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Abstract— Human Activity Recognition provides valuable
contextual information for wellbeing, healthcare, and sport
applications. Over the past decades, many machine learning ap-
proaches have been proposed to identify activities from inertial
sensor data for specific applications. Most methods, however,
are designed for offline processing rather than processing on
the sensor node. In this paper, a human activity recognition
technique based on a deep learning methodology is designed
to enable accurate and real-time classification for low-power
wearable devices. To obtain invariance against changes in sensor
orientation, sensor placement, and in sensor acquisition rates,
we design a feature generation process that is applied to the
spectral domain of the inertial data. Specifically, the proposed
method uses sums of temporal convolutions of the transformed
input. Accuracy of the proposed approach is evaluated against
the current state-of-the-art methods using both laboratory and
real world activity datasets. A systematic analysis of the feature
generation parameters and a comparison of activity recognition
computation times on mobile devices and sensor nodes are also
presented.

Index Terms—Deep Learning, Low-Power Devices, HAR,
ActiveMiles

I. INTRODUCTION

In wellbeing, healthcare, and sports monitoring, it is often
important to capture the activities being performed by the
subject. A detailed recording of the daily activities performed
by the subject is important for many reasons, such as
better understanding of wellbeing, knowing the activity being
undertaken by a patient for diagnosis of pathologies, or iden-
tifying training activities for athletes. Fig. 1 shows a sample
of the output generated from the smartphone application used
to capture daily activity in this paper. Manual recording and
labelling of different types of daily activity is labour intensive
and infeasible for large population studies. The ability to
accurately recognise different human activities automatically
has significant implications for these applications.

For many years, machine learning and pattern recognition
techniques for sensor-based classification of human activity
have been focused on the design and use of “shallow”
features that are task dependent. Features, such as mean [1],
Fourier transforms [2], and symbols [3], are typically ex-
tracted from segments of data and then trained using classi-
fication methods [4]-[8]. However, these methods are still
limited to the specific classification tasks that they were
designed for.

Recently, there has been extensive interest in deep learn-
ing approaches for a diverse range of problems including

The Hamlyn Centre, Imperial College London, London {d.ravi,
charence, benny.lo, g.z.yang}Q@imperial.ac.uk

LIRS L IR
¢( acTive miLes

AZ Rl

Fig. 1. Screenshot of ActiveMiles running on a LG Nexus 5 smartphone
— our Android app for recording real world daily human activities [9].

image analysis, artificial intelligence, and sensor informat-
ics. In deep learning, features are abstracted automatically
from the data instead of being handcrafted, which allows
these machine learning methods to be more effectively
used across a range of different classification tasks [10]-
[13]. This automatic feature extraction paradigm is also
becoming increasingly relevant in the area of Body Sensor
Networks (BSN) [14] as sensors are able to generate ever-
growing amounts of data, which makes developing hand-
crafted features a challenging task. In general, deep learning
approaches work by using a hierarchy of layers that are
initialised with randomly generated features. These features
are gradually refined during the learning phase by optimising
a cost function related to the classification task. The ma-
jority of deep learning approaches that have been proposed
for Human Activity Recognition (HAR) attempt to extract
discriminative features from the raw inertial sensor data.
Changes in sensor orientation, sensor placement on the body,
and other variations in sensor configuration make extracting
descriptive features from raw data difficult to achieve. Where
the input domain is not suitable for deep learning, current
deep learning methods address this by exploiting a larger
number of layers and nodes, resulting in higher complexity
in the model, which is not an ideal solution for BSN. In
this paper, we propose to combine the use of a suitable
input domain with a well designed deep learning approach in
order to obtain efficient classification features that are robust
against transformations and variations in sensor properties.



The rest of the paper is organised as follows: In Section II,
we introduce existing methods and the current state-of-
the-art regarding deep learning approaches that have been
proposed for HAR. Our proposed methodology for human
activity recognition is described in Section III. Datasets
used for evaluation and experimental results are presented
in Section IV. The findings and contributions of our work
are concluded in Section V.

II. RELATED WORK

Extracting discriminative features from the raw inertial
data is a critical and challenging task for HAR. Most existing
work relies on heuristic handcrafted features, also known as
shallow features. Commonly used features for HAR include
statistics of the raw signal (e.g. mean and variance of time
sequences) [1], basis transform coding (e.g. signals with
wavelet transform and Fourier transform) [2], and symbolic
representation [3]. Classification methods, such as decision
trees, k-Nearest Neighbour (k-NN), and Support Vector Ma-
chines (SVM), are then trained to identify different activities
using the handcrafted features [4]-[6]. To further improve
recognition accuracy, some researchers have demonstrated
that ensemble classification methods, which combine multi-
ple learning algorithms together, can achieve better outcomes
in some cases. Catal et al. [7] and Zainudin et al. [8], for
example, combine decision trees, multilayer perceptron, and
logistic regression for HAR. Their results show that ensemble
learning can obtain significant improvements for activity
recognition when compared to what each learning algorithm
can achieve individually with shallow features.

