avoid refraction of imaged light during the experiment. The refractive index of Perspex® is 

1.495 and the melting point typically in the range 90–115 °C (363–388 K). 

The real injector was disassembled, revealing the internal needle and a specially designed adaptor, 

manufactured from steel, was used to couple the optical nozzle to the real injector body. This assembly is 

illustrated in Figure 3 in four phases ending with the injector as mounted in the pressure chamber with a 

‘blank’, i.e. non-drilled, optical nozzle. The internal geometry of the real injector was analysed to obtain 

realistic optical geometries for the investigation. Critically, it was found that although the external diameter 

of all nozzle holes was 0.5 mm, there was step change of the nozzle diameter inwardly and the internal 

diameter was 0.2 mm. This step change was designed to avoid deposit formation. In summary, the inner hole 
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diameter was 0.2 mm with length ~0.25 mm and the outer hole diameter was 0.5 mm with length ~0.25 mm, 

leading to a total nozzle hole length of 0.5 mm. 

The study of cavitation reported in the current paper used two optical nozzles that were designed for 

simultaneous imaging of both the nozzle flow and the resulting spray. In an initial attempt to avoid the exact 

complexity of the real injector, and considering cautiously the properties of the optical material, the first 

nozzle (Nozzle A) had a diameter of 0.5 mm and a length of 2.5 mm (giving L/d=5). The second nozzle 

(Nozzle B) was an evolution of the first design, allowing a diameter of 0.2 mm and a length of 1.0 mm 

(giving again L/d=5) and a lower position closer to the bottom of the needle seat, for a more faithful 

representation of the real injector. The hole was designed at 60° angle to the vertical for both nozzles as an 

approximate to 58.8° of plumes 1 and 6 of the real injector shown earlier in Figure 2. Figure 4 shows CAD 

drawings of the two optical nozzles.  

The fuel injection pressure was supplied by a pneumatic-piston ram pump. The pump was powered by 

compressed air flowing through an automatic shutoff and release system which could be depressurised using 

an electric shut-down button when necessary. A flexible hose was used to connect the output of the pump to 

an injector. Just before the injector, there were a bleed valve, a pressure gauge, a safety valve and a solenoid 

valve that was used to trigger the injection event from the control room. Due to the material properties of the 

optical nozzle, the injection needle was stationed in a constantly open position, allowing injection event to be 

controlled using the solenoid valve. This was done to prevent the needle seat from wearing caused by the 

steel needle making forceful contacts with the optical material, especially at the high fuel temperatures. It is 

also worth noting that the optical nozzle required continuous cleaning; in fact, this had to be done after every 

single injection event, to avoid distortion of images from refraction of light rays by fuel films on the optical 

nozzle body. 

CAVITATION AND SPRAY VISUALIZATION SETUP  

High magnification imaging of the nozzle and spray was conducted with a Photron® APX high-speed digital 

video camera. The camera was set to a frame rate of 9000 frames per second (corresponding to 1° crank 

angle resolution for an engine running at 1500 RPM) and a pixel resolution of 640480. A Model K2/SC™ 

series long-distance microscope system from INFINITY was used to obtain suitable magnification for 

imaging simultaneously the in-nozzle cavitation and outer spray formation. For all measurements, back-

lighting was provided by a photographic flash lamp. The spark flash light was of 4 ms duration and was 

diffused through a semi-opaque optical sheet to provide uniform background. Camera shutter speed was set 

to 1/50,000 second to allow several ‘frozen’ images to be acquired over the flash duration. Figure 5 shows a 

schematic representation of the experimental setup. The high speed camera was connected via a fire-wire 

cable to a computer where images were recorded and displayed. Triggering of the high speed camera, flash 

lamp and solenoid valve was provided by an AVL 327 engine timing unit. Since the injector needle was 

constantly in a position of full lift as explained earlier, injection triggering was performed solely by the 

solenoid.  



  10

FUELS 

Six fuels were investigated: a typical commercial grade gasoline (RON95), iso-octane, n-pentane, butanol, 

ethanol and E10 (blend of 10% ethanol with 90% gasoline). The distillation curves of all fuels are shown in 

Figure 6. A standard commercial grade European gasoline contains several hydrocarbons typically about 35–

40% C5 or lower (including oxygenates), similar levels of C6–C8 and the remainder C9–C10 hydrocarbon 

chains. Iso-octane is a single component of gasoline with boiling point temperature of 99 °C at atmospheric 

pressure while n-pentane, also a single component of gasoline, boils at 36.1°C. Iso-octane and n-pentane 

were investigated to ascertain the effects of fuel constituent properties on in-nozzle phenomena of gasoline 

as well as to aid interpretation of results obtained using the standard gasoline. Butanol boils at 117°C while 

ethanol boils at 78.4°C. E10 was selected because the vapour pressure of E10 is higher than the vapour 

pressure of either ethanol or gasoline. The main reason for this is that the mixture deviates from Raoult’s law 

due to the intermolecular forces, and the distillation curve in Figure 6 reflects clearly this effect. More 

information about this and other ethanol-gasoline blends can be found in [17, 18]. Finally o-xylene, a heavier 

gasoline component with boiling temperature 144 °C was considered and has been included in Figure 6, as 

well as in subsequent various plots to aid results discussions but was not included in the test matrix because 

its properties make it quite insensitive to the phenomena being investigated. This component served only to 

define the range of gasoline's thermo-physical properties, which is useful when discussing the effects of 

different chemical components on the observed behaviour of gasoline as a multi-component fuel.  

