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Dear Sir, 
 
Re: MS: .: BBRC-14-3615 - Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in 
primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial 
hypertension by Stephen John Wort and colleagues.  
 
We thank the reviewers for their time spent reading the above manuscript and their detailed and 
insightful suggestions for how to improve it.  We have incorporated their suggestions into the 
revised manuscript and have provided a point-by-point rebuttal below. 
 
We hope that we have satisfactorily addressed all the Reviewer’s concerns and that the manuscript 
is now acceptable for publication.  All authors have approved submission to your journal and there is 
no conflict of interest of any authors in relation to the submission. 
 
 
 
Yours sincerely, 
 
 
 
 
 
 
 
Dr SJ Wort 
 
  

Cover Letter



Point-by-point response to Reviewer's comments 
The authors found that nuclear IL33 is decreased locally in idiopathic pulmonary arterial 
hypertension and also that it regulates soluble ST2 receptor and IL-6 expression in primary human 
arterial endothelial cells which is thought to explain the pathogenesis of IPAH to some extent. The 
data is new and interesting. Though I think that it is worth being published in this journal, the way 
how to write the manuscript should be improved and the explanation of the data and conclusion 
should be more precise (not so broad and vague).  
Response to Reviewer comment: We thank the reviewer for his/her comments and appreciate the 
effort they have made in improving the manuscript.   
 
Major comments 
1. It is a new finding that nuclear IL33 decreased locally in IPAH, and the data of "in vitro" study is 

convincing. However, still I do not think you can conclude that IL-33 has a cause of IPAH. 
According to your data, in IPAH, nuclear IL33 is reduced in the pulmonary endothelial cells, 
which lead to the chronic inflammation and thus also lead to IPAH. However, from you data, IL6 
was upregulated but CX3CL1/fractalkine is reduced in the cells with siRNA of IL-33, and there are 
no data on the expression levels of other cytokines written in the 1st page of the introduction. 
Further, chronic inflammation of pulmonary artery really induces the IPAH? (I think 
inflammation is observed but this does not mean the causality. Are there any reports on this 
causality in vivo, or …). You also wrote in the introduction that nuclear localization of IL33 leads 
to chronic inflammation in COPD and asthma, and this is confusing…(IL33 nuclear localization 
leads to inflammation? Anti-inflammation?)  Please add some discussion including the limitation 
of this study. 

Response to Reviewer comment: We thank the Reviewer for appreciating the novelty of the results 
and agree with them that it is too early to conclude if loss of IL-33 is a cause or a consequence of 
IPAH.  We appreciate the Reviewer’s concerns regarding the over-interpretation of the results 
particularly with respect to the fact that not all the inflammatory mediators measured had enhanced 
expression following loss of IL-33.  In light of this we had modified our conclusions to be more 
circumspect and emphasise the need for further experiments on primary cells and in animal models.   
We also agree with the Reviewer regarding the causality of the loss of nuclear IL-33 with respect to 
disease processes.  In light of this we have modified the text to emphasise the association of iPAH 
with inflammation and that this may not be causal (page 3, para 1; also see answer to point 2 
below).  In the same vein we have modified the text relating to chronic inflammation in asthma and 
COPD (page 4, para 1).  In addition, we have added a paragraph towards the end of the Discussion 
section highlighting some of the study limitations (page 12 para 3 and page 14, para 4).  
  ‘….The limitations of the study are centred on the observational nature of the study and the need to 
define a clear mechanism for the loss of nuclear IL-33 in iPAH tissues.  It will also be important to 
study samples from patients with milder disease and with different types of PAH.  The results from 
these experiments and animal studies using conditional IL-33 nuclear localisation signal deficient 
mutant mice may also address whether IL-33 is an important driver of disease or merely a 
consequence of the disease process…..’. 
 
2. Please add the discussion on the IL33 KO mice and IPAH. The data on these mice was already 

reported (Oboki, Keisuke, et al. "IL-33 is a crucial amplifier of innate rather than acquired 
immunity." Proceedings of the National Academy of Sciences 107.43 (2010): 18581-18586.). Do 
you think IL-33 could be a cause of IPAH from these data? 

