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Abstract

Molecular profiling data based patient stratification plays a key role in clinical decision

making, such as identification of disease subgroups and prediction of treatment responses

of individual subjects. Many existing knowledge management systems like tranSMART

enable scientists to do such analysis. But in the big data era, molecular profiling data size

increases sharply due to new biological techniques, such as next generation sequencing.

None of the existing storage systems work well while considering the three ”V” features

of big data (Volume, Variety, and Velocity).

New Key Value data stores like Apache HBase and Google Bigtable can provide high

speed queries by the Key. These databases can be modeled as Distributed Ordered Table

(DOT), which horizontally partitions a table into regions and distributes regions to region

servers by the Key. However, none of existing data models work well for DOT.

A Collaborative Genomic Data Model (CGDM) has been designed to solve all these is-

sues. CGDM creates three Collaborative Global Clustering Index Tables to improve the

data query velocity. Microarray implementation of CGDM on HBase performed up to

246, 7 and 20 times faster than the relational data model on HBase, MySQL Cluster and

MongoDB. Single nucleotide polymorphism implementation of CGDM on HBase outper-

formed the relational model on HBase and MySQL Cluster by up to 351 and 9 times. Raw

sequence implementation of CGDM on HBase gains up to 440-fold and 22-fold speedup,

compared to the sequence alignment map format implemented in HBase and a binary

alignment map server. The integration into tranSMART shows up to 7-fold speedup in

the data export function. In addition, a popular hierarchical clustering algorithm in tranS-

MART has been used as an application to indicate how CGDM can influence the velocity

of the algorithm. The optimized method using CGDM performs more than 7 times faster

than the same method using the relational model implemented in MySQL Cluster.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Molecular profiling refers to the study of specific patterns or signatures, such as DNA

polymorphism, mRNA gene expression profiling, RNA profiling, proteomic and metabolic

polymorphism. High-throughput molecular profiling has greatly improved patient strati-

fication and mechanistic understanding of disease [SF05]. Biomedical research is moving

towards using high-throughput molecular profiling data to improve clinical decision mak-

ing [Gar05]. TranSMART, a biomedical data warehouse and analytics software platform

that integrates clinical and genomics data [ABHG13], enables clinicians to search and an-

alyze these data by tools such as Gene pattern [RLG+06] and R [R C14]. Gene expression

microarray [Qua01] and single nucleotide polymorphism (SNP) data have been frequently

used in tranSMART, while raw mRNA sequence data is planned to be integrated.

However, in the big data era molecular profiling data size increases sharply due to new bi-

ological techniques. For example, next generation sequencing (NGS) [Met10] techniques

create quantities of raw sequence and SNP data. The data warehouse in tranSMART can-

not meet the three ”V” requirements of big data (Volume, Variety, and Velocity). Fortu-

1
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nately, technique revolutions not only happened in biology but also in computing. Emerg-

ing Key Value stores, such as Apache HBase [Geo08] and Google Bigtable [big08], can

help solve the problem. But none of existing molecular data model can be easily re-used

in new Key Value models due to the different database models.

Thus, the motivation for this thesis to create a generic -omics [ZLN10] big data model

for molecular profiling data in order to optimize tranSMART data warehouse so that clin-

icians can make use of it for faster clinical decision making in big data age.

1.1.1 Microarray

An increasing amount of biological data being produced has predicated the use of databases

capable of storing and analyzing genomic expression data. In the field of translational

research, knowledge management platforms use databases to store a variety of data pro-

duced from clinical studies, including patient information, clinical outcomes as well as

high-dimensional -omics data. For optimal analyzes and meaningful interpretations, such

databases also store legacy data taken from public sources, such as the Gene Expres-

sion Omnibus (GEO) [BWL+13] and the Gene Expression Atlas [KAB+12], alongside

new study data. This enables cross-study comparisons and cross-validation to take place.

High-throughput transcriptomic data generated by microarray experiments is the most

abundant and frequently stored data type currently used in translational studies.

A typical query involves searching for and retrieving patient gene/protein expression lev-

els in a study in order to perform data analysis. For each study, the transcriptomic data

stored in the database is comprised of individual probe set values for each patient sample

(in some cases multiple samples from each patient are profiled), and annotation infor-

mation further describing the experiment (e, g. trial information, microarray platform

identifier, normalization method, gene descriptions). Once retrieved the data is passed

to analytical tools, such as GenePattern or custom R workflows for further analysis or
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visualization.

With the increasing amount of data used in translational medicine studies, especially in

recent years, the performance of tranSMART in terms of data retrieval and statistical

processing is decaying, if the statistical analyses enabled by tranSMART are to be used

beyond translational research for clinical decision making. For example, high-throughput

transcriptomic data generated by microarray experiments is the most abundant and fre-

quently stored data type currently used in translational studies. For the needs of various

collaborative translational research projects, an instance of tranSMART is hosted at Impe-

rial College London and has been configured to use an Oracle relational database for back-

end storage. It currently holds over 70 million gene expression records. When querying

the database simultaneously for hundreds of patient gene or protein expression records, a

typical exercise in translational studies, the record retrieval time can currently take up to

more than 10 minutes. These kinds of response times impede analyzes performed by re-

searchers using this deployed configuration of tranSMART. If high-throughput sequence

data, such as SNP or raw sequence, generated by NGS technologies are considered, the

total processing time becomes impractical.

1.1.2 SNP

Thousands of genome-wide association studies (GWAS) of significant human diseases

have been conducted recently [SSR11]. Many of such studies use single nucleotide

polymorphism (SNP) arrays [LaF09], for example in the International HapMap project

[Con07, The10, The05] that aims to develop a map describing the common patterns of

human genetic variation. SNP has already benefited identification of disease subgroups

and the prediction of responses of individual subjects, named molecular profiling based

patient stratification. Biomedical research is moving towards using high-throughput SNP

data to improve clinical decision making. One approach for building clusters is to strat-
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ify subjects based on their SNPs. Unsupervised clustering algorithms can be used for

stratification purposes.

The motivation for optimization of SNP data model is based on the experiences in using

tranSMART. The aim is to optimize tranSMART so that clinicians can make use of it for

faster and more confident clinical decision making. However, the current tranSMART

SNP query velocity is low. For example, when 137 subjects with 317,642 genotype pairs

are retrieved from a standalone PostgreSQL database version 9.4 instance in a OpenStack

Ubuntu virtual machine configured with 16 CPU cores and 16 GB of memory, the query

takes several minutes. When total number of SNPs increases to around 3 million, the

query time becomes unacceptable long. If thousands of such subjects are retrieved, the

execute time will be impractical.

1.1.3 Raw Sequence

RNA sequencing (RNA-seq) [MWM+08, WGS09] has been used for profiling of tran-

scriptomes in many areas of biology, including studies in medicine and pharmacy. The

purpose of this part is to improve clinical decision making through the discovery of dif-

ferentially expressed genes across patient and control cases in a cohort. RNA-seq data

processed by the protocol [AMC+13] is suitable for the molecular profiling based patient

stratification function with sequence data.

High-throughput transcriptomic data generated by NGS technologies is the most popular

data type currently used in translational studies. With its unprecedented throughput, scal-

ability, and speed, NGS enables researchers to study biological systems at a level never

before possible. For the needs of various collaborative translational research projects,

tranSMART is starting to support NGS raw sequencing data for translational studies. But

the current tranSMART was designed to host data in the gigabyte range only. Anticipating

the requirement to store and analyze NGS data, where the volume of data being produced
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will be in the terabyte range, the speed exhibited by tranSMART could be unacceptably

slow.

A typical query involves searching for raw sequences overlapping a specific region for

a gene or a trait to count its expression level and perform data analysis. The current

tranSMART plans to use the binary version of sequence alignment mapping (SAM) files

(BAM) to store raw sequencing data. Once retrieved the data is passed to analytical

tools, such as Samtools [LHW+09], UCSC Genome Browser [KHK11] and custom R

workflows for further analysis or visualization.

1.1.4 Application

An application is added to show how these data models can be used for analysis functions

used in tranSMART. One approach for molecular profiling based patient stratification is to

stratify subjects based on their molecular profiles. Many machine learning algorithms can

be used for stratification purposes, including supervised learning and unsupervised learn-

ing. Supervised learning will be applied if other features of patients have been known,

such as patient cohorts. Unsupervised learning algorithms will be used if only molecular

profiling data are gathered. Clustering methods are frequently used unsupervised learn-

ing methods in tranSMART, such as hierarchical clustering and k-means clustering. A

hierarchical clustering application demonstrates how tranSMART can help patient strat-

ification. The application used four kinds of correlation methods with high-dimensional

molecular profiling data (gene expression data), by taking full advantage of a program-

ming model specifically designed for parallel processing of big datasets using the Key

Value data models.

However, the current tranSMART performance of preparing correlation matrices when

analyzing high dimensional molecular data is sub-standard. For example, an unsupervised

hierarchical clustering has been performed on the publicly available Multiple myeloma
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dataset taken from the National Center for Biotechnology Information (NCBI) GEO. The

dataset contains 559 subjects gene expression data produced by an Affymetrix GeneChip

Human Genome U133 Plus 2.0 Array. In order to build the clusters, the subjects are clus-

tered using a hierarchical clustering algorithm implemented in R. In preliminary tests,

running this algorithm on a virtual machine configured with 32 cores and 32 GB of mem-

ber took over 6 minutes using a Euclidean distance matrix, and more than a week if

performing a Kendall rank correlation. These observations show that the bottleneck in

the hierarchical clustering algorithm was in generating the correlation matrix. Clearly

optimizing the performance of these analyses would expedite clinical decision making.

With high throughput sequencing technologies promising to produce even larger datasets

per subject, the performance of the state-of-the-art statistical algorithms is to be further

impacted unless efforts towards optimization are carried out. The paper [WPJ+14] de-

scribes a series of processing optimizations on the calculation of correlation matrices used

for hierarchical clustering implemented on R Rhipe [GHR+12b] plugin, which works on

Hadoop ecosystem. This optimization performed up to 16.56 times faster than vanilla

R. The most important procedure in the whole parallel R workflow is data loading and

distribution using the Key Value models.

1.2 Contributions

In this thesis, a Collaborative Genomic Data Model (CGDM) has been introduced to solve

all these issues in the previous Motivation section. CGDM creates three Collaborative

Global Clustering Index Tables (CGCITs) to solve the velocity and variety issues at the

cost of limited extra volume. Three instances based on CGDM Key Value [SULS09]

data model, including microarray data model, SNP data model and raw sequencing data

model, have been implemented and fully evaluated. Finally, an application demonstrates

how CGDM benefits the performance.
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The microarray Key Value model focuses on resolving the velocity problems in gene ex-

pression microarray data processing, due to the increasing volume of data being produced.

The experiments show that, the microarray Key Value implementation of CGDM using

HBase outperforms the tranSMART relational data model on HBase, MySQL Cluster and

MongoDB by up to 246, 7 and 20 times. When this Key Value implementation integrated

into tranSMART, it performs up to 7 times faster than the current tranSMART.

The SNP Key Value model is aimed at solving the velocity issues faced in mutation

databases, due to the increasing volume of data being produced by next-generate sequenc-

ing techniques. The performance tests indicate that the SNP Key Value implementation

of CGDM using HBase performs up to 351 and 9 times faster than the tranSMART SNP

relational model on HBase and MySQL Cluster. When integrated into tranSMART this

Key Value implementation performs up to 7 times faster than the current tranSMART.

The raw sequencing Key Value model is aimed at solving the performance issues faced

in gene sequence databases, due to the increasing volume of raw sequencing data being

produced high-throughput short sequencing techniques. The results illustrate that this

implementation using HBase outperforms the sequence alignment mapping (SAM) model

using HBase and a BAM server by up to 440 and 22 times.

Through the hierarchical clustering application, the CGDM microarray implementation

reduces 6/7 of time in the data preparation procedures. The application demonstrates

CGDM holds great promise for large data analysis with the data size increasing.

1.3 Organization

Chapter 2 introduces the current tranSMART architecture and the prospective one will be

first introduced. Then the new techniques, HBase and CCIndex, used to implement the

prospective architecture will be described.
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Chapter 3 presents optimisations to the database schemas used in tranSMART for molecu-

lar profiling data that will significantly improve the of Input/Output performance in tranS-

MART.

Chapter 4 explains a Key Value based data model to support fast queries over large-scale

microarray data, and implemented the schema using HBase, compared the query retrieval

time against the traditional relational data model running on HBase, MySQL Cluster and

MongoDB.

Chapter 5 proposes a new Key Value SNP model with a supplementary cluster index to

overcome the disadvantages resulting from secondary index and provide fast query on all

indexed properties.

Chapter 6 proposes a raw sequencing Key Value model in order to provide fast query over

raw sequencing data.

Chapter 7 presents an application using different types of data stored in the models above

to evaluate the contributions of the data models.

Finally, Chapter 8 summarizes the thesis and presents ideas for further works.

1.4 Statement of Originality

I declare that the content of thesis is composed by myself, and the work it presents is my

own. All use of the previously published work of others has been listed in the bibliogra-

phy.
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1.5 Publications

• High Dimensional Biological Data Retrieval Optimisation with NoSQL Tech-

nology. In: BMC Genomics supplement. [WPW+14].

This paper presents a new data model better suited for high-dimensional data stor-

age and querying, optimized for database scalability and performance. A new

Key Value pair data model has been designed to support faster queries over large-

scale microarray data and implemented the model using HBase, an implementation

of Google’s BigTable storage system. An experimental performance comparison

was carried out against the traditional relational data model implemented in both

MySQL Cluster and MongoDB, using a large publicly available transcriptomic

data set taken from NCBI GEO concerning Multiple Myeloma. Our new key-value

data model implemented on HBase exhibits an average 5.24-fold increase in high-

dimensional biological data query performance compared to the relational model

implemented on MySQL Cluster, and an average 6.47-fold increase on query per-

formance on MongoDB.

• Optimizing parallel R correlation matrix calculations on gene expression data

using MapReduce. In: BMC Bioinformatics. [WPJ+14].

