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Abstract: Enteroviruses cause various acute and chronic diseases. The most promising therapeutics for 
these infections are capsid-binding molecules. These can act against a broad spectrum of 
enteroviruses, but emerging resistant virus variants threaten their efficacy. All known enterovirus 
variants with high-level resistance toward capsid-binding molecules have mutations of residues 
directly involved in the formation of the hydrophobic binding site. This is a first report of substitutions 
outside the binding pocket causing this type of drug resistance: I1207K and I1207R of the viral capsid 
protein 1 of coxsackievirus B3. Both substitutions completely abolish the antiviral activity of pleconaril 
(a capsid-binding molecule) but do not affect viral replication rates in vitro. Molecular dynamics 
simulations indicate that the resistance mechanism is mediated by a conformational rearrangement of 
R1095, which is a neighboring residue of 1207 located at the heel of the binding pocket. These insights 
provide a basis for the design of resistance-breaking inhibitors. 
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Dear Professor Vasudevan, 

 

please find enclosed the revised version of our manuscript "Molecular mechanism of a 

specific capsid binder resistance caused by mutations outside the binding pocket”. 

 

We thank both reviewers for the very constructive comments, which helped us to 

substantially improve the manuscript. In this revised version we believe that we were able to 

address all comments and concerns raised by the Reviewers. 

Below you will find a point-by-point response to the Editor’s and Reviewer’s comments. 

 

We hope that you will enjoy this revised version of our manuscript and look forward to your 

reply. 

 

Kind regards, 

  Michaela Schmidtke 

 

Cover Letter



Answers (normal) to Reviewers' comments (in bold):  

Reviewer #1: The manuscript authored by Braun and colleagues reports the molecular 

characterization of two pleconaril mutants bearing amino acid substitutions at 

position 1207 of the viral capsid protein 1 of coxsackie virus B3. Resistance to 

pleconaril (a capsid-binding inhibitor, CI) has been previously reported to be linked to 

mutations in the hydrophobic drug binding pocket. Interestingly, residue 1207 is not 

part of the binding pocket and therefore is not in direct interaction with pleconaril. 

The findings of this study are interesting but the biological characterization of the 

1207 viral capsid protein 1 mutants is not complete. It appears to be an imbalance 

between the detailed molecular characterizations of the effects of these two mutations 

compared to the virological properties of the mutants. The authors should address the 

following points: 

- Figure 2 (appears before Figure 1).  

We corrected this.  

The same moi (10 PFU/cell) for the different viruses was used to infect HeLa cell 

cultures. It appears that the virus detected at 1 h post-infection differs (more than 1 

log) among the viral strains? Were the cultures used at different stages of confluence? 

This assumption is incorrect. To confirm this, we added Table S2 in the Supplementary 

Information that indicates for the wildtype virus as well as all three resistant variants the 

determined virus titers. As suggested by the reviewer (see answer below), we also 

performed a statistical analysis (Mann-Whitney-U-test; last sentence in 2.6). No statistically 

significant differences could be found. We have added a statement to the manuscript text: 

“Furthermore, no significant difference was detected with the Mann-Whitney-U test, 

comparing single-step growth curves of wt-CVB3 97927 and high-level resistant variants in 

HeLa cells (Figure 2B; Table S2).” 

 

If there is no difference in the kinetics of replication between the different viruses, why 

are more antigen positive cells in the variant 1 (M1092 - I1027) than in the wild-type 

and the two I1207 mutants? 

Yes, there are more antigen-positive cells in the HR variant 1. We confirmed the virus titer 

used for MOI calculation and repeated the experiment. Here, similar results were obtained. 

Furthermore, we would like to mention that immunohistochemical staining was mainly used 

to confirm the results of plaque reduction assays which showed that even a high 

concentration of pleconaril (which nearly completely prevented CVB3 97927 wt replication) 

does not act against the HR variants.  

In addition, these results underline that the HR variant is not hampered in fitness compared 

to CVB3 97927 wt.  

 

The single-step growth curves are not statistically analyzed to affirm that there was no 

significant difference between them. 

According to the reviewer´s suggestion statistical analysis (Mann-Whitney-U-test) was 

performed. No statistical difference was observed. These results further confirm our 

conclusion. They are reported in the manuscript text: “Furthermore, no significant difference 



was detected with the Mann-Whitney-U test, comparing single-step growth curves of wt-

CVB3 97927 and high-level resistant variants in HeLa cells (Figure 2B; Table S2).” 

- There is no report on the fold resistance obtained for the different mutants against 

pleconaril. Table 1 does not provide and EC50 or EC90 for the diverse mutants 

compared to the wild-type virus. It is necessary to report the level of resistance 

conferred by a mutation in the hydrophobic drug binding protein (I1092M) versus the 

mutations I1207K and I1207R outside the binding pocket. 

We fully agree with the reviewer, but, pleconaril did not act at non-cytotoxic concentrations in 

cytopathic effect inhibition assays performed with the three HR CVB3 97927 variants in HeLa 

cells. Therefore, EC50 or EC90 values cannot be provided. In contrast, pleconaril acted well 

against the wildtype virus. We added this information in Table 1 and also report the results 

from the cytopathic effect inhibition assay in the MM section, paragraph 2.4.: “For all nine 

purified isolates high-level resistance was confirmed in plaque reduction assays with 8 µg/ml 

of pleconaril (inactive) and in cytopathic effect inhibition assays for selected variants (one per 

mutation; Table 1).”  

 

- It is not clear how the frequency of pleconaril resistance in the wild-type population 

was calculated. 

The frequency of pleconaril resistance was calculated as described previously for other 

capsid inhibitors by Heinze et al. in J Virol. 1989. Accordingly, the frequency of survivors 

resistant to 1 µf/ml of pleconaril was determined. The methodical details of the used plaque 

reduction assay are described in MM section paragraph 2.4. 

- The authors discuss about high-resistance to pleconaril but there is no definition of 

resistance. What is the definition of high-resistance? 

This discussion is based on the HR definition of Heinze et al. in J Virol 1989: “…drug-

selected plaque isolates exhibited roughly the same infectivity titer in the presence of drug as 

in the absence”. In our study, pleconaril did neither inhibit plaque reduction nor acted in 

cytopathic effect inhibition assay at the highest non-cytotoxic concentration (50% cytotoxic 

concentration in HeLa cells: 12.5 µg/ml as described in Makarov et al. JAC 2005) against the 

resistant variants. In contrast, plaque production as well as CPE of CVB3 97927 wt were 

strongly inhibited. We added the results of CPE inhibition assays in Table 1 and mention as 

well the cytopathic effect inhibition assay in the MM section, paragraph 2.4. 

 

- The M&M for some of the virological experiments (e.g. viral protein expression and 

plaque reduction assay) should be better described. 

Unfortunately, there is a 3500 words limit. Therefore, we decided to refer to the already in 

detail published methods and describe only the modification e.g. plaque number and MOIs. 

The plaque reduction as well as CPE inhibition assay were published by us in J Virol 

Methods in 2001 and the detection of CVB3 by immunohistochemical staining in J Virol in 

2006. 

 

- English language should be revised. 



We have carefully revised the manuscript and believe that we were able to resolve the 

language issues. 

 

 

Reviewer #2: The manuscript from Brown et al. reports on some studies on CVB3 

resistance to the capsid inhibitor pleconaril. The paper is generally well written and 

provides some interesting data. However, I believe the quality of the manuscript could 

be improved with some modifications: 

 

The modelling section needs some improvements, in particular: 

 

It would be extremely useful to perform the molecular dynamics of the unbound 

proteins (wt and resistant proteins), as these could provide some important 

information regarding the activity of the compound. Indeed, it is entirely possible that 

the mutation will induce a conformational change in the protein that completely 

prevent binding of pleconaril. This aspect cannot really be explored only with the MD 

simulation presented in the paper. The overall discussion of the mechanism of 

resistance should be revisited based on the result of these new simulations. 

This is indeed an important point. We have simulated these three apo systems (wt, I1207K 

and I1207R) to investigate whether any significant changes to the conformation of the 

relevant protein region can be observed. Much to our own surprise the wt and mutated apo 

systems behaved very similar. No significant differences could be observed. This strongly 

indicates that the binding of pleconaril is not impaired by conformational changes of the 

unbound capsid protein. 

We emphasize these aspects in the revised version of the manuscript and have also added 

two new figures (now Figure 3A and 3B) that visualize the stability of the apo systems (and, 

specifically, the ligand binding pocket). 

 

The homology modelling methodologies need to be more detailed. More informational 

need on the "manual" changes introduced in the structures. 

Indeed, this was not explained adequately in the initial version of the manuscript. A detailed 

protocol was added to Section 2.7 of the Supporting Information. In brief: Schrodinger’s 

software Maestro includes a “Mutate Residue” function. Using this function, we individually 

mutated all non-conserved residues (these are only a few). This is a reproducible process 

without a random element. The conformations of the individual amino acids were then 

optimized during several steps of energy minimization and the initial 10 ns of molecular 

dynamics simulations, which were not used for analysis. 
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We thank both reviewers for the very constructive comments, which helped us to 

substantially improve the manuscript. In this revised version we believe that we were able to 

address all comments and concerns raised by the Reviewers. 

Below you will find a point-by-point response to the Editor’s and Reviewer’s comments. 

 

We hope that you will enjoy this revised version of our manuscript and look forward to your 

reply. 

