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Abstract—The number of Internet-connected sensing and
control devices is growing. Some anticipate them to number
in excess of 212 billion by 2020. Inherently, these devices
generate continuous data streams, many of which need to
be stored and processed. Traditional approaches, whereby
all data are shipped to the cloud, may not continue to be
effective as cloud infrastructure may not be able to handle
myriads of data streams and their associated storage and
processing needs. Using cloud infrastructure alone for data
processing significantly increases latency, and contributes to
unnecessary energy inefficiencies, including potentially unnec-
essary data transmission in constrained wireless networks,
and on cloud computing facilities increasingly known to be
significant consumers of energy. In this paper we present a
distributed platform for wireless sensor networks which allows
computation to be shifted from the cloud into the network.
This reduces the traffic in the sensor network, intermediate
networks, and cloud infrastructure. The platform is fully
distributed, allowing every node in a homogeneous network to
accept continuous queries from a user, find all nodes satisfying
the user’s query, find an optimal node (Fermat-Weber point)
in the network upon which to process the query, and provide
the result to the user. Our results show that the number of
required messages can be decreased up to 49% and processing
latency by 42% in comparison with state-of-the-art approaches,
including Innet.

I. INTRODUCTION

As the number of Internet connected devices is increas-
ing and penetrating our day-to-day lives, the amount of
data produced by these devices will grow. It is estimated
that by 2020 the number of Internet-connected devices will
be between 30 billion [1] and 212 billion (including 30.1
billion autonomous things), with a market value of $8.9
trillion [2]. To process these vast amounts of data streams,
new techniques are being researched. For example, a recent
protocol called Constrained Application Protocol (CoAP)
[3] was designed to represent a bridge between a WSN
and the Internet. Kovatsch et al. presented Californium [4]
- a scalable cloud service capable of handling hundreds
of thousands of concurrent CoAP connections between the
cloud and many Wireless Sensor Networks (WSNs).

However, collecting all the data from the network in the
cloud may not always be the best solution. Not only may
the network itself not be able to transfer all data to a base-
station, the link between a base-station and a cloud may
not exist, be insufficient, or may be extremely expensive.
Additionally, shipping data to the cloud will increase the
delay between the occurrence of a phenomenon and its
detection. Furthermore, data centres are already responsible
for 1.4% of World-wide energy consumption, growing by

12% every year [5], excluding power consumption of the
network infrastructure that scales accordingly.

In response to these challenges, companies like Cisco
are introducing concepts such as Fog computing, bringing
computation from the cloud to the edge of the network. This
may lead to shorter delays and reduce the traffic to and/or
from the cloud. Edge-network devices through which the
sensor nodes connect to the Internet are represented by base-
stations, routers, etc. Data from the network are collected at
such edge devices, which either (pre-)process the data, and
may act upon detected phenomena. The goal is to reduce
delays and networking requirements.

However, Fog computing assumes the network consists
of large numbers of small devices that communicate with the
outside world through base-station(s) that act as gateways.
We argue that as the number of deployed networks increases,
this type of traditional network with base-stations might
not scale and users will start to interact directly with the
network. For example, we can think of networks deployed
in houses, buildings, streets, shopping centres, etc. Network
owners may not be willing to pay for the Internet connection
or the associated cloud infrastructure, yet they still want to
provide services of their networks to the users.

Consider following scenario: In the future, every building
has several sensor equipped bins used for various types
of communal waste, e.g. glass, paper, plastic, etc. Trucks
collect only one type of waste. To optimise resources (e.g.
fuel consumption, truck utilisation), a truck is instructed to
collect waste from a street only if the bins on that street are,
on average, more than 50% full.

Using a cloud approach, all sensor readings would be
sent to the cloud at predefined intervals, then grouped by
the street, the type of waste, etc. If the average is above the
threshold, a message is sent to the company collecting the
waste. An alternative approach is, if one sensor is chosen
to collect data for given street and type of waste only, the
average is computed locally and the company informed only
if the average is above the threshold. The node does not
require an Internet connection, and may use a passing bus,
for example, as a mule to deliver the message.

We present a new platform for efficient in-network data
stream processing, where the contributions are as follows:

• Processing Node Discovery (PND) algorithm for con-
tinuous queries, which finds an optimal processing node
in the network in a fully distributed way (Section III);

• Query Tuple Buffering (QTB) optimisation which fur-
ther reduces the network traffic;



• Evaluation of the algorithm on networks of various
topologies and densities (Section IV).