More information about the physical properties of gasoline and some of the other fuels that were tested for 

the current study can be found in previous publications by the current authors, e.g. see [20–23]. The vapour 

pressure curves of all fuels tested are shown in Figure 7. The vapour pressures for iso-octane, n-pentane, o-

xylene, ethanol and butanol were calculated using correlations obtained from [24] within a valid temperature 

range. For gasoline and E10 the vapour pressures were obtained experimentally using ASTM D5190 (Dry 

Vapour Pressure Equivalent, DVPE) at Shell Global Solutions (UK), Ltd. 

Clear imaging of in-nozzle phenomena depends on the closeness of the refractive index of the fuel to that of 

the nozzle’s optical material. The refractive index of each of the fuels at 25 °C (298 K) is: gasoline 1.427, 

iso-octane 1.388, n-pentane 1.358, ethanol 1.362, butanol 1.395, and drops by about 1.4–1.7% when fuel 

temperatures go to 90 °C (363 K). 

RESULTS AND DISCUSSION 

NON-DIMENSIONAL PARAMETERS 

Images of spray development, including near-nozzle spray characteristics, using the multi-hole injector of the 

current publication, have been presented in recent papers by the current authors [21–22]. Features of the 

primary spray break-up and the macroscopic spray formation brought about by changes in the operating 

conditions, namely spray convergence and collapse at high fuel temperatures and low gas pressures due to 

flash boiling, were discussed for various types of gasoline and the single-components n-pentane and iso-

octane. The reader might find these useful to bring the current publication into context. 
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The spray characteristics of injectors depend not only on the physics of atomisation of the liquid jet but also 

on the levels of turbulence generated by the internal flow upstream of the nozzle exit, as well as the extent to 

which cavitation occurs inside the nozzle passage. Decoupling these competing effects is not trivial and non-

dimensional parameters can provide some assistance. 

The effect of turbulence can be characterised by the Reynolds number Re = ρud/ where ρ and  are the 

density and dynamic viscosity of the liquid fuel, respectively, d is the nozzle hole diameter and u the flow 

velocity in the nozzle. 

The Cavitation number, Ca, is typically used to characterize the sensitivity of a flow to cavitation and is 

defined as: 

21
2

vp p
Ca

U





       (1) 

where p∞ is the pressure at a reference point in the flow, pv is the vapour pressure of the liquid at the 

reference temperature T∞, ρ is the liquid density and U∞ is the characteristic velocity at the reference point. 

All flows will have some value of Ca whether cavitating or not. At large values of Ca, flows will be single-

phase due to either p∞ being very large compared to pv or the flow velocity U∞ being very small. As the 

Cavitation number decreases however, nucleation will first occur at some value of Ca dependent on 

experimental conditions and fluid properties. This is usually denoted as incipient cavitation and defined by a 

critical Cavitation number Cacr. Further reduction in the Cavitation number below this value will cause an 

increase in the number of vapour bubbles. The rate growth of bubbles is radically affected by the 

thermodynamic properties of the liquid and vapour which are functions of temperature; therefore, Cacr will 

also depend on the liquid temperature. 

A range of critical Cavitation numbers which define the cavitating transition have been quoted in the 

literature relating to Diesel injectors for a variety of nozzle-hole geometries and injection parameters. 

However, the most popular definition of a Cavitation number for injection phenomena has not been that 

shown in Eq. (1) but the following: 

vg

ginj

pp

pp
CN




       (2) 

where pinj is the injection pressure, pg is the gas pressure and pv is the vapour pressure. This is not strictly 

correct from a fluid dynamics perspective but makes comparisons with data from different experimental 

arrangements simpler, since the effect of flow velocity is eliminated and only experimental conditions 

relating to injection, gas and vapour pressures are considered, i.e. the ratio of forces that support versus those 

that suppress cavitation. Critical Cavitation numbers based on this definition, i.e. CNcr, have been found to 

fall in the range of 0.5 to 10, with associated Recr of between 5,000 and 30,000 [1, 2, 11, 13 15, 16, 25]. Once 

in the cavitating flow regime, the discharge coefficient of the nozzle is mainly dependent on CN and 

independent of Re.  
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This analysis implies that the cavitation and Reynolds numbers should be controlled as much as possible in 

cavitation experiments. Obviously this is not trivial, especially when considering modifications to a system 

for optical access which might involve some change in configuration or scale. For example attempts to match 

Re by changing the flow rate on a large-scale model may lead to confusion due to effects on the residence 

time and the Cavitation number. The pressure can be changed to recover the Cavitation number but this can 

then alter the nuclei content. Additionally, fluid transport properties have different non-linear temperature 

and pressure dependencies, therefore, the use of a global transition regime map from non-cavitating to 

cavitating flows is difficult to build up. On a positive note, however, the above parameters are all much less 

sensitive when cavitation is already developed, justifying the continued use of Re and the Cavitation number 

as the two most widely used non-dimensional parameters for such studies.  

For consistency between the real injector and the optical nozzles, flow rate measurements were conducted in 

order to match the Reynolds number Re of the real injector and the optical nozzle. The injector flow rate was 

measured while injecting at a constant working pressure of 150 bar. This was divided by the number of 

nozzle holes (six) so as to obtain the flow rate per nozzle. The flow rate of real injector at 150 bar injection 

pressure was 16.68 g/s giving an approximate flow rate of 2.78 g/s per nozzle. Injection pressure was varied 

while injecting through the optical nozzle, and an injection pressure of 23 bar gave a flow rate of 2.81 g/s 

which closely approximated that of the real injector. Hence all injection events using optical Nozzle A were 

carried out at 23 bar. The jet velocity was obtained by dividing the nozzle mass flow rate by the product of 

the fuel density and the flow area using a diameter of 0.5 mm. This was calculated to be 22 m/s. Nozzle B 

has a hole diameter of 0.2 mm. An injection pressure of 40 bar was found to give the same Reynolds number 

to the real injector and Nozzle A. The velocity of the jet from Nozzle B was calculated to be 55 m/s. 