Deep learning approaches, such as Deep Belief Networks
(DBN), Restricted Boltzmann Machines (RBM), and Con-
volutional Neural Networks (CNN), are being explored to
create more generalised learning methods that extract fea-
tures directly from the input data. However, current methods
typically achieve this by introducing additional layers and
nodes for classification, which increases computational com-
plexity. For example, in the CNN based method described by
Zeng et al. [10], additional max-pooling layers are applied
after feature detection from the raw input to produce scale-
invariant features, which is then introduced to a 1024 neuron
hidden layer to merge features from multiple channels, and
another additional soft-max layer is used to generate the
classification result. Yang et al. [11] and Chen and Xue [12]
both use CNNs with multiple iterations of convolution and
subsampling layers, or convolution and pooling layers being
applied for feature extraction. Alsheikh et al. [13] demon-
strates activity recognition using a method based on DBNSs.
Deep Belief Networks are formed using multiple hidden
layers, which in Alsheikh et al.’s implementation are formed
from stacks of RBMs. A hybrid deep learning and hidden
Markov model approach is finally used with three 1000
neuron layers. While utilising additional hidden layers and
neurons to improve recognition accuracy is not a significant
problem for high performance computer systems, it makes
these methods unsuitable for devices with fewer resources,
such as mobile devices and Body Sensor Networks.

III. METHODS

When a solution for the HAR problem is proposed the
following considerations need to be addressed:

1) Raw inertial data is highly fluctuating over time, mak-
ing classification impossible when using a single data
point in time [15]. To tackle this issue, segments of
finite length are usually generated and analysed at
regular intervals. In this way, a sliding window strategy
is adopted to segment the time series signal into a
collection of short sequences of signals.

2) In many applications, there are no clues about the type
or the position of the inertial sensor. Some approaches
analyse the behaviour of human activities under a con-
trolled environment (fixed orientation, position, sample
rate, etc.). However, in real world scenarios, it is not
always possible to fix these properties. For example, a
HAR app for a smartphone can be executed on many
different compatible devices, but no information about
the type of sensor or the position/orientation where the
smartphone is carried are available.

Due to the wide range of sensors available, it is chal-
lenging to develop an algorithm that works universally and
we believe that generalisations of real word scenarios using
handcrafted features is infeasible. Exploiting the idea of deep
learning, our approach uses a systematic feature learning
method for HAR. Our method adopts an efficient strategy
to extract features using a temporal convolution on the
spectrogram domain of the inertial data so that the learned
features are invariant to changes in different properties. The
rest of this section is divided as follows: In III-A, we first
explain the spectrogram domain and its advantages for the
HAR problem. In III-B, the details of our deep learning archi-
tecture are provided. III-C describes the training procedure
and its regularisation, and finally in III-D, some information
about the hardware and frameworks used to implement the
proposed approach on low-power devices are given.

A. Spectrogram

A spectrogram of an inertial signal x is a new represen-
tation of the signal as a function of frequency and time.
The spectrogram is the magnitude squared of the short-time
Fourier transform (STFT). STFT is used to determine the
sinusoidal frequency and phase content of local sections of
a signal as it changes over time [16]. The procedure for
computing the spectrogram is to divide a longer time signal
into shorter segments of equal length and then compute the
Fourier transform separately on each shorter segment. This
reveals the Fourier spectrum on each shorter segment. The
spectrogram describes the changing spectra as a function of
time. In the discrete time case, the data to be transformed
could be broken up into chunks or frames, which usually
overlap each other to reduce artefacts at the boundaries. Each
chunk is Fourier transformed, and the complex result is added
to a matrix, which records magnitude and phase for each



Filters

02 0.4 06 08 02 04
Normalized Frequency (< rad/sample)

Input

Normalized Frequency (xx rad/sample)

#offilters

Soft-Max
/JM | Layer
OutputFrame
06 08 Ful Iy-Connected
Temporal Layer
Convolution
Layer