This paper evaluates the current parallel modes for correlation calculation meth-

ods and introduces an efficient data distribution and parallel calculation algorithm

based on MapReduce to optimise the correlation calculation. The performance has

been studied using two gene expression benchmarks. In the micro-benchmark, the

new implementation using MapReduce, based on the R package RHIPE, demon-

strates a 3.26-5.83 fold increase compared to the default Snowfall and 1.56-1.64

fold increase compared to the basic RHIPE in the Euclidean, Pearson and Spear-

man correlations. Though vanilla R and the optimised Snowfall outperforms the

optimised RHIPE in the micro-benchmark, they do not scale well with the macro-
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benchmark. In the macro-benchmark the optimised RHIPE performs 2.03-16.56

times faster than vanilla R. Benefiting from the 3.30-5.13 times faster data prepa-

ration, the optimised RHIPE performs 1.22-1.71 times faster than the optimised

Snowfall. Both the optimised RHIPE and the optimised Snowfall successfully per-

forms the Kendall correlation with TCGA dataset within 7 hours. Both of them

conduct more than 30 times faster than the estimated vanilla R.

• DSIMBench: A Benchmark for Microarray Data Using R. In: The 5th work-

shop on Big Data Benchmarks, Performance Optimization, and Emerging Hard-

ware. Hangzhou, China, 2014. [WPE+14].

Parallel computing in R has been widely used to analyze microarray data. We

have seen various applications using various data distribution and calculation ap-

proaches. Newer data storage systems, such as MySQL Cluster and HBase, have

been proposed for R data storage; while the parallel computation frameworks, in-

cluding MPI and MapReduce, have been applied to R computation. Thus, it is

difficult to understand the whole analysis workflows for which the tool kits are

suited for a specific environment. This paper proposes DSIMBench, a benchmark

containing two classic microarray analysis functions with eight different parallel R

workflows, and evaluate the benchmark in the IC Cloud testbed platform.



Chapter 2

Background

In this Chapter, the current tranSMART architecture and the prospective one will be

first introduced. Then the new techniques, HBase and CCIndex, used to implement the

prospective architecture will be described.

2.1 tranSMART architecture

2.1.1 Overview

Originally developed by Johnson and Johnson for internal knowledge management in

translational studies, tranSMART, a translational medicine data warehouse, has recently

been open-sourced in github (https://github.com/transmart). It consists of a data reposi-

tory and a dataset explorer. The data repository allows the storage of a range of clinical

study data such as genotypic data, demographics, clinical observations, clinical trial out-

comes, biomarker data, annotated with information about the datasets, from open and

commercial databases. The dataset explorer enables search and analyses, including con-

necting to tools such as Gene pattern and R.

11
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Translational Research studies are characterized by a span of data types that ranges from

descriptive clinical and patient data to highly dimensional molecular profiling data. The

tranSMART repository presents a study based view of the data to provide provenance

and evidence support for analysis workflows and study findings [SKKP10]. Particularly,

the idea of an evidence repository expands the scope of a study management database to

include support for any collaborative research project. Users can upload their datasets

or select datasets from other studies to integrate for complex analysis. Both public and

private studies, as well as other user-defined research projects, can be stored in this repos-

itory.

The tranSMART platform provides tools for loading a variety of data types, such as clin-

ical and -omics research data, from a range of sources. The platform enables scientists

to discover and refine hypotheses by investigating the correlation between genetic and

genomic data for cohorts of patients, and to assess their analytic results in the context of

published literature and their internal work. It was designed to meet the needs of gen-

eral scientists, clinician-scientists, pharmacologists, toxicologists, and others, who are

involved in therapeutics and diagnostics discovery and development of new therapies for

patients.

The tranSMART platform implements a set of data models, data transformation utilities,

and analytical web applications all centered on the trial, to accelerate discoveries by cre-

ating a standardized and semantically integrated data warehouse of research results linked

to reusable and scalable self-service analytics.

An API has been added to the tranSMART platform to allow connection to external pack-

ages for extended data viewing, such as Genome Browser, statistical analysis based on R

language and Spotfire [Ahl96] visualization and analytics. These may be part of the dis-

tributed open source platform or distributed privately by vendors who are using the open

API.
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For example, in Figure 2.1 the Navigate Terms in the left side shows the clinical data

view. Each item contains several sample data. The GPL570 under Biomarker Data con-

tains 40 high dimensional data blocks; the CD4 under Cell Type contains 20 character

records; The FEV1 under Clinical contains 40 numeric records. Each high dimensional

data block contains genomic expression or genetic variant records for one sample, such

as RNA microarray and SNP data. In this example, the GPL570 means this assay used an

Affymetrix HG-U133 chip and all the probe information can be looked up in the chip in-

struction document. The right subset boxes are conditions used to select samples. In this

example subset1 contains healthy samples only, whilst subset2 contains severe samples.

Clinical data can be showed in either a graph view in Figure 2.2 or a data table in Figure

2.3. High dimensional data can be viewed in Heatmap Analysis in Figure 2.4, where high

dimensional item and gene filters are set, and in Figure 2.5. In this example, GPL570

item and gene DDR1 are selected. Other advanced analysis functions, such as hierarchi-

cal clustering and marker selection, can also be applied to high dimensional data. The

Data Export service offers off-line raw clinical and high dimensional data exportation, as

shown in Figure 2.6. If a Data Export job is started, there will be a job item in the Export

Job page, as shown in Figure 2.7.

2.1.2 Data model

The original tranSMART provided a data model for clinical data based solely on Infor-

matics for Integrating Biology & the Bedside (I2B2) [MWM+10], as shown in Figure

2.8, a generic data model designed to support flexibility for cohort analysis and discovery.

There are three layers in this architecture. The bottom layer is the data storage layer, the

middle layer is the functional layer and the top layer is the visualization layer. Most of the

data are stored in a relational database, such as Oracle or PostgreSQL; document-oriented

data are stored in a Apache Solr [MHG10] system; temporary data are stored in a local file
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Figure 2.1: The overview of tranSMART. The left side shows an ontology tree view of
clinical data. The right side contains two subsets. Each subset has multiple selection
conditions. Samples within a condition box are combined together. The final subset
equals the samples shared by all conditions boxes.

system, such as EXT3 or EXT4. TranSMART added a format to define study designs and

attributes, which is significant for cross-study analysis [GMPZ+08]. This study concept

enables this data model to support data updates, live collaborations on studies as well as

cross-talk and data sharing between studies.

There are two general categories of data types in translational research studies: clinical

and patient data and genomic characterization data produced from -omics technologies

[SRH14]. In tranSMART data warehouse, data are organized as a tree and each clinical

or -omics measurement is a node in the tree. The name of the node called a concept is

brief description of the measurement. A clinical concept contains only one feature. For

example, the concept FEV1 contains the value of forced expiratory volume in 1 second.

An -omics concept usually contains multiple features. The feature number relies on the -

omics experiment. For instance, the concept GPL570 (Affymetrix Human Genome U133

Plus 2.0 Array) usually includes 54,675 features. Thus, the clinical data are also called
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Figure 2.2: The graphic view of clinical data.

Figure 2.3: The table view of clinical data.

low dimension data in tranSMART and the -omics are named high dimensional. Data

from both categories are organized and defined with respect to the study in order to pro-
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Figure 2.4: The high dimensional parameter setting. This is the Heatmap function in the
Analysis section. Cohorts indicate the two subsets to be compared. Variable Selection
shows which high dimensional dataset is used for this function. Pathway Selection shows
which genes are considered. If no gene specified, all probes in this dataset will be loaded.

Figure 2.5: The heatmap view of high dimensional data.

vide the context for generating and analyzing such data. The study concept is the central

one, which stores metadata about the study, such as design, purpose, hypotheses, etc. The

low dimensional data forms the basis for clinical data and patient observations. Other

hierarchical concepts could be defined based on the clinical concept such as cohorts, pop-

ulations and measurements. The high dimensional data forms the basis for molecular

profiling information.

TranSMART studies use different technologies to generate high dimensional profiling
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Figure 2.6: The Data Export service in tranSMART. There are several multi-option check
boxes in the table. Each box indicates one dataset in a subset.

Figure 2.7: The Export Job service in tranSMART. The table indicates all the export jobs
for the user.

data, such as genetic and proteinic microarray matrices, genotype and phenotype Variant

Call Format (VCF) files and SAM files. These data are served either for analysis and

visualization tools, or for users directly querying interpreted data and general summaries

of study findings.

The current analysis workflow contains four steps, job configuration, data preparation,

R analysis and result, as shown in Figure 2.9. The data preparation contains two sub-

steps, database query and data format; R analysis includes loading data into R engine and

performing analysis functions.
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Figure 2.8: The architecture of original tranSMART.

2.1.3 Future tranSMART

With the high dimensional data size sharply increasing, the tranSMART response time

of data query and analysis became unacceptable long. Fortunately, technical revolutions

not only happened in biology but also in computing. State of art distributed data storage

engines and parallel analysis frameworks have been planned to be integrated into tranS-

MART to resolve this problem, as shown in Figure 2.10. Two significant changes will be

made in the high dimensional search engine and advanced analysis workflow.

High performance database clusters will replace the current standalone database to host

high dimension data for high speed data queries. Parallel SQL database clusters, such as
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Figure 2.9: The analysis workflow in current tranSMART.

Figure 2.10: The architecture of new tranSMART. Three layers: the bottom layer is the
data storage layer, the middle layer is the functional layer and the top layer is the visual-
ization layer.

MySQL Cluster [RT04], PostgreSQL XE [Mom01] and SQL Server [Del00] are conven-

tional all-purpose solutions. But new Key Value data stores can perform better for some

specific usages. For example, HBase [Geo08] can offer an extremely fast range query

service.

The choice of technology will be based entirely on the performance and accessibility to

popular data analysis environments and visualization tools. The high dimensional data
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query workflow is an important and time consuming procedure in the analysis workflow,

as shown in Figure 2.11. The clinical data and patient identity information are still stored

in a SQL-based database, while high dimensional data, such as genomic expression and

genetic variant call, are stored in a NoSQL storage system. In this query flow, query

conditions are loaded in the data query boxes and translated into SQL query conditions.

With this query information, related patient identities and heredity information are re-

trieved to generate NoSQL high dimensional data query requests. Finally, the expected

high dimensional data are retrieved from NoSQL databases.

Figure 2.11: The high dimensional data query flow of the new tranSMART.

In addition, tranSMART infrastructure for open analytics is built around an extensible de-

sign. A set of APIs will be provided to enable users to build applications or write scripts

to analyze project data stored in the repository. All these features are available via statis-

tical environments such as R as well as compiled languages such as Java. Users will be

able to either use these APIs to integrate with existing applications or create new analysis

and integrate them with third party applications. In addition to the APIs, tranSMART

hosts a range of common analysis and visualization tools based on R, such as cohort anal-

ysis [Pop72, GCB+04], differential gene expression analysis [RMS10, And10] and data

exploratory visualization tools. This analytic platform will host a compute service that

provides its users with remote access to R running on a R cluster. A similar setup is
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hosted at Revolution Analytics, known as the Revolution R or RHadoop [OD14], which

provides R built for multicore CPUs, access to a powerful computing infrastructure. This

setup will allow fast access to data stored in the repository and a more efficient procedure

for sharing workflows within a common environment.

2.2 Big Data Management

Big data is a common term used to describe the rapid growth and availability of large

amounts of structured and unstructured data. Some of the current and popular examples

of big data are the data from the NCBI GEO /citegeo, HapMap /citehapmap and 1000

Genomes [Siv08]. Big data management is the process of storing, querying and analyz-

ing these large and complex data collections. This section explores research work aimed

towards addressing the main challenges of volume, velocity and variety in Big data. Vol-

ume refers to the enormous amount of data that are provided by many sources; velocity

means acceptable response time for large data set queries; variety indicates the different

data format and how to abstract an model fit for various types of data.

These high volumes of data result in the issue of providing a data model for data manage-

ment that is scalable and efficient. For example, the model must be capable of efficiently

storing and retrieving large volumes of molecular profiling information. It must also have

the capacity to scale in order to handle incoming large number of high-throughput data.

Google Bigtable [big08] is a widely used (e.g. Google Scholar, Google Earth, etc.)

database to store such large volumes of structured data in the range of petabytes across

hundreds or thousands of machines, and to make it easy to add more machines to the

system and automatically start taking advantage of those resources without any reconfig-

uration. The data model of Bigtable is a set of processors known as clusters. Each cluster

controls a set of table partitions. A table in Bigtable is a sparse, distributed, persistent and
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dynamic multidimensional sorted tree, known as Log-structured merge-tree (LSM-tree)

[OCGO96], and the data is organized into three dimensions: rows, columns, and times-

tamps. Many open source projects are implemented based on the Bigtable design, such

as Accumulo [SFG13], Cassandra [LM10], HBase [Geo08], Hypertable [KG06], Druid

[YTL+14] and Open Neptune [AD11].

However, range queries by non-key columns can be slow due to random read opera-

tions usually being slower than range scan operations in very large distributed databases,

such as Bigtable and PNUTS [SSC+08] (developed by Google and Yahoo! respectively).

These databases can be modeled as Distributed Ordered Tables (DOTs) that partition keys

into regions to support range queries on the keys [CCF+08, CRS+08, SF09]. It is also a

commonplace to use non-key columns in ordered tables for secondary indexes, an exam-

ple of which can be found in SeqWare [OMN10]. However, range queries over secondary

indexes can be slow due to random reads being slower than scans [big08]. [ZLW+10]

Clustering indices can reduce the number of random read operations, but requires more

storage space where data is replicated.

Moreover, other NoSQL databases, such as MongoDB [Cho13], Couchbase [Bro12], Re-

dis [Car13] and Memcached [Pet08], MemcacheDB [TB11] and ClusterPoint [RE13]

have also become a popular solution for managing large volumes of data. MongoDB

is a cross-platform document-oriented database, which avoids the traditional relational

database structure in favor of JSON-like documents with dynamic schemas (BSON), mak-

ing the integration of data in certain types of applications easier and faster.

2.2.1 HBase: An open source implementation of Google Bigtable

HBase is an Apache Software Foundation open-source implementation of Bigtable writ-

ten in the Java programming language. HBase is a sub-project of Apache Hadoop [Whi12],

which has HDFS [Bor08] as the distributed file system and MapReduce as the parallel
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computing model. There are three major components of HBase. The HBase Master as-

signs Regions to HRegionServers. HRegionServers handle client read and write requests.

The HBase client discovers HRegionServers, which are serving a particular row range

of interest. HBase builds on top of HDFS, has one or more HMaster and many HRe-

gionServer to manage data regions, as shown in Figure 2.12. ZooKeeper [HKJR10] is

a centralized service for maintaining configuration information, naming, providing dis-

tributed synchronization, and providing group services.