II. RATIONALE & RELATED WORK

Contemporary WSN designs consist of one (or more)
base-station(s) and many sensing nodes. Data are delivered
to the base-station via multi-hop communication using CTP,
RPL, etc. The base-station serves as a gateway to the
network, and may offer network’s capabilities to a user.
Users usually communicate with the base-station via some
long-range communication link. The base-station may also
represent a single point of failure, i.e. when it fails the
network cannot send data to the cloud and users cannot
query the network.

As wireless communication is typically extremely expen-
sive in terms of energy (more than 80% of energy is used
on communication) many techniques have been proposed to
reduce the number of messages required in the network to
deliver a result to a user.

When query processing is optimised, several important
requirements must be considered. The query is either uni-
versal, i.e. requires data from every node in the network, or
a subset query, i.e. requires data from a subset of the nodes
only. We focus our research on subset queries only, as they
offer wider possibilities for query optimisation techniques.
We must consider whether user requires current readings,
or can be satisfied with an approximate reading with given
a degree of confidence [6]. In this case the query can be
optimised using various summary structures like histograms
or Bloom filters. However, this is not the focus of our
research and we assume that a user requires fresh readings
every time the query is evaluated. We must consider whether
the platform will accept aggregation queries only (like
AVG, MAX, MIN [6]) and/or projection queries. The final
requirement that must be considered is the duration of the
query. A snapshot query is executed only once and therefore
offers very small room for query execution optimisation.
The optimisation is focused on inexpensive identification of
relevant nodes and retrieving data from them as the query
optimisation overhead could easily exceed the gain of this
optimisation [7]. On the other hand, continuous queries
allow much wider query optimisation possibilities as the
query is executed many times over a specified period of time
(possibly indefinitely). Therefore, the query optimisation
overhead is mitigated by executing the query many times.

A. Related Work

Several approaches have been proposed to support con-
tinuous queries. The simplest variant is processing data at-
the-base, where only the nodes contributing to the query
send data to the base-station which processes them. Another
approach, proposed by Chowdhary and Gupta [8], targets
special cases where data from exactly two non-overlapping
regions need to be processed and the network supports

geographical routing. In this case, a node in the geograph-
ical centre of a triangle formed by two regions and the
base-station is chosen as the processing processing node.
Similarly, if the data sources are scattered throughout the
network, Pandit and Gupta propose to choose a random node
using the hash of the join key, as the processing node [9].
Stern et al. propose Continuous Join Filtering (CJF) - a two-
phase approach where first summaries of static and dynamic
attributes of all nodes in the network are collected, then the
base-station uses these summaries to choose candidates for
the join [10]. In the second phase, filters generated by the
base-stations are pushed back into the network, and only
nodes whose sensed data passes this filter send data back
to the base-station [10]. The final join of data streams is
performed at the base-station. CJF focuses on optimising
join queries which join data based on dynamic attributes,
i.e. sensed data. Mihaylov et al. propose a framework based
on pairwise joins which splits the processing into pairwise
joining, and for each join pair, finds a node on the path
between them which processes data [11]. This approach can
significantly reduce the number of messages but only where
the selectivity of the pairwise join, i.e. the percentage of
tuples fulfilling the join prediction, is very low. The approach
also assumes that the computation can be split into pairwise
joins. Pairwise join operates on exactly two streams of data
and produces a partial result only. The final join is carried
out at the base-station. Mayer et al. proposed a solution
for searching in a web-based infrastructure for smart things
[12]. Their approach relies on a strictly hierarchical tree-like
structure, introducing a caching optimisation that uses a top-
down approach where a node requests data from its children
and waits until all children reply. Abrams and Liu present
a Greedy is Good (GIG) algorithm for finding a processing
node inside the network by controlled flooding from each
source of the network [13]. This approach is expensive in
terms of messages required to find the processing node,
where the discovered processing node could be eight times
more expensive than the optimal one. Chatzimilioudis et al.
propose distributed Fermat node search (dFNS) algorithm,
which is also based on flooding the network, however, the
flooding is more localised when compared to GIG and it is
able to find processing nodes which are closer to the optimal
one [14]. Their approach is, however, optimised for uniform
networks and for joining small number of sources that are
close to each other. SNEE, a framework described by Galpin
et al. [15], is capable of in-network processing, but the base-
station must have global knowledge of the network to assign
operators to the nodes.

