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ABSTRACT 

Robust, chromium, semi-reflective coatings have been applied to transparent 

polymethylmethacrylate and polyurethane discs and this has enabled conventional, normal 

incidence optical interferometry to be used to measure lubricant film thickness in soft EHL 

conditions for the first time.  High quality interferograms comparable to those obtained from 

coated glass discs are obtained.  Measured film thickness has been compared with existing 

soft EHL film thickness equations obtained using computer modelling and revised central 

and minimum film thickness equations have been proposed.  These film thickness 

measurements and measurement technique have applicability to our understanding of the 

performance and design of lubricated gears and bearings manufactured from polymeric 

materials. 

INTRODUCTION 

There is a growing use of machine components such as rolling bearings and gears made 

from polymeric materials.  Such components are relatively easy to manufacture and low 

cost, as well as being chemically-inert and lightweight.  Although they can often be used 

unlubricated, their tribological performance is generally greatly enhanced by lubricated them 

with a compatible oil or grease [1-3].  

Because of their low elastic moduli compared to metals, lubricated polymeric components 

operate in the isoviscous-elastic or “soft-EHL” lubrication regime.  It is clearly important to be 

able to predict the film thickness present in such components and several equations exist for 

calculating film thickness in this lubrication regime [4-9].  However, quite surprisingly, these 

equations have not yet been fully validated experimentally, unlike the case of piezoviscous-

elastic lubrication where there have been extensive studies of EHD (elastohydrodynamic) 

film thickness.  The probable reason for this discrepancy is that it has proved difficult to 
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apply optical interferometry, which is the most accurate and convenient method for 

measuring EHD film thickness in piezo-viscous conditions, to study soft-EHL.    

This paper describes the development of a conventional optical interferometry technique to 

map film thickness in soft-EHL contacts and its application to test the validity of existing 

regression-based, soft-EHL, film thickness equations.   

 

BACKGROUND 

In full film liquid lubrication, four different hydrodynamic regimes are recognised [4, 5].  In 

lubricated contacts where the two surfaces have very similar matching shapes, such as in 

plain journal and thrust bearings, the high degree of local conformity results in relatively low 

contact pressures, typically 1 to 50 MPa.  Such pressures are too low to enhance the 

lubricant viscosity in the contact or to change the contact geometry significantly, so the 

prevalent lubrication regime is known as isoviscous-rigid hydrodynamic lubrication (or often 

simply hydrodynamic lubrication).   

In non-conforming, rolling-sliding contacts between metallic and ceramic components having 

high elastic modulus, as present for example in most gears and rolling bearings, very high 

local contact pressures occur, typically 0.5 to 4 GPa.  Such pressures result in local elastic 

deformation of the solid surfaces to form a small region of conformity and also produce a 

large increase in the lubricant viscosity in the contact.  These two effects have a profound 

effect on the lubricant film thickness and friction and the resulting lubrication regime is 

termed piezoviscous-elastic hydrodynamic lubrication, or hard-EHL (or often simply EHL).  

There are also many lubricated non-conforming contacts in engineering where one or both of 

the solid surfaces are made of a polymeric material and thus has relatively low elastic 

modulus. Typical examples are found in windscreen wipers, engineering seals, rolling-

bearings with polymer cages and plastic rolling bearings and gears.   In these cases there is 

significant elastic deformation of the polymer, which produces a quite large region of local 

conformity.  This leads to contact pressures in the range 1 to 50 MPa, which, despite being 

high enough to elastically deform and thus change the shape of the contact, are not 

sufficient to produce a significant rise in viscosity of the lubricant due to pressure. The 

resulting lubrication regime is known as isoviscous-elastic hydrodynamic lubrication or soft-

EHL.  It should be noted that the term “soft” in this context is maladroit since the polymer 

characteristic of interest is not its strength but rather its stiffness.  Thus soft- and hard-EHL 

should really be called compliant- and stiff-EHL respectively. However in this paper we 

conform to popular usage and employ soft-EHL as the recognised descriptor. 
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The fourth hydrodynamic regime is piezoviscous-rigid, where the contacting solids are very 

stiff and so show negligible elastic deformation but the lubricant viscosity does increase 

significantly with local pressure.  This occurs rarely in practical applications but it has been 

suggested that it may be present in roller end-guide flanges in moderately highly loaded 

cylindrical tapered roller bearings [10]  

Considerable numerical modelling work has been carried out to solve combinations of the 

Reynolds, elastic deformation and piezoviscosity equations and thus develop regression 

equations to predict both central and minimum film thickness in all of the above four 

hydrodynamic regimes [4-7].  For the circular point contact of interest to the current study, 