Figure 2.12: HBase architecture

To deeply understand the essence of the Key Value schema design, the data organization

and query operation of HBase are introduced to fully describe HBase behaviour.

HBase stores most of data in disks using the HFile structure. HFile, based on Hadoop’s

TFile, stores data by mimicking the SSTable format used in Google’s Bigtable archi-

tecture. These files are primarily handled by the HRegionServer. The HRegionServer

divides HFiles into smaller blocks when stored within the Hadoop Distributed Filesystem

(HDFS). Thus, the HDFS data copy number and data block size may influence the data

query performance greatly.

All blocks in a HFile have a variable length except FileInfo and Trailer blocks. As show

in Figure 2.13, the Trailer uses pointers to link to the other blocks and is written at the

end of the file. The Index blocks record the offsets of the Data and Meta blocks. Both
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the Data and the Meta blocks are optional. Key Value pairs are stored in Data blocks.

The block size is configured by the HColumnDescriptor. The ”Magic” header before Key

Value pairs indicates whether these pairs are compressed or not.

Figure 2.13: HFile structure

The default data block size is 65535 bytes. Larger block size is preferred if files are pri-

marily for sequential access. However, it would lead to inefficient random access because

there is more data to decompress. Smaller blocks are efficient for random access, but

require more memory to load the block index, and slower to create due to more I/O flush

operations. Furthermore, given the internal caching in Compression codec, the smallest

possible block size would be around 20KB-30KB.

Essentially, each KeyValue in the Data block is simply a low-level byte array. Figure 2.14

shows the structure of the Key Value pairs. The first two fixed-length numbers indicate

the size of the key and the value part. With that information, the value can be directly

accessed by offsetting into the array without reading the key. The key contains Row (Row

Key), Column Family (Family) and Column Qualifier (Qualifier), which could be used as

composite key to speed up queries.

Figure 2.14: the structure of the Key Value pairs

When a query arrives, the query client first contacts the Zookeeper to find the location of

the region that hosts a particular row key. Then the corresponding HRegionServer creates
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a HRegion object for that region and sets up a Store instance for each HColumnFamily.

An HRegion also has a MemStore and a HLog instance. ”Write-Ahead-Log” (WAL) uses

MemStore and a HLog to handle physical operations, such as read, write and cache. Each

region name is encoded using a Jenkins Hash function and a directory is created for it.

Thus, the full path structure shows as below:

/hbase/<tablename>/<encoded-regionname>/<column-family>/<filename>

For example, as shown in Figure 2.15, the Client first connected to ZooKeeper to find the

location of the HRegionServer containing system table -ROOT- (Region Server I). Then

the -ROOT- table returned the location of regions that store .META. table (Region Server

II and III). The Client loaded all these meta information and then search for row-2 of

TableA in the meta data. Finally, Region Server IV was connected to serve for this query.

So both advantage and disadvantage are easily understood based on the HBase architec-

ture design. The advantage is HBase supporting the large sequential data query by the

Row Key in one or a few Families. This range query operation can be performed in a

very high speed. The disadvantage of HBase is slow queries by other attributes in Qual-

ifiers. Based on the HBase data query method and data cache features, how to make use

of the advantage and avoid the disadvantage becomes a real challenge in actual use cases.

CCIndex shows a possible solution. [ZLW+10]

2.2.2 CCIndex

Distributed hash tables (DHTs) [SMK+01, RFH+01, RD01, ZKJ+01] are scalable and

reliable for key-value pair storage. Because the data is partitioned by hashing functions,

DHT systems do not support range queries naturally. MAAN [CFCS04] and SWORD

[AOVP08] use locality preserving hashing and store attributes in DHT as index to support

range queries. However, the logN hop latency is not good for user-interactive applications.
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Figure 2.15: HBase query example

A solution to supporting high dimensional range queries over DOTs is CCIndex [ZLW+10].

CCIndex creates multiple complementary clustering index [BE77] tables, each with a

search column containing a full row of data, allowing range queries [AL05] to act as

range scans. CCIndex takes advantage of partition-to-server mapping [PG11] informa-

tion to estimate the size of the results for each sub query. To reduce storage overheads,

CCIndex disables the underlying data replication mechanisms and creates a check table

for each search column to allow incremental data recovery.

CCIndex was originally designed for tables with 3 to 5 indices, heavy query operations

and few updates. The first application, which CCIndex was applied on, was a system mon-
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itor tool mimicking Nagios. This monitor tool collected millions of monitoring records

and store in CCIndex. The data schema used in the tool is shown below in Figure 2.16.

The [ZLW+10] shows CCIndex can provides more than 10 times faster query than sec-

ondary index implemented in HBase and 2 times of speed of MySQL Cluster.

Figure 2.16: CCIndex architecture [ZLW+10]

To address the bottleneck of data queries on expression data in tranSMART, CCIndex has

been built on to extend for use with HBase and Hadoop. Theoretical calculations find

that CCIndex typically consumes up to 22% more storage space than using a traditional

secondary index. However, CCIndex also demonstrates a 5.5 times increase in throughput

of range queries than using secondary indexes. If a data model were properly designed

based on the complementary clustering index, the high query throughput would speed up

the data preparation in typical statistical workflows carried out in tranSMART.
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2.2.3 MongoDB

MongoDB [Cho13] was first developed by the current software company MongoDB in

October 2007 as a component of a planned platform as a service product and then shifted

to an open source development model in 2009, with MongoDB Inc offering commercial

support and other services. Since then, MongoDB has been adopted as backend software

by a number of major websites and services, such as Craigslist, eBay, and the New York

Times. MongoDB supports many features, such as full index, auto-sharding, etc.

Any attribute in MongoDB can be indexed using single field indexes or compound in-

dexes. MongoDB also supports indexes of arrays, called multi-key indexes, as well as

indexes on geospatial data.

Sharding is the process of storing data records across multiple machines on demand of

data growth. In the big data age a single machine may not be sufficient to store the data

nor provide an acceptable read and write throughput. Sharding solves the problem with

horizontal scaling. As shown in Figure 2.17, the mongod in a shard stores actual data,

the configuration servers store sharding configuration, the mongos runs on an application

server as a stateless router.

Figure 2.17: The architecture of MongoDB sharding. [Cho13]
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In this thesis MongoDB is mostly used to implement relational data model to test how

relational models perform in Key Value databases.



Chapter 3

Generic -omics data model

3.1 Introduction

Information from genomic, proteomic and metabolic measurements has already benefited

identification of disease subgroups and the prediction of responses of individual subjects,

which is known as molecular profiling based patient stratification [SF05]. Biomedical

research is moving towards using high-throughput molecular profiling data to improve

clinical decision making.

A typical molecular profiling database contains values of features from individuals of

interest or samples, to be used for several medical studies. A subject of study is usually a

particular sample to analyze for the specific study. At high level, queries on bioinformatics

databases are meant to retrieve subjects based on their features as searching conditions.

Thus, typical molecular profiling data analysis contains the following three classes of

queries:

The first step is the marker selection that chooses proper features for further analysis,

such as classification or clustering. In this step, multiple cohorts with all markers in the

30
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database are collected for a particular study, for example ”asthma”.

select * from table

where subjects in {the cohorts}

and study = ’asthma’;

--Query 1

If the features of a study are known already, the particular features of all the samples in the

study are selected for the analysis. For example, users may want to retrieve the samples

genotyped at a particular DNA position in the ”asthma” study.

select * from table

where markers in {the DNA positions}

and study = ’asthma’;

--Query 2

If a relationship between features and diseases are found, all the samples in the database

are selected to detect potential patients for a particular disease. For instance, users may

need all the samples genotyped at a particular DNA position.

select * from table

where markers in {the DNA position};

--Query 3

Many management systems can enable scientists to do that, such as tranSMART [ABHG13],

NCBI [BWL+13] and SeqWare [OMN10]. The storage of the first two platforms use SQL

model and the last one uses a Key Value model. TranSMART is a biomedical data ware-

house and analytics software platform that integrates clinical and genomics data using

SQL models. The NCBI dbSNP [SWK+01] individual genotype data schema is a widely
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used relational data model for SNP data. The SeqWare implements a Key Value model

based on HBase with secondary indices.

In the big data era, molecular profiling data size increases sharply due to new biological

techniques, such as next generation sequencing. None of the existing databases work well

whilst considering the three ”V” features of big data (Volume, Variety, and Velocity). An

alternative solution is to take advantage of emerging NoSQL techniques with high speed

indices to speed up queries over molecular profiling data.

Especially, the range scan query in Bigtable can perform even faster than indices of other

NoSQL databases for molecular profiling data. For example, [WPW+14] indicates HBase

data query performs up to 7x faster than MongoDB for microarray data. Yet random read

operations in Bigtable can be extremely slow due to the large size of the Bigtable data

block. Thus, in Bigtable the secondary index [LY01] has a smaller space requirement but

performs slow; the clustering index [ZLW+10] has larger storage overhead but performs

fast. The global index has high network traffic but is easy to implement; the local index

has low network traffic but is difficult to implement. [FYL+15] did a performance test

on all those indices. The throughput of global clustering index is best with a reasonable

storage overhead.

However, none of existing molecular profiling data models work well for Bigtable when

considering the three ”V” features. To improve the throughput of the current models,

this chapter introduces a collaborative generic data model (CGDM), which uses three

optimized complementary global clustering index tables (CGCITs) for each of the queries

described above. Each CGCIT uses vertical partitions to further speed up the queries and

increase the data availability. Thus, CGDM can solve the velocity and variety issues with

limited extra volume cost.
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Figure 3.1: Traditional molecular profiling data model

3.2 Methods

A typical traditional molecular profiling data model (TDM) used in tranSMART includes

a main table and three secondary index tables, as shown in Figure 3.1. The pk is a unique

id. Main table stores data ordered by the id. Three secondary indices are created to speed

up the three typical queries above. The subject id is usually associated with its study, so

study and subject together can be a unique id for Query 1. The combination of study and

DNA position is the fastest index to locate a DNA position in a specific study for Query

2. The position alone can be used to search information on a specific DNA position in the

database for Query 3.

There are two types of secondary indices that can be used for this purpose. One stores pk

values in the main table, while the pk column in the other index stores pointers linking

to the physical location in the main table. In a distributed database, it is very difficult to

maintain the second type of index. For example, if the distributed table blocks are merged

or split, all the related physical locations in the pk column will be re-calculated. Thus, the

pk in the index table usually contains the pk value in the main table. That means if you

sequentially search the index table to find the pk, you need to randomly search the pk in

the main table to find the data. The random search leads to a big challenge to design a

multi-dimension index for large range query in Bigtable.
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Figure 3.2: CGDM structure.

A clustering index may be introduced to solve the random search problem from the sec-

ondary index. But the clustering index leads to a big storage overhead, as each index table

is a full copy of the main table. In order to reduce the storage overhead, the backup copies

in the database can be re-used. Fortunately, in Bigtable there is usually three copies of

each table to make sure the data consistence and fault toleration. A main table with two

index tables does not increase any overhead. Further more, if the main table can be even

re-used, three collaborating clustering index tables can be created for the 3 typical queries.

The remaining work is how to design the index for each query. From the analysis view,

the study, subject and DNA position are frequently used as search conditions; from the

database view, Bigtable offers a hierarchical composite primary key, including row key

(primary index) and column key (other indices). Bigtable horizontally partitions a table

by row key and vertically partitions the table by column key. The row key is the primary

index of the key, so the main index columns in this index table are stored here. The

other index columns can be added in the column key. Based on the principles above, a

collaborative data model for molecular profiling data is created, as shown in Figure 3.2.

In addition, CGCIT3 cannot follow Index3 in Figure 3.1 in case that, with study number

increases, the size of data in one DNA position exceed the database limit.

Moreover, except the usage of horizontal index above, CGDM also consider utilizing
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Figure 3.3: Structure of multiple types of data.

the Bigtable vertical partition feature, Family, to further speed up data query, as shown

in Figure 3.3. Family is a special concept, related to a group of columns that contains

the same type of data. The same type of data are usually stored together and retrieved

together. For example, three different types of gene expression data may be stored, such

as raw value, logarithm value and zsocre value, and a normal query only focuses on one

type of data. If three Families are used for the three types of data, the query could be sped

up by searching about 1/3 of the data only.

3.2.1 Fault Tolerance

In CGDM, CGCITs have no replica to avoid huge storage overhead, and cause the prob-

lem of fault tolerance. The basic idea is that CGCITs replicate and recovery each other

in record level. If there are multiple Families in the CGCIT, the damaged block can find

all row keys by checking another Family and then find the data in another CGCIT. If

only one Family exists, a CGCIT can be recovered by another CGCIT. As both CGCIT1

and CGCIT2 row keys begin with study column, rows in CGCIT1 and CGCIT2 are both

ordered by study. When a region of a CGCIT1 is damaged, users can quarantine the re-

gions of the studies involved and use regions containing the same studies in CGCIT2 to
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reconstruct the regions. For CGCIT2, the situation is similar. For CGCIT3, users can iso-

late DNA positions involved and fetch corresponding information by searching the whole

CGCIT2. During the scan, the DNA position range can skip unnecessary regions.

3.3 Generic data model for molecular profiling data

Based on the methods in the previous section, a new data model is created, as shown in

the following Figure 3.4. This model is only a basic template, so some adjustments may

be applied for specific data types. In addition, to make the table name easy to remember,

CGCIT1 is also called the Subject table. So are CGCIT2 (Position) and CGCIT3 (Cross-

study).

3.3.1 Subject table

In the subject table the key is a composite key including fixed length StudyID and Subjec-

tID, while the value consists of several families of different data types, such as annotation

data and expression values.

Determining Row Key and Column Key of transcriptomic data

In order to speed up queries, the StudyID and SubjectID are placed in the Row Key, as

shown in Table 3.1 . This is for two reasons. The first reason is that a Family can manage a

subject of data efficiently. When a Family is used in this way, all attributes larger than the

subject (StudyID and SubjectID) are placed in the Row Key and attributes smaller than

the Family (PositionID) are placed in the Qualifier. The second reason is that all records

belonging to a Family are stored together in several HFiles. As shown in Figure 3.4, only

data belonging to Family A are stored in Region I and data in Family C are stored in
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Figure 3.4: Generic data model. StudyID is the identity of clinical trial or the name of a
dataset, SubjectID is the identity of a subject in an assay, PositionID is a gene or protein
location expressed in an assay and Others is additional information.