Fig. 2. Proposed deep learning architecture: a filter w; is applied to the pre-arranged spectrograms of the input, and the weighted sums of the convolved
signal at each time ¢ are computed in the temporal convolution layer. Finally, the fully-connected layer and soft-max layer are used for classification.

point in time and frequency. This can be expressed as:
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likewise, with signal z[n] and window w[n]. The magnitude
squared of the STFT yields the spectrogram of the function:
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The resulting spectrogram is a matrix st x sf where st is
the number of different short term, time-localised points and
sf is the number of frequencies considered. Time increases
across the columns while the frequency increases down the
rows, starting at 0. The spectrogram representation provides
interpretable features in capturing the intensity differences
among nearest inertial data points. It also provides a form
of temporal and sample rate invariance. This enables the
classification of activities based on the variations of spectral
density, which reduces classification complexity. We use the
spectrogram representation as the input for the next stage of
our deep leaning activity recognition model.

STFT{z[n]}(m,w)

spectrogram{z(n)}(m,w)

B. Feature Extraction using Deep Learning

In a typical deep learning approach for HAR, the time-
series data obtained by the accelerometer and gyroscope are
forwarded directly into the deep learning infrastructure. The
deep learning model contains hidden relations between pairs
of input signals; these correlations are usually overlooked.
Moreover, a large set of layers are built on top of each
other for automating feature design by trying to capture
all the possible permutations of the signal using a greater
number of nodes. Each layer performs a non-linear trans-
formation on the outputs of the previous layer, so that the
deep learning models the data by a hierarchy of features
from low-level to high-level. These approaches have high

computation demands and make them unsuitable for low-
power devices. In our approach we reduce the computation
cost by limiting the connections from the input nodes, finding
features efficiently through few nodes and levels. Our explicit
connections are implemented using sums of local temporal
convolutions over the transformed input. Since each human
activity has a discriminative distribution of frequencies, the
sum is performed in correspondence to each frequency ob-
tained at different time-localised values. The implementation
details of the proposed approach are provided in Algorithm 1.
Specifically, each filter w; — with size kw x st — is applied
to the spectrogram vertically, as shown in Fig. 2, and the
weighted sum of the convolved signal at time ¢ is computed
as follows:

[7][k] * input[dw = (t — 1) + k][5] (3)

where dw is the stride of the temporal convolution.

These temporal convolutions produce an output layer o
having size wp x OutputFrame with OutputFrame =
(InputFrame — kw)/dw + 1 and wp the number of filters.

To introduce orientation invariance, temporal convolution
results obtained from the different axes of an inertial sensor
are integrated together without any discrimination, as shown
in the for loop on Line 5 of Algorithm 1. Moreover, the filters
applied to the three axes share the same weights, which is
important for reducing the number of nodes in the layer and
for better generalisation of the data. The last two layers of the
proposed solution are a fully-connected layer and a soft-max
layer, which are required since our deep model learns not
only the informative features to recognise different activities
from the data, but also the classification weights used to
recognise the class activity.



Algorithm 1 Proposed algorithm for HAR
Input:

Accx, Acey , Accz

Gyrx,Gyry,Gyrz

kw

sf

st

dw

wp
Qutput:

result

> Raw Triaxial Acceleration data

> Raw Triaxial Gyroscope data

> Kernel size for temporal convolution
> Number of frequencies points in the spectrogram

> Number of time-localized points in the spectrogram
> Step of the convolution
> Number of filters

> HAR label

S_a[l], S_a[2], S-a[3] < spectr(Accx), spectr(Accy ), spectr(Accz);
S_g[1], S-g[2], S_g[3] + spectr(Gyrx ), spectr(Gyry ), spectr(Gyrz);
for i=1 to wp do
for t=1 to sf do
for 2=1 to 3 do

offlil=3" 5% wlil[j1Ik] * S-glellduw « (6 — 1) + K[
j=1k=1

D R

7 olt+ sf] [i]+=]i:t:1 :le wi][j][k] * S-a[z][dw * (t — 1) + k] [5];

8: end for

9: end for

end for

11: feo < fully_connected-N N (o);

result < soft-max(fco);

C. Training Process

For training our deep learning architecture, the inertial data
extracted from fixed windows are converted to the spectral
domain and forwarded in the network using a mini-batch of
size equal to five. The forward propagation is conducted in
the temporal convolutional layer using Eq. 3. The output
of the convolutional layer is fed into the fully-connected
layer, and then into the soft-max classifier, Fig. 2. After the
first iteration of forward propagation has completed, we use
the error value, obtained by the loss function L2-norm, in
the backward propagation routine to update each edge of
the network through the Stochastic Gradient Descent (SGD)
approach. Moreover, to improve the training procedure of the
weights, we have used three regularisations:

1) Weight Decay: Is an additional term in the weight
update rule that causes the weights to exponentially
decay to zero if no other update is scheduled. It is
used to avoid over-fitting.