The disadvantages of these approaches are that they
either heavily rely on the base-station (i.e. traditional at-the-
base processing, e.g. the two-phase approach, SNEE, and
the second half of the pairwise join) or on geographical
routing (e.g. geographical and hash), which has many known
disadvantages. Other approaches either support only special



types of queries, are optimised for special types of networks
and/or scenarios (GIG, dFNS), find non-optimal processing
nodes, or have an expensive set-up phase. Our work attempts
to deliver a flexible, scalable, decentralised, and efficient
way to find an optimal processing node in a network of
any topology and density.

III. COMPUTATIONAL PLATFORM

Our platform for in-network processing of continuous
queries extends our previous work on DRAGON [7]. We
briefly review the main features of DRAGON and explain
its functionality.

DRAGON is a platform supporting peer-to-peer com-
munication between any two nodes in the network via
near-optimal routes. Each node stores a routing table (RT)
containing a distance and a next hop neighbour to every
other node in the network. A table, which contains a list of
all static attributes describing every node in the network is
distributed throughout the network. Each node stores only
a fraction of this table. These fractions are assigned to
nodes in such way that every node can reach all nodes
storing the other parts of the table by communicating within
a close neighbourhood. Thus, every node can search this
table (referred to as Distributed Data Table (DDT)), i.e. find
the list of all nodes in the network satisfying given static
attributes, with low overhead. No central node is needed,
making the system fully decentralised, thus robust against
node failures. Therefore, DRAGON is optimised to answer
snap-shot queries while capturing the current readings and
state of the network. The node that receives the query
processes the data and reports the result to the user.

One disadvantage of DRAGON is its inability to ef-
ficiently evaluate continuous queries. For the scenario in
Section I, a user needs to repeatedly measure “fullness” of
bins of specific types at specific streets and be notified once,
on average, the bins are more than 50% full. In this case,
processing data on the node which accepted the query may
not be the most energy efficient, as the sources of the data
for the query may be far away from the node through which
the user submitted the query. In this case, processing on a
node whose distance to all the sources of data streams is
much shorter than the distance from all the sources to the
initiating node, might be more energy efficient. The energy
savings will be much higher than the energy required to find
such a node. By allowing a user to submit a query via any
node we eliminate the need for a central node, and achieve
a fully distributed solution without a single point of failure.
The rest of this section describes the process of finding a
processing node with the shortest distance to every node
producing data satisfying a given query.

A. Processing Node Discovery (PND) Algorithm

Assume that a user can communicate with any node in
the network and submit queries. The node that receives a

query from the user is referred to as the initiator or the
initiating node. As soon as the initiator receives a query,
it uses DRAGON to identify all the nodes participating in
the given query. The initiating node searches the DDT for
other nodes which satisfy static attributes of the query. These
nodes are referred to as sources. Each source produces data
at a certain rate. This rate depends on the sampling rate and
the dynamic condition specified in the query. For example,
the dynamic condition may look like: WHERE capacity
> 75. Here, the sensor node sends the data tuple only if the
sensed remaining capacity of the bin is higher than 75%. Let
us define selectivity, denoted � as:

� =
tuples sent

tuples sampled
(1)

Because selectivity has an impact on the position of the
processing node, the initiator sends the list of dynamic
conditions of the query to all of the sources. This list of
dynamic conditions is used by the source node to compute
its selectivity for given query. Where a source can compute
its selectivity (e.g. using stored historic data or a histogram),
it reports the selectivity to the initiator. Otherwise, the source
node assumes that the selectivity for given query is � = 1.
After collecting selectivity from every source, the initiator
starts a search for a node that can process the data streams.
We refer to this node as the processing node.

We define the cost of processing all sources S with
selectivity � at node i as
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where r
i

is the number of hops between node i and the
node to whom the final result should be reported (referred
to as report node), d

ij

is the number of hops between nodes
i and j, �

j

is the selectivity of the node j, and �
S

is the
selectivity of the processing node. The lower the cost is,
the fewer messages are sent within the network in order to
process data streams from all sources.