 

Kind regards, 

  Michaela Schmidtke 

 

*Response to Reviewers



Answers (normal) to Reviewers' comments (in bold):  

Reviewer #1: The manuscript authored by Braun and colleagues reports the molecular 

characterization of two pleconaril mutants bearing amino acid substitutions at 

position 1207 of the viral capsid protein 1 of coxsackie virus B3. Resistance to 

pleconaril (a capsid-binding inhibitor, CI) has been previously reported to be linked to 

mutations in the hydrophobic drug binding pocket. Interestingly, residue 1207 is not 

part of the binding pocket and therefore is not in direct interaction with pleconaril. 

The findings of this study are interesting but the biological characterization of the 

1207 viral capsid protein 1 mutants is not complete. It appears to be an imbalance 

between the detailed molecular characterizations of the effects of these two mutations 

compared to the virological properties of the mutants. The authors should address the 

following points: 

- Figure 2 (appears before Figure 1).  

We corrected this.  

The same moi (10 PFU/cell) for the different viruses was used to infect HeLa cell 

cultures. It appears that the virus detected at 1 h post-infection differs (more than 1 

log) among the viral strains? Were the cultures used at different stages of confluence? 

This assumption is incorrect. To confirm this, we added Table S2 in the Supplementary 

Information that indicates for the wildtype virus as well as all three resistant variants the 

determined virus titers. As suggested by the reviewer (see answer below), we also 

performed a statistical analysis (Mann-Whitney-U-test; last sentence in 2.6). No statistically 

significant differences could be found. We have added a statement to the manuscript text: 

“Furthermore, no significant difference was detected with the Mann-Whitney-U test, 

comparing single-step growth curves of wt-CVB3 97927 and high-level resistant variants in 

HeLa cells (Figure 2B; Table S2).” 

 

If there is no difference in the kinetics of replication between the different viruses, why 

are more antigen positive cells in the variant 1 (M1092 - I1027) than in the wild-type 

and the two I1207 mutants? 

Yes, there are more antigen-positive cells in the HR variant 1. We confirmed the virus titer 

used for MOI calculation and repeated the experiment. Here, similar results were obtained. 

Furthermore, we would like to mention that immunohistochemical staining was mainly used 

to confirm the results of plaque reduction assays which showed that even a high 

concentration of pleconaril (which nearly completely prevented CVB3 97927 wt replication) 

does not act against the HR variants.  

In addition, these results underline that the HR variant is not hampered in fitness compared 

to CVB3 97927 wt.  

 

The single-step growth curves are not statistically analyzed to affirm that there was no 

significant difference between them. 

According to the reviewer´s suggestion statistical analysis (Mann-Whitney-U-test) was 

performed. No statistical difference was observed. These results further confirm our 

conclusion. They are reported in the manuscript text: “Furthermore, no significant difference 



was detected with the Mann-Whitney-U test, comparing single-step growth curves of wt-

CVB3 97927 and high-level resistant variants in HeLa cells (Figure 2B; Table S2).” 

- There is no report on the fold resistance obtained for the different mutants against 

pleconaril. Table 1 does not provide and EC50 or EC90 for the diverse mutants 

compared to the wild-type virus. It is necessary to report the level of resistance 

conferred by a mutation in the hydrophobic drug binding protein (I1092M) versus the 

mutations I1207K and I1207R outside the binding pocket. 

We fully agree with the reviewer, but, pleconaril did not act at non-cytotoxic concentrations in 

cytopathic effect inhibition assays performed with the three HR CVB3 97927 variants in HeLa 

cells. Therefore, EC50 or EC90 values cannot be provided. In contrast, pleconaril acted well 

against the wildtype virus. We added this information in Table 1 and also report the results 

from the cytopathic effect inhibition assay in the MM section, paragraph 2.4.: “For all nine 

purified isolates high-level resistance was confirmed in plaque reduction assays with 8 µg/ml 

of pleconaril (inactive) and in cytopathic effect inhibition assays for selected variants (one per 

mutation; Table 1).”  

 

- It is not clear how the frequency of pleconaril resistance in the wild-type population 

was calculated. 

The frequency of pleconaril resistance was calculated as described previously for other 

capsid inhibitors by Heinze et al. in J Virol. 1989. Accordingly, the frequency of survivors 

resistant to 1 µf/ml of pleconaril was determined. The methodical details of the used plaque 

reduction assay are described in MM section paragraph 2.4. 

- The authors discuss about high-resistance to pleconaril but there is no definition of 

resistance. What is the definition of high-resistance? 

This discussion is based on the HR definition of Heinze et al. in J Virol 1989: “…drug-

selected plaque isolates exhibited roughly the same infectivity titer in the presence of drug as 

in the absence”. In our study, pleconaril did neither inhibit plaque reduction nor acted in 

cytopathic effect inhibition assay at the highest non-cytotoxic concentration (50% cytotoxic 

concentration in HeLa cells: 12.5 µg/ml as described in Makarov et al. JAC 2005) against the 

resistant variants. In contrast, plaque production as well as CPE of CVB3 97927 wt were 

strongly inhibited. We added the results of CPE inhibition assays in Table 1 and mention as 

well the cytopathic effect inhibition assay in the MM section, paragraph 2.4. 

 

- The M&M for some of the virological experiments (e.g. viral protein expression and 

plaque reduction assay) should be better described. 

Unfortunately, there is a 3500 words limit. Therefore, we decided to refer to the already in 

detail published methods and describe only the modification e.g. plaque number and MOIs. 

The plaque reduction as well as CPE inhibition assay were published by us in J Virol 

Methods in 2001 and the detection of CVB3 by immunohistochemical staining in J Virol in 

2006. 

 

- English language should be revised. 



We have carefully revised the manuscript and believe that we were able to resolve the 

language issues. 

 

 

Reviewer #2: The manuscript from Brown et al. reports on some studies on CVB3 

resistance to the capsid inhibitor pleconaril. The paper is generally well written and 

provides some interesting data. However, I believe the quality of the manuscript could 

be improved with some modifications: 

 

The modelling section needs some improvements, in particular: 

 

It would be extremely useful to perform the molecular dynamics of the unbound 

proteins (wt and resistant proteins), as these could provide some important 

information regarding the activity of the compound. Indeed, it is entirely possible that 

the mutation will induce a conformational change in the protein that completely 

prevent binding of pleconaril. This aspect cannot really be explored only with the MD 

simulation presented in the paper. The overall discussion of the mechanism of 

resistance should be revisited based on the result of these new simulations. 

This is indeed an important point. We have simulated these three apo systems (wt, I1207K 

and I1207R) to investigate whether any significant changes to the conformation of the 

relevant protein region can be observed. Much to our own surprise the wt and mutated apo 

systems behaved very similar. No significant differences could be observed. This strongly 

indicates that the binding of pleconaril is not impaired by conformational changes of the 

unbound capsid protein. 

We emphasize these aspects in the revised version of the manuscript and have also added 

two new figures (now Figure 3A and 3B) that visualize the stability of the apo systems (and, 

specifically, the ligand binding pocket). 

 

The homology modelling methodologies need to be more detailed. More informational 

need on the "manual" changes introduced in the structures. 

Indeed, this was not explained adequately in the initial version of the manuscript. A detailed 

protocol was added to Section 2.7 of the Supporting Information. In brief: Schrodinger’s 

software Maestro includes a “Mutate Residue” function. Using this function, we individually 

mutated all non-conserved residues (these are only a few). This is a reproducible process 

without a random element. The conformations of the individual amino acids were then 

optimized during several steps of energy minimization and the initial 10 ns of molecular 

dynamics simulations, which were not used for analysis. 
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Molecular mechanism of a specific capsid inhibitor resistance caused by mutations 

outside the binding pocket 

 Single-site mutations were confirmed as cause of high-resistance (HR) to capsid-binding 

inhibitors of enteroviruses. 

 Two new HR amino acid substitutions were identified in position 1207 of viral capsid 

protein 1. 

 I1207K and I1207R are located outside the ligand binding site and do not affect viral 

replication. 

 Substitution of I1207 by a more bulky, positively charged residue pushes neighboring 

R1095 into the hydrophobic pocket, ultimately leading to the abolishment of drug action. 
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Abstract 

Enteroviruses cause various acute and chronic diseases. CapsidThe most promising 

therapeutics for these infections are capsid-binding inhibitors actingmolecules. These can act 

against a broad spectrum of enteroviruses represent most promising drug candidates for 

treatment of these infections today, but emerging drug-resistant virus variants threaten their 

therapeutic efficacy. All high-resistance known enterovirus variants characterized so far 

showwith high-level resistance toward capsid-binding molecules have mutations of residues 

directly involved in the formation of the hydrophobic drug binding pocket. Here wesite. This is 

a first report two new high-of substitutions outside the binding pocket causing this type of 

drug resistance conferring amino acid substitutions in position 1207 (: I1207K, and I1207R) 

of the viral capsid protein 1 of coxsackievirus B3. Both substitutions completely abolish the 

antiviral activity of pleconaril (a capsid-binding inhibitor) without affecting virusmolecule) but 

do not affect viral replication rates in vitro. Importantly, residue 1207 is not part of the drug 

binding pocket and hence not in direct interaction with pleconaril. Using molecularMolecular 

dynamics simulations a indicate that the resistance mechanism drivenis mediated by a 

conformational rearrangement of R1095 (, which is a neighboring residue of 1207) located at 

the heel of the drug binding pocket, was derived. These insights on the likely drug resistance 

mechanism might provide a basis for the design of novel resistance-breaking inhibitors. 

Formatted: Not Highlight



 

 

1 Introduction 

Echoviruses, coxsackie A and B viruses, enteroviruses, and rhinoviruses belong to the genus 

enterovirus (EV) of the family picornaviridae family (Rollinger and Schmidtke, 2011)(Rollinger 

and Schmidtke, 2011). They cause a wide range of acute and chronic diseases such as 

respiratory infections, meningitis, pancreatitis, encephalitis, and myocarditis (Pallansch and 

Roos, 2007; Turner and Couch, 2007).(Pallansch and Roos, 2007; Turner and Couch, 2007). 

