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ABSTRACT 

The design of a Diesel injector is a key factor in achieving 
higher engine efficiency. The injector’s fuel atomisation 
characteristics are also critical for minimising toxic emissions 
such as unburnt Hydrocarbons (HC). However, when 
developing injection systems, the small dimensions of the 
nozzle render optical experimental investigations very 
challenging under realistic engine conditions. Therefore, 
Computational Fluid Dynamics (CFD) can be used instead. 
For the present work, transient, Volume Of Fluid (VOF), 
multiphase simulations of the flow inside and immediately 
downstream of a real-size multi-hole nozzle were performed, 
during and after the injection event with a small air chamber 
coupled to the injector downstream of the nozzle exit. A 
Reynolds Averaged Navier-Stokes (RANS) approach was 
used to account for turbulence. Grid dependency studies were 
performed with 200k–1.5M cells. Both k- and k- SST 
models were considered in the validation process, with the k- 
SST found to predict better the injector’s flow rate. The 
cavitation models of Schnerr-Sauer and the Zwart-Gerber-
Belamri were employed for validation against optical data of 
cavitation in a simplified nozzle geometry obtained from the 
literature. The Schnerr-Sauer model was in better agreement 
with the experiments, hence this model was subsequently 
employed for the real injector simulations. The motion of the 
injector needle was modeled by a dynamic grid methodology. 
An injection pressure of 400 bar was applied at the inlet of the 
injector. Two outlet pressures were examined, 60 bar and 1 
bar. The results showed that the flow was far from steady-state 
during the injection event and that hysteresis existed between 
the needle opening and closing phases. This indicated the 
importance of transient simulations, contrary to widely-used 
steady state simulations at fixed needle lifts. The two outlet 
pressures resulted in very different final states of the flow-
field in the nozzle. Specifically, the nozzle ended up either full 
of liquid fuel at the end of injection or full of air after most of 
the fuel had been ejected into the chamber downstream. These 
predictions highlighted phenomena that can increase HC 
emissions due to fuel leakage, as well as processes that may be 
linked to different formation mechanisms of nozzle deposits. 

INTRODUCTION 

Background 

New regulations that constantly call for lower exhaust 
emissions, as well as international obligations to focus on 
sustainability, demand higher engine efficiency. Diesel 
engines are a source of air pollutants, with unburnt 
Hydrocarbons (HC) being particularly toxic. Unburnt HC 
mainly form due to poor air-fuel mixing and combustion. 
Under mixing can be caused by fuel that ends up on the 
cylinder and piston walls from spray impingement or from 
fuel that enters the chamber late in the combustion process 
with low velocity. A source of the latter form can be fuel 
which is coming out from the nozzle hole or nozzle sac 
volume after the end of injection and does not mix with air 
sufficiently [1]. Furthermore, after the end of combustion, 
increased temperatures may cause fuel that is left in the sac to 
evaporate and move towards the chamber through the orifice. 
The lighter compounds evaporate first, leaving back the 
heavier ones, which can create deposits inside the nozzle. 
Those deposits can harm the injector and reduce their life time 
as well as the engine’s performance and efficiency [2] . 

The injector can be designed with a smaller sac volume to 
reduce HC emissions. In Valve Covered Orifice (VCO) 
injectors the needle closes the nozzle’s inlet so that fuel from 
the sac cannot enter the chamber. Such designs can minimize 
emissions [3] [4]. However, the presence of a sac is important 
to equalize to the pressure of the fuel at the nozzle inlets. A 
sacless injector typically produces poor quality sprays that can 
be different from each orifice of the same injector [5] [6]. The 
impact can be observed via different metrics, such as spray 
penetration, spray cone angle and rate of injection. 

At real engine conditions, to promote atomization, Diesel fuel 
is injected with very high pressures, typically up to 2000 bar – 
with values expected to increase even further in the future. It 
has been shown that under these conditions, cavitation appears 
inside the nozzle [7] [8], and vapour bubbles are formed. In 
addition, ‘hydraulic flip’ that is linked to in-nozzle flow 
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separation at the orifice inlet that never reattaches upstream 
the nozzle exit, might occur and affect spray formation [6].  