Esfahanian and Hamrock provide non-dimensional central, Hc and minimum, Ho film 

thickness equations [6]; 

isoviscous-rigid, / 134c oH         (1) 

  

piezoviscous-rigid, 0.375
/ 5.35c o vH g        (2) 

     

isoviscous-elastic, 67.008.5 Ec gH  , 67.028.3 Eo gH       (3)     

   

piezoviscous-elastic 13.053.055.2 evc ggH  , 17.049.069.1 evo ggH     (4)     

 

where 
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h is the film thickness, U the entrainment or mean rolling speed, W the applied load,  the 

dynamic viscosity and  the pressure viscosity coefficient of the lubricant.  The reduced 

radius and reduced elastic modulus are defined respectively by; 
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 where Rx1 and Rx2 are the radii of the two solid bodies in the 

entrainment direction and E1, E2 and 1, 2 are the elastic moduli and Poisson’s ratios of the 

two bodies.  

The above elastic-isoviscous equations can be reduced to;  

21.066.008.5'/  WURh xc ,  21.066.028.3'/  WURh xo      (5)     
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These equations are very similar to Hamrock and Dowson’s isoviscous-elastic equations 

which for circular contact reduce to [11]; 

 22.064.03.3'/  WURh xc ,  0.210.65/ ' 2.8o xh R U W       (6)     

Hooke has noted that the elastic-isoviscous and elastic-piezoviscous regimes should each 

be divided into two regions depending upon whether the minimum film thickness occurs at 

the exit of the contact or in the side lobes and that for circular contacts there is a transition 

from the former to the latter as the pressure increases or the entrainment speed decreases 

[12][13].  For the elastic-isoviscous regime he provides equations to estimate the minima at 

both positions [12]; 

 0.7(exit) 2.83o EH g          (7)     

0.625(side) 8.55o EH g          (8)     

while suggesting the central film thickness to be; 

0.73.56c EH g           (9)     

These are equivalent to 

0.6 0.13(exit) / ' 2.83o xh R U W          (10)     

0.75 0.23(side) / ' 8.55o xh R U W         (11)     

0.6 0.13/ ' 3.56c xh R U W          (12)     

Two methods can be used to determine the regime in which a non-conforming lubricated 

contact will operate.  One is to use maps to demarcate the various regimes in terms of two 

non-dimensional variables.  A second approach is simply to calculate the predicted film 

thickness using four equations, each applicable to a different regime.  Then the equation that 

predicts the thickest hydrodynamic film corresponds to the regime in which the contact will 

operate. 

Figure 1 shows a regime map for circular point contact derived from the minimum film 

thickness equations (1) to (4).  The dashed line marks Hooke’s suggested boundary 

between the isoviscous elastic regime where the minimum is at the exit of the contact (I-E 

(exit) and that where is at the sides (I-E (side)).  The red, elongated trapezoid marks the 

region covered in this study.  
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Figure 1. Hydrodynamic regime map for circular point contact adapted from [6] 

The film thickness equations applicable to piezoviscous, hard-EHL contacts have been very 

thoroughly tested experimentally over the last 45 years, including the dependence of film 

thickness on entrainment speed and load [14], elastic modulus [15], viscosity [16], geometry 

[17] and slide-roll ratio [18]. It has been shown that in most cases these equations can be 

applied with reasonable confidence to predict the film thickness in engineering components 

operating in full film conditions.  Some exceptions are at very high slide-roll ratios (where 

thermal effects become significant), for polymer solutions and melts (where shear thinning 

occurs in the contact inlet), and for complex fluids such as emulsions and greases (where 

compositional and structural changes take place in the lubricant during its approach to the 

contact). Most of this experimental validation has used the technique of optical 

interferometry where a hard-EHL contact is formed between a transparent flat and a 

reflective ball or roller and film thickness is determined from the interference between the 

two light beams reflected from the pair of solid surfaces that contain the lubricant film.  Other 

experimental techniques have also been applied such as measurement of capacitance [19, 

20], x-ray transmission [21], fluorescence intensity [22, 23] and ultrasonic reflection [24], but 

none of these methods have approached the accuracy and ease of use of the optical 

interference method. 

In contrast to the piezoviscous-elastic regime, there has been surprisingly little systematic 

validation of the film thickness equations applicable to the isoviscous-elastic regime.  The 

main reason appears to be the difficulty of applying optical interferometric techniques to 
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measure film thickness in contacts where one or both of the bodies is made of polymer.  

Figure 2 shows a typical EHL contact as used for optical film thickness measurement.  Light 

is shone into the lubricated contact through a transparent body, normally glass or sapphire.  