Figure 8 shows the Re plot for all single-component fuels tested with fluid properties of density and viscosity 

for varying temperatures along the liquid saturation curve. Measurement of the viscosity of multi-component 

fuels like gasoline or E10 are not trivial to make consistently over a range of varied temperature and pressure 

conditions necessary for constructive analysis and such measurements were not made available for these two 

specific fuels tested. Therefore, in Figure 8 the shown reference single components n-pentane, iso-octane and 

o-xylene are used to define the general envelope of gasoline’s multi-component nature. In the range 20–90 

°C, the calculated Re numbers were 4,000–40,000; interestingly, butanol’s Re at 20 °C was the lowest, 

indicating flow very close to laminar conditions. 

The Cavitation numbers Ca and CN are shown in Figures 9–11 for all the single-component fuels tested; 

Figure 9 also contains gasoline’s Ca at 20 °C (293 K) where the density of gasoline was available, whilst 

Figure 10 and 11 also contain gasoline’s and E10’s CN over the temperature range where vapour pressure 

data were available from Figure 7. It can be observed that the Cavitation numbers Ca obtained from Eq. (1) 

(with p∞ set to pinj and U∞ set to the flow velocity in the nozzle u) are smaller in magnitude when compared 

to CN obtained from Eq. (2). Also, there is an approximate constant increase in Ca with temperature against 

the continuous change in the slope of CN. The effect of temperature on Ca is relatively small, with Ca 

increasing by ~10% when temperature increases from 20 °C (293 K) to 90 °C (363 K); this increase comes 
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essentially from the effect of density in the denominator of Eq. (1) because the numerator decreases 

drastically with temperature from the effect on the vapour pressure (Figure 7). Concerning CN, the effects of 

temperature on vapour pressure shows vapour pressure increasing with temperature therefore causing the 

denominator of CN to approach a negative value, leading to negative values of Cavitation number. Hence 

only values up to the transition point from positive to negative Cavitation number have been plotted for 

clarity. It can further be observed in Figures 10 and 11 that CN values are considerably lower at the higher 

gas pressure. One important observation in the Cavitation number that needs to be highlighted is the trend for 

gasoline which appears to be more temperature sensitive in comparison to iso-octane. Although iso-octane is 

commonly used as a substitute for gasoline in many engine research applications, Figure 7 and pictures 

obtained from macroscopic imaging of the real multi-hole injector, e.g. [21], shows that higher volatility 

components, like n-pentane, are better substitutes for gasoline when a single-component fuel is to be used to 

model gasoline especially at elevated temperature conditions. This is particularly important to spray 

modellers who are normally faced with modelling a complete gasoline blend and have to make decisions on 

which single components might be more appropriate to use.  

The atomisation process can be described by Re and the liquid Weber number We=u2d/, where u, d,  and 

 are a characteristic velocity, a characteristic diameter, the liquid density and surface tension, respectively. 

Alternatively, the Ohnesorge number Oh=We0.5/Re may be used which incorporates all the main fluid 

properties. Therefore, proper study of the effect of cavitation on atomisation requires simultaneous matching 

of We. By matching Re between the real ‘full-metal’ multi-hole injector and the real injector with the optical 

nozzle, a Weber number based on the nozzle diameter d and the flow velocity u in the nozzle as measured for 

Re is also matched. Following this process, comparisons can be performed between the cavitation and spray 

images of different fuels at different conditions of temperature/pressure where the Cavitation numbers and/or 

We are similar. 

Figures 12 and 13 present the calculated We and Oh numbers for the single components selected and for 

temperatures from 7 °C (280 K) up to 185 °C (458 K) and for both nozzles. The Ohnesorge [26] diagram is 

shown in Figure 14 for the same components, with the Reitz and Bracco [27] break-up regimes 

superimposed. It is quite interesting that n-pentane is generally in the atomisation regime when used with 

both nozzles but iso-octane lies in the atomisation regime only with Nozzle B and crosses into the second 

wind induced regime when it is colder than ~70 °C (343 K) with Nozzle A. The heavy component of 

gasoline, o-xylene, crosses into the second wind induced regime when it is colder than ~100 °C (373 K) and 

~40 °C (313 K) with Nozzles A and B, respectively. The two alcohols lie mostly in the second wind induced 

regime and cross into the atomisation regime only when at quite high temperatures and this is quite 

interesting in its own right considering the implications for engine cold-start conditions. Specifically, butanol 

crosses into the atomisation regime only when hotter than ~120 °C (393 K) and ~80 °C (353 K) with Nozzles 

A and B, respectively, whilst ethanol only when hotter than ~100 °C (373 K) and ~50 °C (323 K), 

respectively. Similar observations can be drawn from the We diagram in Figure 12. Most values for alcohols 
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lie well below the atomisation regime defined as We>30,000 by Sallam et al. [28] who used non-cavitating 

water and ethanol sprays in their experiments.  

Transition criteria based on Re or We numbers are not easy to find in the literature for similar jet and 

operating conditions, particularly with real fuels. Some experiments with similar magnitudes of Re and We to 

those of the current study were performed by Suh and Lee [29] on two-dimensional nozzles with dimensions 

52 mm and length to width ratios (L/W) of 1.8 and 2.7, i.e. with the latter similar to the injector nozzle of 

the current study, using Diesel fuel but critically under turbulent to cavitating transition conditions. 

Transition criteria were established by these authors for turbulent to cavitating conditions defined by 

Re>17,000–19,000 and We>3,500–3,900 and this is the only such study that was found where transitions 

from turbulent to cavitating flows were imaged, were comparable in macroscopic appearance to those of the 

current study and were at similar Re numbers. However, the current study indicates cavitation for all fuels 

well below the Re transition point for cavitation and for We numbers where hydraulic flip was reported in 

[29]. Furthermore, Ca values in [29] were in the range 1–4, whilst the current study shows cavitation at much 

larger Ca, with lowest range typically 12–18 for Nozzle B. 