In the case of consecutive injections, bubbles of vapour have 
been noticed to exist inside the nozzle before the start of 
injection [9] [10]. These have a random pattern of distribution, 
with various sizes and at various locations and are thought to 
be created by cavitation in the last stages of the previous 
injection event. Those bubbles, given enough time, tend to 
coalesce and form one big vapour area that fills most of the 
sac’s volume. Also, air is entrained inside the nozzle orifice 
from the outlet [10]. 

Apart from experimentation, in-nozzle flow insights have been 
obtained by Computational Fluid Dynamics (CFD) due to 
challenges associated with the faithful manufacturing of real-
size optical nozzles with moving needles that could provide 
satisfying quantitative information. This has been done for 
both Diesel and gasoline injector geometries. The existence of 
vapour bubbles has been noticed in [11] and attributed to the 
inertia of the flow while the needle was still open; this caused 
the pressure inside the nozzle to drop abruptly when the 
needle closed, promoting cavitation. In [12] it was noticed that 
during the injection event, air entered the orifices through flow 
recirculation at the nozzle exit.  

While most of the published studies of injection simulations 
employed computational domains that extended only up to the 
nozzle exit, some researchers have included a small part of the 
combustion chamber as well [13] [14] [15] This has been done 
in order to impose a boundary condition to the injector flow 
that could allow capturing the existence of hydraulic flip and 
also part of the ensuing spray. In such cases, most often, the 
Volume Of Fluid (VOF) model is used [12] [13] [16], which 
provides liquid-gas interface tracking. In combination with 
Large Eddy Simulation (LES) on a sufficiently dense grid, this 
method may also be able to predict the primary breakup [15] 
[17]. Also, other gases can be included in the calculation, such 
as air [12] [16]. 

Despite the transient flow and motion of the needle, it is 
common practice to simulate the flow as steady state at 
different fixed needle lifts [18] [19] [20] [21], or only at full 
needle lift [22]. Some work has been done on the effect of the 
needle’s motion on the flow. For example [23] used a single-
hole injector and simulated a 90° sector of the real geometry 
due to periodicity. In contrast, [24] [25] used multi-hole 
injectors but, again, due to periodicity, only one orifice was 
modelled. Moving needle simulations that include a part of the 
injection chamber have also been performed. In [26] the 
injection chamber was modelled as full of liquid fuel, whilst in 
[27] an injection chamber full of air was used for the 
simulation of a pressure-swirl injector and in [28] a similar 
setup was used, in combination with VOF, to simulate the 
injection from a single-hole injector. It has been shown that 
the flow during the opening and closing stages of the needle’s 
motion is transient, and hysteresis effects can take place [23] 
[25] [26]. However, in [29] no transient phenomena were 

noticed, potentially due to the high inlet pressure, but there 
was a significant effect from the needle off-axis motion. 

The flow at the end of injection has also been given some 
attention, due to its effect on performance and emissions. [30] 
performed X-ray radiography experiments to investigate the 
phenomena involved. [31] performed RANS simulations with 
a mixture multiphase model and compared their predictions to 
experimental results. Cavitation was noticed to occur after the 
closing of the needle as well as nozzle back-filling with 
ambient gas; there was also fuel dribble in the area near the 
nozzle exit. 

Present Contribution 

Despite a significant amount of background studies on in-
nozzle flows, there is need for more information on 
simulations of a vertical multi-hole injector with a moving 
needle that has also incorporated a part of the combustion 
chamber filled with air as downstream boundary condition; 
this is to study aspects of in-nozzle phenomena both during 
the injection event and past the end of it. The work presented 
here includes transient Reynolds-Averaged Navier-Stokes 
(RANS) simulations of the full injection process as emerging 
through the geometry of a real-size multi-hole Diesel injector. 
The VOF multiphase model was employed. The focus was 
primarily on understanding the in-nozzle phenomena and not 
on simulating the spray formation process past the nozzle exit. 
The main objectives of the current work can be summarised as 
follows:  

 To investigate the effect of the needle motion on the 
major characteristics of the in-nozzle flow, including the 
formation of vortical flow structures and cavitation during 
the injection event. 

