CONTROL ID: 2324221
PRESENTATION TYPE: Oral or Poster
CURRENT CATEGORY: Liver Fibrogenesis and Non-Parenchymal Cell Biology
CURRENT DESCRIPTORS: KO3. Clinical and Translational Fibrosis Research
TITLE: Systemic administration of a novel development candidate, MTL-CEBPA, up-regulates the liver-enriched transcription factor C/EBP-α and reverses CCl₄-induced liver failure in vivo.
AUTHORS (FIRST NAME, LAST NAME): Vikash Reebye¹, Jon Voutila², Kai-Wen Huang³, ⁴, Anjaneyulu Muragundla⁵, Aravindakshan Jayaprakash⁶, Prashant Vadnal⁶, Hans Huber⁶, Robert Habib², Pål Sætrom⁷, ⁸, John Rossi⁹, Nagy Habib¹
Institutional Author(s): MiNA Therapeutics Ltd, London, United Kingdom
INSTITUTIONS (ALL):
1. DEPARTMENT OF SURGERY, IMPERIAL COLLEGE LONDON, London, United Kingdom.
3. Department of Surgery and Hepatitis Research Centre, National Taiwan University Hospital, Taipei, Taiwan.
4. Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan.
5. Syngene, Bangalore, India.
7. Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
8. Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway.
9. Molecular and Cellular Biology, City of Hope, Duarte, CA, United States.
ABSTRACT BODY:
Abstract Body: The transcription factor CCATT/enhancer binding protein alpha (C/EBP-α) is known to have an important regulatory role in the maintenance of normal hepatocyte function and response to injury. We developed a small activating RNA (saRNA) that was demonstrated to significantly up-regulate C/EBP-α expression in primary hepatocytes. This saRNA was subsequently encapsulated in an anionic liposome as a development candidate for clinical use (MTL-CEBPA). Liver failure was induced in Sprague Dawley rats by twice weekly i.p. injection of CCl₄ for a duration of 8 weeks. For a further 2 weeks of the CCl₄ regimen, animals were treated by twice weekly i.v. injection of MTL-CEBPA via tail vein at 0.3mg/kg, 1mg/kg and 3mg/kg.

We demonstrate reversal and near normalisation of clinically relevant parameters following all treatment doses of MTL-CEBPA including, at 3mg/kg, bilirubin (64% decrease), circulating alanine and aspartate aminotransferase (59% and 62% decrease respectively) and prothrombin time (19% decrease). We also observed a significant increase in serum albumin and total protein as well as a significant decrease in alkaline phosphatase and gamma-glutamyltranspeptidase. Liver hydroxyproline significantly decreased in a dose-dependent manner in addition to a significant increase in body weight with no associated toxicity.

Here we present a novel development candidate, MTL-CEBPA, that safely up-regulates C/EBP-α, as a potential treatment for liver failure in vivo. Clinical studies with MTL-CEBPA are expected to begin in early 2016.