IMAGING ANALYSIS 

This section presents and discusses images of cavitation and spray formation from the two optical nozzles 

over the range of fuels, temperatures and pressures used. It needs to be noted that although some of the 

features cannot be reproduced properly by the resolution of single images in hard copy format in the context 

of a printed publication, all the observations that will be presented and discussed were verified by close 

inspection and analysis of the respective high-speed movies. 

Images of cold (20 °C) and hot (90 °C) gasoline injected into gas pressures of 1.0 and 0.5 bar are shown in 

Figure 15 for Nozzles A and B. The similar refractive index of the optical material and the fuels, in 

combination with the back light illumination method, allows the observation of cavitation inside the nozzle. 

Specifically, there is a dark flow region along the top of the nozzle passage at all conditions, indicating 

cavitation initiation at the flow separation point just at the nozzle’s inlet. When the nozzle hole is completely 

filled with liquid fuel and light rays are incident at the nozzle hole perpendicularly, the area of total reflection 

at the transition boundary surface from the optical material to the fuel is kept at minimum [15]. On the 

contrary, when cavitation occurs in the nozzle, the presence of bubbles whose surface boundaries disperse 

the light rays makes cavitation areas appear as dark structures. 

A close analysis of the images shows the dark cavitation region at the bottom of the nozzle passage extends 

upwards towards the nozzle’s inlet with increase in temperature. One common feature of all the images is the 

asymmetric nature of the spray with the cone angle being greater at the top side of the spray plume on the 

nozzle side where cavitation occurs; the spray clearly experiences stronger break-up at the top, as also 

observed in [15, 16, 30, 31]. Collapsing cavitation bubbles outside injector nozzles is known to contribute to 

spray break-up and this seems to occur even at 20 °C. For hot conditions at the same gas pressure, it is likely 

that this collapse has an increased effect on the spray break-up as a result of different fluid properties e.g. 

lower surface tension, viscosity and higher vapour pressure, which all support faster bubble growth rates. 
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The lighter spray for hot conditions probably also indicates a higher concentration of vapour within the 

liquid fuel and/or higher concentration of fine droplets within the spray, as cavitation bubbles expand and 

burst rather than collapse, thus the ‘swelling’ seen in the primary break-up. These observations are 

compatible with similar plume swelling noticed in macroscopic imaging of the spray from the real multi-hole 

injector [21].  

From gasoline’s images in Figure 15 it can be seen that at 20 °C the effect of a gas pressure reduction from 

1.0 bar to 0.5 bar is relatively small. Although the gasoline spray is slightly wider at 0.5 bar gas pressure, the 

levels of cavitation inside the nozzle are comparable. It can also be observed that the in-nozzle cavitation 

pattern is different between the two nozzles at 20 °C fuel temperature. The cavitation film in Nozzle A with 

d=0.5 mm never reaches the bottom of the nozzle passage even when gas pressure is reduced from 1.0 bar to 

0.5 bar. This does not happen to be the case for Nozzle B with d=0.2 mm. Here cavitation stretches down to 

the bottom of the nozzle passage at the outlet and extends to about a third of the nozzle length upstream of 

the outlet. However, both nozzles showed no significant change in cavitation structure when gas pressure 

was reduced from 1.0 bar to 0.5 bar.  

At 90 °C fuel temperature and 1.0 bar gas pressure there is a slight increase in cavitation in Nozzle A, 

accompanied by an asymmetric increase in the spray cone angle. The cavitation in Nozzle B has expanded 

significantly upstream of the nozzle’s exit and occupies half to three quarters of the nozzle-hole passage, 

with a simultaneous increase in spray atomisation. The different cavitation patterns in the two nozzles are 

justified by the significantly different cavitation numbers in Figures 9–11. At 0.5 bar gas pressure and 90 °C 

fuel temperature, the spray cone angle is far greater than any of the other conditions and the fuel begins to 

atomise immediately outside the nozzle. The spray is still asymmetric with the top half angle of the spray 

plume larger than the bottom one (i.e. on the side of the nozzle where cavitation is present). The increased 

levels of flash-boiling at low gas pressures are also seen to reduce the dense dark area significantly and in 

fact within only 4–7 nozzle diameters the dark spray ‘core’ is no longer ‘intact’ and the backlight is clearly 

visible through the atomised spray. This is in clear contrast to the 1.0 bar gas condition which even at 90 °C 

shows a much narrower spray exiting the nozzle. A further interesting observation is that at 90 °C, gasoline’s 

in-nozzle cavitation at 1.0 bar gas pressure has extended upstream more than it has at 0.5 bar, particularly 

with Nozzle B. As will be shown later the same observation was made for all fuels at hot conditions, 

therefore, this is believed to be a real effect of the coupling between flash boiling and cavitation and the 

exact mechanism behind it requires further study with higher magnification.  

The in-nozzle cavitation structure for E10 in Figure 15 appears to be similar at all conditions to that of 

gasoline except in the case of 90 °C fuel temperature and 0.5 bar gas pressure where the bottom dark corner 

of the nozzle-hole passage close to the nozzle exit appears longer for E10. Despite this difference, at 90 °C 

the in-nozzle cavitation pattern is seen to be longer at 1.0 bar than at 0.5 bar; this is a similar observation to 

that made for gasoline earlier. However, E10 sprays are more sensitive to operating conditions when 

compared to gasoline. The change in plume angle and atomisation when the gas pressure is reduced from 1.0 

bar to 0.5 bar at 90 °C is greater for E10. This is also an indication that the level of superheating of the fuel 



  16

component has a higher effect on the rapid jet disintegration and atomisation than the level of cavitation in 

isolation since the in-nozzle cavitation structure between gasoline and E10 are not too dissimilar. The vapour 

pressure graph (Figure 7) and the fuel distillation curves (Figure 6) are helpful in analysing this behaviour. 