As of today no therapeutics have been approved for the treatment of these infections (De 

Palma et al., 2008; Rollinger and Schmidtke, 2011)(De Palma et al., 2008; Rollinger and 

Schmidtke, 2011). Several capsid-binding inhibitorsmolecules (CIs) are being investigated as 

promising drug candidates (Andries et al., 1991; Diana, 2003; Makarov et al., 2005; Watson 

et al., 2003)(Andries et al., 1991; Diana, 2003; Makarov et al., 2005; Watson et al., 2003), 

the most developed ones being pleconaril and vapendavir (Diana et al., 1995; Feil et al., 

2012)(Diana et al., 1995; Feil et al., 2012). 

The architecture of the viral capsid is conserved among enteroviruses (Rossmann et al., 

2002), which provides the basis for the design of broad-spectrum CIs The architecture of the 

viral capsid is conserved among enteroviruses (Rossmann et al., 2002), which provides the 

basis for the design of broad-spectrum CIs (Ledford et al., 2005; Pevear et al., 1999; 

Schmidtke et al., 2005; Tijsma et al., 2014)(Ledford et al., 2005; Pevear et al., 1999; 

Schmidtke et al., 2005; Tijsma et al., 2014). The viral capsid consists of 60 promoters 

(Racaniello, 2007), each of them composed of four viral capsid proteins, VP1-4. In VP1, a 

hydrophobic pocket is present which in most EVs is occupied by a fatty acid. This pocket 

factor stabilizes the capsid and is released during the viral attachment, thereby facilitating 

viral uncoating (Rossmann et al., 2002). CIs are known to bind to this hydrophobic pocket 

and trigger conformational rearrangements in the viral capsid . The viral capsid consists of 60 

protein subunits (Racaniello, 2007), each of them composed of four viral capsid proteins, 

VP1-4. In VP1, a hydrophobic pocket is present which in most EVs is occupied by a fatty 

acid. This pocket factor stabilizes the capsid and is released during the viral attachment, 

thereby facilitating viral uncoating (Rossmann et al., 2002). CIs are known to bind to this 



 

 

hydrophobic pocket and trigger conformational rearrangements in the viral capsid (Grant et 

al., 1994; Kim et al., 1993; Muckelbauer et al., 1995a; Zhang et al., 2004)(Grant et al., 1994; 

Kim et al., 1993; Muckelbauer et al., 1995a; Zhang et al., 2004). Subsequently, attachment of 

viruses to host cells and/or uncoating is blocked (Diana et al., 1989; Pevear et al., 

1989)(Diana et al., 1989; Pevear et al., 1989). Study resultsStudies also suggest that drug 

integration during assembly additionally contributes to the antiviral activity of CIs (Zhang et 

al., 2004)(Zhang et al., 2004). 

Due to the high mutation raterates of RNA viruses (Domingo, 1989; Drake et al., 

1998)(Domingo, 1989; Drake et al., 1998) emerging drug resistance poses a threat to 

efficacy of CIs. All high-level resistance (HR) (Heinz et al., 1989)(Heinz et al., 1989) to CIs 

reported to date involve residues forming the hydrophobic pocket of EVEVs (Badger et al., 

1989; Benschop et al., 2015; Groarke and Pevear, 1999; Ledford et al., 2005; Ledford et al., 

2004; Schmidtke et al., 2005)(Badger et al., 1989; Benschop et al., 2015; Groarke and 

Pevear, 1999; Ledford et al., 2005; Ledford et al., 2004; Schmidtke et al., 2005), hence 

directly interfering with the binding of CIs. Because of similarities in the binding mode of CIs, 

cross-resistance may be observed, as reported for pleconaril and vapendavir (Feil et al., 

2012)(Feil et al., 2012). 

Here, mutations conferring HRhigh-level resistance were further investigated using a clinical 

coxsackievirus B3 (CVB3) in combination with pleconaril. For the first time substitutions of an 

amino acid outside the hydrophobic pocket targeted by CICIs were shown to cause HR.high-

level resistance. A hypothesis of the underlying molecular mechanism was derived byfrom 

molecular dynamics (MD) simulations. 

 

2 Materials and methods 

2.1 Synthesis and chemical analysis. 

All chemicals and solvents were purchased from Sigma‐Aldrich or Alfa Aesar. Pleconaril was 

synthesized from commercially available starting materials following a previously reported 



 

 

procedure (Diana et al., 1995)(Diana et al., 1995). The full protocol isprotocols are provided 

as Supplementary materialin the Supporting Information. 

 

2.2 Viruses and cells 

Virus stock of clinical CVB3 isolate 97927 (CVB3 97927; Robert Koch Institute, Berlin, 

Germany) was prepared in HeLa Ohio cells (HeLa cell; FlowLabs, USA) and sequenced 

previously (Schmidtke et al., 2005)(Schmidtke et al., 2005). 

HeLa cells were grown in Eagles minimal essential medium (Lonza Walkersville) 

supplemented with 10% fetal calf serum (PAA, Pasching, Austria), 100 U/ml penicillin, and 

100 U/ml streptomycin (Lonza, Walkersville). The test medium contained only 2% serum. 

 

2.3 Isolation of pleconaril-resistant CVB3 variants 

Nine independently prepared pools of wildtype CVB3 97927 (wt-CVB3 97927) were 

incubated with 1 µg/ml of pleconaril in test medium for 1 h at 37°C as described previously 

(Groarke and Pevear, 1999). An untreated virus pool served as control. Then, serial tenfold 

dilutions of all pools were added to confluent HeLa cell monolayers and overlaid with agar 

containing 1 µg/ml of pleconaril. After further 48 h of incubation at 37°C one plaque from 

each pool was picked. It was further two rounds plaque-to-plaque purified in the presence of 

1 µg/ml pleconaril and propagated in HeLa cells to get a(Groarke and Pevear, 1999). An 

untreated virus pool served as control. Then, serial tenfold dilutions of all pools were added 

to confluent HeLa cell monolayers and overlaid with agar containing 1 µg/ml of pleconaril. 

After further 48 h of incubation at 37°C one plaque from each pool was picked. It was further 

plaque-to-plaque purified for two rounds in the presence of 1 µg/ml pleconaril and 

propagated in HeLa cells to generate virus stocks. 

 

2. 4 Drug susceptibility testing 

Plaque reduction assays were performed (with approximately 30-40 plaque-forming units of 

wt-CVB3 97927 or its variants and up to 8.0 µg/ml of pleconaril) and cytopathic effect (CPE) 



 

 

inhibition assays were performed in HeLa cell monolayers as described previously 

(Schmidtke et al., 2001)(Schmidtke et al., 2001).  

Additionally, viral protein expression was analyzed in HeLa cells that were infected with wt-

CVB3 97927 and its variants (multiplicity of infection (moi) of 10 pfu/cell) in absence or 

presence of 1 µg/ml pleconaril for 5 hours. After fixation, CVB3 antigen was detected with a 

monoclonal antibody (mAK948, CHEMICON, USA) and the DAKO Real Detection System 

APAAP Mouse (DAKO, Glostrup, Denmark) as described previously (Zautner et al., 

2006)(Zautner et al., 2006) 

 

2.5 RNA isolation, RT-PCR, and sequencing of the capsid protein -encoding region P1  

RNA-isolation and RT-PCR of the P1 encoding region of CVB3 97927 variants was 

performed as described previously (Schmidtke et al., 2005)(Schmidtke et al., 2005) using 

primer pairs summarized in Table S1. PCR was carried out with the Taq Core Kit 10 (MP 

Biomedicals, formerly QBIOgeneQbiogene; France): 1 cycle of 93°C for 5 min; 35 cycles of 

94°C for 1 min, 55°C for 50 s and 72°C for 1 or 3 min, and a final cycle of 72°C for 20 min. 

Sequence analysis of the genome region P1 coding for capsid proteins (purified PCR 

products) was performed with the Beckman Coulter Genom-Lab System (PubMed GenBank 

number: JX946654 and JX946654) following the manufacturer’s instructions. Sequencing 

primers are summarized in Table S1. 

 

2.6 Comparison of single-step growth curves 

Single-step replication cycles of wt-CVB3 97927 and three selected pleconaril-resistant 

variants were comparatively studied in two-day-old confluent HeLa cells grown in 4-well 

tissue culture plates. Three wells of each plate were infected with a moi of 10 pfu/cell for 1 h 

at 37°C. After three washing steps, addition of fresh medium, and further incubation for 1 h, 2 

h, 3 h, 4 h, 6 h, 8 h, 10 h, and 12 h p.i., supernatant of each of the three infected wells was 

collected. Virus titers were determined in HeLa cells (Reed and Muench, 1938).(Reed and 

Muench, 1938). The Mann-Whitney-U-test was used for statistical analysis. 
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2.7 Computational studies 

Homology models for CVB3 97927 were manually derived from PDB structure 1COV 

(Muckelbauer et al., 1995b). Molecular dynamics simulations were carried out using the 

AMBER11 (with patches up to 17 applied) and the AMBERTOOLS version 1.5 suite of 

programs Homology models for the CVB3 97927 variants were derived using PDB 1cov 

(Muckelbauer et al., 1995b) as a template. Molecular dynamics simulations were carried out 

using AMBER11 and the AMBERTOOLS suite of programs (Case et al., 2010)(Case et al., 

2010). The full protocol isprotocols are provided asin the Supplementary materialInformation. 