Momentum: Is a technique for accelerating gradient
descent and attempting to move the global minimum
of the function. It accumulates a velocity vector in
directions of persistent reduction in the objective across
iteration.

Dropout: Is a simple optimisation technique that re-
moves units randomly from a neural network. Drop-
ping out is done independently for each hidden unit
and for each training case. Thus, applying dropout to
a neural network is equal to sub-sampling a sub-neural
network from it. Training a network with dropout leads
to significantly lower generalisation error.

2)

3)

D. Implementation

The proposed approach has been deployed as an app for
Android devices, Fig. 1, and also as an embedded algorithm
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Fig. 3. Changes in classification accuracy on one of the considered datasets
when the number of short time localised points for Fourier transform and the
number of analysed frequencies are modified for spectrogram generation.

for the Intel Edison Development Platform. Intel Edison is
utilised to demonstrate on-node human activity classification
using the trained classification model. Featuring a dual-
core Intel Atom CPU at 500MHz, wireless connectivity,
and compact physical dimensions at 35.5 x 25.0 x 3.9mm,
the Intel Edison is a small but powerful platform that
is well suited for smart body sensor networks. For both
architectures, we use the FFTW3 library [17] to extract the
spectrogram and the Torch framework [18] to implement
the deep learning model. The spectrograms for each axis
of each sensor (gyroscope and accelerometer) are computed
separately using a fixed window size and chunks used to
compute the Short-Time Fourier Transformations in Eq. 1 are
obtained without overlap. The different spectrogram matrices
are rearranged as shown in Fig. 2 and used as an input for
the method.

IV. EXPERIMENTS & RESULTS
A. Datasets and Experimental Setup

To evaluate the performance of the proposed human activ-
ity recognition method on complex real world activity data
and against existing approaches, four datasets are analysed
using 10-fold cross validation. Table I summarises some of
the properties of these datasets. Noteworthy is the release of
our new dataset, ActiveMiles, which contains unconstrained
real world human activity data from 10 subjects collected
using five different smartphones. In addition to being the
largest dataset in terms of number of samples, with around
30 hours of labelled raw data, as far as we know, it is
the first database that contains data captured using different
device configurations. To compare the relative performance
of the proposed solution, we have used four different baseline
configurations, as shown in Table II. After extracting 102
powerful handcrafted features collected from the most pop-
ular existing HAR approaches, we use a linear classifier and
neural network to perform the classification task. A wrapper
selection approach is also exploited with the aim to select
the best 23 features [9]. In our experiments, we initially
determine the optimal parameters for the proposed approach.
Fig. 3 shows how the classification accuracy changes when



TABLE I
SUMMARY OF HUMAN ACTIVITY DATASETS

Number of Sensors
Dataset Activities Subjects Sensor Placement Accel.  Gyro. Sampling Rate Samples
ActiveMiles 7 10 Any placement v v 50 — 200Hz 4,390,726
(unconstrained)
WISDM vl1.1 6 29  Front trouser pocket v X 20Hz 1,098,207  [19]
(thigh)
Daphnet FoG 2 10 Trunk, thigh, ankle v X 64Hz 1,917,887  [20]
Skoda 10 1 Arms (20 positions) v X 98Hz ~ 701,440 [21]
TABLE II 99
BASELINE APPROACHES :3 T —— e —=—50 Nodes - WISDM-v1
96 ==4==50 Nodes - WISDM-v1
95 ,fi:r__:" — ~=—80 Nodes - ActiveMiles
Name  Type of Features  # of Features Classifier g o4 50 Nodes - ActiveMiles
Csl Wrapper Selection 23 Linear Classifier g%
Cs2 All Features 102 Linear Classifier <92 =80 Nodes - D-FoG
Cs3 Wrapper Selection 23 Neural Network 91 50 Nodes - D-FoG
Cs4 All Features 102 Neural Network %0
89 80 Nodes - Skoda
88 T— 50 Nodes - Skoda
—m—AdiveMiles  —#— WISDM-v1 DFoG  —Soda & 1 2 3 2 5
9 %9 # of Filters
B gt —————— 98 | —
97 97 1 Fig. 5. Accuracy of the proposed approach against the number of filters
: . % | used in the temporal convolution layer. For each dataset, 50 and 80 nodes
7o = - ——a e are used in the fully connected layer.
g b
@ %3
a 2 . .
% /\,__,* e and 10s were used to segment the time series of the raw
: z j inertial data. From the results shown, we can see that the
1 2 3 4 5 1 2 3 proposed system generates discriminative features that are
F:te;sze (::;Leve‘s generally more powerful than the handcrafted features. How-
a