The vapour pressure of E10 is higher than that of gasoline and from the distillation curves one can further see 

that at about 80 °C, double the fuel has evaporated for the case of E10 in comparison to gasoline. This 

justifies the observations from the images which show that E10 is possibly flashing as soon as it is injected 

into the chamber at 90 °C and 0.5 bar gas pressure, thereby resulting in a larger cone angle and a more 

atomised spray in comparison to gasoline. At all other conditions, E10 exhibits larger areas of lighter 

‘greyscales’ in the images that show up as larger ‘holes’ in the spray pattern with darker patches in-between.  

Although the exact hierarchy of mechanisms is difficult to define because cavitation and flash-boiling remain 

highly coupled, it can be hypothesised that the process occurs as follows: upon release into the low gas 

pressure atmosphere, micro-bubbles originating from cavitation are acting as nucleation sites for the rest of 

the superheated components which increase the rate at which these can boil. This cascade process continues 

to the point where vaporisation can be nearly instantaneous. Bubble growth and the energy released from 

bubble rupture, which is transferred to the surrounding liquid, is therefore important in the production of new 

ligaments. In this respect, the surface tension is a critical parameter as it will define the surface energy 

necessary for bubbles to grow and break up the spray into smaller ligaments and droplets. The surface 

tension is generally lower and the viscosity is also lower for n-pentane and iso-octane in comparison to the 

heavy component o-xylene and to both ethanol and butanol discussed later, as indicated by the respective We 

and Re numbers throughout the studied range of fuel temperature; it is only at temperatures greater than ~120 

°C (393 K) that ethanol’s We indicates better ability to atomise than iso-octane, whilst butanol shows always 

low ability to atomise similar to that of gasoline’s heavy component o-xylene. The mechanism can be further 

analysed when the relationship between cavitation and vapour pressure is considered. From the vapour 

pressure curves in Figure 7, it can be observed that under most of the conditions studied, the vapour pressure 

of gasoline, E10 and n-pentane was greater than the gas pressure. Cavitation inside the nozzle is governed 

mainly by the fuel temperature through its effect on vapour pressure, therefore, the relative difference 

between the vapour pressures at high temperatures and for a 0.5 bar change in gas pressure has a small effect. 

The effect of low gas pressure is demonstrated strongly outside the nozzle by two mechanisms; the first is 

the lower resistance to vapour-bubble growth and the second is the reduction of the liquid boiling point and 

automatic increase in the level of superheat experienced by the fuel constituents. This dramatically improves 

atomisation and destroys any remaining ‘solid core’ structure. The increased levels of superheat also drive 

the rapid evaporation process of the newly formed ligaments and droplets, so that fine atomisation can be 

nearly instantaneous. 

In Figure 16 iso-octane appears relatively insensitive to operating conditions when compared to gasoline in 

Figure 15. At 20 °C there is no major difference in the spray produced, or in the mechanisms of primary 

break-up; the locations and levels of cavitation are also broadly similar. However, upon close inspection, it 

was clear that the cavitation ‘film’ in Nozzle A rarely reached the bottom wall of the hole, in contrast to 

gasoline’s behaviour in the same nozzle where even at 20 °C the cavitation film develops at the entrance of 
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the nozzle hole and extends to the bottom part of the passage, filling the hole fully at the nozzle exit plane. 

Cavitation in Nozzle B appears as a thinner film adjacent to the top wall of the nozzle-hole passage for both 

iso-octane and gasoline; in the case of Nozzle A cavitation is generally thicker from the inlet and increases 

more gradually as it expands downstream towards the nozzle’s exit. 

Reducing the gas pressure to 0.5 bar and maintaining the fuel temperature at 20 °C had no significant effect 

for iso-octane and only a small effect on the cone angle for gasoline. A rise in iso-octane’s temperature to 50 

°C showed almost no macroscopic differences to 20 °C, even for 0.5 bar gas pressure. However, there were 

some more obvious differences when the temperature was raised further from 50 °C to 90 °C. In Figure 16, 

cavitation at 90 °C has extended upstream of the nozzle exit and an increase in cone angle can be observed 

for Nozzle B, as the spray shows better atomisation. With a reduction in gas pressure at 90 °C, spray 

atomisation from Nozzle B is further enhanced as indicated by the lighter finer greyscales in the outer top 

region of the spray in the images. However, for Nozzle A, despite a change in cavitation broadly similar to 

that of Nozzle B, no significant change in spray formation can be observed as the spray can be seen to break-

up similarly at the top and bottom with almost no obvious increase in the cone angle at the top. A 

comparison between images of iso-octane and gasoline gives a strong indication again that the levels of 

superheating of the fuel components contribute more towards the liquid jet’s break-up and evaporation than 

the levels of cavitation in isolation, since cavitation structures are not very different between the two fuels 

over the full range of conditions but the sprays, particularly at 90 °C, are quite different indeed. Once again, 

it is observed that at 90 °C the dark cavitation region has extended upstream more at 1.0 bar gas pressure 

than at 0.5 bar, similarly for both nozzles; a similar observation was noted earlier for gasoline and E10.  

