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Abstract 

The Aurora kinase family comprises three serine/threonine kinases, Aurora-A, -B and -C. Among 

these, Aurora-A and -B play central roles in mitosis, whereas Aurora-C executes unique roles in 

meiosis. Overexpression or gene amplification of Aurora kinases have been reported in a broad 

range of human malignancies, pointing to their role as potent oncogenes in tumorigenesis. 

Aurora kinases therefore represent promising targets for anticancer therapeutics. So far, a 

number of Aurora kinase inhibitors (AKIs) have been generated, of which some are currently 

undergoing clinical trials. Recent studies have unveiled novel unexpected functions of Aurora 

kinases during cancer development and the mechanisms underlying the anticancer actions of 

AKIs. In this review, we discuss the most recent advances in Aurora-A kinase research and 

targeted cancer therapy, focusing on the oncogenic roles and signaling pathways of Aurora-A 

kinases in contributing tumorigenesis, the recent preclinical and clinical AKI data and potential 

alternative routes for Aurora-A kinase inhibition. 

Key words: Aurora-A; Aurora kinase inhibitors (AKIs); targeted cancer therapy; mitosis; 

tumorigenesis 
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In mammals, the Aurora family of serine/threonine kinases consists of Aurora-A, -B and -C, 

which share a highly conserved catalytic domain containing auto-phosphorylating sites. The 

catalytic domain is flanked by a very short C-terminal tail and an N-terminal domain of variable 

lengths1,2. In the C-terminal regions of Auroras, there exists a short amino-acid peptide motif 

called “destruction box” (D-box). The D-box is recognized by the anaphase-promoting 

complex/cyclosome (APC/C) for degradation through the ubiquitin/proteasome-dependent 

pathway (Fig. 1A). Despite their structural similarities, the expression patterns, cellular 

localization and physiological functions of these three Aurora kinases are largely distinct. 

Aurora-A and -B are commonly expressed in most cell types whereas Aurora-C is specially 

expressed in the testis. Both Aurora-A and -B play key roles in regulating cell-cycle progression 

from G2 through to cytokinesis. Aurora-C has a unique physiological role in spermatogenesis 

and functions as a chromosomal passenger protein similar to Aurora-B in mitosis2. 

Overexpression of Aurora-A and -B have been found in multiple types of cancer (Table 1), which 

function as oncogenes to promote tumorigenesis, providing potential targets for cancer therapy. 

However, comparatively little information is available regarding the roles of Aurora-C in cancer. 

In this review, we will focus on recent progress as well as the main unresolved issues associated 

with Aurora-A in cancer. 
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1 FUNCTIONS OF AURORA-A 

1.1 In normal cells 

a. Mitosis 

In G1 phase, the level of Aurora-A is rarely detectable. During S phase, a small proportion 

of Aurora-A is first detected at centrosomes. At late G2 phase, Aurora-A accumulates evidently 

at centrosomes and becomes activated 3. During prometaphase and metaphase, active Aurora-A 

localizes on bipolar spindles and spindle poles after nuclear-envelope breakdown (NEBD). At 

the metaphase-anaphase transition, majority of Aurora-A is inactivated and degraded. A small 

fraction of Aurora-A remains on the centrosomes and the spindles at the onset of anaphase, and 

localizes to the spindle midzone and centrosomes during late anaphase and telophase/cytokinesis 

(Fig.1B and C) 2,4. 

Aurora-A is required for execution of a sequence of key mitotic events, such as centrosome 

maturation, mitosis entry, mitotic spindle formation and cytokinesis. Aurora-A induces 

phosphorylation of TACC, leading to the complex formation with XMAP215 promoting 

centrosomal microtubule stabilization5,6. Prior to the initiation of M-phase, Aurora-A couples 

with its partner Bora to induce phosphorylation and activation of PLK17. This finding first 

clarified the sequential interaction between Aurora-A and PLK1 in mitotic entry. Activated PLK1 

then renders the activation of CDK1/cyclin B through degrading the CDK-inhibitory kinase 

WEE1 and activating phosphatase CDC25C. Aurora-A also activates another CDK-activator, the 

phosphatase CDC25B phosphorylation, further supporting its role in enhancing G2/M 

transition8-10. In addition, a LIM protein called Ajuba which is phosphorylated by Aurora-A, 
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induces activation of Aurora-A at late G2, forming a positive feedback loop to initiate mitosis3. 

In prophase, Aurora-A promotes nuclear envelope break down (NEBD)11 and  induces the 

phosphorylation of Eg5, a kinesin-like motor to enhance centrosome separation12. Yet, the 

detailed mechanism for these critical events remains unknown. At the initiation of bipolar 

spindle formation, there also exists a positive feedback loop between Aurora-A and TPX2, 

depletion of either of which causes defect formation of spindles13-16. Aurora-A is also directly 

involved in metaphase chromosome alignment by phosphorylating CENP-A at Ser7 for 

subsequently Aurora-B-dependent phosphorylation of CENP-A and kinetochore function17. 

Moreover, Aurora-A phosphorylates CENP-E, resulting in delivery of PP1 to the kinetochore for 

the stable bi-orientation of chromosomes18. Thus, members of Aurora kinase family appear to 

cooperate in regulating kinetochore function. At spindle checkpoint, Aurora-A induces 

phosphorylation and proteasomal degradation of RASSF1A, relieving RASSF1A-dependent 

inhibition of the APC/Cdc20 complex and culminates in APC/Cdc20 activation to promote cell 

cycle progression19. During anaphase, Aurora-A induces phosphorylation at p150(Glued) Ser19 

and TACC Ser558 in assembling central spindle20,21. At the end of mitosis, the degradation of 

Aurora-A by the APC/Cdh1 complex is required for proper cytokinesis and mitotic exit22,23. 

Taken together, Aurora-A has been demonstrated to participate in many important events of 

mitosis, indicating dysregulation of Aurora-A would cause aberrant cell cycle. 

 

b. Asymmetric division 

Aurora kinases play crucial roles in the regulation of cell polarity and asymmetric 
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division24-27. Activated Aurora-A kinase is responsible for the asymmetric localization of Numb, 

an important cell fate determinant and negative regulator of Notch signaling. Aurora-A activates 

the atypical protein kinase C (aPKC) by phosphorylating Par-6. Following this event, aPKC 

phosphorylates and releases Numb from one side of the cell cortex into one of the two daughter 

cells, which causes Drosophila neural precursor asymmetrical cell division25. Loss of Aurora-A 

leads to defects in asymmetric Numb localization and spindle-to-cortical polarity alignment, 

which suppresses self-renewal of neuroblasts and promotes neuronal differentiation26.  

 

c. Cilia dynamics 

Primary cilia are known to be regulated dynamically throughout the cell cycle. Aurora-A 

negatively regulates ciliary dynamics in proliferating cells, and its activity outside mitosis is 

required for two aspects. First, Aurora-A promotes ciliary resorption (disassembly) at cell cycle 

re-entry. In G0 phase, Aurora-A interacts with enhancer of filamentation 1 (HEF1/NEDD9) to 

phosphorylate and activate histone deacetylase 6 (HDAC6), which in turn removes acetylated 

group on axonemal α-tubulin and causes the disassembly of the primary cilia28. Ca2+/CaM is 

found to enhance the binding between Aurora-A and HEF1, which in turn activates Aurora-A29, 

while NPHP2 directly interact and inhibit Aurora-A30. In the setting of VHL deficiency, elevated 

Aurora-A expression is driven by activated β-catenin31. Both of the above signals regulate ciliary 

disassembly through the HEF1/Aurora-A module. In addition, Pitchfork is assumed to physically 

interact with Aurora-A during cilia disassembly in a way similar to HEF132. Second, Aurora-A 

continuously suppresses cilia regeneration during cell proliferation. As HEF1 levels decreased in 
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G1 phase, the trichoplein/Aurora-A pathway which inhibits cilia formation, is required for G1 

progression33. 

 

1.2 In cancer cells 

Recently, the studies of Aurora-A expression pattern in cancer tissues have demonstrated 

that Aurora-A is overexpressed and diffusely distributed in both nucleus and cytoplasm, 

regardless of their cell-cycle phases34. The aberrant expression and localization of Aurora-A 

strongly implies that Aurora-A promotes tumorigenesis, very likely through distinct mechanisms 

(Fig.2). Aurora-A plays multiple roles in regulating cancer development via promoting cell cycle 

progression, activating cell survival and/or anti-apoptosis signaling, enhancing tumorigenicity of 

oncogenes, and contributing to EMT and stem-like properties of cancer cells. The oncogenic 

roles of Aurora-A may vary in different types of cancer. In neuroblastomas with MYCN gene 

amplification, the function of Aurora-A stabilizing N-Myc and preventing N-Myc degradation 

might be most important. In contrast, in majority of leukemia and solid tumors, the cell cycle 

relevant functions of Aurora-A as overriding cell cycle checkpoints and promoting cell cycle 

progression seems to be dominated. As the expression pattern of Aurora-A in cancer is 

distinguished from that in normal cells, it is possible that Aurora-A may promote tumorigenesis 

through excessive functions in cancer cells. Importantly, the deregulation of functional balance 

between Aurora-A and p53 family is involved in cell cycle checkpoint abnormalities, 

chromosome instability, cell growth and drug-resistance, as well as self-renewal of CSCs. Thus, 

the interaction of Aurora-A and p53 at multiple levels should be taken into account in targeting 
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Aurora-A for cancer therapy.  

a. Proliferation  

Uncontrolled proliferation is a hallmark of cancer cells. Aurora-A has been found to 

promote cell cycle progression through repealing suppressors and/or enhancing promoters of cell 

cycle. For example, inhibition of Aurora-A in ovarian cancer cells increases the expression of 

retinoblastoma protein (pRb), and attenuates G1/S transition 35. Consistently, Aurora-A inhibitor 

MLN8237 induces senescence in cancer cells is associated with upregulation/stabilization of p53, 

p21, and hypophosphorylated pRb 36. In addition, Aurora-A associates with and phosphorylates 

RASSF1A on Thr202 and/or Ser203, which restricts with RASSF1A-mediated growth 

suppression in human tumors 37,38.  