Our platform relies on a reliable end-to-end communica-
tion. One hop reliable communication requires an acknowl-
edgement sent by the receiver to the sender. Therefore send-
ing a message h hops away leads to exchange of 2h packets.
However, the receiver can merge the acknowledgement and
the forwarded message into a single packet. The sender
receives the acknowledgement by overhearing the receiver’s
communication. Only the destination node, which does not
forward the message sends a separate acknowledgement
packet. Hence, sending a message h hops away leads to
exchange of only h + 1 packets. The cost defined above
does not take into account this additional acknowledgement
packet sent by the last hop, therefore in addition to the cost
we also define the real cost:
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(c) Because there is no neighbour with a
lower cost, node n6 declares itself as the
processing node.

Figure 1: Processing Node Discovery Algorithm. The search follows the steepest cost gradient. Once a node whose cost is lower than the
cost of all its neighbours, the node declares itself as the processing node.

where

dr
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=
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and rr
i

is the number of messages required to reliably
deliver the result to the reporting node. In cases where the
processing node is detecting a rare event (�

S

is close to 0),
the �

S

rr
i

is negligible and does not contribute to the overall
cost.

The difference between the cost and the real cost is that
the real cost prefers source nodes to non-source nodes, there-
fore several nodes with the same cost may have different real
costs. Assume there are two source nodes s1, s2. If we do
not take the distance to the report node into account, all
nodes on the shortest path between s1 and s2 (including the
source nodes) will have the same minimal cost. However,
the real cost of the source nodes will be lower than the
real cost of the nodes on the path between these two source
nodes. Unfortunately, the real cost deforms the search space
which can lead to creating local minima at the source nodes.
Therefore we use the cost in our Processing Node Discovery
algorithm and the real cost during evaluation in Section IV
as it better reflects the real traffic in the network.

The objective of the algorithm is to find a node whose
sum of weighted distances to all source nodes is minimised.
From geometry, this problem is known as the geometric
median or Fermat-Weber problem. The geometric solution
is known only for three nodes. There is no general solution
for this problem for n (n > 3) nodes, only numerical or
symbolic approximations are possible.

Approximations are based on the fact that, since the
distance to a single point is a convex function, the sum of
distances from a single point to all source nodes remains a
convex function. If the algorithm decreases the cost in each
step it will eventually reach the global minimum.

Algorithm 1 iteratively decreases the cost in each iter-
ation by following the cost gradient towards the node with
the lowest cost. The functioning algorithm is graphically

Algorithm 1 Processing Node Discovery
1: procedure RECEIVEASSIGNMENT(query)
2: compute the cost for query
3: request a cost from every neighbour
4: if local cost is the lowest or this node was a coordinator then
5: declare this node as the join node
6: else
7: from the list of nodes with the lowest cost randomly choose

one node and send an assignment to the node
8: end if
9: end procedure

illustrated in Figure 1. Source nodes are diamond shaped,
regular nodes are circles, and the processing node is a
polygon. The algorithm consists of rounds, each of which is
led by one coordinator, shown in green in the figure. At the
beginning the node which received the query from a user,
the initiator, becomes the first coordinator (Figure 1a). The
coordinator computes its cost (Alg. 1, line 2) and broadcasts
the cost to all its neighbours, which reply with their cost for
the query. The cost is computed by looking up the distances
to every source node in the routing table stored at every
node. In Figure 1a the replies from nodes n6 and n10 are
shown with dashed arrows. Once the coordinator receives
a reply from every neighbour, it compares its cost with all
the received costs (line 4). If there is a node with a lower
cost, the coordinator sends it an assignment message (line 7)
and the receiver becomes a coordinator for the next round.
In Figure 1a, node n9 with c9 = 5 sends an assignment
message to node n6 with c6 = 4 as its cost is lower.
The assignment message is depicted with a dotted arrow.
If there are several nodes with the same lowest cost the next
coordinator is chosen randomly.

If all coordinator’s neighbours’ costs are higher, the
coordinator declares itself as the processing node (line 5).
In Figure 1b, node n6 receives costs from all neighbours.
Because all received costs are higher than 4, the node
declares itself the processing node, illustrated in Figure 1c.