Response to Reviewer comment: We thank the Reviewer for pointing out this important 
manuscript.  We have now cited this manuscript and discussed it in relation to our data on page 13 
para 1.  The section now reads as ‘…A role for both the innate and adaptive immune systems has 
been proposed in the development of PAH (El Chami H & Hassoun PM. Prog Cardiovasc Dis. 2012 
Sep-Oct;55(2):218-28).  Results using IL-33 knockout mice has emphasised that whilst IL-33 does not 



affect the acquired immune response it is a crucial amplifier of mucosal and systemic innate 
immunity (Oboki, Keisuke, et al. PNAS 2010; 107: 18581-18586).  This suggests that loss of nuclear IL-
33 has the potential to act as a driver of PAH pathogenesis.  Nuclear IL-33 is expressed in blood 
vessels of healthy tissues but down-regulated at the earliest onset of angiogenesis during wound 
healing and when cultured endothelial cells begin wound healing, angiogenesis or start to migrate in 
response to vascular endothelial growth factor (VEGF), IL-1β and TNFα. (Küchler AM et al., Am J 
Pathol. 2008 Oct;173(4):1229-42).  Furthermore, mechanical stress can also cause a loss of nuclear 
IL-33 due to release from murine fibroblasts in vitro and in vivo in the absence of cellular necrosis 
(Kakkar R et al., J Biol Chem. 2012 Feb 24;287(9):6941-8) and thereby regulate structural cell 
activation. 
In addition, cell injury or necrosis can also cause loss of nuclear IL-33 and mediate inflammation and 
some aspects of disease pathogenesis in vivo (Bessa et al., J Autoimmun. 2014).  This is highlighted in 
mutant mice lacking the IL-33 nuclear localisation signal which demonstrate severe non-resolving 
inflammation (Bessa et al., J Autoimmun. 2014).  Nuclear IL-33 can modulate inflammation through 
actions on NF-κB where it has been reported to both enhance basal and TNFα-stimulated ICAM-1 and 
VCAM-1 expression (Choi YS et al., BBRC 2012; 421(2):305-11) and attenuate NF-κB activation (Ali S 
et al., J Immunol. 2011 Aug 15;187(4):1609-16) and the expression of selected inflammatory genes.  
Finally, acetic acid-induced colitis is associated with enhanced IL-33 expression which is reduced by 
anti-oxidants suggesting that oxidative stress may be implicated in the loss of nuclear IL-33.   
Overall, this suggests that VEGF, a potential driver of iPAH, may work in concert with IL-33 to 
enhance the inflammation associated with the development of the disease (Archer SL et al., 
Circulation 2010;121:2045–2066).  This does not however directly address the issue as to whether the 
loss of nuclear IL-33 is a causative factor in iPAH or merely a response to disease pathogenesis.  
Answering this question will require further experimentation using both conditional IL-33 nuclear 
localisation signal deficient mutants in models of iPAH and primary human cells……’.   

 
3. IL33 and reduced locally, but how? Please discuss. 
Response to Reviewer comment: We thank the Reviewer for giving us the opportunity to add some 
discussion regarding the potential mechanisms underlying the loss of nuclear IL-33 in iPAH cells.  As 
stated above in the response to Point 2 we have discussed the possible mechanisms by which 
nuclear IL-33 may be lost from the nucleus in PAH (page 3 and page 14 para 1). 

 
4. Again, do you think decrease of nuclear localization of IL33 is a cause or consequence of IPAH. 

Please discuss. 
Response to Reviewer comment: In light of the comments above we are happy to assert that loss of 
nuclear IL-33 is associated with a specific type of inflammation in iPAH but further experimentation 
is required to address the issue of causality.  We have discussed this in more detail in the discussion 
section as detailed above in the responses to point 2 (page 15).  We have also amended the final 
part of the Discussion section to read ‘….Athough loss of nuclear IL-33 is associated with exposure to 
proinflammatory cytokines, VEGF or a loss of cell-cell contacts, it is unclear what precise role IL-33 
has in the pathogenesis of disease.  The mechanism for this loss of nuclear IL-33 in iPAH requires 
further investigation.…’. 
 
Due to the word limits of the revised manuscript we cannot be as extensive in our discussion of the 
important points raised by the Reviewer as we would like.  As a result we have tried to be as succinct 
as possible whilst still highlighting the key issues. 
 