Moreover, in a cyclin B2 transgenic mice model, overexpression of cyclin B2 significantly 

accelerates centrosome separationleads to aneuploidy and tumorigenesis, which is associated 

with Aurora-A mediated hyperactivation of PLK1 39. Specifically, this function of cyclin B2 is 

antagonistically regulated by p53, which inhibits Aurora-A expression and kinase activity. Thus, 

uncontrolled cell cycle progression is involved in Aurora-A promoted tumorigenesis. 

 

b. Genomic instability  

The cell cycle checkpoints ensure the proper cell division, which is essential for maintaining 

the genomic stability. Overexpression of Aurora-A induces the disruption of checkpoints, 

leading to aneuploidy and genomic instability, a hallmark of malignant transformation. First, 

Aurora-A contributes to the abrogation of G2/M DNA damage checkpoint.  Overexpression of 
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Aurora-A abrogates the G2/M DNA damage checkpoint by inducing constitutive activation of 

CDK1 in cancer cells 40,41. Moreover, Aurora-A promotes G2/M transition by phosphorylating 

BRCA1 at Ser308 42. Inhibition of Aurora-A increases BRCA1/2 expression35,43, consistent with 

the finding that a negative correlation between Aurora-A and BRCA2 expression in human 

ovarian carcinoma 35,44. Further studies show that Aurora-A and BRCA1/2 inversely control the 

sensitivity to radio- and chemotherapy through the ATM/Chk2-mediated DNA repair networks45.  

In addition, the mitotic spindle apparatus is a major target in chemotherapy. Paclitaxel 

interferes with microtubule dynamics and arrests cell cycle through activation of the spindle 

assembly checkpoint (SAC). Overexpression of Aurora-A induces dysfunction of SAC, causing 

resistant to paclitaxel-induced apoptosis in tumor cells46. Moreover, Aurora-A abrogates p73 

functions in DNA damage response and SAC pathways. Specifically, p73 forms a cytoplasmic 

ternary complex with the inhibitory checkpoint proteins Mad2 and CDC20. Phosphorylation of 

p73 by Aurora-A at Ser235 causes dissociation of the Mad2-CDC20 complex, thus inactivates 

mitotic SAC and leads to mitotic exit47. Conversely, in p53-deficient cancer cells, inhibition of 

Aurora-A leads to p73 activation and up-regulation of p73 down-stream target genes during 

induction of cell death48. Thus, disruption of checkpoints is involved in Aurora-A induced 

genomic instability. 

 

c. Anti-apoptosis 

Aurora-A promotes cancer cell survival through modulating survival signaling pathways. 

Aurora-A has been implicated in the activation of NF-kB signaling via physical interactions with 
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IKK kinases (IKKa and IKKb) and the phosphorylation of IkBa49-54. Aurora-A also induces cell 

survival and chemoresistance by activation of PI3K/Akt/GSK3 signaling cascades. For example, 

Aurora-A protects ovarian cancer cells from apoptosis induced by chemotherapeutic agents such 

as cisplatin, etoposide and paclitaxel by activating Akt pathway. In concordance, inhibition of 

Aurora kinases suppresses Akt activation, induces apoptotic cell death and overrides drug 

resistance in AML cells54-57. 

Aurora-A also contributes to anti-apoptosis via regulating the modulators of apoptosis. Our 

laboratory discovers that inhibition of Aurora-A increases Bax/Bcl-2 expression ratio, a 

favorable pro-apoptotic predictor for drug response in AML58. The expression of PUMA, another 

modulator of apoptosis, is significantly increased after suppression of Aurora-A by siRNA or 

small-molecule inhibitors59. Inhibition of Aurora-A also induces the expression of the 

pro-apoptotic protein Bim and triggers apoptosis in AML cells. Accordingly, pro-apoptotic 

signals are down-regulated by Aurora-A through the phosphorylation and degradation of BimEL, 

which is the major splice variant of Bim60,61. Thus, Aurora-A cooperates with different signaling 

pathways to maintain cell survival through suppressing apoptosis. 

In addition, Aurora-A promotes cell survival by suppressing autophagy. In either nutrient 

deprivation or normal conditions, overexpression of Aurora-A inhibits autophagy through 

activating mTOR signaling. For example, phosphorylation of both RPS6KB1 and mTOR is 

elevated by overexpression of Aurora-A whereas suppressed by depletion or inhibition of 

Aurora-A in breast cancer 62. Moreover, inhibition of mTOR by PP242 abrogates the changes of 

LC3-II as well as autophagy-associated protein SQSTM1(p62) induced by 
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AURKA-overexpression. Consistently, a positive correlation between Aurora-A and p62 is found 

in breast cancer62,63.  Hence, drug combination with Aurora-A inhibitors targeting autophagy 

may be deeply explored in future clinical cancer therapy. 

 

d. EMT, migration and invasion 

Overexpression of Aurora-A is involved in multiple critical steps of tumor invasion and 

metastasis. First, Aurora-A promotes epithelial-mesenchymal transition (EMT) through inducing 

SLUG, FBN1 expression, while suppressing E-cadherin, b-catenin and p5364. Consistently, our 

previous study shows that inhibition of Aurora-A restores membrane expression of E-cadherin 

and b-catenin, suggesting a reversed mesenchymal-epithelial transition process in cancer cells65.  

Second, Aurora-A promotes tumor cell migration and invasion through activating several 

oncogenic signaling including AKT66, MAPK65, Coffilin-F-actin67, SRC68, focal adhesion kinase 

(FAK)69 pathways. For example, overexpession of Aurora-A increased the expression of the 

cofilin phosphatase Slingshot-1 (SSH1), contributing to cofilin activation and cell migration67. 

On the other hand, oncogenic factors contribute to cancer cell migration and invasion via 

activation and/or accumulation of Aurora-A. For example, the hypoxia-inducible factor 1α 

(HIF-1α) transcriptionally upregulates Aurora-A expression by binding to and activating hypoxia 

responsive elements (HRE) of AURKA promoter, overexpressed Aurora-A then enhances 

hepatocelluar carcinoma cells  migration 70. Additionally, the Raf-1 signaling induces the 

stabilization and accumulation of Aurora-A, which subsequently induces phosphorylation and 

nuclear translocation of SMAD5, contributing to distant metastasis 64.  
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Third, overexpressed Aurora-A is involved in extracellular matrix degradation, by which 

tumor cells overcome physical barriers to cell invasion and extravasation. For example, 

overexpression of Aurora-A enhances the expression and secretion of matrix metalloproteinases 

(MMP)-2 associating the activation of p38 MAPK and Akt signaling71. Similarly, overexpression 

of Aurora-A increases both mRNA and protein levels of MMP-7 and MMP-10, consistent with 

the finding that a significant positively correlation among Aurora-A, MMP-7 and MMP-10 

expressions in head and neck cancer72. Thus, Aurora-A plays a critical role in regulating tumor 

cell mobility, providing a potential target for preventing cancer metastasis. 

 

e. Stemness 

Cancer stem cells (CSCs) are a distinct subset of cancer cells with self-renew and 

cancer-reconstitution capacity73. Aurora-A overexpression is observed in CSC-enriched 

populations, including breast cancer64, ovarian cancer50, acute myelogenous leukemia (AML)74 

and mesenchymal stem cells (MSCs) from myelodysplastic syndromes (MDS) patients75. 

Consistent overexpression of Aurora-A in CSCs indicates a critical role in cancer stem-like 

properties (eg. therapy-resistance, tumorigenesis and EMT). Indeed, Aurora-A inhibition has 

been shown to impair stem-like functions in various cancers including ovarian cancer50, AML74, 

chronic myeloid leukemia (CML)76, breast cancer77, glioma78 and glioblastoma79,80. The 

interaction between Aurora-A and Wnt-b-catenin pathway is involved in CSCs regulation in 

both CML and head and neck cancer81. The β-catenin/TCF4 complex transcriptionally activates 

AURKA, and Aurora-A in turn inhibits GSK3b, stabilizes b-catenin and further strengthens the 
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core signaling for stemness.  

Moreover, Aurora-A regulates CSCs not only in cytoplasm but also in nucleus. 

Nuclear-localized Aurora-A is observed in both CML76 and colorectal cancer stem cells82. 

Indeed, overexpression of Aurora-A induces the expression of core stem cell factors including 

MYC, SOX264 and OCT477. Notably, we have recently disclosed a new function of nuclear 

Aurora-A, as a trans-activating factor to induce MYC gene expression in a kinase independent 

manner, by which Aurora-A promotes breast CSCs phenotype83. Thus, Aurora-A promotes CSCs 

through both conical and non-conical mechanisms. 

 

1.3 Oncogenic interacting molecules 

There are more than 140 molecules interacting with Aurora-A, including substrates of 

Aurora-A and its activators and inhibitors, as well as the proteins that are involved in the 

transcription or degradation of Aurora-A (http://cpdb.molgen.mpg.de/CPDB). In cancer, 

Aurora-A integrates its functions with multiple oncogenic and tumor suppressive proteins to 

promote tumorigenesis. 

a. Interaction with tumor suppressors(Fig.3) 

The interaction between Aurora-A and p53 has been intensively studied. Aurora-A suppresses 

p53 function through inducing phosphorylation of p53. Phosphorylation (Ser315) of p53 by 

Aurora-A induces MDM2-mediated destabilization of p5384. In addition, Aurora-A 

phosphorylates p53 at Ser215, leading to abrogation of p53 DNA binding and transactivation 

activity85. In a feedback loop, p53 negatively regulates Aurora-A both transcriptionally and 
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posttranslationally86. In p53 deficient cells, CDK2 is activated by reducing p21Cip1 expression, 

resulting in pRb hyperphosphorylation and its dissociation from transcriptional factor E2F3. 

E2F3 then binds to the AURKA gene promoter and transactivatesAurora-A expression. 