It may happen that the cost gradient is lost when the
search hits an area of nodes with the same lowest cost. This
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Figure 2: Processing Node Discovery (PND) Algorithm. Sometimes the search hit a neighbourhood of nodes with the same cost and the
gradient is lost. In this case the search by a random walk is executed. Data sources are diamond shaped while the processing node is
polygon shaped. Coordinator in given round is showed in red.

situation is shown in Figure 2. The search follows the cost
gradient from node n9 to node n6, and then to node n7. At
this point, shown in Figure 2c, the coordinator cannot find
a node with a lower cost. However, node n8 has the same
cost as node n7, therefore an assignment message is sent to
node n8. The same situation happens when node n8 is the
coordinator, and it assigns node n7 as the coordinator again,
as depicted in Figure 2d. On receiving an assignment, the
node checks whether it has already been a coordinator for
the given query before (line 4). If so, it means that there is
at least one node with the same cost which was delegated
as a coordinator but it was unable to find a node with a
lower cost, therefore the assignment was returned back to
the previous coordinator. In this case the node declares itself
as the processing node (line 5) in order to avoid loops in
the search. This process can be seen in Figure 2e.

In rare cases it may happen that the search reaches a
neighbourhood of nodes with the same cost and the search
terminates before the node with the lowest cost in the
network is found. It is partially compensated for by the fact
that a new coordinator is chosen also in the case where the
neighbour’s cost is the same, i.e. the requirement that the
cost of the new coordinator must be lower than the current
one is relaxed. However, if there are more neighbours with
the same cost, the new coordinator is chosen randomly and
it may not be on the path to the node with the lowest cost.

This problem could be solved by performing an exhaus-
tive search, i.e. choosing multiple nodes with the lowest cost

as coordinators. Unfortunately, this approach would have a
drawback of significantly increasing the number of messages
exchanged during the discovery phase.

Once a node decides to declare itself as a processing
node, it informs all sources participating in the query of
its ID and its cost. Because each round is led by only one
coordinator, each source can receive a notification from one
processing node only.

The numbers of messages exchanged and coordinators
during the discovery phase mainly depends on the the num-
ber of coordinator’s neighbours, as the coordinator requires
a reply from every neighbour.

The number of coordinators depends on the sparsity of
the network, i.e. the maximum distance between two nodes
in the network d

max

= dN/Nbe, where N is the number
of nodes in the network and Nb is the average number
of neighbours. On average, the number of coordinators is
cd = d

max

/2. The number of messages is proportional to
the number of coordinators, computed as cd⇥Nb.

The number of messages can be significantly decreased
by snooping on neighbours as they reply to a coordinator.
Each node stores these replies, and in the case that it
becomes a coordinator for the next round the node requests
costs only from neighbours for which it is missing the cost.
In Figure 2b node n6 may request the cost only from nodes
n1, n3, and n7. Node n6 has already received the cost of
node n10 previously, when node n9 was the coordinator and
node n10 reported its cost to node n9 (Figure 2a).



We assume that every node in the network is capable of
processing data streams from all the source nodes. Memory
requirements of a processing node may be computed as m =
w⇥vs⇥ns, where w is the size of the window (i.e. number
of values stored for each node), vs is the number of bytes
required to store the value, and ns is the number of bytes
required to store the node ID.

B. Query Tuple Buffering Optimisation

Each epoch every source node senses the required value
and sends the query tuple to the processing node. As the
messages are being forwarded towards the processing node,
they may pass via a common node. This node can, instead
of forwarding each message separately, merge two or more
query tuples into a single message. We refer to this node
as a merging node. We have implemented and evaluated the
Query Tuple Buffering (QTB) optimisation which merges
several query tuples into a single message, hence reducing
network traffic.

As the distance from the merging node to the source
nodes varies, the merging node may need to wait for all the
query tuples it is merging to arrive. The maximum delay, i.e.
the largest difference between arriving of the first and the last
query tuple in the same epoch, is continuously monitored,
and if a query tuple does not arrive within this delay all query
tuples in the merge buffer are sent to the processing node.
The merging node must act as the last hop in the forwarding
chain and send the acknowledgement to every node from
which it received a query tuple. As the merging node can
also merge several acknowledgements into a single packet,
it is more energy efficient to wait for all the query tuples
to arrive, or the maximum delay to expire, before sending
acknowledgements. However, increasing the waiting period
before the message is re-sent may have a negative impact on
the overall delay of the query processing. The sending node
has no way to know whether the receiving node is waiting
for other tuples to arrive or it has not received the message,
in which case the message must be re-sent.