 To investigate the predictive effect of the presence of an 
air chamber downstream of the nozzle exit on the in-
nozzle flow, particularly with respect to nozzle backfilling 
phenomena that can occur at the end of injection after 
needle closure and lead to simultaneous presence of liquid 
fuel, fuel vapour and air inside the nozzle. 

 To study the effect of different ‘back’ pressure conditions 
(i.e. in-cylinder air pressure) on key characteristics of the 
in-nozzle flow, both during injection and after needle 
closure. 

METHODOLOGY 

Mathematical Formulation 

Within the objectives of the current work, a commercial CFD 
code was employed that solves numerically the governing 
equations of fluid motion on a discretized computational 
domain by the finite volume methodology (Ansys Fluent) 
[32]. The flow under consideration was turbulent; a RANS 
formulation was employed for faithful approximation of the 
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average quantities of the flow field and under no 
circumstances prediction of the jet breakup was sought after. 
Within this framework of study, two different turbulence 
modelling approaches were tested, the k-ε approach [33] [34] 
and the k-ω SST [35]. This was done because the geometry of 
study was associated with high pressure gradients and flow 
separation and reattachment effects that the k-ω SST is 
believed to handle more accurately than the k-ε. 

Multiphase Flow and Cavitation Models 

When two or more phases exist in a simulation, a multiphase 
formulation must be used to account for those. The intention 
of the present simulations was not to capture the interface of 
the bubbles within the nozzle, neither to obtain a sharp 
prediction of the liquid spray interface in the air chamber 
during the injection process, as this would require extremely 
dense grids and practically unrealistic running times. Instead, 
the main intention was to capture the liquid-air interface 
within the nozzle after needle closure and during backflow 
nozzle-filling events, e.g. to understand the formation of in-
nozzle liquid film phenomena amongst other. Therefore, use 
of a VOF method was considered necessary [32]. With this 
methodology, when cavitation occurs and vapour appears 
inside the liquid continuum, this does not happen in the form 
of bubbles but as an average quantity inside the cell, similar to 
the mixture model behavior [32]. 

Specifically, in the Diesel injector under study, Diesel liquid, 
Diesel vapour and air were all considered present. VOF solves 
a continuity equation for the volume fraction of n-1 phases, 
with n being the total number of phases present in the 
simulation, as follows: 

∙   (1) 

where αq is the volume fraction of phase q, ρq is the density of 
phase q and  is the mass transfer from phase q to phase p. 

	represents any source of phase q that might exist. The 

phase that is not being solved for will be calculated based on 
the constraint that the sum of all volume fractions in a cell 
must be equal to 1. The discretization scheme that was used 
for the solution of this equation was the Modified HRIC [32] 
[36]. 

The presence of cavitation was modelled by a mass transfer 
mechanism that converts the mass of a specified liquid to a 
specified gas (vapour). This happens when certain criteria are 
met, typically in this case, the condition is the local pressure. 
When the pressure drops below the vapour pressure, liquid is 
converted to vapour, while when the pressure rises again, 
vapour turns back to liquid. A sensitivity study was carried out 
between two cavitation models, the Schnerr-Sauer [37] and the 
Zwart-Gerber-Belamri [38]. Within the Schnerr-Sauer model 
formulation the vapour source term is: 

 (2) 

where: 
4
3

1
4
3

 (3) 

with nb being the number of bubbles in the volume of liquid 
(typically set as a constant of the order 1013) and RB is the 
bubble radius calculated by the Rayleigh-Plesset equation. In 
the Zwart-Gerber-Belamri model the vapour source term is 
calculated by: 

4  (4) 

where n is the bubble number density.  