Some is reflected from the lower surface of the transparent disc while some passes through 

the lubricating film and is reflected from the reflective (usually steel) ball surface. When they 

recombine the two beams interfere to an extent that depends on the path difference between 

them, and thus the lubricant film thickness.  For high quality interference the two interfering 

beams should have approximately the same intensity and this is achieved using a semi-

reflective coating on the disc surface in contact with the lubricant [25].  In the absence of 

such a coating very little reflection takes place from the underside of the transparent disc 

and very low intensity interference fringes are produced.  In early work this problem was 

overcome by using a transparent disc of very high refractive index glass [26] so as to 

produce a large mismatch of refractive index at the glass/lubricant interface, but this 

approach was rapidly superseded by the much more effective semi-reflective coating 

approach.   

 

Figure 2.  Optical interferometry set-up to measure lubricant film thickness 

The problem when trying to apply optical interferometry to measure film thickness with 

polymeric bodies is that the latters’ surfaces tend to be non-reflective and often quite rough.  

Two methods have been attempted to overcome this problem, usually in combination.  One 

is to make the surfaces very smooth, for example by hot curing against a smooth 

counterface, so as to make them reasonably reflective [27, 28].  The second is to use non-

normal incident light to avoid stray reflections and enable interference images to be obtained 

from the very low intensity beam reflected from the polymer surface [28-32]. These 
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approaches have enabled film thickness measurements to be made, but the test set-ups 

have tended to be cumbersome and have not gained widespread use.  

In the absence of a satisfactory optical interference method, the main technique applied to 

measure film thickness in soft EHL contacts has been laser induced fluorescence (LIF).  In 

this a fluorescent dye is dissolved in the lubricant and laser light of the frequency necessary 

to excite this dye is shone into the contact through a transparent surface.  The dye then 

emits light at a lower frequency and the intensity of this emission provides a measure of film 

thickness [22].  In a more sophisticated approach, double-dye LIF is employed in which the 

emission from one dye excites a second fluorescent dye present and the ratio of the 

emission from the two dyes is used to calculate film thickness [33].  The LIF technique has 

proved to be effective for measuring and mapping film thickness in soft-EHL [34, 35] but in 

practice is considerably less accurate than optical interferometry as used in hard-EHL. 

Practical problems include optical alignment and focussing, fluctuations in the laser intensity 

and detector sensitivity and adsorption of dye onto and into the polymer surface. Myant et al. 

have suggested a lower limit of film thickness measurement of 300 nm for the LIF technique 

[23] but it is best suited to measure relatively thick lubricant films, in the range 1 to 20 m, 

and not the sub-micron range over which optical interferometry is most effective. 

Clearly it would be of benefit to be able to apply conventional optical interferometry, which 

has proved so effective in studying hard-EHL, to measure film thickness in soft-EHL and in 

this paper we describe this advance.  Semi-reflective coatings are applied to two transparent 

polymer discs and used to obtain high quality optical interference images from rolling, rolling-

sliding and pure sliding polymer disc-steel ball contacts.   

It is not clear why this approach has not been reported previously in the literature.  In the 

current study thermoplastic discs are used, as employed in polymer gears and bearings. 

These have elastic modulus typically in the range 1 to 5 GPa and it has been found that they 

can be coated with robust semi-reflective coatings. It is possible that most previous attempts 

have focussed on elastomers such as rubber and PDMS, with much lower elastic modulus in 

the range 0.001 to 0.01 GPa, and that the semi-reflective coatings applied were too fragile.  

One early study successfully used silver coatings on PDMS but only in squeeze film 

conditions with no sliding present [36].  Alternatively it is possible that it was assumed that 

semi-reflective coating would not adhere sufficiently strongly to polymer surfaces to survive 

rolling-sliding contact conditions 
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TEST METHOD AND MATERIALS 

This study used an EHD test rig supplied by PCS Instruments (Acton, UK).  When employed 

to measure film thickness in hard-EHL conditions, this rig usually comprises a steel ball 

supported on rollers and loaded upwards against the underside of a coated glass disc.  The 

ball is half-immersed in lubricant held in a test chamber at a controlled temperature. Ball and 

disc are driven by two independent motors and the motor speeds, applied load and lubricant 

temperature are all controlled by computer. Light is shone into the contact through the glass 

disc and the reflected, interfered light is either passed to a spectrometer to determine the 

wavelength of maximum constructive interference and thus the film thickness at one location 

in the film or is captured directly and its interference colours compared to a colour/film 

thickness calibration to obtain a map of film thickness. 