 

3 Results 

3.1 Selection and characterization of pleconaril-resistant CVB3 variants 

The fraction of HRhigh-level resistant mutants present in a population of wt-CVB3 97927 was 

examined by determining the frequency of survivors that can replicate in presence of the 

drug (Heinz et al., 1989)(Heinz et al., 1989). Pleconaril . In analogy to earlier studies 

(Groarke and Pevear, 1999), pleconaril was applied at a high concentration of 1 µg/ml in 

analogy to earlier studies (Groarke and Pevear, 1999).. This concentration reduced the 

plaque titer of wt-CVB3 97927 by approximately four log units (Table 1). Based on these 

data, the frequency of pleconaril resistance in the wildtype population was 1.2 x 10-4.  

ToIn order to select HRhigh-level resistant mutants, nine pools of wt-CVB3 97927, treated 

individually with 1 µg/ml of pleconaril for 1 h at 37°C, were subjected to a plaque assay. Virus 

from one plaque per pool was collected and two tinespurified twice plaque-to-plaque purified 

in the presence of 1 µg/ml of pleconaril. For all nine purified isolates HRhigh-level resistance 

was demonstratedconfirmed in plaque reduction assays with 8 µg/ml of pleconaril (inactive) 

and in cytopathic effect inhibition assays for selected variants (one per mutation; Table 1.). 

These results were confirmed for three purified isolatescorroborated by 

immunohistochemical detection of viral antigen (Figure 2A) with pleconaril in HeLa cells. The 

wt-CVB3 97927 was included as a control and was found susceptible to pleconaril.  



 

 

No difference inClosely related antigen expression profiles of untreated HeLa cells infected 

with wt-CVB3 97927 and HRhigh-level resistant variants waswere observed (Figure 2A). The 

number of infected cells was even slightly higher for the I1092M variant than for the wt-

CVB3 97927. Furthermore, no significant difference was detected with the Mann-Whitney-U 

test, comparing single-step growth curves of wt-CVB3 97927 and HRhigh-level resistant 

variants in HeLa cells (Figure 2B). So; Table S2). Hence, replication of the selected HRhigh-

level resistant variants was not hampered in vitro. 

ToIn order to gain insight into the genetic basis of the detected pleconaril resistance, the 

whole capsid-protein-coding region P1 of all nine plaque-purified, HR high-level resistant 

variants was sequenced and compared with that of wt-CVB3 97927. All HRhigh-level 

resistant variants showed nucleotide exchanges that result in single-site amino acid 

substitution in position 1092 or 1207 (Table 1; Figure 1). I1092M substitution was detected 

for three HRhigh-level resistant variants. Six HRhigh-level resistant variants consisted 

singleshowed hitherto unknown amino acid substitutions at position 1207 (I1207K, I1207R), 

located outside the drug-binding pocket that were not described before.). 

 

3.2 Hypothesis of a specific drug resistance mechanism 

The A model of the resistance mechanism of HRCVB3 to pleconaril caused by I1207K and 

I1207R was investigateddeveloped using MD simulations of a homology model of wt-

CVB3 97927. Two copies of VP1-VP4 (one with pleconaril bound and one with the pocket 

factor bound) of the drug-sensitive and the two HR variantssimulation techniques. Six 

systems were simulated for 30 ns each. The : The wt-CVB3 97927 and the I1207K and 

I1207R variants, each in their apo and holo (i.e. bound with pleconaril) states. Each model 

was simulated for 30 ns; the last 20 ns were used for analysis. Structural 

All systems were stable for the full duration of the simulations. Commonly observed structural 

changes were observeddetected for solvent-exposed areas of the capsid protein, while the 

protein core and active sitecores remained close to their start geometries (Figure 3). 
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The apo protein structures proved to be particularly stable. No significant conformational 

changes in the region of the binding pocket could be observed. I1207 is part of the GH loop 

of VP1 in wt-CVB3 97927 (Figure 1, 4A). Both I1207K and I1207R leadSubstitution by Lys or 

Arg leads to the formation of a new salt bridge with E2131 (Figure 4B,C). R1207 approaches 

) and in the case of I1207R also to interactions with E1105 in addition (Figure 4C). Both 

substitutions appear to have a weak, stabilizing effect on the surrounding region (Figure 3C). 

The stability of the apo simulations is a strong indication that both mutations do not induce 

conformational rearrangements of the capsid pocket that could completely prevent ligands 

(such as pleconaril) to approach the binding site. The fact that the mutations of I1207 do not 

affect viral replication rates (indicating an intact function of the pocket factor) supports his 

model. 

In contrast to the apo structure simulations, significant conformational rearrangements were 

observed for holo structure simulations, for which reason we focused our analysis on these 

systems. 

All MD simulations are based on homology models derived from an X-ray structure of CVB3 

with a palmitate bound to the hydrophobic pocket, which . This pocket factor forms a salt 

bridge with R1095.  

In, which during the MD simulation of the wt-CVB3 97927-pleconaril complex, R1095 turns 

away from the hydrophobic methylisoxazole to form hydrogen bonds with E1105 and N1211 

(Figure 4A). Interaction with the latter leads to stabilization of the βH strand and a tightening 

of the hydrophobic pocket. In both HRhigh-level resistant variants, R1095 is pushed toward 

the hydrophobic pocket because of the additional bulk and charge added by the side chains. 

Consequently, the polar side chain of R1095 faces the non-polar methylisoxazole group of 

pleconaril (Figure 4B, C). This leads to destabilization of the protein-ligand interaction and 

causes the βH and βC strands to drift apart (Figure 5A). In further consequence, hydrogen 

bonds formed between R1095 and S1190/N1191 increasingly replace the βH strand-

stabilizing interactions of R1095 and N1211 (Figure 5B). 



 

 

The converse shift of both strands results in the dilation of the hydrophobic pocket. For the 

I1207K variant this translates into RMSDs of up to 1.4 Å for N1211 (Figure 6A). Movement of 

the βH strand is more pronounced in the I1207R variant, which after 20 ns of simulation time 

is mostly found in an open conformation (RMSDs up to 1.8 Å for N1211). As a result of this 

shift, surface contacts between N1211 (also N121 and M1213) and pleconaril (Figure 6B) are 

diminished. Water molecules fill gaps between the drug and the protein. 

Throughout most of the simulation of wt-CVB3 97927, the distance between the polar head 

of R1095 and the methyl group of pleconaril is about 6 Å or greater (mean 6.5 Å; min. 

distance 4.7 Å; Figure 6C). While for I1207K the mean distance is comparable to that of wt-

CVB3 97927 (6.7 Å), for parts of the trajectory the side chain gets much closer to pleconaril 

(min. distance 3.9 Å). For I1207R the mean and minimum distances are just 4.6 Å and 3.2 Å, 

respectively. 

The mean RMSD for pleconaril throughoutin the wt-CVB3 97927 simulation is 0.9 Å (Figure 

6D). For I1207K and I1207R these RMSDsvalues are 1.4 Å and 1.1 Å, respectively. The 

maximum RMSD observed for the I1207K variant (2.3 Å) is significantly higher than for the 

wt-CVB3 97927 (1.5 Å) and the I1207R variant (1.7 Å). RMSD peaks are a result of the 

displacement of the methylisoxazolylpropoxy group from the floor of the hydrophobic pocket 

toward the pore by the charged guanidino group of R1095 (Figure S1). 

In the wt-CVB3 97927, the torsion angle Φ (as indicated in the scheme of Figure 1) shows 

infrequent swaps between two conformations, with Φ around +75 or -120 degrees (Figure S 

2AS2A). In both conformations the methylisoxazole moiety remains in contact with the 

hydrophobic part of N1211. In both mutants however, pleconaril shows strong fluctuations for 

Φ as a result of a loss of surface contacts with N1211, caused by the shift of the βH strand 

(Figure S 2BS2B,C). 

A water molecule mediating interactions between the isoxazole nitrogen and the side chains 

of T1094 and R1095 is part of the protein-ligand interaction network in the sensitive virus 

(Figure 4A). Even though in the I1207K mutant pleconaril maintains coordination with a water 

molecule at this position, this variant does not form interactions with R1095. The torsional 



 

 

fluctuations of the methylisoxazole add to the instability of the water-mediated interactions 

(Figure S 3AS3A). Changes are more significant for the I1207R variant. There, interactions 

mediated by this water molecule are partially replaced by interactions with T1093 (Figure 

S3), which, together with the altered conformation of R1095, causescause the 

conformational shift seen for the βC strand. 

 

4 Discussion 

For the first time this work characterizes HRhigh-level resistance to a CICIs of EVs caused 

by I1207K and I1207R substitution. It also confirms single-site substitution of I1092M as a 

cause of HRhigh-level resistance (Groarke and Pevear, 1999; Schmidtke et al., 

2005)(Groarke and Pevear, 1999; Schmidtke et al., 2005). In contrast to I1092, I1207 is not 

part of the drugligand binding pocket and confers HRhigh-level resistance by an unreported 

molecular mechanism. 

The detected frequency of pleconaril resistance of 1.2 × 10-4 corresponds to previously 

published data for pleconaril-resistant CVB3 (Groarke and Pevear, 1999) and drug-resistant 

mutants of other ssRNA viruses (frequencies reported are between 10-3 and 10-5) The 

detected frequency of pleconaril resistance of 1.2 × 10-4 corresponds to previously published 

data for pleconaril-resistant CVB3 (Groarke and Pevear, 1999) and drug-resistant mutants of 

other ssRNA viruses (frequencies reported are between 10-3 and 10-5) (Heinz et al., 1989; 

Stech et al., 1999; Wang et al., 1998)(Heinz et al., 1989; Stech et al., 1999; Wang et al., 

1998). The high mutation rate (Drake et al., 1998; Holland et al., 1982)(Drake et al., 1998; 

Holland et al., 1982) and the existence of quasi species (Domingo, 1992) are caused by (i) 

integration of one mismatched base per 104-105 bases by RNA-dependent RNA polymerase 

of ssRNA viruses and (ii) lack of a proof-reading ability of these enzymes. 