Minor comments 
1. In the abstract, it is written that sST2 is enhanced in patients with IPAH. Please add the 

phrase "in the serum" 



Response to Reviewer comment: We thank the Reviewer for pointing out this lack of clarity.  We 
have now added this phrase to the abstract (page1). 

 
2. Please add a brief explanation of "alarmin" to the readers. 
Response to Reviewer comment: We have included a brief definition of the term “alarmin” to the 
Introduction to aid readers in their understanding (page 3 para 2). 

 
3. In page 12 line 3, the data on exon 2 coding region was not shown. 
Response to Reviewer comment:  We thank the Reviewer for pointing out this omission.  We have 
now added exon 2 data to Figure 5A in the revised manuscript. 
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Abstract 

Idiopathic pulmonary arterial hypertension (IPAH) is an incurable condition leading to 

right ventricular failure and death and inflammation is postulated to be associated 

with vascular remodelling.  Interleukin (IL)-33, a member of the “alarmin” family can 

either act on the membrane ST2 receptor or as a nuclear repressor, to regulate 

inflammation. We show, using immunohistochemistry, that IL-33 expression is 

nuclear in the vessels of healthy subjects whereas nuclear IL-33 is markedly 

diminished in the vessels of IPAH patients.  This correlates with reduced IL-33 

mRNA expression in their lung.  In contrast, serum levels of IL-33 are unchanged in 

IPAH.  However, the expression of the soluble form of ST2, sST2, is enhanced in the 

serum of IPAH patients.  Knock-down of IL-33 in human endothelial cells (ECs) using 

siRNA is associated with selective modulation of inflammatory genes involved in 

vascular remodelling including IL-6. Additionally, IL-33 knock-down significantly 

increased sST2 release from ECs. Chromatin immunoprecipitation demonstrated 

that IL-33 bound multiple putative homeodomain protein binding motifs in the 

proximal and distal promoters of ST2 genes.  IL-33 formed a complex with the 

histone methyltransferase SUV39H1, a transcriptional repressor. In conclusion, IL-33 

regulates the expression of IL-6 and sST2, an endogenous IL-33 inhibitor, in primary 

human ECs and may play an important role in the pathogenesis of PAH through 

recruitment of transcriptional repressor proteins. 

 

Keywords 

IL-33, soluble ST2, pulmonary hypertension, human endothelial cells, nuclear 

repressor 
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Introduction 

Idiopathic pulmonary arterial hypertension (IPAH) is an incurable disease 

characterized by remodelling of peripheral pulmonary arterial resistance vessels 

(<100µM diameter), which leads to right ventricular failure and premature death[1]. 

The pathogenesis of PAH is likely a multi-hit phenomenon, similar to that described 

in cancer biology. There is evidence for an underlying genetic predisposition and 

known “hits” such as increased blood flow (Eisenmenger Syndrome), auto-antibodies 

(connective tissue disease), exposure to drugs (such as appetite suppressants), 

viruses (HIV) and inflammation, although the exact mechanisms are yet to be 

defined[2]. There are increased circulating levels of cytokines and chemokines, e.g. 

IL-6, IL-1, TNF, CCL2/MCP-1, CCL5/RANTES and CX3CL1/fractalkine in IPAH 

patients compared to control subjects, some of which have prognostic importance[3-

6].  Furthermore, we have recently shown an increased NF-B expression in the 

nuclei of endothelial cells (ECs) and macrophages in the lungs of IPAH patients who 

have undergone lung transplantation, suggesting on-going inflammation during the 

course of PAH[7]. 

IL-33, a 31KDa cytokine, that lacks a signal peptide, is a recent addition to the 

“alarmin” family. This family is comprised of structurally diverse and evolutionarily 

unrelated multifunctional „danger signals‟ that are released from damaged epithelial 

or endothelial cells or are secreted by stimulated leukocytes and epithelia to alert the 

immune system of cell damage during trauma or infection. It plays a key role in the 

defence against, or warning about, environmental stresses and infections which 

cause injury and necrosis of epithelial cells and ECs[8-11]. In contrast, IL-33 release 

via caspase-1 activation, results in an inactive form of IL-33[12].  Upon cellular 

release, IL-33 binds to its receptor, the suppressor of tumourogenicity 2 (ST2) 
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receptor[13-14]. ST2 is a member of interleukin-1 receptor family and undergoes 

alternative splicing to produce ST2L, a transmembrane receptor, and sST2, a 

soluble decoy receptor, which lacks the transmembrane and intracellular 

components and exists in the extracellular space and serum.  ST2 receptors are 

expressed by ECs, myocytes and fibroblasts within the cardiovascular system[15]. 