Fig. 4. Accuracy of the proposed approach by increasing (b) the number of
temporal convolution layers and (a) the size of temporal convolution kernel.

the spectrogram generation parameters are modified. Specif-
ically, two parameters are taken into account: The number of
short time localised points for Fourier transform, and number
of analysed frequencies. Selecting an appropriate number of
short time localised points for the spectrogram is important,
as it is evident from our analysis that too many points or too
few points can compromise the accuracy. There is a gradual
increase in the outcome when a greater number of analysed
frequencies are used.

Fig. 4(b) shows that the proposed approach requires few
levels in order to obtain good results. In our implementation,
we use one temporal convolution layer since increasing the
number does not produce substantial improvement. Also, the
number of filters required for classification is minimal. Fig. 5
shows that 15 filters are enough and that just 80 nodes are
required in the fully convolution layer. Fig. 4(a) shows that
the optimal size of the temporal convolution kernel is two
or three, depending on the data being classified.

A comparison of HAR results using the described baseline
approaches, existing methods, and our proposed method are
presented in Table III. Non-overlapping window sizes of 4s

ever, in some cases using 102 handcrafted features together
with a neural network produces marginally better results. For
these particular tasks, the features learnt using our proposed
method are not as discriminative as the handcrafted features,
but our results are more consistent across all datasets. We
obtain comparable accuracy results even against approaches
that are more resource demanding [7], [13], [20], [21].

In Table IV, the computational time required to extract
the spectrogram from the accelerometer and gyroscope sen-
sors on 10 seconds of data, and the computation time for
classification using the proposed deep learning approach are
compared on two Android smartphones and on the Intel
Edison Development Platform. Despite comparable speci-
fications for the two smartphones tested, there is a slight
difference in the computation time, which may be due to
differences in operating system or other optimisations. For
the implementation on the Intel Edison, we have recorded
times using two different data sampling rates (50Hz and
200Hz), which is reflected in variation in spectrogram gen-
eration times. The times obtained from all platforms are
consistent with the requirements for real-time HAR on low-
power devices.

V. CONCLUSION & FUTURE WORKS

In this paper, we presented a deep learning method for
human activity recognition and demonstrated that the classi-



TABLE III
COMPARISON OF OUR PROPOSED SOLUTION AGAINST EXISTING
METHODS IN DIFFERENT DATASET

Dataset Approach ~ Window Accuracy (%)

Csl 81.0

Cs2 89.3
ActiveMiles Cs3 10s 94.7

Cs4 95.0

Ours 95.1

Csl 85.1

Cs2 91.3

Cs3 96.7
WISDM Csd 10s 97.4
vid [13] 98.2

[7] 94.3

Ours 98.2

Csl 86.2

Cs2 89.2

Cs3 94.0
Skoda Csd 4 95.9
(Node 16) [21] 6.0

[13] 89.4

Ours 91.7

Sensitivity  Specificity

Cs3 62.2 96.9
Daphnet Cs4 66.3 97.7
FoG [20] 4s 73.1 81.6

[13] 91.5 91.5

Ours 71.9 96.7

TABLE IV

COMPUTATION TIME FOR SPECTROGRAM GENERATION AND
CLASSIFICATION USING OUR METHOD ACROSS DIFFERENT PLATFORMS

Device Spectrogram  Deep Learning
LG Nexus 5 5.4ms 5.7ms
Samsung Galaxy S5 20ms 8ms
Intel Edison 13ms — 42ms 14.9ms

fication stage could be implemented on low-power wearable
devices.

To handle different sensor configurations and different
types of activities, the raw inertial data is projected to the
spectral domain. We have demonstrated that the feature
generation process can create discriminative features that
are more powerful than shallow handcrafted features. The
accuracy of the proposed method is better or compara-
ble against existing state-of-the-art approaches that utilise
many more nodes and layers. The ability of the proposed
method to generalise across different classification tasks is
demonstrated using a variety of human activity datasets,
including a dataset collected in unconstrained real world
environments. Finally, we show that the computation times
obtained from low-power devices, such as smartphones and
BSN, are consistent with the requirements for real-time on-
node human activity recognition.
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