The amino acid substitution I1092M was described earlier by Groarke et al. (Groarke and 

Pevear, 1999), who also detected a CVB3 variant containing two amino acid substitutions, 

I1092L as well as L1207V. However, the impact of the L1207V mutation on the resistant 

phenotype remained unclear. According to the definition of Heinz et al.  and the existence of 



 

 

quasi species (Domingo, 1992) are caused by (i) integration of one mismatched base per 

104-105 bases by RNA-dependent RNA polymerase of ssRNA viruses and (ii) lack of a proof-

reading ability of these enzymes. 

The amino acid substitution I1092M was described earlier by Groarke et al. (Groarke and 

Pevear, 1999), who also detected a CVB3 variant containing two amino acid substitutions, 

I1092L as well as L1207V. However, the impact of the L1207V mutation on the resistant 

phenotype remained unclear. According to the definition of Heinz et al. (Heinz et al., 

1989)(Heinz et al., 1989), substitutions in I1092 confer HRhigh-level resistance (Groarke and 

Pevear, 1999; Schmidtke et al., 2005)(Groarke and Pevear, 1999; Schmidtke et al., 2005). 

This can be explained by the fact that I1092 is one of the 17 amino acids forming the 

hydrophobic pocket of CVB3 (Muckelbauer et al., 1995a). I1092 is situated in the center of 

the pocket and interacts with one of the two methyl groups of pleconaril’s phenyl ring. 

Substitutions of amino acids in the center of the pocket that confer HR have also been 

reported for rhinoviruses . This can be explained by the fact that I1092 is one of the 17 amino 

acids forming the hydrophobic pocket of CVB3 (Muckelbauer et al., 1995a). I1092 is situated 

in the center of the pocket and interacts with one of the two methyl groups of pleconaril’s 

phenyl ring. Substitutions of amino acids in the center of the pocket that confer high-level 

resistance have also been reported for rhinoviruses (Badger et al., 1989; Heinz et al., 1989; 

Ledford et al., 2005; Ledford et al., 2004; Zhang et al., 2004)(Badger et al., 1989; Heinz et 

al., 1989; Ledford et al., 2005; Ledford et al., 2004; Zhang et al., 2004) and echovirus 11 

(Benschop et al., 2015)(Benschop et al., 2015). The activity of pleconaril derivatives lacking 

one or both of the methyl groups of the central phenyl ring of pleconaril (Schmidtke et al., 

2009)(Schmidtke et al., 2009) is less affected by the substitution of I1092.  

In contrast to I1092, I1207 is not involved in the formation of the drug-binding pocket 

(Muckelbauer et al., 1995a). Therefore, the observation that mutation of I1207 can lead to a 

complete loss of drug action is intriguing. MD simulations indicate that substitution of I1207 

by a more bulky, positively charged residue pushes R1095 into the hydrophobic pocket 

toward pleconaril, initiating a cascade of conformational changes, ultimately leading to the 



 

 

abolishment of drug action. Both the binding mode of pleconaril and the postulated drug 

resistance mechanism show similarities with oseltamivir resistance of influenza viruses 

caused by H274Y (Wang et al., 2002). The active site of influenza neuraminidase is highly 

polar In contrast to I1092, I1207 is not involved in the formation of the binding pocket 

(Muckelbauer et al., 1995a). Therefore, the observation that mutation of I1207 can lead to a 

complete loss of drug action is intriguing. MD simulations indicate that substitution of I1207 

by a more bulky, positively charged residue pushes R1095 into the hydrophobic pocket 

toward pleconaril, initiating a cascade of conformational changes that ultimately lead to the 

abolishment of drug action. Importantly, the substitutions appear to not lead to 

conformational rearrangements of the ligand binding site in the apo system, which otherwise 

could completely impair ligand binding. 

The postulated resistance mechanism has similarities with that of influenza virus 

neuraminidase and oseltamivir. Substitution of H274 by a Tyr leads to a substantial loss of 

affinity of oseltamivir for neuraminidase (Wang et al., 2002). The pentanyl substituent of 

oseltamivir forms hydrophobic interactions with the protein. In H274Y variants, the larger Tyr 

pushes the polar side chain of neighboring E276 farther into the binding site, toward the 

hydrophobic pentanyl moiety (von Grafenstein et al., 2015; von Itzstein, 2007)(Collins et al., 

2008). In search for orally effective neuraminidase inhibitors oseltamivir, comprising a 

pentanyl substituent was designed. This hydrophobic substituent causes the polar side chain 

of E276 to adopt its conformation and interact with R224. A hydrophobic pocket is created to 

which oseltamivir binds with high affinity (Kim et al., 1997). In the case of pleconaril it is the 

polar side chain of R1095 that points into the ligand binding pocket. In CVB3 97927, in 

presence of pleconaril the side chain of R1095 is reoriented to face away from the ligand and 

interact with the protein. In influenza neuraminidase, H274Y is located in the second shell of 

amino acids forming the active site. The larger tyrosine disrupts the interaction of E276 and 

R224, forcing E276 to point with its polar head group into the binding site, in direction of the 

hydrophobic substituent of oseltamivir (Russell et al., 2006). In the resistance mechanism 

postulated herein for CVB3 97927 and pleconaril it is R1095 which is pushed toward the 



 

 

hydrophobic ligand by the replacement of I1207 by a larger lysine or arginine. Methods and 

approaches described can be applied to study similar cases of resistance formation. 

A. This leads to high-level resistance against oseltamivir. In the case of the CVB3 97927 

I1207 mutants and pleconaril it is the polar side chain of R1095 that is pushed toward the 

hydrophobic ligand. 

An NCBI database survey with standard nucleotide blast demonstrated a polymorphism at 

position 1092 as well as 1207 in VP1 of CVB3. About 99% of the available CVB3 sequences 

express I1207, three have a V1207 and each one a T1207 or L1207. With respect to 

substitutions at position 1092, 30% of available sequences have isoleucine, 3% leucine and 

67% valine. Thus, viruses with substitutions in position 1092 or 1207 are circulating in nature. 

Obviously, they do not hamper viral replication. This is in good agreement with the results of 

our in vitro studies. Neither antigen expression nor one-step growth curves of CVB3 97927 

and HRhigh-level resistant mutants showed any differences. In contrast, attenuated virulence 

of pleconaril-resistant CVB3 with I1092L or I1092M was described in vivo (Groarke and 

Pevear, 1999)(Groarke and Pevear, 1999) but highly mouse-pathogenic, pleconaril-resistant 

CVB3 containing these substitutions also exist (Schmidtke et al., 2005; Schmidtke et al., 

2007)(Schmidtke et al., 2005; Schmidtke et al., 2007).  

The data presented here underline the vulnerability of the therapeutic efficacy of antivirals 

targeting the hydrophobic pocket of picornaviruses. The identificationKnowledge of 1207 as 

further the key role of residue for CIs1207 in CI activity and the understanding of the 

underlying drug-new model of a specific resistance mechanism are valuable for the rational 

design of future therapeutic agents with superior resistance profiles. 
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Figure captions 

Figure 1. Overview of the two protomers of the CVB3 97927 virus capsid as used for the MD 

simulations. VP1 (purple), VP2 (blue), VP3 (orange), VP4 (cyan). The GH loop and pleconaril are 

indicated in green and the second protomer in grey. The enlarged section shows VP1 with the location 

of pleconaril, I1092 and I1207. 

 

Figure 2. Replication of wt-CVB3 97927 and three different pleconaril-resistant variants in HeLa 

cells. HeLa cells were infected at a moi of 10 pfu/cell of the respective virus. (A) The influence of 

pleconaril treatment (1 µg/ml) on viral antigen expression was comparatively studied by 

immunohistochemical staining of CVB3-infected HeLa cells 5 h p.i. Virus antigen-positive cells are 

stained in red color. (B) Comparison of single-step life cycles of the selected CVB3 samples. Values 

represent the means and SD of 3 parallel measurements per time point. 
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Figure 3. Backbone RMSD. Development of the backbone RMSD of the (A) whole 

simulatedcomplete apo system and, (B) complete holo system, (C) pocket-forming residues. of the 

apo system and (D) pocket-forming residues of the holo system. wt-CVB3 97927 (black), I1207K 

(orange), I1207R (blue). 

 

Figure 4. Conformational flexibility of VP1 and molecular interactions of VP1 with pleconaril. 

(A) In the wt-CVB3 97927, R1095 forms polar interactions with E1105, N1211 and a water molecule. 

The polar side chain of R1095 is hence oriented away from pleconaril toward E1105. (B) In the I1207K 

mutant, K1207 forms a salt bridge with E2131 rather than E1105. R1095 points toward the 

hydrophobic ligand. (C) An initially observed salt bridge between R1207 and E1105 in the I1207R 

mutant is weakened by a conformational rearrangement of the βH strand observed during the 

simulation. In this resistant variant the charged side chain of R1095 points deeply into the hydrophobic 

pocket. (D) B-factors calculated for VP1 from the MD trajectories. wt-CVB3 97927 (black), I1207K 

(orange), I1207R (blue). The exposed residues of the GH loop show increased flexibility when 

compared to the mutants (in particular A1200). B-factor plots for VP2, 3 and 4 are provided in Figure 

S4. 