Region II. For a typical use case when multiple identical subjects are retrieved, the HFiles

storing the data in these subjects will be loaded into caches. Therefore, only retrieving

the first record causes a significant delay when loading data from disk to memory, while
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all other records in the same HFile are fetched directly from memory caches. This design

takes full advantage of caches.

Key
Value

Row Key
Column Key

Family Qualifier
Study A + Subject 1 A Position I Value 1
Study A + Subject 1 A Position II Value 2
Study A + Subject 2 A Position I Value 3
Study A + Subject 2 A Position III Value 4
Study B + Subject 3 A Position II Value 5

Table 3.1: Subject table

Optimizing the Row Key to speed up data location

The order of the two fields in the Row Key also has a very significant effect on the query

performance. Typical user cases always begin with a gene information query of several

subjects based their cohorts or clinical measurement results. By placing the StudyID

before the SubjectID (StudyID + SubjectID), the composite key becomes two indices on

the study and subject respectively. As shown in Table 3.1, Study A appears before Study

B and within Study A, Subject 1 appears ahead of Subject 2. When multiple identical

subjects in a study are retrieved, StudyID + SubjectID can precisely locate all HFiles

expected by using StudyID + SubjectID to compare to the start keys of an HFile.

Optimizing the Column Key to increase cache hit rate

One way to further increase cache hit rate is to design a new structure by classifying

different types of data under Column Key. The Family divides different types of data

(info and subject) into different HFiles and the Qualifier orders positions by PositionID

lexicographically. As shown in Table 3.1, Qualifier Position I always appears ahead of

Position II or Position III. In the motivating example above, the user requests data on
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several subjects that contain only expression values, but the query returns millions of

records. Such large numbers of expression records can be loaded with only a limited

number of disk loading operations through the corresponding Column Keys.

This Subject table only provides fast queries by subject within one study. However, if

queries over an genetic position or positions across studies are required, these queries

may not be performed as fast as the queries over subjects. In order to provide faster query

by position as well, a supplementary cluster index is created.

3.3.2 Position table

In the Position table, as shown in Table 3.2, StudyID and PositionID are composed of the

key. This table offers high-speed query by position within a study.

Key
Value

Row Key
Column Key

Family Qualifier
Study A + Position I A Subject 1 Value 1
Study A + Position I A Subject 2 Value 3
Study A + Position II A Subject 1 Value 2
Study A + Position III A Subject 2 Value 4
Study B + Position II A Subject 3 Value 5

Table 3.2: Position table

Determining Row Key and Column Key of transcriptomic data

In order to accelerate queries by genetic position, the StudyID and PositionID are placed

in the Row Key. Thus, the SubjectID is moved to Qualifier, as shown in Table 3.2. All

subjects in the same position are stored together in HFiles. For a typical use case when

one or multiple identical positions in a specified study are retrieved, the HFiles storing

the data of these positions will be loaded into caches to takes advantage of these caches.

Therefore, only retrieving the first record causes a significant delay when loading data
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from disk to memory, while all other records in the same HFile are fetched directly from

memory caches.

Optimizing the Row Key to speed up data location

The order of the two fields in the Row Key affects the query performance greatly. Typical

user cases may start with a gene information query of several genes or probe sets in a

study. By placing StudyID ahead of PositionID, the composite key becomes two indices

on the study and genetic information respectively. As shown in Table 3.2, Study A is

always placed before Study B. All Positions in Study A are ordered by positionID (I, II,

III). When multiple identical genetic attributes are retrieved, this Row Key can precisely

locate all HFiles expected by using this Row Key to compare to the start keys of a HFile.

Optimizing the Column Key to increase cache hit rate

The Family divides different types of data (A, B, and C) into different HFiles and the

Qualifier (SubjectID) orders subjects by SubjectID. As shown in Table 3.2, Subject 1

always appears before Subject 2 before Subject 3. If queries by genetic position are

required, the required data on each position are stored together. Such large numbers of

expression records can be loaded with only a few disk reading operations through the

corresponding Column Keys.

3.3.3 Cross-study index table

The key of position index table consists of PositionID and StudyID, as shown in Table

3.3. The Column Key structure is the same as the Position table. This table is utilized to

query by position across studies.
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Key
Value

Row Key
Column Key

Family Qualifier
Position I + Study A A Subject 1 Value 1
Position I + Study A A Subject 2 Value 3
Position II + Study A A Subject 1 Value 2
Position II + Study B A Subject 3 Value 5
Position III + Study A A Subject 2 Value 4

Table 3.3: Cross-study table

Optimizing the Row Key to speed up data location

The order of the two fields in the Row Key has different function from the Position table.

Some user cases may start with a gene information query of several genes or probe sets

across studies. By placing PositionID ahead of StudyID, the composite key becomes

two indices on genetic position and the study name respectively. As shown in Table 3.3,

Position I is always placed before Position II and III. Study A and B in Position II are

ordered by StudyID, A ahead of B. Thus, all expression data in Position I are stored

together. When one or more identical genetic positions are retrieved, this Row Key can

precisely locate all HFiles expected by using this Row Key to compare to the start keys

of an HFile. All these expression records can be loaded with only a few disk operations

through the corresponding Keys.

3.4 Performance evaluation methods

CGDM is aimed at solving the velocity issue for molecular profiling data, so improving

the throughput of each query described in the introduction is the most important target.

The method of benchmark design is to gradually increase the query size from a small

value until the query throughput of the database becomes stable. There are two ways

to increase the query size, including modifying the number of records in a query and
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multiplying the queries with multiple threads.

Query 1 is usually a large query due to the high dimension of molecular data. For example,

a microarray experiment could generate thousands of probe values for a subject, while a

raw DNA sequencing experiment could generate millions of variants for a subject. A

single thread Query 1 could fully occupy almost all resources in a database system and

show the throughput of the system. The subject number for each query varies from about

100 to a few hundreds. For query Query 2 or 3, a single thread test cannot indicate

the database throughput due the small query data size. Thus, multi-thread queries are

introduced to test throughput. The thread number varies from 10 to 100.

In addition, if use cases with a medical meaning are given, the result will be more persua-

sive; if the query throughput is still increasing during the last few tests, larger queries will

be added to fully evaluate the throughput.

3.5 Conclusion

With a traditional molecular profiling data model using secondary indices, tranSMART

faces the velocity issue. New NoSQL techniques, especially Bigtable, can solve the is-

sue by improving the query throughput, but tranSMART’s current data model does not

work well for Bigtable. A new generic -omics data model CGDM, using the optimized

complementary index and vertical partition, is designed to take advantage of Bigtable’s

high throughput query. Following CGDM principles, a detailed Key Value data model is

created and explained. Finally, evaluation methods for query throughput are described as

principles to evaluate implementations in the following chapters.
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Microarray Key Value Model

4.1 Introduction

A microarray is a two dimensional array on a solid substrate, which is usually a glass

slide or silicon thin-film cell. It assays large quantities of biological material using high-

throughput screening miniaturized, multiplexed and parallel processing and detection

methods. The concept and methodology of microarrays was first introduced and illus-

trated in antibody microarrays by Tse Wen Chang in 1983 [Cha83] in a scientific pub-

lication and a series of patents. The ”gene chip” industry began to grow significantly

after the 1995 Science Paper [SSDB95] by Stanford University. With the development of

companies, such as Affymetrix, Agilent, Applied Microarrays, Arrayit, Illumina, etc., the

technology of DNA microarrays has become the most sophisticated and the most widely

used. At the same time the use of protein, peptide and carbohydrate microarrays are

expanding.

A DNA microarray is a collection of microscopic DNA spots attached to a solid surface.

Researchers use DNA microarrays to measure the expression levels of large numbers

of genes simultaneously or to genotype multiple regions of a genome. Each DNA spot

43
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contains a specific DNA sequence, known as probes [HJCT88]. These can be a short

section of a gene or other DNA element that are used to hybridize a cDNA or cRNA

sample under high-stringency conditions. Probe-target hybridization is usually detected

and quantified by detection of labeled targets to determine relative abundance of nucleic

acid sequences in the target.

Since an array can contain tens of thousands of probes, a microarray experiment can

accomplish many genetic tests in parallel. Therefore, arrays have dramatically accelerated

many types of investigation. DNA arrays are different from other types of microarray only

in that they either measure DNA or use DNA as part of their detection system.

The key principle behind microarrays [Qua01] is hybridization between two DNA strands,

the property of complementary nucleic acid sequences to specifically pair with each other

by forming hydrogen bonds between complementary nucleotide base pairs. A high num-

ber of complementary base pairs in a nucleotide sequence means tighter non-covalent

bonding between the two strands. After washing off non-specific bonding sequences,

only strongly paired strands will remain hybridized. Total strength of the signal from a

spot depends upon the amount of target sample binding to the probes present on that spot.

Microarrays use relative quantitation in which the intensity of a feature is compared to the

intensity of the same feature under a different condition, and the identity of the feature is

known by its position.

Due to the biological complexity of gene expression, the considerations of experimental

design that are discussed in the expression profiling article are of critical importance if

statistically and biologically valid conclusions are to be drawn from the data.

Microarray data sets are usually very large, and analytical precision is influenced by a

number of variables. Statistical challenges include taking into account effects of back-

ground noise and appropriate normalization of the data. Normalization methods may be

suited to specific platforms and in the case of commercial platforms the analysis may be
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proprietary.

An increasing amount of biological data being produced has predicated the use of databases

capable of storing and analyzing genomic expression data. In the field of translational

research, knowledge management platforms use databases to store a variety of data pro-

duced from clinical studies, including patient information, clinical outcomes as well as

high-dimensional -omics data. For optimal analyzes and meaningful interpretations, such

databases also store legacy data taken from public sources, such as the GEO and the Gene

Expression Atlas, alongside new study data. This enables cross-study comparisons and

cross-validation [BFT+05] to take place. High-throughput transcriptomic data generated

by microarray experiments is the most abundant and frequently stored data type currently

used in translational studies.

A frequently used query is fetching patient gene/protein probe set expression levels in a

study in order to perform data analysis. For each study, the transcriptomic data stored

in the database is comprised of individual probe set values for each patient sample (in

some cases multiple samples from each patient are profiled), and annotation information

further describing the experiment (e, g. trial information, microarray platform identifier,

normalization method, gene descriptions). Once retrieved the data is passed to analyti-

cal tools, such as GenePattern [RLG+06] or custom R workflows for further analysis or

visualization.

4.1.1 Classic relational data model - I2B2

The data mart Data Repository Cell (also named the Clinical Research Chart, or CRC) of

Informatics for Integrating Biology and the Bedside (I2B2) is a widely used relational data

model for high dimensional data [BBK01], which is originally designed to store data from

different types of clinical data such as clinical trials, medical record systems, laboratory

systems, and many other types of clinical data. Given the complexity of the full I2B2
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database model, the main data tables are abstracted in order to explain the I2B2 model

more clearly. The CRC stores this data mainly in two tables, the patient and observation

tables, as shown in Figure 4.1. In addition to these two tables, there are two lookup tables,

the concept and provider tables. The two data tables, along with two of the lookup tables

make up the star model of the warehouse, with the central fact table surrounded radially

by one or more dimension tables. The most important concept regarding the construction

of a star model is identifying what constitutes a fact.

Figure 4.1: I2B2 data model [MWM+10]

The fact table contains the observation value, such as clinical measurements and gene ex-

pression levels, and basic attributes about the observation, such as the patient and provider

numbers, a concept code for the concept observed. In I2B2, the fact table is called obser-

vation fact. The observation fact table is the central table of the I2B2 star model and rep-

resents the intersection of the dimension tables. Each row describes one observation about

a patient. Most queries in the I2B2 database require joining the observation fact table with

one or more dimension tables together, such as patient dimension or concept dimension.
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Dimension tables contain information about the data organization, such as data categories

and summaries, which are adopted for further descriptive and analytical information

about attributes in the fact table. In the I2B2 Data Mart, there are four dimension tables

providing additional information about fields in the fact table: patient dimension, con-

cept dimension, provider dimension and visit dimension. Each record in the patient dimension

table represents a patient in the database. The patient information contains demographics

fields such as gender, age and race. The concept dimension table contains one row for

each concept. Possible concept types are diagnoses, procedures and lab tests. The struc-

ture of the table is significantly flexible to support most concept types, such as demograph-

ics and genetics data. The concept path illustates the concept’s hierarchy. The concept cd

represents the code for diagnosis, procedure, or lab tests. The provider dimension ta-

ble contains a note from the provider. The visit encounter number in visit dimension is

the unique id for each observation. Other information about the visit, such as hospital

locations, is also stored in visit dimension table.

For example, in Figure 4.2 a gene expression dataset from Affymetrix HG-U133 chip

[LLS+03] is stored in a I2B2 model. The concept dimension table contains each probe

sets a row, such as 221591 s at and 221592 at. The corresponding patient and provider

information are stored in patient dimension and provider dimension tables respectively.

The observation fact table contains each expression value and its basic attributes per row.

Figure 4.2: I2B2 example
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4.1.2 TranSMART high dimensional data model

Inspired from I2B2 data model, tranSMART inherited the star model and improve the fact

table by providing more flexible data types, such as high dimensional type. The high di-

mensional data type is more suitable for gene expression data than the basic numeric type.

A row in this data type links to a partition in another table named microarray that contains

gene expression values and basic attributes, such as SUBJECT ID and PROBESET ID.

Figure 4.3 shows a snapshot of tranSMART performing high dimensional data analysis.

Figure 4.3: tranSMART example

Table 4.1 shows a typical structure of a microarray table that is used in a relational

database system. This example is based on the DEAPP model used in the implemen-

tation of tranSMART 1.1. PROBESET ID, SUBJECT ID, STUDY NAME correspond

to basic annotation data; RAW, LOG and ZSCORE are probe set values [CVFB03].

All records in the table are organized by a B-tree like structure, such as B-tree, B+tree or

B*tree. B-tree structures are balanced search trees that are optimized for large amounts

of data. These structures allow search, access, and deletions of tree nodes in logarithmic

time. B-tree like structures are commonly used in the implementation of databases and

file systems and are fully described in [BM72]. The time to fetch the patient probe set
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PROBESET ID VARCHAR2(100)
SUBJECT ID NUMBER(18)
STUDY NAME VARCHAR2(50)
RAW NUMBER(18)
LOG NUMBER(18)
ZSCORE NUMBER(18)

Table 4.1: TranSMART microarray data model. PROBESET ID represents a genetic
identity, SUBJECT ID is a subject identity, STUDY NAME shows a study identity, and
RAW, LOG and ZSCORE are three types of expression values.

data using a relational model, such as that in Table 4.1, is therefore:

∑
tr = pn ∗ ps ∗ logm(pn ∗ ps) ∗ tr (4.1)

where the time to find a next node in the tree is one standard unit, the order of the tree is

m, the time to fetch a record in relational database is tr, number of patients is pn, and the

number of probe sets for each patient is ps.