IL-33 also has a nuclear localisation signal and contains a homeobox Helix-Turn-

Helix DNA binding motif found in many transcription factors[16] which may account 

for its nuclear localization in epithelial cells and ECs. Increased IL-33 expression has 

been found in several chronic inflammatory diseases such as asthma[17-18] and 

chronic obstructive pulmonary disease[19-20].   

IL-33 treatment reduces cardiac hypertrophy and fibrosis and improves survival 

following aortic constriction in wild-type but not in ST2-/- mice. Importantly, 

administration of sST2 blocked the protective, anti-hypertrophic effect of IL-33[21]. 

IL-33 was also shown to reduce cardiomyocyte apoptosis, infarct size and fibrosis 

whilst improving left ventricular function[22].  IL-33 has a protective effect, by 

promoting Th1 to Th2 T-cell cytokine skewing, in ApoE-/- model of atherosclerosis 

which is reversed by sST2[23].  Interestingly, higher serum sST2 levels are 

predictive of increased mortality in heart failure[24], various respiratory diseases[25] 

and PAH[26]. 

Despite these observations IL-33 has never convincingly been detected in the 

plasma of humans with cardiovascular conditions. The relative importance of 

signalling via exogenous IL-33/ST2L and intracellular “nuclear” IL-33 signalling is 

also unclear. However, in conditions where necrosis and direct injury to cells is not 

present (e.g. vascular remodelling) nuclear signalling may be more important.  The 

aim of this study was to investigate the expression of the IL-33/ST2 nexus in IPAH 
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lung, plasma and ECs. Furthermore, we investigated whether nuclear IL-33 

regulates the expression of key inflammatory mediators known to be involved in 

pulmonary vascular remodelling and that of sST2. 
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Materials and methods 

Patients with IPAH and control subjects 

The clinical details of IPAH patients and the control subjects used in this study have 

already been described[7]. 

 

Cell culture: 

Normal human pulmonary arterial endothelial cells (HPAECs) and lung 

microvascular endothelial cells (HLMVECs) were purchased from Lonza. HLMVECs 

from IPAH patients were isolated as described previously[6]. Cells were maintained 

in EGM-2 and used at passages 3-8.  

 

Immunohistochemistry 

Paraffin sections of human lung tissue from 10 IPAH patients and 11 healthy donors 

were prepared and immunohistochemistry performed as described previously[7] 

using an anti-human IL-33 antibody (Enzo, Nessy-1, 1:100). 

 

Small RNA interference 

Small RNA interference (siRNA) was carried out as described previously[27]. Briefly, 

HPAECs were seeded onto 6-well plates at 2x105cells/well. After 24 hours, cells 

were transfected with smart pool siRNA for IL-33 or negative control siRNA (Fisher 

Scientific/Dhammacon) respective for 5 hours. After transfection, cells were cultured 

in EGM-2 for a further 72 hours. 

 

Real-time quantitative PCR 
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Total RNA were isolated from human lung or HPAECs using Qiagen mini-RNA 

isolation kit according to manufacturer‟s instructions (Qiagen). Total RNA (1µg) was 

transcribed to cDNA using L-AMV reverse transcriptase (Invitrogen) according to 

manufacturer‟s instructions. Real-time quantitative PCR (QPCR) was performed 

using SYBR green master mix (Qiagen) on a Corbett Rotor-Gene6000 (Corbett). The 

relative expression of target genes was quantified using the ΔΔCt method 

normalized to housekeeping genes (β-actin or GAPDH) as described previously[7, 

28].  All primers were purchased from Qiagen (QuantiTect Primer Assay): 

Hs_IL6_1_SG                                    QT00083720 

Hs_IL8_1_SG                                      QT00000322 

Hs_CCL5_1_SG(RANTES)                    QT00090083 

Hs_CX3CL1_1_SG(Fractalkine)       QT00098490 

Hs_IL1RL1_2_SG                               QT01742881 

Hs_DEFB4_4_SG                               QT01852277 

Hs_MMP9_1_SG                                QT00040040 

Hs_CTSB_1_SG                                  QT00088641 

Hs_CTSL1_2_SG                                QT01664978 

Hs_RELA_1_SG                                  QT01007370 

Hs_EDN1_1_SG                                 QT00088235 

Hs_CCL3_2_SG(MIP-1)                    QT01008063 

Hs_TGFB1_1_SG                                QT00000728 

Hs_PDGFB_1_SG                               QT00001260 

Hs_VEGFA_6_SG                              QT01682072 

Hs_GDF2_1_SG(BMP-9)   QT00210462 
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Western blot 