In the current study two transparent polymer discs were employed in place of the normally-

used glass disc, one of polymethylmethacrylate (PMMA) and the other of polyurethane (PU).  

Their properties are listed in Table 1.  The PMMA disc was cut from sheet supplied by Cut 

Plastics Ltd, Walsall, UK. The PU disc was made by an injection moulding process in which 

a polydimethylsiloxane (PDMS) mould was first fabricated around a non-coated glass disc 

supplied by PCS Instruments. Waterclear PU3660 part A and part B supplied by Alchemie 

Limited (Warwick, UK) were thoroughly mixed together and degassed before the mixture 

was poured into the PDMS mould. Several small batches were mixed separately at the same 

time, since mixing a too high volume of PU resulted in self heating (thus too fast curing) and 

increased degassing time. Even though initial full hard curing time at room temperature was 

less than 24 h, it was found necessary to leave the PU in the mould for 4 days to avoid 

deformation of the disc during the demoulding process. Furthermore, once demoulded, discs 

were left on a flat PDMS surface for 24 h in order to ensure full strength of the edge 

thickness and another 24 h inverted to allow for the contact surface to fully strengthen.  This 

process gives roughness similar to that of the original glass disc (Ra < 2 nm) and has also 

been used to manufacture polymer balls. 

 

Table 1.  Polymer discs studied  

 Material Thickness Surface 
Roughness, 

Ra 

Elastic 
modulus  

Poisson’s 
ratio 

PMMA Polymethyl- 
methacrylate 

10 mm < 4 nm 3.3 GPa 0.39 

PU Polyurethane 10 mm < 4 nm 1.85 GPa 0.48 
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Both discs were coated by a 20-30 nm thick semi-reflective chromium coating.  Disc coating 

was arranged by PCS Instruments and employed a magnetron sputtering technique with a 

low target power to avoid damaging the polymer disc.  Such a very thin coating has 

negligible effect on the contact-scale elastic deformation. In order to prepare the discs for 

sputter coating, they were wiped with soft tissue using small quantities of isopropanol.  

The elastic moduli listed in Table 1 were determined by measuring the contact diameter 

formed between a stationary, coated polymer disc and a 19 mm diameter steel ball at 

several loads and 40ºC.  Figure 3 shows the resulting graphs in the form a3 versus W where 

a is the contact radius and W the applied load.  According to Hertz theory the contact radius 

is related to load by;  

                                               ܽଷ ൌ
ଷௐோᇱ

ଶாᇱ
      (13) 

so the reduced elastic modulus, E’ can be calculated from the gradients of the plots in Fig. 3 

[37].  The disc’s elastic moduli were then extracted from E’ using the values of Esteel = 210 

GPa and steel = 0.3 and the polymer disc material Poisson’s ratio values shown in Table 1, 

which were obtained from the literature. It should be noted that for the purposes of this paper 

the independent values of E and  for the polymers are immaterial since the value used for 

film thickness analysis is the reduced elastic modulus of the polymer-steel combination, E’. 

The error limits for the obtained Young’s moduli are governed by the error margins of the 

loading system. For loads below 5 N the error is estimated of up to 10%, while for higher 

loads the error range was significantly less. Thus the Young’s modulus determined for PU is 

estimated to have error margin of ±5%, while that of PMMA is estimated to be ±2%.  

Film thickness tests were carried out over the range of conditions, U = 0.135 m/s to 4 m/s, W 

= 5, 10 and 15 N, and slide roll ratio, SRR = -1.5 to 2, where SRR is defined as the ratio of 

sliding to mean rolling speed, (uD-uB)/U, where uD and uB are the surface speed of the disc 

and ball respectively and U is the mean rolling speed, (uB+uD)/2. All tests were carried out at 

40ºC.  For PMMA-steel, loads 5 N, 10 N and 15 N corresponded to mean Hertz pressures of 

35, 45 and 51 MPa respectively while for PU-steel the corresponding mean pressures were 

27, 34 and 39 MPa. The above test conditions meant that all tests operated in the 

isoviscous-elastic regime within the region shown as an elongated diamond in Fig. 1.  
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Figure 3.  Plots of contact radius versus applied load used to determine E’ 

Normally the ball is part-immersed in lubricant. However for pure sliding with SRR = 2 the 

ball does not rotate so that it is unable to draw lubricant from the reservoir into the contact. In 

this case the disc surface was copiously supplied with oil at the start of a test and the test 

time limited to avoid possible starvation.  It was not possible to test the case of SRR = -2 

with the disc stationary since the software system for image capture required triggering from 

the rotating disc.    