Deficiency in p53 also causes the downregulation of Fbw7a, a component of E3 ligase targeting 

Aurora-A for degradation86. Moreover, p53 suppresses the oncogenic activity of Aurora-A in a 

transactivation-independent manner. Indeed, p53 inhibits Aurora-A kinase activity via direct 

interaction with the latter's Aurora box 87. Thus, the reciprocal relationship between Aurora-A 

and p53 might have important implications for anticancer therapy.  

 

b. Interaction with oncogenic proteins(Fig.4) 

MYC proteins are major drivers of a range of cancers. Deregulation of MYCN expression 

is implicated in the development of neuroblastoma. Aurora-A forms a complex with the 

oncogenic N-Myc protein, which protects N-Myc from proteasomal degradation mediated by the 

Fbxw7 ubiquitin ligase88. Moreover, Aurora-A-mediated stabilization of N-Myc up-regulates 

VEGF expression and promotes angiogenesis in neuroblastomas89. The Aurora-A inhibitors 

MLN8054 and MLN8237 disrupt this Aurora-A/N-Myc complex and promotes N-Myc 

degradation, leading to tumor regression and prolonged survival in a mouse model of 

Myc-driven neuroblastoma90. Similarly, the other Aurora kinase inhibitor, CCT137690, decreases 

N-Myc protein expression and sensitizes MYCN-amplified neuroblastoma in vivo91. So far, a 

class of conformation-disrupting inhibitors of Aurora-A that destabilizes interactions between 

Aurora-A and MYCN has shown effect of driving degradation of MYCN protein in vitro and in 
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vivo, across MYCN-driven cancers92, which delineates a kinase-independent function of 

Aurora-A on proteolytic degradation of MYCN. Concurrent AURKA and MYCN gene 

amplifications are clinical indications of lethal treatment-related neuroendocrine prostate 

cancer93. Recently, LIN28B, which promoting MYCN expression, has been identified as a 

predisposition gene and an oncogenic driver in neuroblastoma subsets. Further study has found 

that LIN28B coordinates the expression of the oncogenes RAN and AURKA to promote 

neuroblastoma tumorigenesis 94.  

In addition, Aurora-A enhances both the expression and transcriptional activity of c-Myc95. 

Specifically, nuclear Aurora-A forms a complex with hnRNPK on MYC promoter, which activate 

MYC transcription83. Conversely, c-Myc regulates Aurora-A expression by directly inducing its 

transcription in Myc-driven B-cell lymphomas96. Accordingly, the Myc transcription factor and 

its Max binding partner are associated with AURKA promoter during the G2 phase of the cell 

cycle97. Thus, targeting Aurora-A could have the potential to block other undruggable 

oncoprotein as MYC. 
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2. ABERRANT AURORA-A IN CLINICAL PROGNOSIS  

2.1 Aberrant Aurora-A in survival 

Aurora-A overexpression predicts adverse prognosis in a number of malignancies. In 

node-negative breast cancer patients, Aurora-A expression is associated with worse prognosis in 

carcinomas with the molecular subtype ER+/HER2- but not in ER-/HER2- or in HER2+ 

carcinomas98. Moreover, Aurora-A outperforms other proliferation markers, like Ki67, as an 

independent predictor for breast cancer-specific survival in ER-positive breast cancer patients, 

suggesting its potential use in routine clinical practice99. Furthermore, nuclear expression of 

Aurora-A is correlated with expression of both oestrogen and progesterone receptors in breast 

cancer and predicts poor clinical outcome in ovarian cancer100. In addition, increased Aurora-A 

gene copy number is associated with poor outcome among patients with KRAS wild-type 

metastatic colorectal cancers101. In agreement, we have described a negative correlation between 

Aurora-A overexpression and median survival time in laryngeal squamous cell carcinoma 

patients66. In non-small cell lung cancer, Aurora-A expression is significantly up-regulated in 

tumor samples and is associated with tumor de-differentiation102.  

 

2.2 Aberrant Aurora-A in metastasis and drug-resistance 

Recent studies indicate that Aurora-A is a reliable biomarker for accurate risk definition in 

metastasis and drug resistance. Our laboratory has shown that Aurora-A expression predicts the 

risk of distant metastasis and promises a potential therapeutic target in triple-negative breast 

cancer103. We and others have found that Aurora-A expression is positively correlated with 
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clinical stage, cranial bone and local invasion, as well as poor survival, in nasopharyngeal 

carcinoma65,104. Additionally, Aurora-A is an important factor for predicting clinical outcome and 

the presence of vascular invasion in urothelial carcinomas105. Overexpression of Aurora-A 

protein correlates with the invasive malignancy of esophageal squamous cell carcinoma106. 

Moreover, the correlation between Aurora-A polymorphisms and clinical outcomes in esophageal 

cancer has also been investigated. The variant Phe31/Ile has an adverse effect on the response to 

cisplatin-based therapy, whereas the variant 91A-169G haplotype carries a significant risk for a 

lack of a complete response and a higher rate of recurrence107. As summarized in Table 1, 

Aurora-A is overexpressed in numerous types of cancer and its expression is associated with 

poor patient prognosis. These findings make the AURKA gene a strong candidate as a 

low-penetrance tumor-susceptibility gene in both mice and humans108. 
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3.  TARGETING AURORA-A KINASE 

Because of the important roles of Aurora-A kinase in tumorigenesis, numerous AKIs have 

been developed. Indeed, these AKIs are in various stages of preclinical and clinical evaluations, 

and some have yielded encouraging results (Table 2). 

3.1 AKIs 

3.11 Specific Aurora-A kinase inhibitors 

MLN8054 

An unprecedented kinase inhibitor framework has been developed for a compound known as 

MLN8054. It has a benzazepine core scaffold with a fused amino pyrimidine ring and an aryl 

carboxylic acid. It is an ATP-competitive, reversible inhibitor of recombinant Aurora-A kinase 

with high specificity (IC50 of 4 nM). MLN8054 exhibits a selectivity of >40-fold for Aurora-A 

compared with another family member Aurora-B109. In both human HCT-116 colorectal and 

PC-3 prostate tumor cells, treatment with 1 µM MLN8054 delays G2/M progression. MLN8054 

effectively inhibits the growth of multiple human cancer cell types (IC50 values ranging from 

0.11 to 1.43 µM). MLN8054 significantly inhibits the growth of PC-3 tumor xenografts in nude 

mice at doses of 30 mg/kg QD and BID [tumor growth inhibition (TGI), 81%, and 93%]. 

Remarkably, TGI is sustained even after treatment is withdrawn109. In addition, MLN8054 can 

induce senescence in HCT-116 cells both in vitro and in vivo. This effect is related to the 

up-regulation and stabilization of p53 and p21Cip1, and the hypophosphorylation and inactivation 

of pRb36. Further, MLN8054 can confer radio-sensitivity to androgen-insensitive 

prostate cancer cells in vitro and in vivo110. 
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A phase I study of MLN8054 in patients with advanced solid tumors has been promising. It 

defines an estimated maximum tolerated dose (MTD) of 60 mg QID/M for 14 days. MLN8054 is 

absorbed rapidly, the exposure dose proportional, and the terminal half-life 30-40 h. Three (5%) 

patients had stable disease for >6 cycles111. Mitotic cells in skin and tumor biopsies obtained 

from patients who received MLN8054 orally for 7 consecutive days exhibited defects in 

chromosome alignment and spindle bipolarity, which are new biomarkers of Aurora-A inhibition 

independent of mitotic arrest or slippage112. However, only some patients were shown able to 

maintain a steady-state plasma concentration of 2 µM, which is estimated to be necessary for 

antitumor activity. 

 

MLN8237 

MLN8237 (Alisertib) was developed by Millennium Pharmaceuticals Company from the 

predecessor MLN8054. MLN8237 is a second-generation compound and the first orally 

bioavailable, highly selective small molecule inhibitor of Aurora-A kinase, with an IC50 of 1 nM 

(Sells T, AACR Annual Meeting, 2008). MLN8237 binds to and inhibits Aurora-A kinase in cells 

with selectivity over Aurora-B kinase of greater than 200-fold. It functions by disrupting the 

assembly of the mitotic spindle apparatus and chromosomal segregation, and also through 

inhibiting cell proliferation in vitro and tumor growth in solid tumor xenograft models113.  

MLN8237 was tested against the Pediatric Preclinical Testing Program (PPTP) in vitro panel 

and exhibited a high efficacy (median IC50 of 61 nM)114, particular towards ALL cell lines. While 

ALL cell lines were more sensitive and the rhabdomyosarcoma cell lines less sensitive to 
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MLN8237 compared to other PPTP cell lines. Moreover, high levels of in vivo activity were also 

observed against the ALL xenograft panel. MLN8237 significantly increased event-free survival 

(EFS) compared with controls in the majority of solid tumor models (32/40; 80%) and all (6/6; 

100%) the ALL xenografts. Maintained complete responses (CRs) were also observed in a high 

number of neuroblastoma xenografts (3/7) 114. MLN8237 has also been reported to induce early 

apoptosis of human T-cell leukemia virus type 1 (HTLV-1)-infected T-cell lines without the 

induction of polyploidy, and is associated with the activation of a p53-dependent post-mitotic G1 

checkpoint115.  

Treatment of cultured multiple myeloma (MM) cells with MLN8237 (0.5 µM) inhibits the 

phosphorylation of Aurora-A kinase rather than Aurora-B-mediated histone H3 

phosphorylation116. MLN8237 inhibits the proliferation of MM cells and can overcome the 

protective effect of the BM environment on MM cells in vitro (IC50: 0.003-1.71 µM). MLN8237 

also induces a 2- to 6-fold increase in cells at the G2/M phase cell population, apoptosis and 

senescence in MM cells and this is related to the upregulation of p53, p21Cip1 and p27Kip1 

expression116. MLN8237 is also synergistic with dexamethasone (CI<1) and additive/synergistic 

with doxorubicin or bortezomib (CI±1) against the human multiple myeloma OPM1 cells. In 

MM cells, MLN8237 activates stress-activated protein kinase (pSAPK/JNK; Thr183/Tyr185) 

phosphorylation, but downregulates phosphorylation of Cell division cycle 2 (Cdc2; Tyr15) and 

Checkpoint 1 (Chk1; Ser345) proteins116. In an MM xenograft murine model, tumor burden was 

significantly reduced, and overall survival significantly prolonged in animals treated with 

MLN8237 (30 mg/kg for 21 days) compared with controls. Importantly, there were no significant 
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changes in weight or signs of toxicity or infection in animals receiving MLN8237116, suggesting 

minimum side effects. 