Cell lysates were prepared as described previously[27] and were precipitated using 

cold acetone, and air-dried. The resulting pellets were dissolved in 50ul 1XSDS 

sample buffer and cleared by centrifugation. Samples were separated on SDS-

PAGE and transferred to nitrocellulose membranes (GE Healthcare). Membranes 

were probed with Nessy-1 (1:1000) and loading quantified using an antibody against 

human -actin (Cell Signaling, 1:2000) to confirm equal protein loading. Membranes 

were developed using ECL (GE Healthcare).  

 

ELISA 

ELISA kits for human IL-33 (Enzo) and sST2 (R&D) were used to measure 

concentrations within human serum and cell culture medium according to 

manufacturer‟s instructions. 

 

Co-immunoprecipitation 

Co-immunoprecipitation of nuclear proteins was performed as described 

previously[28] using Nessy-1 (1:100) for immunoprecipitation and detection of 

SUV39H1 (Millipore, 1:5000) by Western blotting.  

 

Chromatin Immunoprecipitaion (ChIP) analysis 

HPAECs were seeded onto 10cm tissue culture dishes at 5x105/dish and grown to 

confluence (approximately 2x106 cells/dish for one ChIP experiment). Cells were 

fixed and ChIP analysis was performed using EZ-CHIPTM kit (Millipore) according to 

manufacturer‟s instruction. The binding of IL-33 to the distal and proximal promoter 

was analysed by RT-PCR using primers designed close to the punitive flat motifs up 
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to 1kb from transcriptional starting sites (TSS). The sequences of primers are as 

follows: 

Proximal promoter 

-977/-851:5‟-TCTGTGCCTCAGTGTCCTTG&5‟-TGTCCTCTATGCCAGACACAGT 

-744/-621:5‟-CATGATAGGGTCATCGCAACT&5‟-CCTCAAGGGGAGTGACAAAG 

-343/-252:5‟-GCCAAATGAGGAGTCAAGGA&5‟-ACCCCGATATTGGGACACTT 

Distal promoter 

-983/-881:5‟-TGGATAGCATCCTCCATAGGTT&5‟-TCTTCCCAGCTGCTTGACTT 

-12/101:5‟-TGGGAGGTTTTTAAAGAGAGG&5‟-CCTCAACTTTCTGCCCACAG 

-636/-521:5‟-TTTCCCTTGTACTGGCTGCT&5‟-CCAGGCTCTGTGTGCAGTAA 

Exon 2:5‟-AACTGCCTCATGTGTGGTGA&5‟-GATCCAAAACCCCATTCTGTT 
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Results and Discussion 

Reduced pro-IL-33 expression is found in lungs from IPAH patients 

In human lung tissue obtained from normal non-smoking subjects, IL-33 was found 

to be predominantly expressed in ECs in pulmonary arterioles (Figure1A). Consistent 

with previous reports in other tissues[29-30], IL-33 resided predominantly in the 

nuclei of endothelial cells. In contrast, nuclear staining was reduced in intensity or 

absent in the lung samples obtained from IPAH patients (a representative example is 

shown in Figure1B). In addition there was a highly significant 50% reduction in IL-33 

mRNA expression in IPAH lung tissue compared to control lung (0.369±0.025, N=10 

vs. 0.761±0.059, N=14, p<0.001; Figure1D). During the pathogenesis of IPAH, the 

pulmonary arterial vasculature undergoes an extensive remodelling process, 

characterised by proliferation of ECs, smooth muscle cells and fibroblasts. 

Furthermore, vascular cells from IPAH patients are known to maintain a proliferative 

phenotype in vitro[31-33]. These results are consistent with previous findings 

demonstrating that IL-33 expression is known to be inversely related to cellular 

proliferation. For instance, nuclear expression of IL-33 increases with increasing 

confluence in cell culture, but is down-regulated at the onset of angiogenesis during 

wound healing or with migration.  In addition, TNF exposure leads to a rapid loss of 

nuclear IL-33 and subsequent activation of these cells[29].  