Two additive-free base fluids were used in this study, both of gas-to-liquid origin and 

corresponding broadly to API Group III+.  Their viscometric properties are listed in Table 2. 

Viscosities were measured using an Anton Paar SVM 3000 Stabinger viscometer. A non-

published extensive study on this instrument implementing a series of base oils and cleaning 

methods confirms an error margin of below ±0.5% when the instrument is run by an 

experienced operator. The effective pressure viscosity values,  listed in Table 2, which 

were used solely to plot the range of study in Fig. 1, were determined by comparing EHD 

film thickness measured by optical interferometry with the EHD film thickness formed by a 

reference oil of known * [17]. Refractive indices of the lubricants, required to convert optical 

to spatial film thickness, were measured using an Abbe refractometer. 

Table 2.  Viscosities of test fluids 

 
Viscosity 

40ºC 
cP 

Viscosity 
100ºC 

cP 

Density 
40ºC 
g/cm3 

Density 
100ºC 
g/cm3 

Effective 
-value 

40ºC 
GPa-1 

Effective 
-value 
100ºC 
GPa-1 

GTL4 14.77 3.08 0.80 0.76 14 12 

GTL8 35.86 5.93 0.81 0.78 15 12 
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OPTICAL INTERFEROMETRY METHOD 

The light source was a white LED showing two marked peaks, one at around 460 nm, the 

other at 560 nm. The relative sharpness of the peaks gave rise to good fringe visibility in the 

three channels (red, green and blue) and this meant that films up to 1.5 microns thick could 

be measured, although the maximum film thickness reached in this study was only 1.2 

microns. 

In order to characterise the light source a static contact was initially produced between a 

chromium-coated glass disk and a steel ball and the contact flooded with lubricant. The 

resulting interference fringes were scanned radially and fringe intensities in the red, green 

and blue channels were plotted against the gap calculated using Hertz theory [37]. As 

described in Guegan et al. [38] the intensities were then normalised by the neighbouring 

minimum and maximum value of the intensity for each branch, so as to obtain values 

between -1 and 1.  

This process produces sinusoidal curves whose periods correspond to the average 

wavelength of the light source modulated by the response of the camera. The shifts of these 

curves gives the phase shift resulting from reflection from the chromium layer. Analysis of 

the fringes gave the properties of the light source and the optical system shown in Table 3. 

 

Table 3.  Wavelengths of RGB optical channels and phase shift of coated glass disc 

Red Green Blue φ

590 nm 520 nm 470 nm 0.15 

According to theory, the period of the fringes against film thickness for a light source with 

wavelength λ, i.e. the difference in film thickness between two consecutive peaks or troughs 

is: 

ܶ ൌ   ఒ
ଶ௡

      (14) 

where n is the refractive index of the oil. In these tests, the refractive index was measured as 

1.450 for the GTL4 and 1.455 for GTL8 at 40ºC. This difference was too small to have any 

significant impact on the periods, so the same mean value was used for both oils to give TR 

= 203 nm, TG = 179 nm, TB = 165 nm 
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A similar procedure was then carried out in static contacts formed between the two polymer 

discs and the steel ball.  Using the wavelengths calculated above, this resulted a non-zero 

film thickness in the contact area due to a different phase shift and from this a revised phase 

shift value could be determined.  This was done for the three channel profiles independently, 

but the phase shifts obtained from all were identical, at a value of 0.10 for both polymers. 

This approach avoided making the assumption that the static polymer-steel contacts were 

Hertzian, although in practice their profiles were found to be very close to this. 

One of the problems in optical interferometry, especially when studying thick lubricant films, 

is to determine the correct interference order. This can be done by counting the order 

change while gradually increasing the entrainment speed and thus the film thickness from 

zero.  In the current study this was combined with a method for directly determining order, as 

described below. 

After each polymer-steel test, the interference images (interferograms) were post-processed 

individually. An image contains three colour planes, one for each channel.  As shown below 

in Fig. 4, a rectangular strip was selected that traversed the contact and for each channel the 

intensities of the pixels across the thickness of this strip were averaged to reduce noise.  

Typically 15 pixels were averaged, few enough to ensure the thickness was essentially 

constant in the direction averaged.  This gave R G and B intensity profiles across the contact 

as shown in Fig. 5(a).  As explained above and shown in Figure 5(b) the three intensity 

curves were then normalised between -1 and 1.  