What this illustrates is that in order to traverse the tree to retrieve a large study, a signifi-

cant number of records need to be read from the physical disk where such a large number

of database operations will cumulatively be slow. A common solution for scalability is-

sues in relational databases is database partitioning [ECS+08], which allows for a logical

database to be divided into constituent parts and distributed over a number of nodes, for

example in a compute cluster. This approach has enabled relational databases to support

large-scale genomics datasets through horizontal partitioning (also referred to as shard-

ing), however, this still does not solve the data retrieval performance issues such as those

observed in translational research studies loaded into tranSMART.

An alternative solution, and what forms the contribution described in this chapter, is to

utilize a NoSQL database modality, the Key Value pair data model, as implemented in

NoSQL databases such as Google BigTable. The first advantage of such a data model is

that it typically maintains data in lexicographic order by Row Key. The second advan-
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tage is that the Column Key includes two parts: a Family and a Qualifier, where database

columns (Qualifiers) are grouped into sets (Families) and all data stored in a Family is

usually of the same type and is compressed and stored together. When a key is retrieved,

a Key Value array is loaded into memory and the expected Key Value pairs are returned.

Taking these features of the Key Value model into account, I hypothesized that a Key

Value pair data model would be more performant in data retrieval than the current re-

lational model used for microarray data storage in tranSMART. This chapter describes

an experiment using a new database model for one of tranSMARTs microarray data ta-

bles that may be more suitable for high-dimensional data storage and querying than the

relational model currently implemented in tranSMART.

The current version of tranSMART operates with SQL-based databases in a single node

mode, typically as single PostgreSQL [Mom01] 9.3 or Oracle 11g [BDDY09] database.

It is possible to migrate the current tranSMART data model to SQL-based database clus-

ters to solve the performance problem mentioned in motivating example. For example,

MySQL Cluster [RT04] is an open-source high performance database cluster. MySQL

Cluster consists of multiple network database nodes (NDB), a single management node

(MGM) and multiple MySQL nodes. The data is horizontally partitioned across the

NDBs, where each MySQL node is responsible for handling SQL operations. The MGM

controls all NDB and MySQL nodes. MySQL Cluster can use the same relational data

model detailed previously in Table 4.1.

NoSQL document storage systems, such as MongoDB [Cho13], CouchDB [ALS10], Riak

[Cat11] are popular alternatives to using relational database management systems such as

MySQL, because relational data models can easily map to a document-based Key Value

model. For example, MongoDB has features such as indexing in the form of B-trees,

auto-sharding and asynchronous replication of data between servers. MongoDB stores

data in collections and each collection contains documents. Each document is a serialized

JSON [Cro06] object. MongoDB used relational model where each column is represented
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by a field in a JSON object. For example, the relational data record in Table 4.2 maps to

the JSON object shown in Figure 4.4. Note that the field id holds a unique key generated

for each JSON object.

PROBESET ID SUBJECT ID STUDY NAME RAW LOG ZSCORE
204454 at 79622 MULTMYEL 71.900002 6.16791991 8.3069731

Table 4.2: Example of a relational model representation of a patient record

Figure 4.4: Example of a JSON object that maps to the patient record illustrated in Table
4.2. The ” id” is automatically generated by MongoDB to distribute JSON data.

All of the data is imported into a single collection with the index built on the keys, where

the sharding key uses SUBJECT ID to distribute the data into multiple ranges based

on SUBJECT ID. NoSQL systems for structured data, such as BigTable and Cassandra

[LM10], have been developed for managing very large amounts of data spread out across

many servers. In contrast to document Key Value storage, such as MongoDB, NoSQL

structured data systems do not easily map from a relational data model to a Key Value

model. HBase is a popular example of such a system where it is part of the Hadoop

framework that has been widely adopted for large-scale storage and processing. The Key

Value microarray data model implementation using HBase is described in the following

section.
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4.2 Key Value Microarray Model

As show in Figure 4.5, following the generic model, there are three tables in this schema

and each of them uses a different index for a typical expression data query. The Subject

table is designed to find significant differential gene or protein expression data. With

clinical information in a trial, such as cohorts and clinical measurement statistics, all

available differential expressed genes of the specified subjects with typical features are

located for further analysis to find the expected genes. After differential expressed genes

are calculated, Position table will be used to find the top hundred genes in several other

studies to further reduce the gene number. If some genes associated with certain traits

or diseases are found, queries over Cross-study table are generated to detect whether a

patient is vulnerable to certain diseases based on his expression levels of these genes.

In each table, data are split and compressed by Family to achieve higher query speed.

A Family usually represents for a special data type, such as RAW, LOG, ZSCORE in

microarray data. Different types of data are used by different functions. Normalized data

are usually used more frequently than RAW data. Most of the functions only use one type

of data. For example, marker selection analysis may load ZSCORE to find differential

expressed probe sets and hierarchical clustering may be applied on LOG data. Thus, in

marker selection, Family ZSCORE is searched while RAW and LOG data are not loaded

to memory; in hierarchical clustering, only Family LOG is loaded for further computation.

4.2.1 Subject table

As shown in Table 4.3, the STUDY NAME and SUBJECT ID in Table 4.2 are placed

in the Row Key, the data type (RAW, LOG or ZSCORE) is placed in the Family, the

PROBESET ID is placed in the Qualifier and the expression value of a type (RAW, LOG

or ZSCORE) is placed in the Value.
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Figure 4.5: Microarray Key Value model

Key
Value

Row Key
Column Key

Family Qualifier
STUDY NAME + SUBJECT ID DATA TYPE PROBESET ID EXPRESSION LEVEL

MULTMYEL + 79622 RAW 204454 at 71.900002
MULTMYEL + 79622 LOG 204454 at 6.16791991
MULTMYEL + 79622 ZSCORE 204454 at 8.3069731

Table 4.3: Key Value Microarray Subject Table schema.

The STUDY NAME and SUBJECT ID are placed in the Row Key for two reasons. For

one thing, a Family can manage a single data type (RAW, LOG, or ZSCORE) of data effi-

ciently. Then, all attributes larger than the data type (STUDY NAME and SUBJECT ID)
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are stored in the Row Key and attributes (PROBESET ID) smaller than the data type are

stored in the Qualifier. For another, all records belonging to a patient are stored together

in several large HFiles. When multiple identical SUBJECT IDs are required, the HFiles

can be loaded into caches. So, only fetching the first record leads to a long time delay due

to the data loading from disk to memory, while the other records in the same HFile are

read directly from memory.

Also, the order of the two fields in the Row Key is also very important. The composite key

(STUDY NAME + SUBJECT ID) is a composite index on the study and patient. When

subjects are searched, the Row Key can locate all HFiles by comparing the Row Key to

the Start keys and End keys of a HFile.

Furthermore, Family divides different types of data (RAW, LOG, and ZSCORE) into

different HFiles. A user usually requests a large amount of data but only one value type.

Other types of data, which are not required, will not be retrieved. Thus, Family reduces

the data searching and loading time.

Key Value data model example

To better explain this design, its application is illustrated using the relational example

in Table 4.4 and transforming it into the Key Value model shown in Table 4.5, 4.6, 4.7.

These three tables show how a HFile stores these Key Value data on physical disks. Key

Value pairs are ordered alphabetically by the Key in Table 4.4 and each pair is an array of

Java data type byte.

PROBESET ID SUBJECT ID STUDY NAME RAW LOG ZSCORE
204454 at 79622 MULTMYEL 71.900002 6.16791991 8.3069731
216396 s at 79622 MULTMYEL 917.20001 9.84109256 9.57629541
1555267 at 79737 MULTMYEL 608.29999 9.24863917 8.88386512

Table 4.4: Example in DEAPP table of tranSMART
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Key
Value

Row Key
Column Key

Family Qualifier
MULTMYEL + 79622 LOG 204454 at 6.16791991
MULTMYEL + 79622 LOG 216396 s at 9.84109256
MULTMYEL + 79737 LOG 1555267 at 9.24863917

Table 4.5: Data sample from LOG Family HFile

Key
Value

Row Key
Column Key

Family Qualifier
MULTMYEL + 79622 RAW 204454 at 71.900002
MULTMYEL + 79622 RAW 216396 s at 917.20001
MULTMYEL + 79737 RAW 1555267 at 608.29999

Table 4.6: Data sample from RAW Family HFile

Key
Value

Row Key
Column Key

Family Qualifier
MULTMYEL + 79622 ZSCORE 204454 at 8.306973
MULTMYEL + 79622 ZSCORE 216396 s at 9.57629541
MULTMYEL + 79737 ZSCORE 1555267 at 8.88386512

Table 4.7: Data sample from RAW Family HFile

For example, if the raw intensity values of all patients in the trial MULTMYEL are re-

trieved, the Key Value system will locate the Key described in Table 4.8, and then load

a HFile containing Key1, as shown in Table 4.9 into memory. This HFile probably also

contains Key2, as shown in Table 4.10, because Key2 is typically stored adjacent to Key1

in the physical storage. This results in a reduction in query response time by increasing

the cache hit rate.

Key

Row Key
Column Key

Family Qualifier
MULTMYEL + 00000 RAW 00000000

Table 4.8: Starting key for Key Value query

As in the relational model, Key Value data is organized as an LSM-tree. Each leaf in
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Key

Row Key
Column Key

Family Qualifier
MULTMYEL + 79622 RAW 204454 at

Table 4.9: Query result Key1

Key

Row Key
Column Key

Family Qualifier
MULTMYEL + 79622 RAW 216396 s at

Table 4.10: Query result Key2

the tree is a data block in a HFile (128 MB by default), each of which contains data

from more than one patient. Considering the maximum probe set count in the database

of 54,675 probe sets per sample using the Affymetrix HG-U133 chip, where the average

probe set data size is 300 bytes,

300B ∗ 54, 675 ≈ 16MB < 128MB (4.2)

In this case, one type of probe set values for a patient can at most be stored in two HFiles.

Therefore, each patient data in one type are stored within two HFiles. The time to fetch

data of a patient tp is:

tp = 2 ∗ ps ∗ logm(pn) ∗ tkv (4.3)

where the time to find a next node in the tree is one standard unit, the tree is of order m,

the time to fetch a HFile in a Key Value system tkv, and patient number is pn. Thus, the

total theoretical query time
∑

tkv is:

∑
tkv = pn ∗ 2 ∗ ps ∗ logm(pn) ∗ tkv (4.4)
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In order to make a full comparison of time consumption between Key Value data model

and relational data model, tr is the time to load 32 KB (MySQL Clusters data page size)

data from physical disk into memory and tkv is the time to load 128 MB data, then in a

common physical server with a SATA disk (X79 series chipset 6-Port SATA AHCI Con-

troller), tr is approximately 10 milliseconds and tkv is approximately 9,000 milliseconds.

In this case:

∑
tr/

∑
tkv = (logm(pn ∗ ps) ∗ tr)/(2 ∗ logm(pn) ∗ tkv) (4.5)

Therefore, if there are 559 patients in a study and each patient has 54,675 probe sets, if

cache and query optimizers are not taken into account, theoretically an ideal Key Value

data model may be up to about 83 times faster than an ideal relational data model. The

actual observed speedup is much less than the theoretical estimate since real-world per-

formance will be different according to implementation. However, as the basis of the

hypothesis, based on the theoretical calculations a Key Value will be significantly faster

than a relational model when querying microarray data such as that stored in tranSMART.

4.2.2 Position Table

Position table provides high throughput queries over probe sets within a study. The

STUDY NAME and PROBESET ID are used as the Row Key, as shown in Table 4.11.

All records of a probe set in this study are saved together. If PROBESET IDs are re-

quired, these data will be loaded within very few disk reading commands. When multiple

identical genetic attributes are retrieved, the composite key (STUDY NAME and PROBE-

SET ID) can precisely locate the data by comparing this Row Key to the Start and End

keys of a data block. Moreover, Family categorizes different types of data (RAW, LOG,

and ZSCORE) into different data files to decrease the size of files to be searched.
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Key
Value

Row Key
Column Key

Family Qualifier
STUDY NAME + PROBESET ID DATA TYPE SUBJECT ID EXPRESSION VALUE

MULTMYEL + 204454 at RAW 79622 71.900002
MULTMYEL + 204454 at LOG 79622 6.16791991
MULTMYEL + 204454 at ZSCORE 79622 8.3069731

Table 4.11: Microarray position table

4.2.3 Cross-study Table

Cross-study table is utilized to search genetic attributes across studies. As shown in ta-

ble 4.12, the STUDY NAME and PROBESET ID in the Row Key accelerate searches by

gene id across studies. The composite Row Key (STUDY NAME and PROBESET ID)

could improve the throughput of queries over several patients across many studies. All

records of a probe set across studies are stored sequentially. When several PROBE-

SET IDs in the whole database are retrieved, only a small number of the corresponding

data files will be loaded.

Key
Value

Row Key
Column Key

Family Qualifier
PROBESET ID + STUDY NAME DATA TYPE SUBJECT ID EXPRESSION VALUE

204454 at + MULTMYEL RAW 79622 71.900002
204454 at + MULTMYEL LOG 79622 6.16791991
204454 at + MULTMYEL ZSCORE 79622 8.3069731

Table 4.12: Microarray Cross-study table
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4.3 Performance Evaluation

4.3.1 Experimental Environment

This dataset was transformed and loaded it into two different Key Value databases, HBase

and MongoDB, and a relational database, MySQL Cluster, each of which was running on

a virtual machine cluster. HBase was used to implement the relational model and the

Key Value model, while MongoDB and MySQL Cluster both re-implement the relational

model. Each database was configured as follows:

• HBase (Version 0.96.0 on Hadoop 1.0.3): One master server node and three slave

nodes with HBase configured in fully distributed mode. The master server was

configured as a virtual machine (VM) with 4 CPU cores and 8GB memory, while

each slave node was configured as VMs with 2 CPU cores and 4GB memory. Each

VM used a 100 GB disk. Three copies is the minimum number for the Hadoop

Distributed File System to guarantee data consistency. Two types of queries in

HBase are executed, Random Read and Scan, in order to select the faster method.