 

Up-regulation of sST2 release in serum and culture medium of HLMVECs from 

IPAH patients 

IL-33 and sST2 have been implicated in several cardiovascular diseases[11, 34] and 

sST2 is increased in the plasma of PAH patients[26]. We found no significant 

increase in serum IL-33 concentrations in IPAH patients compared to control 
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subjects (75.0±8.56pg/ml, n=8 vs. 67.5±2.8pg/ml, n=6, p=0.476, two-tailed t-test) 

(Figure2A). In contrast, we observed a significant increase in serum sST2 in IPAH 

patients (15.7±4.2ng/ml, n=8 vs. 6.2±1.6ng/ml, n=6 p=0.0485, two-tailed t-test) 

(Figure2B). Importantly, the serum levels of sST2 (ng/ml) were a log-fold greater 

than those of IL-33 (pg/ml).  In addition, there was no significant correlation between 

serum IL-33 and sST2 levels (r= 0.06, p=0.882).  Because serum proteins may come 

from various sources, we isolated HLMVECs from lungs of IPAH patients and 

compared them to HLMVECs obtained from the control subjects. The release of IL-

33 was just above the limit of detection in all samples (3.7±0.4pg/ml, n=4 vs. 

3.8±0.6pg/ml, n=6, p=0.9499) (Figure2C). In contrast, sST2 release into the medium 

of HLMVECs derived from IPAH patients was significantly higher than that seen from 

control cells (1.4±0.8ng/ml n=4 vs. 0.3±0.03ng/ml n=6, p=0.0190) (Figure2D).   

Dogma indicates that in vitro, IL-33 levels need to be at ng/ml level to activate ST2 

receptors. However, IL-33 is barely detectable in serum or in cell culture medium in 

many studies. These observations raise an important question whether sST2 

functions solely as a decoy receptor. sST2 can bind to breast cancer cells and 

enhance ErbB2/HER2-mediated cellular motility[35]. The behaviour of vascular cells 

in IPAH has been likened to mitogenic cells[36-38] and excessive expression or 

activity of growth factors including platelet-derived growth factor (PDGF), epidermal 

growth factor (EGF) and vascular endothelial growth factor (VEGF) contributes to 

pulmonary vascular remodelling. In keeping with these data, inhibition of EGF and 

PDGF receptors has beneficial effects on haemodynamic, remodelling, and survival 

in experimental  PAH[39-40]. It is therefore possible that sST2 may also function as 

a co-factor to so far unrecognised growth factor receptors and, thereby, contribute to 
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excessive pulmonary vascular and right ventricular remodelling associated with 

IPAH. 

Our results are consistent with the hypothesis that endothelial activation or 

dysfunction in lung arterial vessels is being associated with a loss of nuclear IL-33 

and an increase in sST2. To understand the mechanism of which IL-33 may 

potentially contribute to the IPAH progression, we examined the effect of reducing 

nuclear IL-33 using siRNA and determined, using ChIP analysis whether IL-33 could 

bind to the promoter region of sST2. 

 

Regulation of gene expression by IL-33 

The role of nuclear IL-33 remains unclear as it can both enhance or reduce NF-B 

activity in a gene dependent manner[41-42] and also modulate gene expression via 

binding to putative homeobox motifs[30].  Knock-down of IL-33 using siRNA in 

confluent HPAECs was very efficient with almost complete suppression of IL-33 

expression (Figure3A).  This selectively modulated the expression of NF-B-

dependent genes with significant up-regulation of IL-6 mRNA and down-regulation of 

CCL5/RANTES and CX3CL1/fractalkine mRNAs whilst other inflammatory genes 

were not affected (Figure3B&C). The expression of sST2, unknown to be regulated 

by NF-B, was significantly increased by IL-33 knock-down. Using a focused RT-

PCR array limited the number of IL-33 regulated genes that could be identified in this 

study. A combination of microarray/deep sequencing and/or ChIP-seq is required to 

reveal the full scope of IL-33 regulated genes.  
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Bioinformatic analysis indicated that all the affected genes contain multiple 

homeobox binding motifs in their promoters (Table1 and Figure4A).  The human ST2 

gene has two TSSs located in exon1a and exon1b with some evidence for cell-

dependent promoter usage. For example, mast cells predominantly use the distal 

promoter while fibroblasts and HUVECs predominantly use the proximal 

promoter[43-45]. Using ChIP analysis, we were able to detect selective binding of IL-