Within the objectives of the current simulations for the 
specific injector geometry under study, the liquid density was 
assumed constant and the fuel vapour and air densities were 
calculated by the ideal gas equation of state. As will be 
detailed later, the inlet and outlet boundaries were set to a 
temperature of 300 K. This was done partly because the 
experimental flow rate data that were available for validation 
had been obtained at this temperature. Another reason was that 
at higher temperatures evaporation and/or boiling could take 
place. These are complicated mass transfer phenomena that 
need appropriate sub-modelling features in the context of a 
faithful multi-phase calculation at high temperature. 
Implementation of the necessary submodels is currently work 
in progress by the current authors and investigation of the 
effects of such phenomena on the in-nozzle flow will be 
reported in a future publication. Table 1 summarises the 
properties of the liquid Diesel phase, vapour Diesel and air. 

Table 1. Fluid properties used in the simulations. 

Liquid Density 809.38 kg/m3  

Liquid Viscosity 1.96710-3 kg/ms  

Vapor Pressure 1000 Pa 

Surface tension 0.02 N/m 

Vapour Viscosity 1.3410-5 kg/ms  

Air Viscosity 1.7910-5 kg/ms  

 

Injector Geometry  

The geometry of a real, vertical multi-hole injector with sac 
volume was used. The total length of the geometry in the 
direction of the axis of the needle is 7 mm. There are 7 orifices 
with a length of 0.6 mm and diameter of approximately 0.12 
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High-Pressure Outlet (60 bar) 

Considering that the injection pressure pinj was 400 bar, the air 
pressure pamb was 60 bar and the vapour pressure pv was 1000 
Pa, the cavitation number for this case was calculated to be 

	 5.66 whilst the cavitation index was 

calculated as 	 1.18. The Reynolds number 

based on the mean velocity at the nozzle exit was found to be 

equal to 	 10,500 and the discharge 

coefficient of the nozzle was calculated by the simulations to 
be Cd =	0.7327. 

In-Nozzle Flow during Injection 

The predicted flow during the injection with high-pressure 
outlet is shown in Figures 9 and 10 that depict liquid volume 
fraction contours and velocity vectors, respectively. At 0.2 ms 
ASOI the tip of the liquid jet has already reached the end of 
the computational domain in Figure 9. The liquid core (where 
liquid has volume fraction of 1) ends halfway from the nozzle 
exit to the boundary of the computational domain. There exists 
a region of lower liquid volume fraction that corresponds to 
the breakup area and represents the region where fuel 
ligaments should be in real life. There are also some 
fluctuations on the external side of this region, suggesting 
instabilities that are known to exist on the surface of the liquid 
jet in the area downstream of the nozzle exit. No cavitation 
can be seen at the nozzle-hole entrance or at any other place in 
the flow domain. 

At maximum needle lift, the flow appears to be of steady state. 
There are a few differences between this time instance and the 
first one. Still no cavitation can be seen within the domain. No 
fluctuations were depicted at the boundaries of the fuel jet. 
The liquid core has now reached the end of the computational 
domain. 

Finally, the flow field at 0.1 ms before the end of injection is 
very similar to the first one in terms of liquid volume fraction. 
The fluctuations are back, indicating that this was not just an 
effect of the initial conditions but an actual state of the flow 
that was resolved. The liquid core again starts moving 
backwards, resembling the beginning of the injection. There is 
also a faint sign of cavitation at the nozzle entrance region just 
by the wall. This is a very small area though, and no vapour is 
carried downstream. Upon close inspection it was found that 
cavitation appeared ‘randomly’ in that region throughout the 
whole duration of the injection event. The lowest pressure in 
the whole domain was located there and was marginally equal 
to the vapour pressure. The pressure increase immediately 
downstream did not allow vapour to be seen on vertical 
planes.  