 

 

Figure 4: Interferogram showing the rectangular region where the film profile is calculated 

(PMMA, GTL8, W = 5 N, U = 1.6 m/s, SRR = 0)  
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Figure 5(a) Measured intensity along the contact and 5(b) normalised intensity; the position 

of the horseshoe minimum is also shown 

As noted above, the difference in film thickness between two peaks or troughs depends on 

the wavelength of the light source. Assuming the film thickness evolves monotonically 

(positively or negatively), the fringes can then be counted and the difference in film thickness 

between two points calculated. For the points that do not lie at a minimum or maximum of 

intensity the film thickness was calculated based on the thickness varying with the arcosine 

of the normalised intensity. A more detailed mathematical treatment of this process can be 

found in Guegan et al. [38]. 

For each image, the minimum of the horseshoe (at the rear or the side of the contact 

depending on the direction of the strip being analysed) was identified manually, its position 

usually being obvious as it corresponds to a cusp on the curve. This enabled a profile to be 

separated into two parts in which the film evolves monotonically. In Fig. 5(b), from position x 

= 0 to the minimum of the horseshoe the film decreases, after which it increases. Using this 

assumption, film thickness profiles can be calculated independently for each channel based 

on assuming the order of interference at the horseshoe minimum. However in Fig. 6 it can 

be seen that if an incorrect order is picked the different profiles do not match.  Thus the 

correct order can be determined as that which gives a good match for the thicknesses 

calculated from the three colour channels, as shown in Fig. 7(a). The final profile was then 

taken to be the average of these three, as shown in Fig. 7(b). 

(a) (b) 
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Figure 6  Film thickness profiles obtained from Fig. 5b using an arbitrary interference order 

 

 

Figure 7(a) Matching profiles for the three colour channels, 7(b) Average profile 

From these profiles it was quite straightforward to determine the minimum film thickness at 

the exit of the contact (and for transverse profiles the minimum at the side lobes).  

Determination of the central film thickness was more problematic due to difficulty in 

identifying the contact centre precisely and also because the film thickness varied 

considerably across the contact at high entrainment speeds. The centre position was 

estimated by aligning a square over the image so the centres of the sides of the square 

formed tangents to matching fringes on either side of the contact.  The contact centre was 

then taken to be the centre of this square and the central film thickness was calculated as 

the average film thickness over an area corresponding to one tenth of the contact size 

around this central point. 

(a) (b) 
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RESULTS 

Figure 8 shows a series of images for a PMMA disc on steel ball lubricated by GTL8 at SRR 

= 0 and a load of 10 N.  In all cases the inlet is at the bottom of the image and the exit at the 

top.  It can be seen that the use of a chromium semi-reflective layer gives high quality 

interference images, similar to those obtained using a steel-on-glass disc contact as 

described by Foord et al. [16, 39].  All images show the characteristic horseshoe at the rear 

and sides of the contact and in all of these images the absolute minimum film thickness 

occurs in the side-lobes. 

 

 

Fig. 8  Interferograms of the contact of PMMA disc/steel ball lubricated with GTL8 at 10N 

load and SRR = 0  

Analysis of the above images together with those at other entrainment speeds gives the 

profiles across the centreline from inlet to exit shown in Fig. 9.  The inlet is on the right of 

these profiles.  At low speeds the central region is almost flat, similar to piezoviscous-elastic 

contacts, but as the speed increases a wedge-shaped film is developed. It should be noted 

that the thickness values in the exit beyond the minimum are not reliable because of film 

cavitation. 
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Fig. 9. Influence of entrainment speed on centreline film thickness profiles for PMMA disc 

and GTL8 at 10 N load and SRR = 0 (inlet on right) 

Figure 10 shows plots of log(hc) versus log(U) for all polymer and viscosity combinations at 

10 N load and SRR = 0.  All give straight line plots with gradients in the range 0.51 to 0.56.  

Minimum film thickness values in the exit (along the centreline) also gave straight line plots 

of similar gradient.   
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Fig. 10.  Log(central film thickness) versus log(entrainment speed) for all four polymer/base 

oil combinations at 10 N load and SRR = 0 

To confirm the validity of the RGB film thickness method used, central film thickness 

measurements were also made using the ultrathin film interferometric approach normally 

employed with the PCS Instruments optical test apparatus.  This is based on spectrometric 

analysis of the emitted light to determine the wavelength of maximum constructive 

interference and thus the film thickness.  This method’s error limits are stated to be ±5 nm 

[40]. Figure 11 compares the measurements obtained using the two methods and shows 

very close agreement between them suggesting that the error limits using the RGB approach 

is similar up to a film thickness of 200 nm.  Above this the error limit ±4%. 
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Fig. 11.  Comparison of central film thickness measured using RGB and the UTFI methods 

Figure 12 shows interferograms for PMMA with GTL8 at a fixed entrainment speed of 1.59 

m/s and three different applied loads. The size of the contact increases rapidly with applied 

load but the central and exit minimum film thickness change relatively little.  Profiles across 

the centreline from these images are shown in Fig. 13, while Fig. 14 which shows central film 

thickness plotted against entrainment speed for PMMA with GTL8 at the three loads.   