33 at homeobox sites in both proximal and distal promoters, but not the exon2 

coding region (Figure4B&C). Homeodomain proteins generally act in complex with 

other transcription factors such as NF-B[46] to increase target specificity and also 

play a key role in innate immunity[47]. A role for both innate and adaptive immune 

systems has been proposed in the development of PAH[48].  Results using IL-33 

knockout mice have emphasised that whilst IL-33 doesn‟t affect the acquired 

immune response, it is a crucial amplifier of mucosal and systemic innate 

immunity[49].  This suggests that loss of nuclear IL-33 has the potential to act as a 

driver of PAH pathogenesis.  Nuclear IL-33 is expressed in blood vessels of healthy 

tissues but down-regulated at the onset of angiogenesis, during wound healing and 

when cultured ECs begin wound healing, angiogenesis, or start to migrate in 

response to VEGF, IL-1 and TNF[29]. Furthermore, mechanical stress also cause 

a loss of nuclear IL-33 due to release from fibroblasts in vitro and in vivo, in the 

absence of cellular necrosis[50] and thereby regulate structural cell activation. 

Additionally, cell injury or necrosis can also cause loss of nuclear IL-33 and mediate 

inflammation and some aspects of disease pathogenesis in vivo[51]. This is 

highlighted in mutant mice lacking IL-33 nuclear localisation signal which 

demonstrate severe non-resolving inflammation[51]. nuclear IL-33 can modulate 

inflammation through actions on NF-B where it can both enhance basal and TNF-
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stimulated ICAM-1 and VCAM-1 expression[42] and attenuate NF-B activation and 

the expression of selected inflammatory genes[41].  Finally, acetic acid-induced 

colitis is associated with enhanced IL-33 expression which is reduced by anti-

oxidants suggesting that oxidative stress may be implicated in the loss of nuclear IL-

33.   

Overall, this suggests that VEGF, a potential driver of IPAH, may work in concert 

with IL-33 to enhance the inflammation associated with the development of 

IPAH[52].  This doesn‟t however directly address the issue whether the loss of 

nuclear IL-33 is a causative factor in IPAH or merely a response to disease 

pathogenesis.  Answering this question will require further experimentation using 

both conditional IL-33 nuclear localisation signal deficient mutants in models of PAH 

and primary human cells. 

Previous reports have suggested that IL-33 has transcriptional repressor properties 

in HEK293 cells associated with the recruitment of histone methyltransferase 

SUV39H1[30].  We were able to confirm that IL-33 was in complex with SUV39H1 in 

HPAECs using co-immunoprecipitation (Figure4D).   

The limitations of the study are centred on the observational nature and the need to 

define a clear mechanism for the loss of nuclear IL-33 in IPAH.  It will also be 

important to study samples from patients with milder and with different types of PAH.  

These experiments and animal studies using conditional IL-33 nuclear localisation 

signal deficient mutants may also address whether IL-33 is an important driver of 

IPAH or merely a consequence of the process. 

In summary, we have demonstrated a marked loss of nuclear IL-33 in lung arterial 

endothelial cells from IPAH patient without significant release from these cells. 

Knock-down of IL-33 is associated with the induction and release of both IL-6 and 
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sST2.  Our data suggests that IL-33 acts as a nuclear suppressor to reduce sST2 

expression by binding to homeobox regions and potentially recruiting transcriptional 

repressor proteins e.g. SUV39H1.  Although loss of nuclear IL-33 is associated with 

exposure to proinflammatory cytokines, VEGF or loss of cell-cell contacts, it is 

unclear what precise role IL-33 has in the pathogenesis of IPAH.  The mechanism 

for this loss of nuclear IL-33 in IPAH requires further investigation.  Our data also 

clearly shows that serum sST2 levels should be measured at the same time as IL-33 

and that serum sST2 may be a useful biomarker of vascular remodelling in IPAH and 

other cardiovascular conditions.   
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Figure legends: 

Figure 1: IL-33 expression in human lung. Immunohistochemical staining of IL-33 in 

paraffin embedded sections of lung tissue from a human healthy control subjects (A), 

a patient with IPAH (B), and an isotype control (C). Results are representative of 11 

healthy subjects and 10 patients with IPAH.  QPCR analysis of IL-33 mRNA levels in 

healthy controls (n=14) and IPAH (n=10) lung tissues (D). Data are presented as 

mean±SD, **P< 0.0001, two-tailed t-test. 