Images of n-pentane sprays through Nozzles A and B are presented in Figure 17 for 90 °C. The sprays at 20 

°C are not shown because these were not macroscopically very different to those formed by iso-octane and 

gasoline at the same temperature; a reduction in gas pressure from 1.0 bar to 0.5 bar at 20 °C showed no 

significant effect on the n-pentane spray, apart from a slight increase in the cone angle, as also observed for 

gasoline. The similarity between n-pentane and iso-octane sprays can be explained by the similar We number 

of these two fuels at 20 °C in Figure 12. The vapour pressure graph of Figure 7 indicated at first that the level 

of cavitation would be higher with n-pentane in comparison to iso-octane even at 20 °C because the vapour 

pressure of n-pentane at such low temperatures is similar to that of iso-octane at temperatures approaching 

90 °C. The observed similarity in cavitation between the two fuels at 20 °C though can be understandable, 

when one also considers the relatively smaller overall effect of a raise in temperature from 20 °C to 50 °C 

and then to 90 °C on iso-octane’s cavitation, in comparison to n-pentane’s (the Cavitation number Ca of n-

pentane in the region of 20 °C is also similar to that of iso-octane in the region of 70–90 °C). 

By increasing the fuel temperature (with pg=0.5 bar), similarities have been observed in the atomisation of n-

pentane at 90 °C and gasoline in the range 90–120 °C from the real injector (i.e. at conditions of ‘spray 

collapse’, e.g. see [21]), although interestingly, cavitation is observed to be much less at 90 °C with gasoline 

in Figure 15 in comparison to n-pentane in Figure 17. This was also found to be the case when gasoline’s 

temperature was briefly pushed to higher values than 90 °C with the optical nozzle, so that gasoline’s spray 
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cone angle approached the wide cone angle of n-pentane at 90 °C. Moreover, work in progress has indicated 

similar droplet sizes between n-pentane and gasoline at these conditions [32]. Such observations can act as 

further evidence that, as a mechanism of atomisation enhancement, cavitation may not play as important a 

role compared to the levels of superheat experienced by the fuel components.  

At 90 °C fuel temperature and 1.0 bar gas pressure, n-pentane shows excellent atomisation once again in 

Figure 17. However, the cone angle is smaller and there is some directionality in the spray. Differences in the 

spray formation should therefore stem from the lower levels of superheat as a result of the higher boiling 

point at 1.0 bar. It is also quite interesting that n-pentane showed macroscopically very similar atomisation 

characteristics to those at 90 °C and 1.0 bar when it was heated to only 50 °C but with gas pressure reduced 

to 0.5 bar. In-nozzle cavitation levels at 90 °C, 1.0 bar appear comparable to those at 90 °C, 0.5 bar, but with 

a slightly longer extension upstream towards the nozzle’s inlet, as also typically observed with gasoline, E10 

and iso-octane earlier. 

Images obtained from the investigation of ethanol using Nozzle B are shown in Figure 18. In-nozzle 

cavitation appears similar at most conditions investigated, apart from 90 °C. Cavitation starts from the nozzle 

inlet and stretches all through to the nozzle outlet covering the top passage of the nozzle. Although the flow 

area covered by the dark cavitation region appears larger just close to the nozzle outlet, closer inspection 

showed that it never really touched the bottom side of the nozzle-hole passage for most conditions. In fact, 

the cavitation film appeared thinner than that observed with iso-octane at the same conditions. However, the 

spray break-up mechanisms appear slightly different over the studied range of conditions. At cold fuel 

temperature and atmospheric pressure, the spray appears asymmetric and breaks up more at the top, on the 

side where cavitation occurs in the nozzle. When gas pressure is reduced to 0.5 bar, while maintaining the 

fuel temperature at 20 °C, ethanol produces a slightly better atomised spray with more obvious ligaments on 

the side ‘surface’ of the spray, and an increase in cone angle, as can be justified by the thinner dark core in 

the spray when compared to the 1.0 bar gas pressure. No significant changes can be observed in both the in-

nozzle cavitation and the spray break-up mechanism when ethanol is heated from 20 °C to 50 °C at 

atmospheric pressure. The increase in fuel temperature at sub-atmospheric pressure brings about some 

increase to the atomisation, with just a lighter appearance of the dark core. At 50 °C, the in-nozzle cavitation 

also appears slightly different between atmospheric and sub-atmospheric pressure. With 0.5 bar gas pressure, 

the dark cavitation region in the nozzle appears to be touching the bottom of the nozzle passage; this does not 

seem to be the case for 1.0 bar gas pressure.  

At high temperatures, ethanol was found to react with the optical material of the nozzle resulting in some 

form of erosion to the nozzle-hole passage. Therefore, although at 90 °C cavitation occurs strongly inside the 

nozzle, it is difficult to give an informed description of its nature since the nozzle appears deformed at this 

condition, which in combination with ethanol’s lower refractive index at this temperature, lowers confidence 

in drawing solid conclusions. Nevertheless, the cavitation pattern is clearly longer at 1.0 bar than at 0.5 bar, 

as also observed at hot conditions with the other fuels too. Additionally, it is clear that fuel atomisation 

increases strongly when the gas pressure is reduced to 0.5 bar at 90 °C fuel temperature, as justified by the 
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thin dark core and the wider cone angle of the spray. The case of 1.0 bar highlights further some of the 

complexities involved. Ethanol seems to behave quite different at 1.0 bar when compared to the 0.5 bar gas 

pressure case, as well as to the trends observed with the other fuels. While the other fuels experienced an 

increase in cone angle with temperature increase and pressure reduction, ethanol at 1.0 bar gas pressure 

underwent a gradual reduction in the dark region of its relatively compact spray. Whether this is related to 

the reaction between ethanol and the optical nozzle, or it is a true effect potentially due to supercavitation, 

remains unclear and needs further study with higher magnification and a nozzle of different grade or 

material. 