 

Figure 5. Conformational shifts observed for the βC and βH strands of the wt-CVB3 97927 and 

the two mutants. (A) Representative frame of the wt-CVB3 97927 (grey), I1207K (orange) and 

I1207  (blue) virus strain  selected from the M  trajectories by clustering. ( )  etail of the βH strand 

of the I1207R variant, before (green) and after (blue) the conformational shift. 

 

Figure 6. Conformational shift of the βH-strand induced by the approach of R1095, repelling the 

hydrophobic elements of pleconaril and N1211. (A) RMSD plot of N1211. (B) Distance between the 

aliphatic carbon of the methylisoxazole moiety of pleconaril and the Cα atom of N1211. (C) Distance 

between the guanidino carbon atom of R1095 and the aliphatic carbon of the methylisoxazole group. 

(D) RMSD plot of pleconaril. wt-CVB3 97927 (black), I1207K (orange) and I1207R (blue). 

 



 

 

 

Supporting Information 

 

Table S 1. Primers used for PCR amplification and sequencing. 

 

Table S2. Virus titers determined in one-step replication cycle experiments at different 

hours after infection with CVB3 97-927 variants. 

 

Figure S 1. ConformationConformations observed for pleconaril. Representative conformations 

selected from the wt-CVB3 97927 (grey), I1207K (orange) and I1207R (blue) trajectories using an 

average-linkage algorithm for clustering (considering only the conformations of the drug molecule).. 

 

Figure S 2. Conformational fluctuations of torsion angle Φ of pleconaril. (A) Fluctuations 

between two torsion angle states occur infrequently in the wt-CVB3 97927. They are much stronger for 

the (B) I1207K and (C) I1207R mutants. 

 

Figure S 3. InteractionInteractions of the isoxazole nitrogen of pleconaril with (A) water and (B) 

T1093. Even though an interaction of pleconaril with a water molecule is maintained in the mutants, 

the formed interaction network formed is much weaker when compared to thethan that of wt-CVB3 

97927 (black). In the I1207R mutant (blue) pleconaril is partially switching from an interaction with 

water to an interaction with T1093. 

 

Figure S 4. B-factors calculated for (a) VP2, (b) VP3 and (c) VP4. wt-CVB3 97927 (black), I1207K 

(orange), I1207R (blue). 
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EV, enterovirus; CI, capsid-binding inhibitors; VP1-4, viral capsid protein 1, 2, 3, 4; CVB3, 

coxsackievirus B3; HPLC, high performance liquid chromatography; MD, molecular 

dynamics; moi, multiplicity of infection; PME, particle mesh Ewald; RMSD, root-mean-square 

deviation; RNA, ribonucleic acid; RT, reverse transcriptase; TLC, thin layer chromatography; 

vdW, van der Waals; VP, viral protein; wt, wild type 
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Abstract 

Enteroviruses cause various acute and chronic diseases. The most promising therapeutics 

for these infections are capsid-binding molecules. These can act against a broad spectrum of 

enteroviruses, but emerging resistant virus variants threaten their efficacy. All known 

enterovirus variants with high-level resistance toward capsid-binding molecules have 

mutations of residues directly involved in the formation of the hydrophobic binding site. This 

is a first report of substitutions outside the binding pocket causing this type of drug 

resistance: I1207K and I1207R of the viral capsid protein 1 of coxsackievirus B3. Both 

substitutions completely abolish the antiviral activity of pleconaril (a capsid-binding molecule) 

but do not affect viral replication rates in vitro. Molecular dynamics simulations indicate that 

the resistance mechanism is mediated by a conformational rearrangement of R1095, which 

is a neighboring residue of 1207 located at the heel of the binding pocket. These insights 

provide a basis for the design of resistance-breaking inhibitors. 
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1 Introduction 

Echoviruses, coxsackie A and B viruses, enteroviruses and rhinoviruses belong to the genus 

enterovirus (EV) of the picornaviridae family (Rollinger and Schmidtke, 2011). They cause a 

wide range of acute and chronic diseases such as respiratory infections, meningitis, 

pancreatitis, encephalitis, and myocarditis (Pallansch and Roos, 2007; Turner and Couch, 

2007). As of today no therapeutics have been approved for the treatment of these infections 

(De Palma et al., 2008; Rollinger and Schmidtke, 2011). Several capsid-binding molecules 

(CIs) are being investigated as promising drug candidates (Andries et al., 1991; Diana, 2003; 

Makarov et al., 2005; Watson et al., 2003), the most developed ones being pleconaril and 

vapendavir (Diana et al., 1995; Feil et al., 2012). 

The architecture of the viral capsid is conserved among enteroviruses (Rossmann et al., 

2002), which provides the basis for the design of broad-spectrum CIs (Ledford et al., 2005; 

Pevear et al., 1999; Schmidtke et al., 2005; Tijsma et al., 2014). The viral capsid consists of 

60 protein subunits (Racaniello, 2007), each of them composed of four viral capsid proteins, 

VP1-4. In VP1, a hydrophobic pocket is present which in most EVs is occupied by a fatty 

acid. This pocket factor stabilizes the capsid and is released during the viral attachment, 

thereby facilitating viral uncoating (Rossmann et al., 2002). CIs are known to bind to this 

hydrophobic pocket and trigger conformational rearrangements in the viral capsid (Grant et 

al., 1994; Kim et al., 1993; Muckelbauer et al., 1995a; Zhang et al., 2004). Subsequently, 

attachment of viruses to host cells and/or uncoating is blocked (Diana et al., 1989; Pevear et 

al., 1989). Studies also suggest that drug integration during assembly additionally contributes 

to the antiviral activity of CIs (Zhang et al., 2004). 

Due to the high mutation rates of RNA viruses (Domingo, 1989; Drake et al., 1998) emerging 

drug resistance poses a threat to efficacy of CIs. All high-level resistance (Heinz et al., 1989) 

to CIs reported to date involve residues forming the hydrophobic pocket of EVs (Badger et 

al., 1989; Benschop et al., 2015; Groarke and Pevear, 1999; Ledford et al., 2005; Ledford et 

al., 2004; Schmidtke et al., 2005), hence directly interfering with the binding of CIs. Because 
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of similarities in the binding mode of CIs, cross-resistance may be observed, as reported for 

pleconaril and vapendavir (Feil et al., 2012). 

Here, mutations conferring high-level resistance were further investigated using a clinical 

coxsackievirus B3 (CVB3) in combination with pleconaril. For the first time substitutions of an 

amino acid outside the hydrophobic pocket targeted by CIs were shown to cause high-level 

resistance. A hypothesis of the underlying molecular mechanism was derived from molecular 

dynamics (MD) simulations. 

 

2 Materials and methods 

2.1 Synthesis and chemical analysis. 

All chemicals and solvents were purchased from Sigma‐Aldrich or Alfa Aesar. Pleconaril was 

synthesized from commercially available starting materials following a previously reported 

procedure (Diana et al., 1995). The full protocols are provided in the Supporting Information. 

 

2.2 Viruses and cells 

Virus stock of clinical CVB3 isolate 97927 (CVB3 97927; Robert Koch Institute, Berlin, 

Germany) was prepared in HeLa Ohio cells (HeLa cell; FlowLabs, USA) and sequenced 

previously (Schmidtke et al., 2005). 

HeLa cells were grown in Eagles minimal essential medium (Lonza Walkersville) 

supplemented with 10% fetal calf serum (PAA, Pasching, Austria), 100 U/ml penicillin, and 

100 U/ml streptomycin (Lonza, Walkersville). The test medium contained only 2% serum. 

 

2.3 Isolation of pleconaril-resistant CVB3 variants 

Nine independently prepared pools of wildtype CVB3 97927 (wt-CVB3 97927) were 

incubated with 1 µg/ml of pleconaril in test medium for 1 h at 37°C as described previously 

(Groarke and Pevear, 1999). An untreated virus pool served as control. Then, serial tenfold 

dilutions of all pools were added to confluent HeLa cell monolayers and overlaid with agar 

containing 1 µg/ml of pleconaril. After further 48 h of incubation at 37°C one plaque from 
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each pool was picked. It was further plaque-to-plaque purified for two rounds in the presence 

of 1 µg/ml pleconaril and propagated in HeLa cells to generate virus stocks. 

 

2. 4 Drug susceptibility testing 

Plaque reduction assays (with approximately 30-40 plaque-forming units of wt-CVB3 97927 

or its variants and up to 8.0 µg/ml of pleconaril) and cytopathic effect (CPE) inhibition assays 

were performed in HeLa cell monolayers as described previously (Schmidtke et al., 2001).  

Additionally, viral protein expression was analyzed in HeLa cells that were infected with wt-

CVB3 97927 and its variants (multiplicity of infection (moi) of 10 pfu/cell) in absence or 

presence of 1 µg/ml pleconaril for 5 hours. After fixation, CVB3 antigen was detected with a 

monoclonal antibody (mAK948, CHEMICON, USA) and the DAKO Real Detection System 

APAAP Mouse (DAKO, Glostrup, Denmark) as described previously (Zautner et al., 2006) 

 

2.5 RNA isolation, RT-PCR, and sequencing of the capsid protein-encoding region P1 

RNA-isolation and RT-PCR of the P1 encoding region of CVB3 97927 variants was 

performed as described previously (Schmidtke et al., 2005) using primer pairs summarized in 

Table S1. PCR was carried out with the Taq Core Kit 10 (MP Biomedicals, formerly 

Qbiogene; France): 1 cycle of 93°C for 5 min; 35 cycles of 94°C for 1 min, 55°C for 50 s and 

72°C for 1 or 3 min, and a final cycle of 72°C for 20 min. 