 

Figure 2: ELISA detection of IL-33 (A&C) and sST2 (B&D) levels in serum (A&B) 

and culture medium (C&D) from HLMVEC from healthy donors and IPAH patients. 

Data are presented as mean±SEM. For IPAH plasma samples, n=8, whereas control 

plasma samples, n=6. For IPAH cell culture supernatant, n=4, and for control cell 

culture supernatant, n=6. *p<0.05 

 

Figure 3: Effects of IL-33 knock-down on gene expression in HPAEC. Western blot 

analysis demonstrated effective knock-down of IL-33 expression by siRNA (A) 

(representative of three independent experiments).  IL-33 knock-down selectively 

affected gene expression (B&C). Data are presented as mean±SEM n=3, *p<0.05; 

**p<0.01, ***p<0.001 two-way ANOVA. 

 

Figure 4: IL-33 binds to ST2 promoters and recruits repressive co-factor SUV39H1. 

The punitive Flat motifs in ST2 promoters (A) are highlighted in red and the 

sequences used for PCR primers including Exon2 are underlined. ChIP analysis 

shows IL-33 binding to selective regions of the ST2 distal (B) and proximal (C) 

promoters. Co-immunoprecipitation experiments indicate that IL-33 forms a complex 
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with the repressive co-factor SUV39H1 (D). Data were presented as mean±SEM 

n=3, *p<0.05, **p< 0.01, ***p<0.001, two-way ANOVA. 
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Gene Name

(Protein Name)

Punitive Flat Motif Orientation Accession No.

IL-6 -298 TGACA  -302

-143TTAATA -138

-82   TGATA   -78

Reverse

Forward

Reverse

AF048692 

CCL-5

(RANTES)

-825  TGACA    -821

-696  TAATTG  -701

-221  TGACA    -225

-85    TAAGTG  -90

-84    TGATA     -80

100   TGACA     96

Forward

Reverse

Reverse

Reverse

Forward

Reverse

AB023652

CX3CL1

(Fractalkine)

-400  TGACA    -404

-306  TAAGTG -311

-195  TGACA    -191

Reverse

Reverse

Forward

AC004382

1kb upstream CX3CL1 

transcription start (22519)

CTSL

(Cathepsin L)

-1785 TGACA    -1789

-1184 TAAGTG -1189

-1146 TGATA    -1150

-1055 TAATTA  -1050

-991   TGACA    -987

-947   TAATTA  -942

-935   TTAATA  -930

-855   TGACA    -851

-841   TGATA    -845

-792   TAATCC  -787

-724   TGACA    -728

-628   TGACA    -624

-494    TAAGTG-489

Reverse

Reverse

Reverse

Forward

Forward

Forward

Forward

Forward

Reverse

Forward

Reverse

Forward

Forward

AF163338

Table. 1 Multiple punitive Flat motifs  found in genes affected by IL-33 Knockdown
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    -1035 gttcaaattc tgacttcacc ccttaatgtg aagtgacatg ggcaagttgc ttaatctctc 

     -975 tgtgcctcag tgtccttgtc tgtaaaatgg gcatcataat aatagcgcct gccacattgg 

     -915 gtgagtgtga gaatgaagga attaatacat gtaaatcact tagactgtgt ctggcataga 

     -855 ggacattcta aagaaaagtt agctattatc attatattat tatatgggtc tggaattagt 

     -795 tcctgaatcc ttctgagatg tgatgactta taaacgtagg ttgagtttac tcatgatagg 
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      -15 gagtgagtag tctatGagga  

Exon2  (NM_016232.4 ) 

 
121 ggttgagata taggctactc ttcccaactc agtcttgaag agtatcacca actgcctcat 

181 gtgtggtgac cttcactgtc gtatgccagt gactcatctg gagtaatctc aacaacgagt 

241 taccaatact tgctcttgat tgataaacag aatggggttt tggatcttag caattctcac 

 