For butanol sprays in Figure 19, the in-nozzle cavitation structure does not appear very different to that with 

ethanol, despite butanol’s much lower vapour pressure; however, upon closer inspection it was observed that 

the cavitation film that extends from the nozzle passage’s inlet to the outlet appeared slightly thinner for 

butanol. Another observation is that the dark cavitation region becomes greater towards the nozzle outlet but 

never touches the bottom of the passage, a similar behaviour to that of ethanol. Despite butanol’s lower 

vapour pressure, the Ca of the two alcohols in Figure 9 is very similar at the same conditions, justifying to a 

degree the observed similarity in cavitation. Interestingly, butanol’s Re number in Figure 8 at 20 °C also 

indicates flow very close to laminar conditions. Cavitation remains approximately the same when pressure is 

reduced to 0.5 bar at 20 °C and 50 °C in Figure 19. No significant differences in the break-up mechanism can 

be observed in all four conditions, though at 20 °C, the spray break-up at the top of the spray occurs earlier at 

sub-atmospheric pressure. In comparison to ethanol, at all these four conditions, butanol exhibits ‘surface 

waves’ with larger wavelength and a darker continuous core without as many ‘holes’ as ethanol. At 90 °C 

butanol undergoes an increase in spray atomisation but large ligaments and fuel blobs can be observed 

around the main spray. This was again a result of some deformation of the nozzle with the use of butanol and 

results cannot be confirmed as a typical representation of the fuel ability to cavitate and atomise at this 

temperature. Nevertheless, these have been included here for completeness and for relative comparison to 

ethanol’s behaviour at the same temperature. The large fuel droplets that are showing up on the periphery of 

the butanol spray images are most probably a result of butanol’s viscosity and surface tension (low Re and 

We) that restricts atomisation into as fine droplets as ethanol does at the same conditions (higher Re and We). 

Specifically, butanol’s Re and We at 90 °C is similar to that of ethanol at 50 °C, with a respective similarity 

also at 50 °C and 20 °C (Figures 8 and 12). The trend of a longer cavitation core at 90 °C with gas pressure 

of 1.0 bar than with 0.5 bar is again apparent as with the all the other fuels discussed earlier. 

SUMMARY AND CONCLUSIONS 

This work investigated the effects of fuel temperature and gas pressure on cavitation and spray formation 

from a real-size optical nozzle. The nozzle was coupled to the body of a real multi-hole injector for DISI 

engines. Two nozzles were tested with nozzle-hole diameters of 0.5 mm (Nozzle A) and 0.2 mm (Nozzle B). 

Both nozzle holes were angled at 60° and the nozzle length to diameter ratio was kept fixed at a value of 5. 

All experiments were carried out in a quiescent pressure chamber for six fuels with different grades of 

volatility and for fuel temperatures 20 °C, 50 °C and 90 °C, and chamber gas pressures 0.5 bar and 1.0 bar. 
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These were conditions representative of in-cylinder thermodynamics for injection strategies during the early 

intake stroke of an engine for homogeneous mixture formation and for fuel temperatures over a range of 

typical engine-head temperatures. The tested fuels were of traditional and alternative type and included a 

commercial grade multi-component gasoline, the single components iso-octane, n-pentane, butanol, ethanol, 

as well as E10, i.e. a blend of 10% ethanol with 90% gasoline. The latter blend was tested because the 

vapour pressure of E10 is higher than the vapour pressure of either ethanol or gasoline and the distillation 

curve of E10 reflects strongly this effect. Therefore, distillation curves of the fuels, the vapour pressures, as 

well as density, viscosity and surface tension were obtained and the Reynolds, Weber, Ohnesorge and 

Cavitation numbers were considered in the study of the optical injector, with the Reynolds, Weber and 

Ohnesorge numbers set to match those of the real multi-hole injector. The in-nozzle flow regime was found 

to be highly sensitive to the fuel temperature as a result of the vapour-pressure and temperature relationships. 

Also, the degree of superheat experienced by the fuels outside the nozzle strongly improves primary break-

up and spray atomisation. A reduction in chamber gas pressure brought about the widening of the spray 

plume signifying that higher gas pressures acts as a damping factor to the spray cone optimisation. This is 

mainly because of the effect of increased chamber gas pressure on the fuel vapour pressure or boiling point. 

The main conclusions from this work can be summarised as follows: 

 Cavitation was observed at all conditions and with both nozzles as a film on the top surface of the 

nozzles, indicating cavitation initiation at the flow separation point just at the nozzle’s inlet. In general, 

cavitation in Nozzle B appeared as a thinner film adjacent to the top wall of the nozzle-hole passage with 

an abrupt change in width close to the nozzle’s outlet; in the case of Nozzle A cavitation was generally 

thicker from the inlet and increased in width more gradually as it expanded downstream towards the 

nozzle’s exit. The cavitation region became thicker and extended upwards towards the nozzle inlet with 

increased temperature but this did not always result in a geometric change in spray formation or faster 

spray break-up compared with cold conditions. The cavitation films appeared thinner with the two 

alcohols, particularly butanol, in comparison to the hydrocarbons. The lowest Cavitation numbers were 

in the range 12–18 for Nozzle B, whilst much larger numbers were calculated for Nozzle A. The relevant 

Reynolds numbers in the range 20–90 °C were 4,000–40,000. 

 Analysis of the relationship between Ohnesorge and Reynolds numbers shows that n-pentane was 

generally in the atomisation regime when used with both nozzles but iso-octane was placed in the 

atomisation regime only with Nozzle B and crossed into the second wind induced regime when colder 

than ~70 °C (343 K) with Nozzle A. The two alcohols were placed in the second wind induced regime 

and cross into the atomisation regime only when at quite high temperatures and this is quite interesting in 

its own right considering the implications for engine cold-start conditions. Specifically, butanol crossed 

into the atomisation regime only when hotter than ~120 °C (393 K) and ~80 °C (353 K) with Nozzles A 

and B, respectively, whilst ethanol only when hotter than ~100 °C (373 K) and ~50 °C (323 K), 

respectively.  
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 One common feature in most of the spray images was the asymmetric nature of the spray with a greater 

cone angle at the top side of the spray plume, i.e. on the nozzle side where cavitation occurred. All fuels 

exhibited very similar cavitation patterns and atomisation at 20 °C despite the calculated Reynolds and 

Cavitation numbers predicting higher levels of in-nozzle cavitation for some fuels. The sprays at 90 °C, 

especially at 0.5 bar pressure were wider with ‘lighter’ cores indicating higher concentration of vapour 

within the liquid fuel and/or higher concentration of fine droplets within the spray, as cavitation bubbles 

expand and burst rather than collapse, thus the ‘swelling’ seen in the primary break-up. 