In the Random Read method each patients data is retrieved discretely. In Scan,

all patients from the first Row Key to the last Row Key expected are retrieved se-

quentially, including unexpected Row Keys between two expected ones. The Key

Value model implementation follows the design in the previous section. The rela-

tional model implementation follows Figure 3.1, where Column position is Column

PROBESET ID.

• MySQL Cluster (Version 5.6.11-ndb-7.3.2): A parallel database [DGG+86, FKT86]

supports multi-dimensional queries and have good reliability. Four VMs are used,

with one as a manager node and three data nodes. The manager node consists of

a MGM, a MySQL and a NDB using a VM with 4 CPU cores and 8 GB memory.

Each VM used a 100 GB disk. Each data node consisted of a NDB. Disk-based
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InnoDB storage engine was used, where indexed columns and indices are stored in

memory and non-indexed columns are stored in disks. The relational model imple-

mentation follows Figure 3.1, where Column position is Column PROBESET ID.

The index uses BTREE [BM02, Com79] to speed up the query operations. Two

data copies were used to guarantee its data consistency.

• MongoDB (Version 2.2.4): Four VMs were used in the MongoDB cluster (VM A

configured with 4 CPU cores and 8GB memory, VMs B, C and D with 2 CPU cores

and 4GB memory). Each VM used a 100 GB disk. VM A and B formed a replica-

tion set (rs0), with C and D forming another (rs1); rs0 and rs1 formed a two-shard

sharding cluster. VMs B, C and D were also deployed as three configuration servers

(mongod –configsvr). VM A hosted the load balancer (mongos), and handled all

the data operation requests. MongoDB requires two copies to guarantee data con-

sistency. The relational model implementation follows Figure 3.1, where Column

position is Column PROBESET ID.

• Oracle (Version 11g): One VM was used with 16 CPU cores and 64 GB memory.

The relational model implementation follows Figure 3.1, where Column position is

Column PROBESET ID.

4.3.2 Query by subject

Benchmark generation

This experiment was performed using a dataset loaded in an instance of tranSMART

running on a cloud computing test-bed, IC Cloud [GGT10], installed at Imperial College

London. In the experiment a database, which tranSMART uses to store patient microarray

data, was dump and a public Multiple Myeloma (MULTMYEL) [RPB+09, HHZ+06]

dataset [GEO:GSE24080] was extracted from the dump. The reason that MULTMYEL



4.3. Performance Evaluation 61

was chosen as the test dataset was that it is one of the largest datasets loaded into the

current tranSMART database instance, consisting of 559 samples and 54,675 probe sets

for each sample, totaling approximately 30.5 million records.

In order to assess KeyValue and Relational database model performances using a gradient

of retrieval size requests, a series of typical marker selection queries have been devised

based on relevant biological questions [PCG+10] and data download requests, as shown

in Figure 4.6.

Figure 4.6: Medical use cases
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Results

Each case was tested three times, where after every test the entire cluster was shut down

to clean all caches to remove the influence of residual cached data.

The Figure 4.7 shows the comparison between the new Key Value design implemented in

the HBase cluster and the original Oracle implementation used in the current tranSMART.

The Key Value implementation outperformed the Oracle one by average 18.17 times.

Especially, when the query data set is small, Oracle performs more than 30 times slower

than HBase.

Figure 4.7: Performance of Key Value vs. original tranSMART application. The bar chart
shows the query retrieval times for each of the test cases over varying numbers of patient
record queries.

The record retrieval times for the HBase, MySQL Cluster and MongoDB configuration

are shown in Figure 4.8. In this experiment only RAW data was targeted.

Compared to the relational model on HBase, in 5/11 of cases, the Key Value model per-
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Figure 4.8: Performance of Key Value in HBase vs. relational data model in HBase,
MySQL Cluster and MongoDB. The curves show the query retrieval times for each of the
test cases over varying numbers of patient record queries.

forms more than 80 times faster. In 3/11 of cases, the Key Value model is more than 90

times faster. With the subject number increasing, the Key Value model advantage is more

obvious. In the last and biggest case, the Key Value model outperforms the traditional one

by more than 100 times.

With the number of records increasing, most test cases in relational model show retrieval

times also increasing. MySQL Cluster retrievals are slow when querying fewer numbers

of patient records with query times increasing slightly as the data queries scale up. the

Key Value based data model demonstrates an average 5.24 times of increase compared

to the relational model implemented on MySQL Cluster. In 6/11 of cases, the Key Value

data model is more than 5 times faster than relational model on MySQL Cluster. In 10/11

of cases, the Key Value data model is more than 4 times faster than the relational model

on MySQL Cluster. In the worst case, A2, the Key Value data model is more than 3.61

times faster than relational model on MySQL Cluster. As the size of the queried data

scales upwards, MySQL Cluster performs less stable than other databases as show by the

greater average result deviations in Figure 4.8.
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The relational model on MongoDB performs well with smaller queries but slows signifi-

cantly when the amount of data retrieved is scaled up. The Key Value based data model

demonstrates an average 6.47 times increase in query performance compared to the re-

lational model implemented on MongoDB. In 6/11 of cases, Key Value retrieval is more

than 6 times faster than that on MongoDB, especially in cases with large retrieval data.

In 10/11 of cases, the Key Value retrieval speed is more than 4 times faster than that on

MongoDB. In the worst case, B2, the Key Value data model is more than 2.68 times faster

than the relational model on MongoDB.

The data retrieval time in the Key Value model varies more widely due to the different

read operations, Random Read and Scan, and also the Scan range in different cases, as

shown in Figure 4.9. In most test cases in the experiment, Scans are quicker than Random

Reads. For Scans, the worst case is when the expected patient count is small and the

patient record distribution within the database is very sparse. In this situation, the Scan

operation degrades to sequentially read all patient data. For example, in case B2, 63

patient records are expected and distributed over a range of 481 patients. However, a

whole dataset Scan only needs about half of the time to perform a Random Read.

Figure 4.9: Performance of Random Read vs. Scan in Key Value data model. The bar
chart shows the query retrieval times for each of the test cases over varying numbers of
patient record queries using both Random Read and Scan methods. The numbers above
scan bar show the patient numbers the scan read in that case. The error bar shows the
deviation of each test.

The situation is similar when retrieving other types of data, such as LOG or ZSCORE,
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as shown in Figure 4.10 and 4.11. In these two figures, the performance trend observed

for each Family is similar. Only the deviation values vary. Thus, compared to the other

databases, the same conclusion will be generated for every Family.

Figure 4.10: Performance of Random Read in different Families. The bar chart shows
the query retrieval times for each of the test cases over varying numbers of patient record
queries of three Families. The error bar shows the deviation of each test.

Figure 4.11: Performance of Scan in different Families. The bar chart shows the query
retrieval times for each of the test cases over varying numbers of patient record queries of
three Families. The error bar shows the deviation of each test.
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4.3.3 Query by probe within a study

Benchmark

A normal marker selection returns about 100 potential probe sets, which need to be ver-

ified by other datasets of similar studies. Based on the design microarray subject table

will perform sub-standard for this purpose, but the microarray Position table can perform

much faster. 100 probes are randomly generated to test the Key Value model against the

relational one. The query of Key Value model is based on the Random Read operation.

Results

The Key Value data model demonstrates an average 174.52 times of increase compared

to the relational model implemented on HBase. In 4/10 of cases, the Key Value model on

HBase is more than 170 times faster than the relational one on HBase. In 9/10 of cases,

the Key Value model on HBase performs 140 times faster than the relational model on

HBase.

The Key Value data model demonstrates an average 10.19 times of increase compared to

the relational model implemented on MongoDB. In 3/10 of cases, the Key Value model

on HBase is more than 31 times faster than the relational one on MongoDB. In 6/10 of

cases, the Key Value model on HBase performs 20 times faster than the relational model

on MongoDB.

The Key Value based data model demonstrates an average 3.06 times of increase com-

pared to the relational model implemented on MySQL Cluster. In 6/10 of cases, the Key

Value data model is more than 3 times faster than relational model on MySQL Cluster. In

9/10 of cases, the Key Value data model is more than 2.5 times faster than the relational

model on MySQL Cluster. In the worst case, 20-thread, the Key Value data model is more
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than 2.47 times faster than relational model on MySQL Cluster.

Figure 4.12: Query by position within one dataset. The curves show the query retrieval
times for each of the test cases over varying numbers of patient record queries. The error
bar shows the deviation of each test.

4.3.4 Query by probe across studies

Benchmark

A further validation was performed using three GSE24080 studies. The GSE24080 dataset

is copied twice and renamed GSE24081 and GSE24082. The 100 probe sets in the query

by position experiment are reused. MySQL Cluster failed to load these three datasets

due to a memory limitation. Thus, the Key Value model on HBase is tested against the

relational model on HBase.
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Results

Before this experiment, the heaviest 100-thread concurrent query has been used to test

which is the better operation for Key Value data model, Range Scan or Random Read.

The Range Scan (8.480 seconds) outperformed the Random Read (13.320 seconds) by

1.57 times. With dataset number increasing, Range Scan should perform even better than

Random Read due to the Bigtable design. Thus, all the queries in these three datasets are

based on the Range Scan operation.

The Figure 4.13 shows the Key Value data model on HBase demonstrates an average

246.48 times of increase compared to the relational model on HBase, as shown in Figure

7. In 6/10 of cases, The Key Value model on HBase is more than 220 times faster than

the relational model on HBase. In 3/10 of cases, the Key Value data model is more than

250 times faster than the relational model on HBase. In largest case, the Key Value data

model is more than 210 times faster than the relational model on HBase.

The Key Value data model on HBase demonstrates an average 27.67 times of increase

compared to the relational model on MongoDB, as shown in Figure 7. In all cases, The

Key Value model on HBase is more than 20 times faster than the relational model on

MongoDB. In the last two largest cases, the Key Value data model is more than 30 times

faster than the relational model on MongoDB.

4.4 Implementation on tranSMART

4.4.1 Implementation

This implementation is based on HBase 0.98.0. As shown in the Figure 2.11, trial, patient

and annotation information are retrieved from a SQL database before a high dimensional
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Figure 4.13: Query by position across three datasets. The curves show the query retrieval
times for each of the test cases over varying numbers of patient record queries. The error
bar shows the deviation of each test.

data query. The high dimensional data query function first connects to HBase microarray

table and then search the expected Key Value records according to the query conditions, as

shown in Figure 4.14. The first step is establishing a connection to the HBase microarray

table and setting the data type. Then overridden getRecord functions are used to send data

query requests. There are two kinds of requests in the code, as shown in Figure 4.15. For

one thing, if no genetic positions are specified, all available genes will be returned. For

another, if the gene information is specified, these genes will be used as filters.

Figure 4.14: Pseudocode of calling microarray data query functions.
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Figure 4.15: Pseudocode of retrieving microarray data from HBase.

4.4.2 Performance evaluation

The data exportation, as shown in Figure 4.16 and 4.17, is one of the most time consuming

services in tranSMART. This service exports all the data related to a patient, such as

clinical and high dimensional data. This service in tranSMART v1.2 research branch

was used to export microarray based data and test the performance against an actual use

case U-BIOPRED. All the data in the U-BIOPRED data were loaded into a tranSMART

PostgreSQL database. HBase data model was implemented based on this tranSMART

application and the same microarray data were loaded into the HBase database.



4.4. Implementation on tranSMART 71

Figure 4.16: Data export service in tranSMART (select patient set).

Experimental Environment

This dataset was transformed and loaded it into HBase, which was running on OpenStack.

HBase was used to implement the Key Value model, while PostgreSQL implemented the

relational model. Each database was configured as follows:

• HBase (Version 0.98.0 on Hadoop 2.5.2): One master server node and three slave

nodes with HBase configured in fully distributed mode. The master server was

configured as a VM with 4 CPU cores and 4GB memory, while each slave node

was configured as VMs with 4 CPU cores and 4GB memory. Each VM used a 100

GB disk. Three copies is the minimum number for the Hadoop Distributed File

System to guarantee data consistency.

• PostgreSQL (Version 9.4.1): One VM was used with 16 CPU cores and 16 GB

memory, on which a standard tranSMART configuration was applied.
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Figure 4.17: Data export service in tranSMART. (select high dimensional data set).

Benchmark generation

A dataset from U-BIOPRED project, which contains more than 55 million genomic ex-

pression records, is one of the biggest use cases that have been stored in tranSMART.

The U-BIOPRED project aims to speed up the development of better treatments for pa-

tients with severe asthma. Several knowledge gaps today make it hard to predict in the

early stages of drug development how well a new experimental medicine will work in

patients. One of the major difficulties is the finding that there are many different forms of

severe asthma, caused by different mechanisms of disease. Patients with different types of
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asthma may react differently to new or existing treatments. Clustering patients’ genomic

expression data is a widely used method to identify different types of asthma.

In the dataset of June 2014 there are 620 patients participated and 12 types of microar-

ray data collected, including breathomics, lipidomics, proteomics and transcriptomics,

totally more than 55 million expression values. A patient may took different microarray

tests. For example, the breathomics data contains 2 datasets, Philips GC MS and Ams-

terdam eNose. 62 samples are tested in Philips GC MS and each patient has 7,039 probe

tests. 106 patients are tested in Amsterdam eNose, each with 190 probes. One dataset

in lipidomics contains 128 samples, each with 15,622 probe sets. Proteomics data are

the largest, which contains 4 datasets, Somalogic serum(579 samples, 1129 probe sets),

Soton serum(131 samples, 138 probe sets), Somalogic sputum(121 samples, 1129 probe

sets) and Sotom sputum(100 samples, 3551 probe sets). Table 4.18 lists all the details

about all these datasets.

Figure 4.18: U-BIOPRED dataset structure.

Three sets of samples (Philips GC MS, Somalogic serum and GPL570 Blood) in a tranS-

MART instance, which is held in OpenStack, are chosen to test the performance of dif-

ferent sizes of sample set, as shown in Figure 4.19. In each test all probe set data of each

sample will be fetched from a database into memory. For example, if sample A has probe

set data in Philips GC MS, Amsterdam eNose and Soton serum, all these data will be
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retrieved in this query.

Figure 4.19: tranSMART instance with U-BIOPRED data.