Sequence analysis of the genome region P1 coding for capsid proteins (purified PCR 

products) was performed with the Beckman Coulter Genom-Lab System (PubMed GenBank 

number: JX946654 and JX946654) following the manufacturer’s instructions. Sequencing 

primers are summarized in Table S1. 

 

2.6 Comparison of single-step growth curves 

Single-step replication cycles of wt-CVB3 97927 and three selected pleconaril-resistant 

variants were comparatively studied in two-day-old confluent HeLa cells grown in 4-well 

tissue culture plates. Three wells of each plate were infected with a moi of 10 pfu/cell for 1 h 
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at 37°C. After three washing steps, addition of fresh medium, and further incubation for 1 h, 2 

h, 3 h, 4 h, 6 h, 8 h, 10 h, and 12 h p.i., supernatant of each of the three infected wells was 

collected. Virus titers were determined in HeLa cells (Reed and Muench, 1938). The Mann-

Whitney-U-test was used for statistical analysis. 

 

2.7 Computational studies 

Homology models for the CVB3 97927 variants were derived using PDB 1cov (Muckelbauer 

et al., 1995b) as a template. Molecular dynamics simulations were carried out using 

AMBER11 and the AMBERTOOLS suite of programs (Case et al., 2010). The full protocols 

are provided in the Supplementary Information. 

 

3 Results 

3.1 Selection and characterization of pleconaril-resistant CVB3 variants 

The fraction of high-level resistant mutants present in a population of wt-CVB3 97927 was 

examined by determining the frequency of survivors that can replicate in presence of the 

drug (Heinz et al., 1989). In analogy to earlier studies (Groarke and Pevear, 1999), pleconaril 

was applied at a high concentration of 1 µg/ml. This concentration reduced the plaque titer of 

wt-CVB3 97927 by approximately four log units (Table 1). Based on these data the frequency 

of pleconaril resistance in the wildtype population was 1.2 x 10-4.  

In order to select high-level resistant mutants, nine pools of wt-CVB3 97927, treated 

individually with 1 µg/ml of pleconaril for 1 h at 37°C, were subjected to a plaque assay. Virus 

from one plaque per pool was collected and purified twice plaque-to-plaque in the presence 

of 1 µg/ml of pleconaril. For all nine purified isolates high-level resistance was confirmed in 

plaque reduction assays with 8 µg/ml of pleconaril (inactive) and in cytopathic effect inhibition 

assays for selected variants (one per mutation; Table 1). These results were corroborated by 

immunohistochemical detection of viral antigen (Figure 2A) with pleconaril in HeLa cells. wt-

CVB3 97927 was included as a control and was found susceptible to pleconaril.  
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Closely related antigen expression profiles of untreated HeLa cells infected with wt-

CVB3 97927 and high-level resistant variants were observed (Figure 2A). The number of 

infected cells was even slightly higher for the I1092M variant than for the wt-CVB3 97927. 

Furthermore, no significant difference was detected with the Mann-Whitney-U test, 

comparing single-step growth curves of wt-CVB3 97927 and high-level resistant variants in 

HeLa cells (Figure 2B; Table S2). Hence, replication of the selected high-level resistant 

variants was not hampered in vitro. 

In order to gain insight into the genetic basis of the detected pleconaril resistance, the whole 

capsid-protein-coding region P1 of all nine plaque-purified high-level resistant variants was 

sequenced and compared with that of wt-CVB3 97927. All high-level resistant variants 

showed nucleotide exchanges that result in single-site amino acid substitution in position 

1092 or 1207 (Table 1; Figure 1). I1092M substitution was detected for three high-level 

resistant variants. Six high-level resistant variants showed hitherto unknown amino acid 

substitutions at position 1207 (I1207K, I1207R). 

 

3.2 Hypothesis of a specific drug resistance mechanism 

A model of the resistance mechanism of CVB3 to pleconaril was developed using MD 

simulation techniques. Six systems were simulated: The wt-CVB3 97927 and the I1207K and 

I1207R variants, each in their apo and holo (i.e. bound with pleconaril) states. Each model 

was simulated for 30 ns; the last 20 ns were used for analysis. 

All systems were stable for the full duration of the simulations. Commonly observed structural 

changes were detected for solvent-exposed areas of the capsid protein, while the protein 

cores remained close to their start geometries (Figure 3). 

The apo protein structures proved to be particularly stable. No significant conformational 

changes in the region of the binding pocket could be observed. I1207 is part of the GH loop 

of VP1 (Figure 1, 4A). Substitution by Lys or Arg leads to the formation of a new salt bridge 

with E2131 (Figure 4B,C) and in the case of I1207R also to interactions with E1105 (Figure 
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4C). Both substitutions appear to have a weak, stabilizing effect on the surrounding region 

(Figure 3C). 

The stability of the apo simulations is a strong indication that both mutations do not induce 

conformational rearrangements of the capsid pocket that could completely prevent ligands 

(such as pleconaril) to approach the binding site. The fact that the mutations of I1207 do not 

affect viral replication rates (indicating an intact function of the pocket factor) supports his 

model. 

In contrast to the apo structure simulations, significant conformational rearrangements were 

observed for holo structure simulations, for which reason we focused our analysis on these 

systems. 

All MD simulations are based on homology models derived from an X-ray structure of CVB3 

with a palmitate bound to the hydrophobic pocket. This pocket factor forms a salt bridge with 

R1095, which during the MD simulation of the wt-CVB3 97927-pleconaril complex turns away 

from the hydrophobic methylisoxazole to form hydrogen bonds with E1105 and N1211 

(Figure 4A). Interaction with the latter leads to stabilization of the βH strand and a tightening 

of the hydrophobic pocket. In both high-level resistant variants, R1095 is pushed toward the 

hydrophobic pocket because of the additional bulk and charge added by the side chains. 

Consequently, the polar side chain of R1095 faces the non-polar methylisoxazole group of 

pleconaril (Figure 4B, C). This leads to destabilization of the protein-ligand interaction and 

causes the βH and βC strands to drift apart (Figure 5A). In further consequence, hydrogen 

bonds formed between R1095 and S1190/N1191 increasingly replace the βH strand-

stabilizing interactions of R1095 and N1211 (Figure 5B). 

The converse shift of both strands results in the dilation of the hydrophobic pocket. For the 

I1207K variant this translates into RMSDs of up to 1.4 Å for N1211 (Figure 6A). Movement of 

the βH strand is more pronounced in the I1207R variant, which after 20 ns of simulation time 

is mostly found in an open conformation (RMSDs up to 1.8 Å for N1211). As a result of this 

shift, surface contacts between N1211 (also N121 and M1213) and pleconaril (Figure 6B) are 

diminished. Water molecules fill gaps between the drug and the protein. 
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Throughout most of the simulation of wt-CVB3 97927, the distance between the polar head 

of R1095 and the methyl group of pleconaril is about 6 Å or greater (mean 6.5 Å; min. 

distance 4.7 Å; Figure 6C). While for I1207K the mean distance is comparable to that of wt-

CVB3 97927 (6.7 Å), for parts of the trajectory the side chain gets much closer to pleconaril 

(min. distance 3.9 Å). For I1207R the mean and minimum distances are just 4.6 Å and 3.2 Å, 

respectively. 

The mean RMSD for pleconaril in the wt-CVB3 97927 simulation is 0.9 Å (Figure 6D). For 

I1207K and I1207R these values are 1.4 Å and 1.1 Å, respectively. The maximum RMSD 

observed for the I1207K variant (2.3 Å) is significantly higher than for the wt-CVB3 97927 

(1.5 Å) and the I1207R variant (1.7 Å). RMSD peaks are a result of the displacement of the 

methylisoxazolylpropoxy group from the floor of the hydrophobic pocket toward the pore by 

the charged guanidino group of R1095 (Figure S1). 

In the wt-CVB3 97927, the torsion angle Φ (as indicated in the scheme of Figure 1) shows 

infrequent swaps between two conformations, with Φ around +75 or -120 degrees (Figure 

S2A). In both conformations the methylisoxazole moiety remains in contact with the 

hydrophobic part of N1211. In both mutants however, pleconaril shows strong fluctuations for 

Φ as a result of a loss of surface contacts with N1211, caused by the shift of the βH strand 

(Figure S2B,C). 

A water molecule mediating interactions between the isoxazole nitrogen and the side chains 

of T1094 and R1095 is part of the protein-ligand interaction network in the sensitive virus 

(Figure 4A). Even though in the I1207K mutant pleconaril maintains coordination with a water 

molecule at this position, this variant does not form interactions with R1095. The torsional 

fluctuations of the methylisoxazole add to the instability of the water-mediated interactions 

(Figure S3A). Changes are more significant for the I1207R variant. There, interactions 

mediated by this water molecule are partially replaced by interactions with T1093 (Figure 

S3), which, together with the altered conformation of R1095, cause the conformational shift 

seen for the βC strand. 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 Discussion 

For the first time this work characterizes high-level resistance to a CIs of EVs caused by 

I1207K and I1207R substitution. It also confirms single-site substitution of I1092M as a cause 

of high-level resistance (Groarke and Pevear, 1999; Schmidtke et al., 2005). In contrast to 

I1092, I1207 is not part of the ligand binding pocket and confers high-level resistance by an 

unreported molecular mechanism. 