 At high fuel temperatures, although the higher vapour pressures generally resulted in more cavitation 

inside the nozzle hole, it is the level of superheat, i.e. the extent to which the liquid temperature is above 

its boiling point at that gas pressure that determines the efficiency of atomisation. Cavitation is useful 

however because it supplies a plentiful source of vapour bubbles which act as nucleation sites to increase 

the rate at which superheated components in the spray can boil off. The biggest effect of gas pressure 

was in increasing/reducing the effective level of superheating experienced by the fuels through its effect 

on the boiling point. 

 For gasoline an increase in fuel temperature increased the levels of in-nozzle cavitation and resulted in 

an asymmetric spray at both 0.5 bar and 1.0 bar gas pressures with the higher spray angle on the same 

side as cavitation in the nozzle. Spray break-up and atomisation efficiency were clearly improved. 

 E10 behaved similarly to gasoline at all test conditions though with a slightly wider plume, except for the 

case of 90 °C fuel temperature and 0.5 bar gas pressure where the in-nozzle cavitation and atomisation 

was greater with E10. This was linked to the distillation curve of E10.  

 For iso-octane an increase in fuel temperature caused an increase in the levels of in-nozzle cavitation 

with a relatively small increase in spray cone angle which did not significantly change the primary spray 

break-up even at 90 °C with Nozzle A. On the contrary, at the same conditions, Nozzle B showed both 

enhanced cavitation and atomisation.  

 The in-nozzle cavitation was always greater for n-pentane compared to the other fuels which also was 

affected the most by the change in fuel temperature and gas pressure. At 90 °C fuel temperature an 

almost instantaneous vaporisation of n-pentane occurred outside the nozzle; this was further augmented 

with a reduction in gas pressure as the spray lost most of its directionality.  

 For ethanol, an increase in liquid temperature from 20 °C to 50 °C did not cause much difference to the 

in the in-nozzle cavitation or the spray formation. At 90 °C, ethanol was found to react with the optical 

material and the nozzle appeared deformed, which in combination with ethanol’s low refractive index, 

precluded confident observation of the cavitation pattern. Additionally, although at 0.5 bar 90 °C 

ethanol’s atomisation appeared much improved, at the same temperature and 1.0 bar ethanol underwent a 

gradual reduction in the cone angle of the spray exhibiting a quite compact spray; it is not clear whether 

this was due to the deformation of the nozzle or supercavitation effects. 
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 For butanol, an increase in liquid temperature from 20 °C to 50 °C did not cause much difference to the 

in the in-nozzle cavitation or the spray formation. At 90 °C, butanol was also associated with some 

deformation of the nozzle which precluded confident observation of the cavitation pattern. However, at 

90 °C ethanol’s atomisation appeared much improved both at 0.5 bar and 1.0 bar. However, the sprays 

where accompanied by large droplets which surrounded the spray at elevated temperature. 

 At 90 °C it was observed that all fuels exhibited longer in-nozzle cavitation patterns at 1.0 bar gas 

pressure than at 0.5 gas pressure. This was not accompanied with enhanced atomisation and required 

further study. 

 Analysis of Cavitation numbers and images showed that gasoline is more temperature sensitive in 

comparison to iso-octane. Although iso-octane is commonly used as a substitute for gasoline in many 

engine research applications, higher volatility components, like n-pentane, are better substitutes for 

gasoline when a single-component fuel is to be used to model gasoline especially at elevated temperature 

conditions. This is particularly important to spray modellers who are normally faced with modelling a 

complete gasoline blend and have to make decisions on which single components might be more 

appropriate to use.  

Current work is focused on studying the in-nozzle phenomena at higher magnification with a Questar® 

QM100 long-distance microscope and a pulsed laser illumination source to record the transient nature of 

cavitation. Since at high temperatures Perspex® was found to deform, especially when used with ethanol, 

new real-size optical nozzles are being manufactured from quartz in order to study reliably the full range of 

operation of DISI engine injectors with various fuels. 
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Figure 5. Experimental Setup. 

 
 

 
Figure 6. Distillation Curves of Fuels Tested. 
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Figure 7. Vapour Pressure of Fuels Tested. 

 

Figure 8. Reynolds Number with Nozzle A (d=0.5 mm) and Nozzle B (d=0.2 mm). 
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Figure 9. Cavitation Number (Ca) with Nozzle A (d=0.5 mm) and Nozzle B (d=0.2 mm). 

 

Figure 10. Cavitation Number (CN) with Nozzle A (d=0.5 mm) and Nozzle B (d=0.2 mm), pg=0.5 bar. 
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Figure 11. Cavitation Number (CN) with Nozzle A (d=0.5 mm) and Nozzle B (d=0.2 mm), pg=1.0 bar. 

 

Figure 12. Weber Number with Nozzle A (d=0.5 mm) and Nozzle B (d=0.2 mm). 
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Figure 13. Ohnesorge Number (Oh) with Nozzle A (d=0.5 mm) and Nozzle B (d=0.2 mm). 
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Figure 14. Ohnesorge Diagram with Nozzle A (d=0.5 mm) and Nozzle B (d=0.2 mm). 
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