IV. EVALUATION

A. Setup

We evaluated the PND algorithm in the TinyOS sim-
ulator TOSSIM [16], which was chosen because of its
reasonable accuracy in the simulation of real WSNs, and its
popularity in the WSN research community. Furthermore,
the platform we build upon, DRAGON , and the appropriate
platform with which we comparatively evaluate our work,
Innet, are also programmed in TinyOS and evaluated using
TOSSIM. We use the in-built radio and noise models,
assume the nodes are synchronised, and can operate at 15%
duty cycle. The packet size was set to 30 bytes.

We evaluate our platform on two different types of
topologies: a uniform and a random topology. For each
type of topology, networks with four different densities were

generated: i) dense (D for uniform and RD for random
topology, with 12 neighbours on average), ii) medium dense
(MD/RMD, 10 neighbours), iii) medium sparse (MS/RMS,
7 neighbours), and iv) sparse (S/RS, 5 neighbours). For
each network density, three different 250-node networks
were generated. On each network, 10 different experiments
were executed. Results are grouped by network topology and
network density.

To evaluate in-network data stream processing capabil-
ities of our platform, we revisit the scenario described in
Section I. Each bin is uniquely identified by ID, and has a
sensor measuring the free capacity of the bin. Additionally,
each bin has two static attributes assigned - the ID of the
street the bin is on (attribute x) and the type of waste the
bin is for (attribute y). Then, the query which will compute
average free capacity of the bins of specific type on the same
street and reports it to user if the average capacity is less
than 50% may look as follows:
SELECT AVG(S2.capacity) AS avg_capacity
FROM Sensors S1, Sensors S2
WHERE S1.x = S2.x AND S1.y = S2.y
AND S2.capacity < 100
HAVING avg_capacity < 50
EVERY 60 SECONDS}.

In our evaluation we focus on two metrics: i) the overall
number of messages and ii) the processing delay. While
the first metric is a proxy for energy efficiency, the latter
shows how fast the network can react to the monitored
phenomenon. The sooner source nodes can deliver data to
the processing node, the faster the processing node can react
to and act upon the input.

We evaluate two versions of our platform (with and with-
out QTB optimisation) against three different approaches:
i) process at-the-base, ii) process at the source node, and
iii) pair-wise joining with three different join node selec-
tivities. Processing at the base-station is the simplest, and
therefore most commonly used solution. We have included
this approach to show a baseline for other approaches.
Processing data at a source is similar to the processing at-
the-base, with the difference that data streams are processed
at one of the source nodes. This strategy may decrease
the network traffic because one of the source nodes is not
required to transfer data to any other node and can process
them locally. An alternative is processing on a random
node in the network. The node could be chosen using, for
example, a hash function [8], [9]. However, it has been
shown that processing data on a random node leads to higher
network traffic than processing at-the-base [11].

The last approach, and the state-of-the-art algorithm
for distributed in-network data stream processing, is an
implementation of the pair-wise join algorithm, Innet [11],
[17]. The pair-wise join, as its name suggests, joins exactly
two streams of values, i.e. one of the sources joins its data
with all other data sources. The location of the join node
depends on selectivity of the two source nodes and the
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Figure 3: Comparison of Processing Node Discovery (PND) algorithm with and without the Query Tuple Buffering (QTB) optimisation
with various in-network processing algorithms. The x-axis shows various network topologies.

selectivity of the join node. Pair-wise join can reduce the
network traffic only if the selectivity of the join node is low.
Innet periodically compares the cost of in-network pair-wise
processing with processing at the base, and chooses the one
with the lower cost.

It is important to note that pair-wise joining produces
only partial results. If the join condition is not met, the
pair is discarded, otherwise it is sent to a base-station (or
any other common node) which collects all joining pairs
from the whole network and performs final processing. For
comparison we used pair-wise joining with three different
selectivities of the pair-wise join nodes: 5%, 10%, and 20%.
Where the selectivity of the join node is higher, Innet
automatically switches to processing at-the-base. Using the
pair-wise selectivity, it is possible to compute the overall
selectivity � of the processing node as:

� = �|S|�1
p

(4)

where �
p

is the pair-wise selectivity, and |S| is number of
sources participating in the query.