The detected frequency of pleconaril resistance of 1.2 × 10-4 corresponds to previously 

published data for pleconaril-resistant CVB3 (Groarke and Pevear, 1999) and drug-resistant 

mutants of other ssRNA viruses (frequencies reported are between 10-3 and 10-5) (Heinz et 

al., 1989; Stech et al., 1999; Wang et al., 1998). The high mutation rate (Drake et al., 1998; 

Holland et al., 1982) and the existence of quasi species (Domingo, 1992) are caused by (i) 

integration of one mismatched base per 104-105 bases by RNA-dependent RNA polymerase 

of ssRNA viruses and (ii) lack of a proof-reading ability of these enzymes. 

The amino acid substitution I1092M was described earlier by Groarke et al. (Groarke and 

Pevear, 1999), who also detected a CVB3 variant containing two amino acid substitutions, 

I1092L as well as L1207V. However, the impact of the L1207V mutation on the resistant 

phenotype remained unclear. According to the definition of Heinz et al. (Heinz et al., 1989), 

substitutions in I1092 confer high-level resistance (Groarke and Pevear, 1999; Schmidtke et 

al., 2005). This can be explained by the fact that I1092 is one of the 17 amino acids forming 

the hydrophobic pocket of CVB3 (Muckelbauer et al., 1995a). I1092 is situated in the center 

of the pocket and interacts with one of the two methyl groups of pleconaril’s phenyl ring. 

Substitutions of amino acids in the center of the pocket that confer high-level resistance have 

also been reported for rhinoviruses (Badger et al., 1989; Heinz et al., 1989; Ledford et al., 

2005; Ledford et al., 2004; Zhang et al., 2004) and echovirus 11 (Benschop et al., 2015). The 

activity of pleconaril derivatives lacking one or both of the methyl groups of the central phenyl 

ring of pleconaril (Schmidtke et al., 2009) is less affected by the substitution of I1092.  

In contrast to I1092, I1207 is not involved in the formation of the binding pocket 

(Muckelbauer et al., 1995a). Therefore, the observation that mutation of I1207 can lead to a 
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complete loss of drug action is intriguing. MD simulations indicate that substitution of I1207 

by a more bulky, positively charged residue pushes R1095 into the hydrophobic pocket 

toward pleconaril, initiating a cascade of conformational changes that ultimately lead to the 

abolishment of drug action. Importantly, the substitutions appear to not lead to 

conformational rearrangements of the ligand binding site in the apo system, which otherwise 

could completely impair ligand binding. 

The postulated resistance mechanism has similarities with that of influenza virus 

neuraminidase and oseltamivir. Substitution of H274 by a Tyr leads to a substantial loss of 

affinity of oseltamivir for neuraminidase (Wang et al., 2002). The pentanyl substituent of 

oseltamivir forms hydrophobic interactions with the protein. In H274Y variants, the larger Tyr 

pushes the polar side chain of neighboring E276 farther into the binding site, toward the 

hydrophobic pentanyl moiety (Collins et al., 2008). This leads to high-level resistance against 

oseltamivir. In the case of the CVB3 97927 I1207 mutants and pleconaril it is the polar side 

chain of R1095 that is pushed toward the hydrophobic ligand. 

An NCBI database survey with standard nucleotide blast demonstrated a polymorphism at 

position 1092 as well as 1207 in VP1 of CVB3. About 99% of the available CVB3 sequences 

express I1207, three have a V1207 and each one a T1207 or L1207. With respect to 

substitutions at position 1092, 30% of available sequences have isoleucine, 3% leucine and 

67% valine. Thus, viruses with substitutions in position 1092 or 1207 are circulating in nature. 

Obviously, they do not hamper viral replication. This is in good agreement with the results of 

our in vitro studies. Neither antigen expression nor one-step growth curves of CVB3 97927 

and high-level resistant mutants showed any differences. In contrast, attenuated virulence of 

pleconaril-resistant CVB3 with I1092L or I1092M was described in vivo (Groarke and Pevear, 

1999) but highly mouse-pathogenic, pleconaril-resistant CVB3 containing these substitutions 

also exist (Schmidtke et al., 2005; Schmidtke et al., 2007).  

The data presented here underline the vulnerability of the therapeutic efficacy of antivirals 

targeting the hydrophobic pocket of picornaviruses. Knowledge of the key role of residue 
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1207 in CI activity and the new model of a specific resistance mechanism are valuable for 

the rational design of therapeutic agents with superior resistance profiles. 
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Figure captions 

Figure 1. Overview of the two protomers of the CVB3 97927 virus capsid as used for the MD 

simulations. VP1 (purple), VP2 (blue), VP3 (orange), VP4 (cyan). The GH loop and pleconaril are 

green and the second protomer grey. The enlarged section shows VP1 with the location of pleconaril, 

I1092 and I1207. 

 

Figure 2. Replication of wt-CVB3 97927 and three different pleconaril-resistant variants in HeLa 

cells. HeLa cells were infected at a moi of 10 pfu/cell of the respective virus. (A) The influence of 

pleconaril treatment (1 µg/ml) on viral antigen expression was comparatively studied by 

immunohistochemical staining of CVB3-infected HeLa cells 5 h p.i. Virus antigen-positive cells are 

stained in red color. (B) Comparison of single-step life cycles of the selected CVB3 samples. Values 

represent the means and SD of 3 parallel measurements per time point. 
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Figure 3. Backbone RMSD. Development of the backbone RMSD of the (A) complete apo system, 

(B) complete holo system, (C) pocket-forming residues of the apo system and (D) pocket-forming 

residues of the holo system. wt-CVB3 97927 (black), I1207K (orange), I1207R (blue). 

 

Figure 4. Conformational flexibility of VP1 and interactions with pleconaril. (A) In wt-CVB3 

97927, R1095 forms polar interactions with E1105, N1211 and a water molecule. The polar side chain 

of R1095 is hence oriented away from pleconaril toward E1105. (B) In the I1207K mutant, K1207 

forms a salt bridge with E2131 rather than E1105. R1095 points toward the hydrophobic ligand. (C) An 

initially observed salt bridge between R1207 and E1105 in the I1207R mutant is weakened by a 

conformational rearrangement of the βH strand observed during the simulation. In this resistant variant 

the charged side chain of R1095 points deeply into the hydrophobic pocket. (D) B-factors calculated 

for VP1 from the MD trajectories. wt-CVB3 97927 (black), I1207K (orange), I1207R (blue). The 

exposed residues of the GH loop show increased flexibility when compared to the mutants (in 

particular A1200). B-factor plots for VP2, 3 and 4 are provided in Figure S4. 

 

Figure 5. Conformational shifts observed for the βC and βH strands of the wt-CVB3 97927 and 

the two mutants. (A) Representative frame of the wt-CVB3 97927 (grey), I1207K (orange) and 

I1207  (blue) virus strain  selected from the MD trajectories by clustering. (B) Detail of the βH strand 

of the I1207R variant, before (green) and after (blue) the conformational shift. 

 

Figure 6. Conformational shift of the βH-strand induced by the approach of R1095, repelling the 

hydrophobic elements of pleconaril and N1211. (A) RMSD plot of N1211. (B) Distance between the 

aliphatic carbon of the methylisoxazole moiety of pleconaril and the Cα atom of N1211. (C) Distance 

between the guanidino carbon atom of R1095 and the aliphatic carbon of the methylisoxazole group. 

(D) RMSD plot of pleconaril. wt-CVB3 97927 (black), I1207K (orange) and I1207R (blue). 

 

 

Supporting Information 

 

Table S1. Primers used for PCR amplification and sequencing. 
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Table S2. Virus titers determined in one-step replication cycle experiments at different 

hours after infection with CVB3 97-927 variants. 

 

Figure S1. Conformations observed for pleconaril. Representative conformations selected from the 

wt-CVB3 97927 (grey), I1207K (orange) and I1207R (blue) trajectories using an average-linkage 

algorithm for clustering. 

 

Figure S2. Conformational fluctuations of torsion angle Φ of pleconaril. (A) Fluctuations between 

two torsion angle states occur infrequently in the wt-CVB3 97927. They are much stronger for the (B) 

I1207K and (C) I1207R mutants. 

 

Figure S3. Interactions of the isoxazole nitrogen of pleconaril with (A) water and (B) T1093. 

Even though an interaction of pleconaril with a water molecule is maintained in the mutants, the 

interaction network formed is much weaker than that of wt-CVB3 97927 (black). In the I1207R mutant 

(blue) pleconaril is partially switching from an interaction with water to an interaction with T1093. 

 

Figure S4. B-factors calculated for (a) VP2, (b) VP3 and (c) VP4. wt-CVB3 97927 (black), I1207K 

(orange), I1207R (blue). 



Table 1. Influence of amino acid substitutions in position 1092 and 1207 on pleconaril 

susceptibility of CVB3 97927 variants 

CVB3 97927 
n 

1092a 1207a 
plaque reduction 

[%] 

50% inhibitory 

concentration (µg/ml) b 

wt 3 I I 99.99c 0.12 ± 0.09 

variant 1 3 M I no reductiond not active 

variant 2 3 I R no reductiond not active 

variant 3 3 I K no reductiond not active 
a amino acid position in viral protein 1 

b Mean and standard deviation of at least three cytopathic effect inhibition assays. “Not 

active” indicates no inhibition was found after treatment with pleconaril in the non-cytotoxic 

dose range up to 12.5 µg/ml (Makarov et al. 2005).   

c using 1 µg/ml of pleconaril 

d using 8 µg/ml of pleconaril 
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Table 2. Overview of molecular dynamics simulations of the viral protein 1 

CVB3 97927 1092a  1207a state ligand 

wildtype I  I apo none 

variant 2 I  R apo none 

variant 3 I  K apo none 

wildtype I  I holo pleconaril 

variant 2 I  R holo pleconaril 

variant 3 I  K holo pleconaril 
a  amino acid position in viral protein 1 
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