 

 

Fig. 12  Interferograms of the contact of PMMA disc/steel ball lubricated with GTL8 at 1.59 

m/s and three different loads.  SRR = 0  
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Fig. 13  Influence of load on centreline film thickness profiles for PMMA disc and GTL8 at 

entrainment speed 1.59 m/s and SRR = 0 (inlet on right).   

 

 

Fig. 14.  Influence of applied load on log(central film thickness) versus log(entrainment 

speed) for PMMA and GTL8 at SRR = 0. 
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All of the above results were from nominally pure rolling conditions (SRR = 0).  Figure 15 

shows the influence of slide-roll ratio on central film thickness for PMMA at various 

entrainment speeds.  In general, fluid entrainment and thus film thickness should depend 

only on entrainment speed and not on sliding speed and this is shown in Fig. 15 over most of 

the SRR range.  The exception is at high SRRs, when shear heating can result in heating of 

the surfaces in the contact inlet leading to a reduced lubricant viscosity in the inlet and thus 

to a thinner film.  For piezoviscous-elastic contacts this starts to be significant at SRR > 50% 

[18] but for the isoviscous-elastic contacts in this study, film thickness remains almost 

constant over most of the range of SRR. This is because much less heat is generated in 

these low pressure contacts, where there is negligible piezoviscous effect and so lower 

friction than in high pressure EHD contacts.  A significant drop in film thickness is, however, 

seen at SRR = 200%.  At this SRR the steel ball is stationary, so heat entering the ball 

surface within the contact is not convected towards the contact exit by rotation of the ball.  

This may result in an increase in ball surface temperature in the inlet. 

 

Fig. 15.  Influence of slide-roll ratio on central film thickness for PMMA tests at W = 10 N. 
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DISCUSSION 

Classical optical interferometry is traditionally applied to measure film thickness in 

piezoviscous-elastic EHL contacts.  This work shows that by applying semi-reflective 

chromium coatings to the underside of the transparent polymer discs it can be equally well 

used to measure film thicknesses in the isoviscous-elastic contacts formed between polymer 

discs and steel balls using a commercial optical interferometry test apparatus.  These 

coatings are quite robust and survive rolling-sliding and even pure sliding conditions so long 

as full film lubrication conditions are maintained. Films can be measured and mapped up to 

thicknesses in excess of one micron. A novel method of determining the order of the 

interference fringes has been developed based on matching calculations from the red, green 

and blue channels.  

In this study it was found that both the central and minimum film thickness varied with 

entrainment speed to a power between 0.52 and 0.56.  This is less than predicted by 

previous theoretical studies which, as indicated in Equs. (5), (6), (10) and (12) suggest a 

power of 0.6 to 0.66.  This is illustrated in Fig. 16 where it can be seen that Dowson & 

Hamrock [11], Esfahanian & Hamrock [6] and Hooke [12] all predict thinner films at low 

speed than measured in this study. 

 

Fig. 16.  Comparison of experimental results with measured central film thickness; PMMA, 

GTL4, SRR = 0 
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Figure 17 shows that all combinations of load, lubricant viscosity and elastic modulus give 

essentially the same central film thickness versus entrainment speed response. The solid 

lines are predictions using Equ. (15). 

 

Fig. 17.  Central film thickness versus entrainment speed for various load, viscosity and 

elastic modulus combinations 

By combining all of the central film thickness versus entrainment speed plots, the best fit was 

found to occur with a speed exponent of 0.55, i.e. hc α U0.55.  Based on the definition of the 

elasticity parameter gE given earlier in this paper this implies a gE exponent of 0.725 and a 

load exponent of -0.067.  As shown in Fig. 18, using these exponents it was found that the 

best fit to all of the measured central film thickness data was given by 
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Figure 19 shows that a very similar relations exists for h0(exit) except that the constant is 

now 2.1, i.e. 
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The gE exponents in these equations are somewhat greater than those given in Equs. (3) to 

(9), which were determined from regression fits of computed film thicknesses.  
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Fig. 18.  Plot showing that all measured data fits equation Hc = 2.7gE
0.725 

 

Fig. 19.  Plot showing that all measured data fits equation Ho(exit) = 2.1gE
0.725 

Hooke has suggested that the absolute minimum film thickness moves from the side lobes to 

the exit of the contact as the entrainment speed increases or the load decreases [12].  For 

most of the conditions tested in this study the minimum was at the side lobes but for tests at 
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the lowest load a transition was observed with increasing entrainment speed.   This is shown 

in Fig. 20 where it can be seen that the minimum is at the sides of the contact at low speeds 

but the moves to the exit as the speed is raised.  A similar transition can also be seen in Fig. 