B. Results

During the evaluation, each source node sampled and
sent a value every 60 seconds for the overall duration of
12000 cycles. As a result, every node produced 200 values
which were sent to the processing node.

A comparison of an average number of messages sent
in networks of various topologies and densities is shown
in Figure 3a. Interestingly, processing data at the source
outperformed processing at-the-base in all but the random
medium sparse topology. Savings ranged from 9�37% with
an average of 23%. While these two techniques may appear
similar, significant savings can be achieved when data are
processed at a source. The saving is achieved because the
processing source node does not have to send data to another
node but only receives data and processes them locally with
its own data stream. Additionally, Chatzimilioudis et al.
(2013) showed that under certain circumstances the optimal
Fermat-Weber node is often one of the source nodes [14].

Comparing the pair-wise join with processing at-the-base
shows that savings up to 49% can be achieved, and on
average, range between 28% and 38% depending on the
selectivity of the join node. The lower the selectivity, the
greater savings can be achieved. One of the reasons why
pair-wise join can effectively reduce the network traffic is
the fact it can exploit multicast trees, when a value from one
source node is delivered to several processing join nodes. A
multicast tree can perform this delivery with a very small
overhead. Additionally, where the join node selectivity is
low, it is most energy efficient to perform join at the sources.
Thus, only one source node uses multicast tree to deliver its
sensed value to every other source node, while other source
nodes join the received value with the value sensed locally.

Using PND to find one central processing node at an
optimal position (Fermat-Weber point) can further reduce the
traffic on average by 10% when compared with Innet with
5% join node selectivity. Furthermore, if QTB optimisation
is used, the network traffic is reduced even more leading to
the overall average savings of 20% when compared to the
best performing Innet algorithm.

Next we compare the delay of in-network data stream
processing. We evaluate the duration of a period starting
when the first source node in given epoch senses the data
and ending when the processing node receives the data from
the last source node within the same epoch. Shortening this
delay is especially important in actuator networks where
an action needs to be taken as soon as possible once a
phenomenon is observed, e.g. a valve needs to be closed
as soon as a leak is detected. From Figure 3b it can be seen
that our platform decreases the network delay on average by
33� 36% depending on the algorithm it is compared to. As
expected, the Query Tuple Buffering version increases the
network delay on average by 7% when compared to the PND
without QTB, yet still outperforms all other approaches.
The increase is caused by increasing the acknowledgement
timeout period in the forwarding algorithm. We leave the de-
cision which version of the algorithm to use to the engineer,
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Figure 4: Percentage increase of cost of the processing node
discovered by PND algorithm vs. the optimal processing node.

depending on what is more important for the implemented
application: reducing the network traffic or decreasing the
network delay.

Finally, we evaluate cost stretch, i.e. percentage increase
in the cost of the discovered processing node versus the
optimal processing node. For this comparison we used the
real cost, which better reflects the real network traffic. In
Figure 4 we can see the average cost stretch grouped by
network topologies and density. As it can be seen, the
average cost increase varies between 0.1% and 4%. The
overall average cost increase is less than 1%.

V. CONCLUSION

In-network data processing has proven to be a very chal-
lenging problem in WSNs. Choosing the right strategy can
significantly decrease the number of messages transmitted
within the network, hence increasing its lifetime. Current
approaches choose sub-optimal in-network processing strate-
gies which lead to unnecessarily high traffic. Additionally,
these approaches do not focus on reducing the processing
delay, i.e. the time it takes from sensing the data to retrieving
the result.

In this paper we presented a platform for discovering
a processing node at, or near, the optimal (Fermat-Weber)
node. The platform can find processing nodes whose cost is
on average less than 1% higher than the cost of the optimal
processing node. Processing data on the node discovered by
the Processing Node Discovery algorithm leads to decrease
in the network traffic by up to 38% while decreasing the
processing delay by as much as 42%. We presented an
optimisation of our algorithm based on buffering which can
decrease the network traffic by another 11%, leading to the
overall savings as high as 49%. However, the optimisation
slightly increase the processing delay by 7% when compared
to the non-optimised version.

In this work we assume the network is homogeneous
from the computational point of view. In the future work
we plan to investigate heterogeneous networks where only
a subset of nodes is capable of processing data streams.

Furthermore, we will adapt our algorithm to ultra-low
energy implementations, e.g. for MAC protocols where
overhearing communication is not permissible.
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