MLN8237 has also been evaluated against chronic myeloid leukemia (CML) cells 

expressing non-mutated and mutated forms of BCR-ABL (breakpoint cluster region-Abelson 

kinase). MLN8237 treatment disrupts cell cycle kinetics and induces apoptosis by reducing the 

expression of the large inhibitor of apoptosis protein Apollon, which promotes the efficacy of 

nilotinib in vitro and in vivo. In contrast to other Aurora kinase inhibitors, MLN8237 does not 

significantly affect BCR-ABL activity117.  

In addition, treatment with MLN8237 also inhibits peripheral T-cell lymphomas (PTCL) cell 

proliferation (IC50: 80-100 nM). MLN8237 induces endoreduplication and apoptosis correlated 

with inhibition of histone H3 and Aurora-A phosphorylation in these T-cell lymphomas118. 

MLN8237 has also been tested recently in malignant bladder cancer cells in vitro and in vivo 

models, where it induces cell cycle arrest, aneuploidy, mitotic spindle failure, and apoptosis. It 

also acts synergistically with either paclitaxel or gemcitabine in vitro to cause cell death. 

MLN8237 also inhibits bladder cancer tumor growth when administered orally in a mouse 

bladder cancer xenograft model119. Furthermore, MLN8237 potently inhibits the proliferation of 

tumor stem-like cells and potentiates the effects of temozolomide and ionizing radiation in 

glioblastoma80. 

A number of phase I and II studies have been carried out on MLN8237 to establish the safe 

dose range, the side effects and potential efficacy of the drug. A phase I study of MLN8237 in 

patients with advanced solid tumors establishes the MTD for the 7- and 21-day schedules as 50 
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mg twice daily and 50 mg once daily, respectively120. Another pediatric phase I trial and 

pharmacokinetic study shows that children can tolerate high doses of MLN8237 (80 mg/m2/d 

once daily for 7 days)121. After MLN8237 treatment, stable disease has been observed with 

durable effects with repeated treatment cycles over 6 months120. In another phase I study in 

adults (87 patients) with advanced solid tumors, one MLN8237 treated patient (1%) achieved a 

partial response lasting for more than 1 year, whereas 20 (23%) patients achieved stable disease 

for ≥3 months122. Phase II trials of MLN8237 in patients with ovarian, fallopian tube, peritoneal 

carcinoma, acute myelogenous leukemia and high-grade myelodysplastic syndrome have also 

been carried out and completed. Responses of 6.9-11.1 months in duration were observed in 3 

(10%) patients with platinum-resistant ovarian cancer, whereas 16 (52%) patients achieved stable 

disease with a mean duration of response of 2.86 months123. A phase II study of investigational 

MLN8237 in acute myelogenous leukemia and myelodysplastic syndromes reveals that AKI may 

induce leukemic cell senescence124. Recently, a phase II study to investigate the safety and 

activity of single-agent MLN8237 in patients with predefined muti-types of advanced solid 

tumors has been completed (NCT01045421) 125. The objective response was reported as nine 

(18%, 95% CI 9-32) of 49 women with breast cancer, ten (21%, 10-35) of 48 participants with 

small-cell lung cancer, one (4%, 0-22) of 23 patients with non-small-cell lung cancer, four (9%, 

2-21) of 45 people with head and neck squamous-cell carcinoma, and four (9%, 2-20) of 47 

individuals with gastro-oesophageal adenocarcinoma; all were partial responses. Adverse events 

were similar across tumor types68. In fact, MLN8237 is the first oral selective Aurora-A kinase 

inhibitor to enter phase III clinical trials and is currently being assessed in patients with relapsed 
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or refractory peripheral T-cell lymphoma (NCT01482962). 

 

ENMD-2076 

ENMD-2076, developed by EntreMed, is another potent and selective inhibitor of Aurora-A 

and Flt3 (IC50 values of 14 and 1.86 nM), as measured by biochemical assays. It is the tartrate 

salt of a vinyl-pyrimidine free base previously referred to as ENMD-981693 or MKC-1693. This 

molecule also inhibits 15 other oncogenic kinases including multiple kinases involved in 

angiogenesis, such as VEGFR2/KDR, VEGFR3, FGFR1, FGFR2, and PDGFRa with IC50 

values of less than 100 nM. ENMD-2076 is not significantly active against Aurora-B kinase 

(IC50=350 nM)126.  

The activity of ENMD-2076 has been evaluated against cell lines derived from both 

hematological and solid tumors using in vitro assays. ENMD-2076 effectively inhibits the 

proliferation of solid tumor cell lines (mean IC50 value of 0.4 nM) and leukemia cell lines (IC50 

values ranging from 0.025 to 0.53 nM). Crucially, among this panel, the biphenotypic 

B-myelomonocytic leukemia cell line MV4-11, which expresses the Flt-3 internal tandem 

duplication mutation127, is the most sensitive, indicating its high specificity and potency of 

ENMD-2076 for Aurora-A and Flt-3126. In these tissue culture models, ENMD-2076 induces a 

dose-dependent increase in G2/M phase arrest and subsequent apoptotic cell death, consistent 

with its selective inhibition of Aurora-A rather than Aurora-B126. ENMD-2076 has also been 

observed to induce G2/M cell cycle arrest and dose-dependent cytotoxicity faster and more 

efficiently than radiation treatment alone in canine mast cell tumor cell lines128. 
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ENMD-2076 can also induce regression or complete inhibition of tumor growth in vivo at 

well-tolerated doses in tumor xenograft models derived from breast carcinoma, colon cancer, 

melanoma, leukemia, and multiple myeloma cell lines. For example, treatment with 75 mg/kg 

ENMD-2076 can inhibit tumor growth in a breast cancer MDA-MB-231 xenograft model 

(TGI=54%), and at a higher dose (302 mg/kg) it can almost completely abrogates tumor growth 

(TGI=99%). In both cases, ENMD-2076 treatment is also accompanied by a substantial decrease 

in vessel density126. The activity of ENMD-2076 against multiple myeloma (MM) has also been 

tested both in vitro and in vivo. ENMD-2076 displays extensive cytotoxicity against MM cell 

lines (IM9, ARH-77, U266, RPMI 8226, MM.1S, MM.1R, NCI-H929) and primary MM cells 

derived from patients, with minimal cytotoxicity against hematopoietic progenitors. Inhibition of 

the PI3K/AKT pathway and downregulation of survivin and X-linked inhibitor of apoptosis 

(XIAP) have been observed almost immediately (6 h) after treatment. Oral treatment with 

ENMD-2076 (50, 100, 200 mg/kg/d) can result in a dose-dependent inhibition of tumor growth 

in a H929 human plasmacytoma xenograft model. A significant reduction in phospho-histone H3 

(pH3), Ki-67, p-FGFR3 and angiogenesis as well as a significant increase in cleaved caspase-3 

were observed in tumors129.  

Data from the one phase I clinical trial with ENMD-2076 given orally (once-daily 60-200 

mg/m2) to 67 patients with ovarian cancer, colorectal cancer, or refractory advanced solid 

malignancies, are now available. The results show that ENMD-2076 is generally well tolerated 

(MTD=160 mg/m2), but hypertension and neutropenia are also observed in small number of 

patients (2 patients at 200 mg/m2). Decreased plasma sVEGFR2 is observed in patients 



 25 

post-treatment. Intriguingly, two patients with platinum refractory/resistant ovarian cancer have 

shown RECIST partial responses, indicating a potential application for ENMD-2076 in platinum 

resistant ovarian cancer patients. ENMD-2076 demonstrates a linear pharmacokinetic profile 

with a rapid absorption phase (Tmax=3-7.8 h) and a relatively long half-life (t1/2 of 27.3 to 38.3 h 

after a single dose) 130. A phase II study of ENMD-2076 in previously treated locally advanced 

and metastatic triple-negative breast cancer is ongoing (NCT01639248). 

 

3.12 Pan-Aurora kinase inhibitors 

VX-680 (Tozasertib, MK-0457) 

VX-680, developed by Vertex Pharmaceuticals, Cambridge, MA, is a highly potent, 

selective and reversible inhibitor that targets the ATP-binding sites of Aurora-A, -B and -C (Ki 

values of 0.6, 18 and 4.6 nM, respectively)131. VX-680 causes the accumulation of cells with 

≥4N DNA content and inhibits histone H3 phosphorylation at Ser10. It also inhibits cell cycle 

progression and proliferation, and induces apoptosis in a wide variety of tumor cell types (IC50 

values ranging from 15 to 113 nM). VX-680 can also abolish the colony formation ability of 

primary leukemic cells possessing internal tandem duplication (ITD) mutations of FLT3131. 

Consistent with these results, we have demonstrated that VX-680 induces apoptosis in acute 

myeloid leukemia with the FLT3/ITD mutation58.  