Results

In Figure 4.20 the HBase implementation greatly outperformed the PostgreSQL by aver-

age 6.36-fold speedup. In the Philips GC MS case, HBase performed 7.64 times faster

than PostgreSQL, whilst in Somalogic serum and GPL570 Blood cases HBase showed

5.90 and 5.54-fold speedup respectively.
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Figure 4.20: Performance evaluation on U-BIOPRED data. The bar chart shows the query
retrieval times for each of the test cases over varying numbers of patient record queries.
The bottom line shows the name of the item in the clinical tree in Figure 4.19

4.5 Discussion

The results show that in general the microarray Key Value implementation of the tranS-

MART DEAPP schema using HBase outperforms the relational model on HBase, MySQL

Cluster and MongoDB. HBases increased performance in comparison to MySQL Cluster

comes from the new Key Value data model.

Queries in HBase are optimized manually by choosing to perform either a pure Scan or

pure Random Read operation. The current implementation is based on the pure Random

Read operation. Ideally there should be a query optimizer built into the HBase system,

like in MySQL Cluster or MongoDB, to automatically generate query plans for high-

dimensional data retrieval. Pure Scans or Random Reads may not be the best choice for

certain cases, where a mixed, dynamically selected query method may perform better than

statically choosing one or the other.

The results also show that performance in different Families differ slightly. Family LOG
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performs best in almost all cases. This phenomenon may result from the LOG HFile

location in HBase system. For example, the LOG data are evenly distributed in all the

VMs and all these VMs can serve for LOG data query concurrently.

The relational model implementation consumes a lot of memory. Although MySQL Clus-

ter supports disk based storage, all indexed columns and indices are still stored in mem-

ory. This feature may influence its scalability. Other SQL-based database cluster, such as

PostgreSQL XE and Oracle Clusterware [GCK+10], may be better for further evaluation.

The relational model in MySQL Cluster performs more stable than the Key Value model

in HBase. All the deviations of the relational model in MySQL Cluster are less then

11% of the execution time, but the Key Value model in HBase has deviations larger than

20%. For example, the 20 thread Key Value deviation in Figure 4.12 is 23% of the execu-

tion time. The figure shows the average execution time (1.10 seconds) and the three raw

execution times are 0.92, 1.02, 1.37 seconds. This large deviation mainly results from

the last longest query time (1.37 seconds). Internal and external factors may affect the

query performance. Internal communication, such as heartbeats and schedules, synchro-

nizes workers and distributes tasks frequently. Also, loggers record database behaviour

in memory before any action actually happens and flush the information into permanent

storage periodically. If any worker in a cluster is much busier than others, the logger in

this worker may flush data more often than others. Loggers in different workers record the

corresponding worker activities asynchronously. Some Logger may suffer from timeout

during I/O busy time. The server will throw an exception for the timeout and restart the

Logger. During this period, the server cannot response any requests. In addition, HBase

data locality may be changed from time to time. For example, each time a region may be

assigned to a different region server. This is due to the periodical HBase maintenance op-

eration, such as region splitting and region merging. The external influence mainly comes

from the VM hypervisor I/O scheduler. The VM hypervisor controlled all the guest VMs

in a physical server. Any VM requests are handled by the hypervisor and transformed to
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the physical system. If other VMs share the physical machine at the same time, requests

from all VMs will be sent to the same queue. The same request in a VM may be executed

for a longer time if other VMs send many requests at that moment. The data block in

HBase (128 MB) is much larger than that in MySQL Cluster (16 kb), so HBase requires

more network resources, especially for random read tests. If the network becomes busy,

HBase query response time is easier to be affected. Thus, if suffering from any of such

interruptions, the HBase standard deviation will be quite large.

4.6 Conclusion

This chapter introduces a Key Value data model to improve the performance when query-

ing microarray data, compared to the relational model currently implemented in tranS-

MART. In the performance evaluation experiments, the Key Value data model imple-

mented in HBase outperformed the relational model implemented in HBase, MySQL

Cluster and MongoDB by up to 246, 7 and 20 times. When integrated into tranSMART

this Key Value implementation performs up to 7 times faster than the current tranS-

MART.



Chapter 5

SNP Key Value Model

5.1 Introduction

A Single Nucleotide Polymorphism, also known as SNP, is a DNA sequence variation

occurring commonly within a population in which a single nucleotide, A, T, C or G, in

the genome (or other shared sequence) differs between members of a biological species

or paired chromosomes. For example, two sequenced DNA fragments from different

individuals, TTCGGAT v.s TTCGAAT, contain a difference in a single nucleotide, -G-

v.s -A-. In this case there are two alleles. Almost all common SNPs have only two alleles.

The genomic distribution of SNPs is not homogenous. SNPs occur in non-coding regions

more frequently than in coding regions. In general, natural selection is eliminating other

variants of the SNP that constitutes the most favorable genetic adaptation. Other factors,

such as genetic recombination and mutation, can also affect SNP density.

SNP density can be predicted by the occurrence of microsatellites [TPA+00]. For ex-

ample, AT microsatellites in particular are crucial predictors of SNP density, with a long

repeated AT sequence tending to be found in regions, where SNP density are significantly

reduced.

78
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Within a human population, SNPs can be assigned the lowest allele frequency at a locus

observed in this population. There are variations between populations, so a SNP allele,

which is general in one geographical or ethnic group, may be rare in another.

These genetic variations between individuals, especially in non-coding parts of the genome,

are often used in DNA fingerprinting [KS+98]. This feature has been exploited in forensic

science. Also, these genetic variations underlie differences in the susceptibility to disease.

The severity of illness and how the body responds to treatments are also manifestations

of genetic variations.

Single-nucleotide polymorphisms may fall within coding sequences of genes, non-coding

regions of genes, or in the intergenic regions (regions between genes). SNPs within a

coding sequence do not necessarily change the amino acid sequence of the protein that is

produced, due to degeneracy of the genetic code.

SNPs in the coding region are of two types, synonymous and nonsynonymous SNPs

[RBS02]. Synonymous SNPs do not affect the protein sequence while nonsynonymous

SNPs change the amino acid sequence of protein. The nonsynonymous SNPs have two

types: missense and nonsense.

Variations in the DNA sequences of humans can affect how humans develop diseases and

respond to pathogens, chemicals, drugs, vaccines, and other agents. SNPs are also criti-

cal for personalized medicine [HC10]. However, their greatest importance in biomedical

research is for comparing regions of the genome between cohorts in genome-wide asso-

ciation studies.

The study of SNPs is also important in crop and livestock breeding programs. SNP geno-

typing shows details on the different approaches used to identify SNPs, where the geno-

type greatly affects a specific characteristic (phenotype) of the cell, organism or individ-

ual. DNA mutations that are acquired rather than inherited, such as cancer mutations, are

not part of the individual’s genotype.
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SNPs have been used in genome-wide association studies GWAS [SSR11]. The knowl-

edge of SNPs helps in understanding pharmacokinetics or pharmacodynamics, i.e. how

drugs act in individuals with different genetic variants. Diseases with different SNPs may

become relevant pharmacogenomic targets for drug therapy. Some SNPs are associated

with the metabolism of different drugs.

A wide range of human diseases, e.g. Sicklecell anemia [SS92], Thalassemia and Cystic

fibrosis [KRB+89] result from SNPs. SNPs without an observable impact on the phe-

notype, which is usually named silent mutations, are still useful as genetic markers in

genome-wide association studies, because of their quantity and the stable inheritance over

generations.

For complex diseases, rather than functioning individually, SNPs usually work in coordi-

nation with other SNPs to manifest a disease condition.

Thousands of GWAS of significant human diseases have been conducted recently. Many

of such studies use SNP arrays, for example in the International HapMap project [Con07,

The10, The05] that aims to develop a map describing the common patterns of human ge-

netic variation. The SNP data has already benefited identification of disease subgroups

and the prediction of responses of individual subjects, named molecular profiling based

patient stratification. Biomedical research is moving towards using high-throughput vari-

ant data to improve clinical decision making. One approach for building classifiers is to

stratify subjects based on their variants. Unsupervised clustering algorithms can be used

for stratification purposes.

The motivation for optimization of SNP data model is based on the experiences in using

tranSMART. The aim is to optimize tranSMART so that clinicians can make use of it for

faster and more confident clinical decision making. However, the current tranSMARTs

I/O performance of the SNP data is sub-standard.

In response to a requirement for a general genome variation map required by association
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studies, gene mapping and evolutionary biology, NCBI has created the dbSNP database

[SWK+01] and VCF file format [DAA+11]. HapMap project uses another genotype data

format similar to VCF. Though VCF and HAPMAP files are easy-to-use, they have crucial

issues with data scalability, concurrent data access speed and fault tolerance. Relational

database implementations, such as Oracle, PostgreSQL and MySQL Cluster, to store VCF

data overcome most of the disadvantages of flat files. TranSMART has developed a re-

lational model similar to dbSNP. Furthermore, SeqWare introduces a Key Value based

data model that performs much faster than the relational ones. Although SeqWare greatly

outperformed relational models implemented in BerkeleyDB on queries by genetic posi-

tions (Row Key), CCIndex indicates the low-efficient Qualifier query due to the inefficient

HBase secondary index [LY01], which SeqWare utilizes to accelerate queries by variant

(Qualifier). Index scan over the original table using random reads is inefficient. The

following of this section introduces each model mentioned above.

5.1.1 dbSNP

Though SNP is the abbreviation for single nucleotide polymorphism, dbSNP database

schema is a public data model for all kinds of short sequence variation. dbSNP contains a

broad collection of simple genetic variations and classifies nucleotide sequence variations

with the following types, such as single base nucleotide substitutions [NTT97], small-

scale multi-base deletions or insertions polymorphisms [RHAG+90, RHCS92, WDH+02],

microsatellite repeats [TPA+00, TS93, CLH+99], named variants [Car58], and uncharac-

terized heterozygous assays [IFY+93].

The dbSNP is designed for research into a wide range of translational medical problems

that include the identification of genotype-phenotype relationships [MC00], genetic and

physical mapping [PSH+98, CBW+97], functional analysis [ZC96], pharmacogenomics,

and association studies.
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Data in dbSNP can be from any organism, from any part of a genome, and can include

genotype and allele frequency data. dbSNP accepts data for all classes of simple sequence

variation, and provides access to clinically significant variations of germline or somatic

origin. Individual genotypes may be loaded for any variation. dbSNP accepts individ-

ual genotypes from samples provided by public databases, such as HapMap or the 1000

Genomes project. Genotypes in dbSNP include links to method descriptions and popu-

lation. General genotype data offer the foundation for individual haplotype definitions.

General genotype data are also widely used for selecting positive and negative control

reagents in new experiments, further analysis in genome association studies [LRPR98],

and testing and refining haplotype reconstruction algorithms [PGL99].

There is no requirement on minimum allele frequencies or functional neutrality for the

polymorphisms in the database. Thus, the scope of dbSNP includes disease-causing clin-

ical mutations as well as neutral polymorphisms.

The dbSNP individual genotype data schema is a widely used relational data model for

SNP data, which is originally designed to store data from different types of short sequence

variation. Given the complexity of the full dbSNP database schema, the main data tables

are extracted to explain the genotype model, as shown in Figure 5.1. The dbSNP stores

this data mainly in four tables, the SNP, individual, genotype and observation tables. In

addition to these four main tables, there are many tables used to accurately describe their

details. The four data tables, along with the detailed tables make up the star schema of the

warehouse, with the central observation table surrounded radially by SNP, individual and

genotype tables. The most important concept regarding the construction of a star schema

is identifying what constitutes a fact.

The observation table (SubInd) contains the links (identifiers) to SNP, individual and

genotype tables. The SubInd table is the central table of the dbSNP star schema and

represents the intersection of the other tables. Each row describes one observation about
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a genotype of a SNP in an individual. Most queries in the dbSNP database require join-

ing the SubInd table with one or more other tables together, such as SNP individual or

genotype.

Figure 5.1: dbSNP data model

5.1.2 VCF format

The VCF is a widely used open source data model for gene sequence variation data in-

troduced by the VCF tools project with significant contributions from the 1000 Genomes

project [ALA10]. VCF accepts different sorts of variation data such as single nucleotide

variants, insertions/deletions, copy number variants and structural variants.

As shown in Figure 5.2, file meta-information is represented by comma-delimited key=value

pairs after the ## string. These meta-information lines usually describe the INFO, FIL-

TER and FORMAT entries used in the body of the VCF file. The header line names the 8

fixed and mandatory columns, including #CHROM, POS, ID, REF, ALT, QUAL, FILTER

and INFO. All data lines are tab-delimited. The missing values are represented by a dot.
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Figure 5.2: VCF data format

• CHROM, short for chromosome, is an identifier from the reference genome or an

angle-bracketed ID String pointing to a contig in the assembly file.

• POS, short for position, is the reference position, with the 1st base having position

1.

• ID, short for identifier, is a semi-colon separated list of unique identifiers where

available.

• REF, short for reference base.

• ALT, short for alternate base, is a comma-delimited list of alternate non-reference

alleles called on at least one of the samples.

• QUAL, short for quality, is phred-scaled quality score for the assertion made in

ALT.

• FILTER stands for filter status. If this position has passed all filters, FILTER value

is PASS; otherwise, a semicolon-delimited list of codes for filters that fail is present.

• INFO is short for additional information.

• FORMAT: If genotype information is included, the FORMAT field specifies the

data types and order (colon-separated alphanumeric String). The FORMAT is fol-
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lowed by one field per sample, with the colon-separated data in this field corre-

sponding to the types specified in the FORMAT. The first sub-field GT (genotype)

is present firstly, if it exists. No sub-field is mandatory.

5.1.3 HapMap

The HapMap is a data warehouse for genotype data produced by International Haplotype

Map Project [Ade07]. HapMap genotype uses another genotype data format very similar

to VCF. The data files contain genotypes on all SNPs produced by HapMap genotyping

centers and other independent sources, such as Affymetrix and Illumina, and submitted to

the HapMap Data Coordination Center. As shown in Figure 5.3, genotype files includes

tab-delimited flat files with at least the following fields:

• rs#: refSNP identifier at the time of release

• SNPalleles: SNP alleles according to dbSNP

• chrom: chromosome that SNP maps to

• pos: chromosome position of SNP, in base pairs on reference sequence

• strand: strand of reference sequence that SNP maps to

• genome build: version of reference sequence assembly

• center: HapMap genotype center that produced the genotypes

• protLSID: LSID for HapMap protocol used for genotyping

• assayLSID: LSID for HapMap assay used for genotyping

• panelLSID: LSID for panel of individuals genotyped

• QC code: QC-code, currently ’QC+’ for all entries
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• all following fields: observed genotypes of samples, one per column, sample iden-

tifiers in column headers (Coriell catalog numbers, example: NA10847). Duplicate

samples have .dup suffix.