12 as the load is decreased. 

 

 

Fig. 20.  Change in minimum film thickness position with entrainment speed, PMMA, GTL8, 

W = 5N, SRR = 0. 

The minimum film thicknesses at the exit and side lobes from Fig. 20 are plotted against 

entrainment speed in Fig. 21 for PMMA, GTL8 and 5 N load.  The transition of the absolute 

minimum from the side lobes to the rear of the contact occurs at U = 3 m/s and hmin = 595 

nm.   This does not agree with the location of the transition proposed by Hooke, which he 

suggested should occur at gE = 2.6x106.  Based on these measured results it should occur 

when gE is of order 104, which would just intercept the tested region in Fig. 1. 

The side lobe minimum film thickness data obtained in this study was fitted to gE.  This gave 

a fit of similar quality to those in Figs. 18 and 19 and the fitted equation was;  
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Fig. 21.  Variation of exit and side lobe minimum film thickness with entrainment speed for 

PMMA, GTL8, 5N and SRR = 0 

It is of interest to compare the finding of the current study with previous work on soft EHL 

film thickness, although unfortunately there is very little of the latter.  Myant et al. used 

oblique angle interferometry to measure film thickness in a pure sliding, uncoated PDMS on 

glass contact [32].  This showed the formation of similar film shapes to those in the current 

study, with a wedged film at high speeds and a much flatter film at low speeds. However, 

Myant et al. measured film thicknesses less than half those predicted by Dowson and 

Hamrock and of our experimental measurements as summarised in Equ. (15) above. The 

origins of this discrepancy are not clear. Dowson and Hamrock’s equation was derived from 

soft EHL solutions over the range of 5 ൈ 10ିଽ ൑ ܷ ൑ 5 ൈ 10ି଼ and 2 ൈ 10ିସ ൑ ܹ ൑ 2 ൈ 10ିଷ 

[41]. Myant et al.’s experiments were under the conditions of order ܷ ൌ 10ି଼ and ܹ ൌ 2 ൈ

10ିସ while in this paper, due to the higher elastic modulus polymer employed, mid-range 

conditions were ܷ ൌ 2 ൈ 10ିଽ and ܹ ൌ 5 ൈ 10ିହ. The discrepancy is thus not likely to 

originate from the use of different ranges of test conditions. 

 

CONCLUSIONS 

This study has shown for the first time that robust, chromium, semi-reflective coatings can be 

applied to transparent PMMA and polyurethane discs to make possible conventional optical 

interferometry in soft EHL conditions.  High quality interferograms, comparable to those 

obtained from coated glass discs, are obtained and these enable detailed maps of lubricant 

film thickness to be calculated.  A novel method of determining interference order has been 

developed to allow profiles of film thickness up to 1.5 m thick to be obtained from rolling 
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and rolling-sliding and sliding contacts without the need to count fringe order while 

increasing progressively entrainment speed.   

Measured film thicknesses have been compared with existing soft EHL film thickness 

equations obtained using computer modelling and revised central and exit minimum film 

thickness equations are proposed as follows;   
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The transition of absolute minimum film thickness from the exit of the contact to the side 

lobes, as predicted theoretically, has been observed experimentally for the first time.  

However this transition occurs at lower values of the elasticity parameter gE than suggested 

by previous modelling work 

It has been shown that in soft EHL conditions, film thickness does not vary significantly with 

slide-roll ratio until pure sliding conditions are reached, when film thickness is reduced due to 

inlet heating.   

These film thickness measurements have direct applicability to our understanding of the 

performance and design of lubricated gears and bearings manufactured from polymeric 

materials.  However it should also be noted that the ability to accurately map film thickness 

in polymer-based, lubricated contact provides significant new opportunities in lubrication 

research; for example to study lubricant shear thinning in the low pressure, high shear rate 

conditions present in soft EHL contacts and to explore the impact of surface texture in such 

contact conditions. In the configuration used in this study it was essential that the coated 

polymer discs be transparent, since they formed part of the optical path.  However in 

principle it should be possible to use a polymer ball coated with a thicker and thus fully 

reflective chromium layer and use this against a coated glass disc, thereby enabling opaque 

polymers to be studied. 
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