When used in nude mice xenograft models, VX-680 treatment causes substantial reductions in 

tumor sizes (75 mg/kg/2d for 13 days; the TGI: 98%). A higher dose of VX-680 (2 mg/kg/h) 

yields even better efficacy, with a compelling 56% decrease in mean tumor volume131. 
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Furthermore, in one study VX-680 exhibits potent inhibitory activity against BCR-ABL bearing 

the T315I mutation in patient samples132. In another study, VX-680 has been shown to display 

significant effects on primary human Philadelphia chromosome-positive ALL (Ph+ALL) cells 

both with and without the T315I mutation. VX-680 inhibits the tyrosine phosphorylation 

downstream of BCR-ABL, and induces apoptosis in Ph+ALL cells133. VX-680 also promotes 

apoptosis in imatinib-resistant primary CML specimens expressing the T315I and other 

BCR-ABL mutations without affecting the wild-type BCR-ABL kinase activity134. In a phase I 

study of patients with advanced solid tumors half of the patients receiving VX-680 have attained 

‘stable disease’ pathological status (MTD: 64 mg/h)135. VX-680 has been further assessed in 

phase II clinical trials in patients with T315I mutant CML, Ph+ALL and non-small-cell lung 

cancer (NCT00405054 and NCT00290550). However, all the clinical trials of VX-680 had been 

terminated due to the off-target effect of QTc prolongation observed 136. 

  

AMG-900 

AMG 900 is an orally bioavailable, potent and selective inhibitor of Aurora-A, -B and -C (Ki 

values of 5, 4 and 1 nM, respectively)137. In contrast to paclitaxel and three well-characterized 

Aurora kinase inhibitors (AZD1152, VX-680, and PHA-739358), AMG-900 exhibits uniform 

potency across tumor cell lines, including the multidrug resistant (MDR) P-gp- and 

BCRP-expressing cell lines, as well as an AZD1152-resistant HCT116 variant cell line that 

carries a missense mutation in one allele of the Aurora-B gene (W221L). AMG-900 induces 

polyploidy in tumor cells and increases p53 and p21Cip1 expression, consistent with the inhibition 
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of Aurora-B activity. AMG-900 also displays significant antitumor activity in a panel of human 

xenograft models (TGI: 50%-97%), including three the multidrug resistant models representing 

five distinct tumor types137.  

Another pre-clinical study has demonstrated that AMG-900 potentiates the activity of 

microtubule-targeting agents in human metastatic breast cancer models. Combining AMG-900 

with ixabepilone results in the regression of paclitaxel resistant MDA-MB-231 (F11) breast 

carcinoma xenografts, and more than half of the tumors failed to regrow after the cessation of 

drug treatment138. 

AMG-900 exhibits acceptable pharmacokinetic (PK) properties in preclinical studies, with 

low-to-moderate clearance and a small volume of distribution. It also has a terminal elimination 

half-life ranging from 0.6 to 2.4 h, and adequate absorption with an oral bioavailability of 31% to 

107%. AMG 900 is now undergoing a phase I clinical trials to evaluate safety, tolerability and 

PK in advanced solid tumors (NCT00858377). Another clinical study of AMG 900 for oral 

administration in adult subjects with acute leukemia and related disorders has been completed, 

and the results are yet to be announced (NCT01380756). 

 

SNS-314 

Developed by Sunesis Pharmaceuticals, CA, USA, SNS-314 is a potent and selective 

pan-Aurora kinase inhibitor (IC50 of 9, 31 and 3 nM against Aurora-A, -B and -C, 

respectively)139. Seven kinases, including Trk A/B, Flt4, Fms, Axl, c-Raf and DDR2, are also 

inhibited by SNS-314, with IC50s within 100-fold of Aurora-A. This compound displays potent 
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activity and inhibits histone H3 phosphorylation at Ser10 and cellular proliferation of the 

HCT116 cell line at low concentrations (EC50 =13 nM). SNS-314 also inhibits the proliferation 

of a diverse panel of cancer cell lines with IC50 values of 1.8-23 nM, independent of Aurora-A or 

-B protein expression140. SNS-314 has also been evaluated against the anaplastic thyroid 

cancer-derived cell lines CAL-62, 8305C, 8505C and BHT-101141 with high potency (IC50 values 

ranging from 2.6 to 26.6 nM).  

SNS-314 exhibits significant in vivo antitumor activities in a number of pre-clinical 

xenograft models. For example, intermittent dosing (150 mg/kg) with SNS-314 results in 96% 

tumor growth inhibition (day 36) in an HCT116 mouse xenograft model. Treatment with 

SNS-314 (170 mg/kg) also results in significant repression of tumor activity (54-91%) in a 

number of tumour xenograft models, including five tumor types with six cancer cell lines: 

MDA-MB-231, PC-3, H129, Calu-6, A2780 and A375140. SNS-314 exhibits dosing flexibility in 

vivo as tumor growth is reduced under a variety of dosing schedules, including weekly, bi-weekly, 

and 5 days on/9 days off140. In addition, sequential administration of SNS-314 with conventional 

chemotherapeutic compounds, such as carboplatin, gemcitabine, 5-FU, daunomycin, and SN-38, 

produced additive anti-proliferative effects and synergistic efficacy when administered in 

combination with gemcitabine, docetaxel, or vincristine. In vivo, SNS-314 also potentiated the 

antitumor activity of docetaxel in xenografts142. A phase I clinical trial of SNS-314 for the 

treatment of patients with advanced solid tumors has been completed and the result is pending 

(NCT00519662). 
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PF-03814735 

PF-03814735 is developed by Pfizer Inc., NY, USA. It is a novel, potent, orally bioavailable 

and reversible inhibitor of both Aurora-A and -B kinase activity (IC50 values of 0.8 and 5 nM, 

respectively)143. Besides Aurora kinases, PF-03814735 also prominently inhibits several other 

protein kinases, including Flt1, FAK, TrkA, Met and FGFR1 (IC50=10, 22, 30, 100 and 100 nM, 

respectively). The cellular effects of PF-03814735 on Aurora-A and -B include reduced levels of 

phospho-Aurora-A (Thr 288 with IC50~20 nM) and phosphohistone H3 (with IC50~50 nM) in 

MDA-MB-231 breast cancer cells143. 

Mechanistically, this compound functions by inducing cytokinesis block and resulting in cell 

proliferation inhibition, mitotic catastrophe and polyploidy143. Oral administration of 

PF-03814735 (once-daily of ≥20 mg/kg for 10 days) to mice bearing HCT-116 xenografts has 

been shown to result in significant and dose-dependent tumor growth inhibition in mice (≥50% 

relative to vehicle-treated mice). This tumor growth inhibition is associated with reduced 

phosphorylated histone H3 levels. Significant single-agent antitumor efficacy has been observed 

in five additional xenograft tumor models of A2780 ovarian carcinoma, MDA-MB-231 breast 

carcinoma, colo-205 and SW620 colorectal carcinomas, and HL-60 acute promyelocytic 

leukemia143.  

Recent research has indicated that small cell lung cancer (SCLC) and, to a lesser extent, 

colon cancer cell lines are extremely sensitive to PF-03814735. The status of the MYC gene 

family and retinoblastoma pathway members significantly correlates with the efficacy of 

PF-03814735, whereas Aurora-A and -B expression are unexpectedly weak predictors of 
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response144. In vivo experiments with two small cell lung cancer (SCLC) xenograft models have 

confirmed the sensitivity of MYC gene-driven models to PF-03814735.  

A phase I pharmacokinetic and pharmacodynamic study has demonstrated that PF-03814735 

is generally well tolerated, with manageable toxicities145.  

 

CYC116 

CYC116 is developed by Cyclacel Pharmaceuticals, Inc., Scotland, UK. This compound 

potently inhibits Aurora-A and -B kinases with high specificities (Ki values of 8.0 and 9.2 nM, 

respectively). It also inhibits VEGFR2 (Ki=44 nM) and CDKs (Ki~50 fold higher than that of 

VEGFR2), but it does not have significant effects toward other kinases, such as PKA, Akt/PKB, 

PKC, GSK-3 a/b, CK2, Plk1 and SAPK2A146.  

CYC116 has been demonstrated to inhibit the proliferation of the MV4-11 AML cell line 

with an IC50 value of 34 nM and suppress the growth of various solid tumor and leukemia cell 

lines. These growth inhibitory effects have been shown to correlate with Aurora-A/B 

inhibition146.  

CYC116 is orally bioavailable and possesses anticancer activity in vivo. For example, oral 

treatment with CYC116 (75 and 100 mg/kg) led to a delay (2.3- and 5.8-day, respectively) of 

tumor growth, respectively, in a NCI-H460 large cell lung cancer xenograft model146. The phase 

I clinical evaluation of this compound in patients with advanced solid tumors has been 

terminated (NCT00560716), but the reason is not disclose. 
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PHA-739358 (Danusertib) 

PHA-739358, developed by Nerviano Medical Sciences, exhibits strong activity against 

Aurora-A, -B, and -C (IC50=13, 79, and 61 nM, respectively) and it also possesses 

cross-reactivities with specific receptor tyrosine kinases, such as FGFR1, Abl, Ret and Trka 

(IC50=47, 25, 31, and 31 nM)147. In HeLa cells, PHA-739358 (0.1 µM) inhibits both Aurora-A 

and -B. PHA-739358 also suppresses Abl, Ret, and Trk-A in cell lines in which these proteins are 

relevant for growth or survival. Furthermore, PHA-739358 also selectively inhibits the FGFR1 

pathway but not the EGFR pathway in NIH-3T3 cells. 

The anti-proliferative effect of PHA-739358 has been demonstrated in several tumor cell 

lines covering different cancer types, including colon, breast, prostate, lung, and ovarian 

cancers136. In most of the cell lines tested, treatment of PHA-739358 resulted in inducing 

polyploidy without a strong impact on the timing of mitosis, indicating that the dominant 

phenotype is related to Aurora-B inhibition. Because Aurora-A inhibition would rather result in a 

G2/M arrest. In p53 wild-type MEFs, PHA-739358 induces a 4N accumulation, and 

subsequently apoptosis, most likely through activation of the postmitotic G1 checkpoint. By 

contrast, after treatment with PHA-739358, p53-deficient MEFs cells do not arrest with a 4N 

DNA content but continue through additional rounds of DNA synthesis to become >8N. In 

addition, treatment with PHA-739358 lead to increased p53 protein levels and an associated 

increase in p21Cip1 protein in HCT-116 cells147. Thus, the p53 status might contribute to the 

variations in sensitivity of different cell lines to PHA-739358 147. 