This very weak presence of cavitation under these flow 
conditions seems to be in agreement with the findings of [45]. 

Specifically, [45] highlighted on the typical graph of discharge 
coefficient Cd versus cavitation index K that the region of 
Cd~0.73 and K~1.2 corresponded to an area of flow transition 
from non-cavitating to cavitating conditions. The work of [45] 
was based on nozzles that had inclination angle of 84° and r/D 
that varied in the range of 0–1/4, i.e. similar values to those of 
the nozzle used in the current study. 

The velocity vector plots of Figure 10 illustrate secondary 
flow patterns inside the nozzle hole and indicate the 
development of vortical structures. At the needle opening 
stage, there are two counter rotating vortices that enter the 
nozzle hole from the sac.  

This type of flow structure has also been reported in [24] and 
[41] with higher Reynolds numbers, in the area of 70,000 and 
50,000 respectively, and assumed to be responsible for the 
formation of string cavitation. Both these vortices are linked 
with the sac volume. The results here do not indicate the 
existence of such type of cavitation though. It has been 
suggested in [41], however, that string cavitation cannot be 
captured by existing cavitation models as this type of 
cavitation is very complex and may occur dynamically at local 
pressures that may be higher than the vapour pressure. There 
is also separation of the flow at the same location, and a 
recirculation zone that is not clearly visible because it interacts 
with the aforementioned vortices. Downstream of the 
entrance, a system of four vortices has been created that seem 
to be rotating around the orifice axis. Further downstream, at 
the nozzle exit, the vortices appear to have faded away.  

Later, at the middle of the injection, where the flow conditions 
are quasi-steady, the flow separation zone can be observed 
again. The two vortices entering the nozzle hole are now 
located at the bottom of the orifice. It looks as if downstream 
these two induce the creation of the vortex pair that is located 
at the top of the orifice. The system of these four vortices 
extends outside the nozzle now, dominating the flow in the 
spray region. 

Finally, at the needle closing stage, the vortical structures 
resemble those that appeared during the opening stage. At this 
time two more vortices can be seen in the sac area. They are 
located one on top of the other, with their axes perpendicular 
to the symmetry plane (or in the circumferential direction); as 
expected, they are counter-rotating. The velocity field inside 
the orifice is also slightly different, with velocities of higher 
magnitude appearing at this stage.  

This behavior is attributed to hysteresis effects, as also 
reported in [23] [25] [26], despite the fact that no cavitation is 
present. These published studies used a needle lift curve with 
duration of the order of 1.5–2.0 ms and maximum needle lift 
of the order of 250 μm, i.e. similar to the current study. 
However, their cavitation numbers varied in the range of 4–
150 and their injection pressures were in the range of 8–1500 
bar. 
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Figure 10. Velocity vector
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Figure 13. LLiquid volume
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Figure 14. Velocity vecto
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flow when the in-nozzle multi-phase phenomena are gradually 
brought to a rest in terms of advection processes. The 
simulations presented here were all performed with the 
turbulence model always enabled. It is very difficult to isolate 
a single value of Reynolds number that one could consider as 
a critical condition for full laminarisation under such transient 
conditions and with the presence of such complex multiphase 
phenomena and hysteresis effects. However, it is noted that 
the Reynolds number did not drop to values below 1000–2000 
till after about 0.00265 s in Figure 15, i.e. towards the very 
end of the presented simulations. Specifically, despite the fact 
that the flow velocity gradually reduced inside the nozzle in 
the predominant direction of injection after needle closure, 
when the air back-filling process started, the velocity 
increased again in the opposite direction, as discussed earlier. 
The eddy viscosity in the nozzle never fell to levels lower than 
~5 times the fluid’s viscosity, even at the slowest bulk flow 
stages. It is clear that further work is needed in this area with 
various types of turbulence models and that this may also 
consider Schmidt and Prandtl number effects, especially in the 
presence of evaporation at higher temperatures inside the 
nozzle. Evaporation sub-modelling coupled to the cavitation 
methodology described here is currently work in progress by 
the authors and will be reported in a future publication. 