PHA-739358 has been also tested in chronic myeloid leukaemia (CML) cell lines and 
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primary cells derived from CML patients148. Anti-proliferative effects of PHA-739358 are 

observed in a broad panel of leukemic cell lines irrespective of their BCR-ABL mutational status. 

Moreover, PHA-739358 induced strong anti-proliferative effects in CD34+ stem/progenitor cells 

derived from untreated CML patients (IC50=0.005 µM) and from Imatinib-resistant individuals in 

chronic phase or blast crisis (IC50=0.009 µM), including those harboring the T315I 

Imatinib-resistant mutation (IC50=0.019 µM). PHA-739358 acts via the combined inhibition of 

BCR-ABL and Aurora kinases, as indicated by the significant decrease in the phosphorylation of 

both histone H3 and CrkL (a downstream target of BCR-ABL) upon treatment with PHA-739358. 

The activity of PHA-739358 against both Ph-positive and -negative ALL cells has recently been 

reported149,150. Furthermore, PHA-739358 also induces apoptosis and inhibits proliferation and 

migration in hepatocellular carcinoma and melanoma cells151. 

The antitumor activity of PHA-739358 in vivo has been evaluated in several human tumor 

xenograft models in nude mice as well as syngeneic rat models, such as transgenic and 

carcinogen-induced tumor models147. With a good safety profile, PHA-739358 treatment (60 

mg/kg for 5 days or 30-45 mg/kg for 10 days) causes a significant tumor growth inhibition (TGI 

of 66% to 98%).  The efficacy of this compound in rat models is similar to that observed in 

xenograft mouse models. For example, administration of PHA-739358 BID intravenously (i.v.; 

25 mg/kg) to DMBA-induced primary mammary carcinomas rats resulted in tumor growth 

inhibition (TGI=75%), with complete regression in one animal. In an orthotopic xenograft model, 

PHA-739358 has also been observed to efficiently inhibit growth of liver metastases from 

gastroenteropancreatic neuroendocrine tumors152. Mechanistic studies in an A2780 mouse 



 33 

xenograft model demonstrate that a decrease in phosphorylation level of histone H3-positive 

cells and an increase in p53- and p21Cip1-positive cells are observed in tumors after treatment 

with PHA-739358, indicative of Aurora-kinase inhibition and cell cycle arrest.  

PHA-739358 is one of the first Aurora kinase inhibitors to enter the clinic and has been 

studied in phase I and II trials. In one phase I study in patients with advanced or metastatic solid 

tumors, stable disease was observed in 24% of the evaluable patients; in five patients, disease 

stabilization was maintained for longer than 6 months. Biomarker analysis reveals inhibition of 

histone H3 phosphorylation in skin biopsies starting at a dose of 190 mg/m2 153. In the other 

phase I study, PHA-739358 was well tolerated with target inhibition in the skin ( ≥500 mg/m2) 154. 

In an explorative study of patients treated in phase I and phase II trials, no relationships between 

PHA-739358 clearance and drug metabolizing enzymes and transporter protein ABCB1, ABCG2 

polymorphisms were observed, although significantly higher clearance was observed in one 

patient with the FMO3 18281AA polymorphism155. However, PHA-739358 mono-therapy shows 

minimal efficacy in patients with castration-resistant prostate cancer in a randomized phase II 

study69. In agreement, a multi-tumor, multi-institutional phase II study of PHA-739358 showed 

that PHA-739358 alone only had marginal anti-tumor activity in common solid tumors after 

failure of prior systemic therapies70. Further studies are required to establish specific biomarkers 

predictive for either response or prolonged disease stabilization, as well as to design of 

combination therapeutic strategies. The preclinical and clinical experience with PHA-739358 has 

also been discussed by Meulenbeld HJ and colleagues156. 
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AT9283 

AT9283 was developed by Astex Pharmaceuticals via structure-based optimization of a 

ligand-efficient pyrazole-benzimidazole fragment. AT9283 inhibits Aurora-A, Aurora-B, JAK3, 

JAK2 and Abl (T315I) with IC50 values of 3, 3, 1.1, 1.2 and 4 nM, respectively157. 

The ability of AT9283 to inhibit the growth and survival of tumor cells as well as its in vivo 

antitumor activity have been demonstrated in multiple solid tumor and leukemia cell lines and 

human tumor xenograft models. For example, AT-9283 inhibits the growth and survival of 

HCT116 cells and produces the polyploid cellular phenotype typically associated with Aurora-B 

kinase inhibition157. It also suppresses colony formation by HCT116 cells (IC50=30 nM). At 15 

and 20 mg/kg for 16 days, AT9283 significantly inhibits tumor growth in an HCT116 xenograft 

mouse model (TGI=67% and 76%). AT9283 is also highly effective against B-non-Hodgkin 

lymphoma (B-NHL) cells in vitro and in vivo158. AT9283 induces apoptosis in a dose- and 

time-dependent manner and inhibits cell proliferation (IC50 of <1 µM), which are associated with 

the mechanism of action of Aurora-B inhibition. 

Another preclinical study evaluates AT9283 against pediatric acute leukemia cells159, and 

find that AT9283 significantly inhibits the growth and survival of cells derived from patients 

with pediatric leukemia. Specifically, AT9283 promotes Flt-3 dephosphorylation and inhibits the 

activity of downstream effectors, such as ERK and MEK. AT9283 also induces cell growth 

inhibition and apoptosis in MM cells160. A mechanism study reveals that AT9283 inhibits both 

Aurora-A and Aurora-B as well as STAT3 tyrosine phosphorylation. The combination of AT9283 

with lenalidomide produces significant synergistic cytotoxicity in MM cells, which is associated 
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with increased inhibition of phosphorylated STAT3 and phosphorylated extracellular 

signal-regulated kinase. Inhibition of tumor growth is also observed in an MM cell xenograft 

mice model. 

Moreover, AT9283 exhibits synergistic anticancer efficacy when combined with various 

novel and conventional agents (apicidin, 17-AAG and doxorubicin). At very low doses (5 nM), 

AT9283 in combination with docetaxel induce apoptosis more efficiently (23%) than AT9283 or 

docetaxel alone (10%). Consistent with this result, in a mouse xenograft model of mantle cell 

lymphoma, AT9283 (15 mg/kg) or docetaxel (10 mg/kg) alone has modest antitumor activity, 

whereas AT9283 (20 mg/kg) and AT9283 (15 or 20 mg/kg) plus docetaxel (10 mg/kg) exhibit 

significant tumor growth inhibition and enhanced survival.  

Three phase I studies have been completed, and one is underway. In one phase I study, forty 

patients with advanced tumors were treated with AT9283 161. The result shows that AT9283 is 

generally well tolerated, and the dose-limiting toxicity of AT9283 is grade � febrile neutropenia 

in two patients 36 mg/m2/72 h). The Maximum tolerated dose (MTD) of AT9283 was established 

at 27 mg/m2/72 h, and the mean oral bioavailability of a 0.9 mg/m2 dose was 29.4% (range 

11.2%-36.7%). 

 

3.13 Natural AKIs 

Several natural compounds have been reported to inhibit Aurora kinase expression and 

activity in cancer cells. 

Curcumin 



 36 

Curcumin, an active compound present in turmeric and curry, has been demonstrated to 

potently inhibit Aurora-A promoter activity and mRNA expression in human bladder cancer T24 

cells. Furthermore, Curcumin is also able to inhibit the phosphorylation of Aurora-A and histone 

H3. Curcumin treatment induces monopolar spindle, G2/M arrest, and a reduction in cell 

division. These phenomena can be attenuated by ectopic expression of Aurora-A162. Curcumin 

has also been shown to enhance chemosensitivity to anticancer drugs in breast cancer cells163. 

 

Tanshinones I 

Tanshinones I is an extract from the Chinese herb Salvia miltiorrhiza and it exhibits potent 

effects on growth inhibition of breast cancer cells, consistent with Aurora-A 

downregulation164,165. In vivo studies have revealed that tanshinones I inhibits the growth of 

H1299 lung tumor in a dose-dependent manner and significantly inhibits lung tumor 

angiogenesis. Epigenetic mechanism studies also uncover that the tanshinones I treatment 

reduces the acetylation levels of histone H3 associated with Aurora-A gene.  

 

Withanone 

Withanone is an herbal ligand derived from roots of Withania somnifera. It has been 

identified by a computational approach through docking studies and is selected to bind to the 

TPX2-Aurora-A complex. The association of withanone with the complex results in the 

dissociation of TPX2 from the Aurora-A. In addition, withanone treatment also causes the 

disruption of the mitotic spindle apparatus in cancer cells. As Aurora-A is functionally regulated 
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by its interactions with TPX2, withanone provides a strategy to alter Aurora-A kinase signaling 

in an ATP-independent manner via targeting of the TPX2-Aurora-A complex166.  

 

3.2  Drug resistance and sensitivity to AKIs 

Although many targeted anticancer drugs have now been clinically validated as effective 

cancer therapies, primary and acquired resistance to such treatments often arises and is becoming 

major obstacles to successful cancer therapy. Recent research has focused on identifying 

mechanisms and developing more effective strategies to predict and overcome drug resistance.    

The crystallographic analysis and biochemical methods have used to design and validate the 

Aurora-A mutant T217D as a drug-resistance target for the Aurora-A kinase inhibitors MLN8054 

and MLN8237167.  

As p53 is regulated by Aurora kinase-dependent phosphorylation, and the p53-dependent 

post-mitotic checkpoint is also important for preventing genome reduplication after mitotic 

defect. Hence, p53 in turn predicts sensitivities for inhibition of the Aurora kinases. For example, 

the loss of p53 in cancer cells has been shown to sensitize cells to anti-cancer drugs targeting 

both Aurora-A and -B (MLN8237, MK-5108, ZM447439, and Barasertib)168. Another report 

shows that triple-negative breast cancer cells with a mutation in p53 and increased p53 

expression are more sensitive than other breast cancer cell lines to ENMD-2076, another 

Aurora-A inhibitior169. Consistently, the induction of apoptosis in response to MLN8237 

exposure is dependent on the activity of p53 family 170. In addition, the latelet-activating factor 

acetylhydrolase and GTP-binding nuclear protein Ran contribute to the development of 
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resistance to Aurora-A/B inhibitor ZM447439 related to p53 in HCT116 colon cancer cells171. 