CONCLUSIONS 

CFD simulations of a vertical multi-hole injector were 
conducted for the full injection period and for a time period 
after needle closure till the flow became at rest. A part of the 
combustion chamber was attached to the nozzle outlet in order 
to investigate the flow in the near-nozzle outlet area and study 
the flow-field after the end of injection. A RANS formulation 
was used to account for turbulence. The VOF methodology 
with Diesel liquid fuel, diesel vapour and air was employed. A 
moving mesh methodology was also applied. The injection 
pressure was fixed at 400 bar, whilst two air chamber 
pressures (i.e. ‘back’ pressures) were studied, namely 60 bar 
and 1 bar. Initially, the methodology was validated by 
comparing the predicted flow rate against measurements of the 
real injector’s flow rate. It was found that k- SST model was 
in better agreement with the experimental data than the k- 
model, with differences of the order 3%, hence this was 
adopted for the rest of the simulations. An optical nozzle test 
case from the literature was selected to validate the cavitation 
methodology. It was found that the Schnerr-Sauer model gave 
closer predictions than the Zwart-Gerber-Belami model to the 
imaged cavitation patterns of the published study over a range 
of Reynolds numbers, hence this was selected for all 
subsequent injector simulations. The main conclusions of the 
injector study can be summarized as follows: 

 Hysteresis was noticed in the appearance of the flow-field 
between the needle opening and closing phases, indicating 
the importance of moving needle simulations. 

 The effect of pressure at the outlet boundary was 
significant, resulting in cavitating or no-cavitating flow 

patterns for 1 bar and 60 bar, respectively, both during the 
injection event and after the end of it. This behaviour was 
consistent with findings reported in the literature about 
nozzles with similar geometric characteristics, discharge 
coefficients and cavitation indices. 

 The area of separation at the nozzle hole inlet consisted of 
a pair of counter rotating vortices. These two vortices 
could be related to the creation of string cavitation but no 
phenomena of this type were captured by the modelling 
approach used here; further work would be needed in this 
area to resolve such phenomena. 

 These counter-rotating vortices induced the creation of 
another pair of vortices inside the nozzle orifice. This was 
observed for 60 bar outlet pressure but was not observed 
at the beginning of the 1 bar outlet injection case, where 
only one pair was predicted. The abundance of vapour in 
the closing stages of the 1 bar outlet case had its own 
effect on the flow field where no coherent vortical 
structures appeared. 

 The simulations indicated that after the end of injection, 
there is a quantity of fuel that leaves the nozzle. All fluid 
motion stopped 20 μs AEOI, for the 60 bar outlet case 
(non-cavitating) and 120 μs for the 1 bar case (cavitating). 

 For the case of 60 bar outlet, the amount of liquid fuel 
leaving the nozzle was minimal and appeared to be of 
‘dripping’ nature. This meant that it would primarily 
remain inside the nozzle and either survive till the start of 
the next injection event or partially evaporate between 
injections depending on operating conditions. 
Additionally, the amount leaving at low velocity would 
not mix well with the chamber air and could contribute to 
increased unburned HC emissions. 

 For the case of 1 bar outlet pressure, the nozzle almost 
emptied from liquid fuel at the end of injection and air 
was found to enter the orifice and move towards the sac at 
a speed of about 50 m/s. Such nozzle backfilling 
behaviour can be significant because at real engine 
conditions the nozzle hole may dry up fully by the hot 
incoming air, a phenomenon which could extend even 
into the sac region. 

The implications of such differences in observed in-nozzle 
phenomena after the end of injection may well be important in 
the context of HC emissions, as well as mechanisms of deposit 
formation [46]. Therefore, the flow after the end of injection 
and during a whole engine cycle needs to be investigated with 
appropriate temperature predictions and evaporation sub-
modelling coupled to the cavitation simulation methodology 
described here. 
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