On the other hand, a p53-independent mechanism of resistance related to autophagy has been 

found to another Aurora-A/B inhibitor, CYC116.  

The Aurora-A binding protein TPX2 also predicts sensitivity for Aurora-A inhibition. 

Appropriately, the sensitivity of non-Hodgkin lymphoma (NHL) cell lines to a 

novel Aurora-A-specific inhibitor, MK-8745, correlates with the expression level of the 

Aurora-A activator TPX2172.  

 

3.3 Combination therapy 

3.31 AKIs combined with conventional chemo- and radio- therapies 

AKIs have shown great potential for enhancing the efficacy of chemotherapies and 

radiotherapies for multiple types of cancer. Taxanes are widely used in chemotherapy, but many 

patients are intrinsically or will become resistant to taxane-based treatments. Functional mitotic 

checkpoints are essential for taxane sensitivity, and amplification of Aurora-A overrides the 

mitotic spindle assembly checkpoint, conferring resistance to taxanes. Inhibition of Aurora-A or 

its substrates TACC3 and CENP-A, significantly increases the sensitivity to paclitaxel in cancer 

cells 173,174. Consistent with this observation, the Aurora-A inhibitor CYC3 in combination with 

paclitaxel can lead to synergistic cytotoxicity in pancreatic cancer cells175. In addition, the 

combination of the Aurora-A inhibitor MLN8237 and docetaxel results in a higher level of cell 

death and reduction of tumor growth in preclinical cell models of upper gastrointestinal 

adenocarcinomas and mantle cell lymphoma176,177. Mahadevan D et al. also report that 
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MLN8237 combined with docetaxel or vincristine plus rituximab can culminate in synergistic 

curative efficacy in aggressive B-cell non-Hodgkin lymphoma178. Another study demonstrates 

that the ubiquitin (Ub)-specific processing protease-7 (USP7) interacts and cooperates with 

protein death domain-associated protein (Daxx) in the regulation of mitosis and taxane resistance, 

while inhibition of Aurora-A attenuates USP7-mediated taxane resistance179.  

Through a FOXO-dependent mechanism, the Aurora-A inhibitor MLN8237 can significantly 

potentiate the anti-leukemic activity of ara-C in both AML cell lines and primary blasts in vitro 

and augment the efficacy of ara-C without affecting its pharmacokinetic profile in vivo61. In 

addition, the Aurora-A inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal 

adenocarcinoma cells180.  

 

3.32 AKIs combined with other targeted therapeutics 

The combination of AKIs with other targeted drugs has also yielded promising efficacy and 

represents a novel therapeutic strategy for cancer treatment. HDAC inhibitors that interfere with 

HDAC activity have recently been investigated as promising drugs for targeted cancer therapies. 

AKIs have been shown to decrease the activity of HDAC proteins, and recent research has 

explored whether the combination of AKIs and HDAC inhibitors will achieve additive or 

synergistic effects in cancer cells. For example, co-treatment with Aurora-A/B kinases inhibitors 

VX-680 (MK-0457) and vorinostat (also known as suberanilohydroxamic acid or SAHA) leads 

to synergistic anti-cancer activity against human breast cancer cells in vitro, as well as greater 

tumor growth inhibition and better survival of mice bearing MDA-MB-231 xenografts181. 
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Moreover, vorinostat can induce both transcriptional and post-transcriptional changes to create a 

pro-apoptotic milieu that sensitizes lymphoma cells to AKIs182. 

Imatinib, one of the first cancer-targeted drugs, has produced encouraging results in the 

treatment of multiple cancers, most notably Ph+CML. However, resistance to Imatinib mediated 

by mutations in the BCR-ABL domain has become a major problem in the treatment of these 

patients. The HDAC inhibitors vorinostat and/or pracinostat (SB939) in combination with 

VX-680 has synergistic inhibitory effects on the proliferation of BCR-ABL mutant (T315I) 

cells183.  

Concomitant inhibition of mTOR and Aurora-A kinase by Rapamycin and MLN8237 can 

also combine to abrogate the proliferation of uterine leiomyosarcoma cells only when MLN8237 

is pre-administered184. Furthermore, we have demonstrated that in AML cells, 

the Aurora-A/B kinases inhibitor VX-680 induces polyploid cells with increased glycolytic 

metabolism rather than cell death. Inhibition of the mTOR pathway by mTOR inhibitors 

(rapamycin or PP242) or 2DG or the knockdown of p62, sensitizes these cells to AKIs185.  

In addition, the Aurora-A inhibitor MK-5108 increases the efficacy of an anti-GD2 

ganglioside (GD2) 14G2a antibody in cultures of human neuroblastoma cells, correlating with a 

reduction of N-Myc as well as an induction of PHLDA1 and p53 proteins186. In a synthetic lethal 

screen study, Aurora-A inhibitor has been shown to be able to synergize with EGFR antagonists 

to reduce cell viability and tumor size187.   

NEDD9 is an activator of Aurora-A and confers Aurora-A stability. Combination therapy 

with NEDD9 shRNAs and Aurora-A inhibitors impairs tumor growth and distant metastasis in 
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mice harboring breast tumor xenografts188. Interestingly, NEDD9 serves as a scaffolding protein 

of both Aurora-A and SRC. As expected, the combination of Aurora kinase and SRC inhibitor 

demonstrates potent synergy in ovarian and colorectal cancer cell lines, indicating a potential 

strategy for targeted cancer therapy189. 

 

4.  FUTURE DIRECTIONS 

Oncogenic functions of Aurora-A are involved in the processes of proliferation, survival, 

invasion and stemness, which lie the basis for targeted therapy. However, Aurora-A is also 

critical for the cell proliferation at physiological conditions, and the mechanisms that distinguish 

its oncogenic function from the physiological one remain to be illustrated. Further improvements 

in Aurora kinase targeting are needed for tailoring treatment that selectively and effectively 

target cancer in individual patients.  

Numerous AKIs have been developed, yet none is approved for clinical application. Indeed, 

most of AKIs exhibit distinct effect against cancer cells, but fail in preclinical or clinical 

evaluations190. High toxicity lies the prime obstacle for the applications of AKIs. Indeed, a 

number of toxicities are associated with Aurora-B inhibition191. Recent efforts in targeting 

Aurora-A by its selective inhibitor MLN8237 yield encouraging results125,192. Actually, a closer 

look at the history of AKIs development reveals that the road to success (length of effectiveness 

in evaluations) is associated with Aurora-A selectivity. Therefore, evidence from years of efforts 

indicate that selectively targeting Aurora-A may lead to the road to successful AKIs.  

In addition to the optimizing the chemical structures of AKIs to increase their specificity and 
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reduce toxicity, the efficacy of AKIs could be improved by using these agents in combination 

with conventional chemo- or radio-therapies, or other targeted agents. First, conventional 

anticancer therapies generally kill both cancer and normal cells. The combination of AKIs and 

chemo- or radio-therapies could have benefit of reducing drug doses, thus causes decreased 

adverse effects. Second, conventional chemo- or radio-therapies kill cancer cells by inducing 

DNA damages, which subsequently activate cell cycle checkpoints and triggers apoptosis. While 

overexpression of Aurora kinases induces dysfunction of cell cycle checkpoints, leads to 

resistance to apoptosis. Thus, AKIs could help to reduce the resistance to chemo- or 

radio-therapies induced by Aurora kinase overexpression. Accumulating preclinical data have 

demonstrated synergistic effects between AKIs and other therapeutic strategies. Additional 

clinical studies are needed to evaluate the safety and efficacy of such combinations.  

The well accepted idea of personalized cancer therapy also applies to successful Aurora-A 

targeting therapy. Specifically, biomarkers for selecting AKI responsive patients that benefit from 

Aurora-A targeting therapy need to be developed. To improve the precision of evaluation, 

biomarker driven clinical studies should be applied. Currently, biomarkers including mitotic 

index, chromosome alignment, spindle bipolarity and activated Aurora-A have been used to 

assess the efficacy of Aurora inhibition in patients. In addition, p53 status, TPX2 expression, 

MYCN expression, and chromosome numbers, predict sensitivity to AKIs. However, biomarkers 

that consistently distinguish AKI sensitive and resistant population, is yet to be defined. Indeed, 

biomarkers are not only indicators of sensitivity (screening biomarker), but also candidates for 

improving efficiency and overcoming resistance (therapeutic biomarker). Thus, both screening 
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and therapeutic biomarkers need to be defined before the successful application of Aurora-A 

targeted therapy. 

Furthermore, emerging evidence suggests that the translocation of oncogenic proteins lead to 

distinct functions in tumorigenesis. For example, nuclear epidermal growth factor receptor 

(EGFR) functions as a transcription factor193. Our identification of nuclear specific 

trans-activating activity in promoting cancer stemness opens a new field of spatially deregulated 

Aurora kinases in the nucleus83. The inhibitors capable of blocking nuclear translocation of 

Aurora-A will have potential anti-cancer efficacy (Fig.5). Further studies on the mechanisms of 

nuclear translocation and nuclear specific functions will prompt the process of targeting 

oncogenic Aurora-A.  

Finally, kinase activity of Aurora-A, a candidate therapeutic target, is essential for a plenty 

of oncogenic processes. Current strategies against oncogenic Aurora-A are restricted to its kinase 

activity, overlooking the kinase-independent oncogenic functions. However, kinase-independent 

activity, which bypass kinase inhibition should be underscored. Indeed, kinase-independent 

functions of Aurora-A have been demonstrated in both physiological and malignant contexts. 

Notably, a promising AKI MLN8237 suppresses kinase-independent function of Aurora-A 

(N-Myc interaction)88,90, suggesting a rationale for fully targeting oncogenic Aurora-A. Indeed, a 

growing number of evidence demonstrates non-canonical activity of oncogenic kinases (eg. 

CDK6194, LKB1195 and PKM2196), indicating that kinase independent oncogenic activity may be 

important for therapeutic resistance. This evidence indicates that in addition to inhibition of 

kinase activity, elucidating and targeting kinase-independent oncogenic activity acts as a wiser 



 44 

strategy for targeting oncogenic kinases (Fig.6).  
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Figure and Table legends 

Figure 1 Structures and expression patterns of Aurora kinases. 

(A) Domain Organization of Aurora kinases. The catalytic domain of Aurora-A, -B and -C is 

highly conserved (green region). Autophosphorylation of Thr288 in the activation loop of 

Aurora-A is required for the activation of its kinase activity. A short amino acid peptide motif 

known as the 'destruction box' (D-box) is present in the carboxy-terminal region of Aurora-A, -B 

and -C. The D-box is recognized by adaptors of the anaphase-promoting complex/cyclosome and 

thereby targets those proteins for degradation through the ubiquitin/proteasome-dependent 

pathway. Aurora-A and Aurora-B have the amino terminal “D-box-activating domain box 

(A-Box)” required for the functional activation of D-box.  

The expression levels and localization of Aurora-A and -B kinases in cell cycle are indicated in 

(B) and (C) respectively. In G1 phase, the level of Aurora-A is rarely detectable. During S phase, 

a small proportion of Aurora-A is first detected at centrosomes. At late G2 phase, Aurora-A 

accumulates evidently at centrosomes and becomes activated 3. During prometaphase and 

metaphase, active Aurora-A localizes on bipolar spindles and spindle poles after 

nuclear-envelope breakdown (NEBD). At the metaphase-anaphase transition, majority of 

Aurora-A is inactivated and degraded. A small fraction of Aurora-A remains on the centrosomes 

and the spindles at the onset of anaphase, and localizes to the spindle midzone and centrosomes 

during late anaphase and telophase/cytokinesis 2,4.  

In mammalian cells, Aurora-B is first found on pericentromeric heterochromatin during late S 

phase, and keep active throughout mitosis with protein level peaking in G2/M phase197. In 
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prophase Aurora-B targets to heterochromatin, and further enriches at the inner centromeres 

during prometaphase before the metaphase-to-anaphase transition. At the onset of anaphase 

Aurora-B relocates to spindle microtubules and then to the equatorial cell cortex during 

cytokinesis198-201. 

Figure 2 Aurora-A functions as an oncogene through regulating multiple molecular targets 

and signaling pathways.  

Aurora-A contributes to cancer development associating with inducing genomic instability, 

enhancing proliferation, survival, migration and invasion of cancer cells, as well as promoting 

cancer stem cell phenotype.  

Figure 3 Interaction between Aurora-A and p53. 

Phosphorylation (Ser315) of p53 by Aurora-A induces MDM2-mediated destabilization of p5384. 

In addition, Aurora-A phosphorylates p53 at Ser215, leading to abrogation of p53 DNA binding 

and transactivation activity85. In p53 deficient cells, CDK2 is activated by reducing p21Cip1 

expression, resulting in pRb hyperphosphorylation and its dissociation from transcriptional factor 

E2F3. E2F3 then bind to the AURKA gene promoter and transactivate, Aurora-A expression. 

Deficiency in p53 also causes the downregulation of Fbw7a, a component of E3 ligase that 

targets of Aurora-A for degradation86. Moreover, p53 suppresses the oncogenic activity of 

Aurora-A via direct interaction with the latter's Aurora box 87. A red line indicates promotion, 

while a blue one represents suppression. 

Figure 4 Interaction between Aurora-A and Myc. 

Aurora-A forms a complex with the oncogenic N-Myc protein, which protects N-Myc from 
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proteasomal degradation mediated by the Fbxw7 ubiquitin ligase88. Moreover, 

Aurora-A-mediated stabilization of N-Myc up-regulates VEGF expression and promotes 

angiogenesis89. The Aurora-A inhibitors MLN8054 and MLN8237 disrupt this Aurora-A/N-Myc 

complex and promotes N-Myc degradation90. LIN28B coordinates Ran and Aurora-A to promote 

MYCN expression 94. In addition, nuclear Aurora-A forms a complex with hnRNPK on MYC 

promoter, which activate MYC transcription83. Conversely, c-Myc regulates Aurora-A expression 

by directly inducing its transcription 96. The Myc transcription factor and its Max binding partner 

are associated with AURKA promoter during the G2 phase of the cell cycle97. A red line indicates 

promotion, while a blue one represents suppression.  

Figure 5 Targeting Aurora-A for nuclear translocation. 

In normal cells, Aurora-A localizes in cytoplasm, while in cancer cells, Aurora-A expresses in 

both cytoplasm and nucleus. The nuclear Aurora-A also has oncogenic functions (eg. 

transactivation of c-Myc and promotion of CSCs), blocking the nuclear translocation of 

Aurora-A could have potential anti-cancer efficacy. ANLIs, Aurora-A nuclear location inhibitors. 

Figure 6 Targeting Aurora-A for both kinase-dependent and -independent functions. 

As Aurora-A functions as an oncogene through both kinase-dependent and -independent 

mechanisms, the combination of Aurora-A kinase inhibitors (AKIs) and Aurora-A kinase 

independent inhibitors (AKIIs) could be a more effective therapeutic strategy.  

Table 1. Overexpression, amplification or polymorphisms of Aurora kinases in various 

cancer types. 

Table 2. Aurora kinase inhibitors in clinical trials. 
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Table 1 Overexpression, amplification or polymorphisms of Aurora kinases in various cancer types. 
Aurora kinase Tumor type Correlation of clinical relevant information Ref. 

Aurora-A 

Breast cancer 
nuclear grade, lymph node status, Ki-67, p53, EMT markers, estrogen, progesterone 

and HER-2/neu receptor, basal-like tumor phenotype, RFS 
64,100,103,202-209 

Gliomas tumor grade, survival 210,211 

Ovarian cancer p53, tumor grade, proliferation index, aneuploidy, stage, DFS 203,212,213 

Prostate cancer RFS, tumor grade 100,203,214,215 

Cervical cancer 
FIGO stage, tumor differentiation, parametrial invasion, lymphnode, hematogenous 
metastasis, DFS and OS 

203,216,217 

Lung cancer chemotherapeutic resistance, OS and DFS 218-221 

Head and neck 
carcinoma 

tumor stage, regional lymph node, distant metastasis,  DFS and OS 65,66,104,222,223 

Gastric tumor survival 224,225 

Esophageal 

carcinoma 

cancer risk, invasive malignancy, metastatic disease, tumor recurrence, DFS, MTS, 

chemoratiotherapy-resistance 
106,226-230 

Aurora-B 

Oral cancer 
Ki-67, histological differentiation, tumor stage and size, lymph node metastasis, 

metastasis and DFS 
231,232 

Breast cancer 
p53, proliferation index, histological grade, lymph node metastasis, 

chemoresistance, survival 
233,234 

Non-small cell lung 

cacinoma 

sex, age, aneuploidy, tumor differentiation, histological type, tumor size, lymph node 

metastasis, vascular invasion, shorter survival for the patients with adenocarcinoma 
histology 

235-237 

Glioma survival 238 

Aurora-C Colorectal cancer tumor grade 239 

RFS: relapse-free survival; DFS: disease-free survival; FIGO: International Federation of Gynecology and Obstetrics; OS: overall 
survival; MTS: median survival time
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Table 2 Aurora kinase inhibitors in clinical trials. 

Inhibitor Structure Company Target Administration Types of tumors Status Ref. 

MLN8054 

 

Millennium Aurora-A 
IC50 4 nM Oral Advanced solid tumors Phase I 36,109,110 

MLN8237 
(Alisertib) 

 

Millennium Aurora-A 
IC50 1.2 nM Oral 

Advanced solid tumors, 
leukemia, lymphoma  Phase I/II 

113,116 
Relapsed/refractory 
peripheral T-cell lymphoma Phase III 

ENMD-2076 

 

EntreMed Aurora-A 
IC50 14 nM Oral 

Relapsed or refractory 
hematological malignancies, 
multiple myeloma 

Phase I 

126,129 Ovarian cancer, triple 
negative breast cancer, 
advanced fibrolamellar 
carcinoma 

Phase II 

VX-680 
(MK-0457) 

 

Vertex/ 
Merck 

Aurora-A 
Ki 0.6 nM 
Aurora-B 
Ki 18 nM 
Aurora-C 
Ki 4.6 nM 

I.V. Solid tumors, leukemia Phase I/II 58,131,132 

AMG900 

 

Amgen 

Aurora-A 
IC50 5 nM 
Aurora-B 
IC50 4 nM 
Aurora-C 
IC50 1 nM 

Oral Advanced solid tumors, 
leukemia Phase I 137,240 
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SNS-314 
 

Sunesis 

Aurora-A 
IC50 9 nM 
Aurora-B 
IC50 31 nM 
Aurora-C 
IC50 3 nM 

I.V. Advanced solid tumors Phase I 139,142 

PF-03814735 
 

Pfizer 

Aurora-A 
IC50 0.8 nM 
Aurora-B 
IC50 5 nM 

Oral Advanced solid tumors Phase I 143 

CYC116 
 

Cyclacel 

Aurora-A 
Ki 8 nM 
Aurora-B 
Ki 9.2 nM 

Oral Advanced solid tumors Phase I 146 

PHA-739358 
(Danusertib) 

 

Nerviano 

Aurora-A 
IC50 13 nM 
Aurora-B 
IC50 79 nM 
Aurora-C 
IC50 61 nM 

I.V. 
Metastatic hormone 
refractory prostate cancer, 
multiple myeloma 

Phase II 147 

AT9283 
 

Astex 

Aurora-A 
IC50 3 nM 
Aurora-B 
IC50 3 nM 

I.V. Advanced solid tumors, 
leukemia, lymphoma Phase I/II 157 
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