Figure 5.3: HapMap data format

5.1.4 TranSMART SNP model

TranSMART currently adopts the relational implementation. Two main tables in the SNP

database schema, SNP INFO and VARIANT SUBJECT DETAIL, as shown in Table 5.1

and 5.2, store SNP description data and subject variant details respectively. The speed of

SNP data queries has been observed as a bottleneck due to the increasing amount of SNP

data stored and processed in tranSMART.

However, with data accumulated from high-throughput NGS, relational databases are un-

likely to meet high-performance requirements as the magnitude of datasets scale upwards.

Key Value databases, such as HBase, MongoDB and Hypertable, have become common-

place in recent years providing better scalability and faster data access.
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Column Type
VARIANT SUBJECT DETAIL ID NUMBER (9,0)
SNP INFO ID NUMBER (22,0)
QUAL VARCHAR2 (100 BYTE)
ENTREZ ID VARCHAR2 (50 BYTE)
FILTER VARCHAR2 (50 BYTE)
INFO VARCHAR2 (2000 BYTE)
FORMAT VARCHAR2 (50 BYTE)
VARIANT VALUE CLOB

Table 5.1: TranSMART SNP INFO table

Column Type
DE RC SNP INFO VARCHAR2 (100 BYTE)
SNP INFO ID NUMBER (22,0)
RS ID NVARCHAR2 (50)
CHROM VARCHAR2 (4 BYTE)
POS NUMBER (10,0)
REF VARCHAR2 (1000 BYTE)
ALT VARCHAR2 (1000 BYTE)
GENE INFO VARCHAR2 (1000 BYTE)
VARIATION CLASS VARCHAR2 (10 BYTE)
STRAND VARCHAR2 (1 BYTE)
CLINSIG VARCHAR2 (100 BYTE)
DISEASE VARCHAR2 (500 BYTE)
GMAF NUMBER (10,0)
GENE BIOTYPE VARCHAR2 (100 BYTE)
IMPACT VARCHAR2 (50 BYTE)
TRANSCRIPT ID VARCHAR2 (100 BYTE)
FUNCTIONAL CLASS VARCHAR2 (100 BYTE)
EFFECT VARCHAR2 (100 BYTE)
EXON ID VARCHAR2 (100 BYTE)
AMINO ACID CHANGE VARCHAR2 (50 BYTE)
CODON CHANGE VARCHAR2 (100 BYTE)
HG VERSION VARCHAR2 (10 BYTE)
GENE NAME VARCHAR2 (50 BYTE)
ENTREZ ID VARCHAR2 (50 BYTE)
HG VERSION VARCHAR2 (10 BYTE)
GENE NAME VARCHAR2 (50 BYTE)
ENTREZ ID VARCHAR2 (50 BYTE)

Table 5.2: TranSMART VARIANT SUBJECT DETAIL table
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5.1.5 SeqWare

SeqWare is a Key Value implementation based on HBase designed by [OMN10]. As

shown in Figure 5.4, SeqWare uses chromosome identity and SNP position as the key. The

value consists of Families (column groups) and Qualifiers (columns in a group). Families

and Qualifers are flexible and online changeable.

The HBase database is a generic Key Value, column oriented database that pairs well with

the inherent sparse matrix nature of variant annotations. The primary table stores multiple

genomes worth of generic features, variants, coverages, and variant consequences using

genomic location within a particular reference genome as the key. Each genome is repre-

sented by a particular column family label (such as variant:genome7). For locations with

more than one called variant the HBase timestamp is used to distinguish each. Secondary

indexing is accomplished using a secondary table per genome indexed. The key is the tag

being indexed plus the ID of the object of interest, the value is the row key for the orig-

inal table. This makes lookup by secondary indexes, tags for example, possible without

having to iterate over all contents of the primary table.

Figure 5.4: SeqWare Query Engine schema. The main table stores multiple genome infor-
mation, such as generic features, variants and coverages. Each genome is represented by
a particular Column Key (such as variant:genome6). Secondary indexing is implemented
using a secondary table per genome indexed. The key is the column being indexed with
the ID of the interest object. The value is represented by the row key in the main table.
[OMN10]
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5.2 SNP Key Value Model

Inspired from SeqWare, a new Key Value schema has been designed with a supplementary

cluster index to overcome the disadvantages resulting from secondary index and provide

fast query on all indexed properties, as shown in Figure 5.5. There are three tables Posi-

tion, Subject and Cross-study, as designed in generic Key Value model. An extra Family

’info’ is introduced to store general information for a SNP.

Figure 5.5: SNP Key Value data model.

In addition, a HapMap SNP data sample is added as an example and formatted using a

simple relational database schema, as shown in Figure 5.6.
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Figure 5.6: HapMap SNP data sample. There are two tables in this schema. The top table
stores general SNP information. The bottom table stores sample and observation data.

5.2.1 Subject Table

The Subject table, as shown in Table 5.3, contains two Families, Family info and position.

Dataset and Subject are composed of the Row Key for Key Value pairs. Family info

utilizes the same structure as that in the Position table. This table offers high-speed query

by subject in a dataset.

Determining Row Key and Column Key of transcriptomic data

Following the generic data model, the STUDY NAME, SUBJECT are placed in the Row

Key for Family genotype, as shown in table 5.3. If Family info follows the same rule,

data in this Family will be repeated. The number of duplication is subject number in this

study. To avoid this large duplication, the Row Key for Family info is the same as the

structure in the Position table.

Optimizing the Row Key to speed up data location

In order to speed up queries over subject in chromosome Families, the STUDY NAME

and SUBJECT are placed in the Row Key to identify subjects. The order of the two fields

in the Row Key also has a very significant effect on the query performance. Typical user

cases may start with a gene information query of several subjects in a study. By placing

the Dataset before Subject, the composite key becomes two indices on the Dataset and
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Subject respectively. When multiple identical subjects are retrieved, this Row Key can

precisely locate all HFiles expected by using this Row Key to compare to the Start keys

of an HFile.

Optimizing the Column Key to increase cache hit rate

One way to further increase cache hit rate is to design a new structure by classifying data

in different chromosomes under Column Key. The Family divides different chromosomes

into different HFiles and the Qualifier (POS) orders positions lexicographically. If queries

by subject are required, the user requests data on several subjects that contain data only in

one chromosome, but the query returns millions of records. Such large numbers of gene

records can be loaded with only a limited number of disk loading operations through the

corresponding Column Keys.

Key
Value

Row Key
Column Key

Family Qualifier
STUDY NAME+CHROM+POS+RS ID info COLUMN VALUE

ASW+Chr22+14430252+rs3016036 info ALLELE A/T
ASW+Chr22+14430252+rs3016036 info STRAND +
ASW+Chr22+14430252+rs3016036 info ASSEMBLY ncbi b34
ASW+Chr22+14430252+rs3016036 info CENTER per legen
ASW+Chr22+14430252+rs3016036 info ... ...

STUDY NAME+SUBJECT genotype CHROM+POS+RS ID Values
ASW+NA06985 genotype Chr22+14430252+rs3016036 AA

Table 5.3: TranSMART SNP Subject table

5.2.2 Position Table

The Subject table only provides faster queries over subject within one study. However, if

queries by genetic position are required, the Subject table queries may not be performed
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as fast as the queries by subject. The Position table is designed to provide fast query by

position.

In the Position table, as shown in Table 5.4, the Row Key is a composite key including

fixed length STUDY NAME, CHROM, POS and RS ID; while the value consists of two

families. Family info contains the properties in table DE RC SNP INFO; Family subject

contains the Values, such as genotypes or phenotypes, for all the subjects in this dataset.

This table provides efficient query for SNP position in a dataset.

Key
Value

Row Key
Column Key

Family Qualifier
STUDY NAME+CHROM+POS+RS ID info COLUMN VALUE

ASW+Chr22+14430252+rs3016036 info ALLELE A/T
ASW+Chr22+14430252+rs3016036 info STRAND +
ASW+Chr22+14430252+rs3016036 info ASSEMBLY ncbi b34
ASW+Chr22+14430252+rs3016036 info CENTER per legen
ASW+Chr22+14430252+rs3016036 info ... ...

STUDY NAME+CHROM+POS+RS ID genotype SUBJECT Values
ASW+Chr22+14430252+rs3016036 genotype NA06985 AA

Table 5.4: TranSMART SNP position table

Determining Row Key and Column Key of transcriptomic data

In order to speed up queries by reference position, the STUDY NAME, CHROM, POS

and RS ID are placed in the Row Key, as shown in table 5.4, because these four fields

are the minimum information that can identify a row in a VCF or HapMap file. The three

fields STUDY NAME, CHROM and POS can locate data by reference position. But

different SNPs may be mapped to the same position even within one study. Thus, RS ID

is added to the Row Key.
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Optimizing the Row Key to speed up data location

The order of the four fields in the Row Key also affect on the query performance. Typical

user cases always begin with a gene information query of several positions. By placing

the STUDY NAME before the CHROM and POS (STUDY NAME + CHROM + POS),

the composite key becomes three indices on the dataset, chromosome and position re-

spectively. When multiple identical position in a dataset are retrieved, STUDY NAME

+ CHROM + POS can precisely locate all HFiles expected by using STUDY NAME +

CHROM + POS to compare to the Start keys of an HFile. After POS, RS ID is placed to

make this Row Key unique.

Optimizing the Column Key to increase cache hit rate

One way to further increase cache hit rate is to design a new structure by classifying

different types of data under Column Key. The Family divides different types of data (info

and genotype) into different HFiles and the Qualifier orders the general (info) and subject

values (genotype) lexicographically. In most use cases, the user requests data on several

positions that contain only genotype values, but the query returns millions of records.

Such large numbers of genotype records can be loaded with only a limited number of

disk loading operations through the corresponding Column Keys. The HFiles storing the

data in these positions will be loaded into BigTable caches. Thus, only retrieving the first

record causes a significant delay when loading data from disk to memory, while all other

records in the same HFile are fetched directly from memory caches.

5.2.3 Cross-study Table

This Position table only provides faster queries over SNP within one study. However, if

queries over multiple datasets are required, these queries may not be performed as fast as
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the queries by position within one study. The Cross-study table is designed to provide fast

query by position across studies.

In the Cross-study table, as shown in Table 5.5, the Row Key is a composite key including

fixed length STUDY NAME, CHROM, POS and RS ID; while the value consists of two

families. Family info contains the properties in table DE RC SNP INFO; Family geno-

type contains the Values for all the subjects in this study. This table provides efficient

query by position across datasets.

Key
Value

Row Key
Column Key

Family Qualifier
CHROM+POS+RS ID+STUDY NAME info COLUMN VALUE

Chr22+14430252+rs3016036+ASW info ALLELE A/T
Chr22+14430252+rs3016036+ASW info STRAND +
Chr22+14430252+rs3016036+ASW info ASSEMBLY ncbi b34
Chr22+14430252+rs3016036+ASW info CENTER per legen
Chr22+14430252+rs3016036+ASW info ... ...

CHROM+POS+RS ID+STUDY NAME genotype SUBJECT Values
Chr22+14430252+rs3016036+ASW genotype NA06985 AA

Table 5.5: TranSMART SNP Cross-study table

Determining Row Key and Column Key of transcriptomic data

In order to speed up queries by reference position across datasets, the STUDY NAME,

CHROM, POS and RS ID are placed in the Row Key, as shown in table 5.4, because these

four fields are the minimum information that can identify a row in a VCF or HapMap file.

The three fields STUDY NAME, CHROM and POS can locate data by reference position.

But different SNPs may be mapped to the same position even in one study. Thus, RS ID

is added to the Row Key.



5.3. Performance Evaluation 95

Optimizing the Row Key to speed up data location

The order of the four fields in the Row Key affect on the query performance. Typi-

cal user cases always begin with a gene information query by position across multiple

datasets. By placing the CHROM and POS before STUDY NAME (CHROM + POS +

STUDY NAME), the composite key becomes three indices on the chromosome, position

and dataset respectively. When multiple identical positions across datasets are retrieved,

CHROM + POS + STUDY NAME can precisely locate all HFiles expected by using

CHROM + POS to compare to the Start keys of an HFile. After STUDY NAME, RS ID

is placed to make this Row Key unique.

5.3 Performance Evaluation

An experiment was performed using three datasets (first three datasets from the 2010-05

phase III consensus datasets of HapMap project [Con07]: African ancestry in Southwest

USA (ASW), 87 samples and 119,487 SNPs; Utah residents with Northern and Western

European ancestry from the CEPH collection (CEU), 165 samples and 119,487 SNPs;

Han Chinese in Beijing, China (CHB), 137 samples and 317,642 SNPs) from HapMap

project to test this new Key Value data schema on a cloud computing test-bed, OpenStack,

installed at Imperial College London. In this experiment a database with the dbSNP

schema that NCBI was used to store SNP data and mimic general procedures for clinical

decision making. The data are formatted and uploaded into MySQL Cluster and HBase

instances respectively. Each database cluster is comprised of 4 virtual machines, each

with 8 CPU cores and 8 GB memory. Each VM used a 100 GB disk. HBase was used to

implement the Key Value model, while MySQL Cluster implements the relational model.

Each database was configured as follows:

• HBase (Version 0.96.0 on Hadoop 1.0.3): One master server node and three slave
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nodes with HBase configured in fully distributed mode. The master server was con-

figured as a HMaster and a HRegionServer, while each slave node was configured

as a HRegionServer. To implement the relational model shown in Figure 5.6, two

tables are created (SNPT, upper;OBT, lower). In SNPT the snp id is unique and

placed in the Row Key, all other columns are placed in the Column Key. Column

chrom and Column pos are indexed by B-tree. In OBT there is no unique id, so

an extra id is added as Row Key. OBT indexes follows Figure 3.1, where Column

position is Column snp id.

• MySQL Cluster (Version 5.6.11-ndb-7.3.2): Four VMs, with one as a manager

node and three data nodes. The manager node consists of a MGM, a MySQL and

a NDB using one VM. Each data node consisted of a NDB. Disk-based InnoDB

storage engine was used, where indexed columns and indices are stored in memory

and non-indexed columns are stored in disks. The relational model implementation

is the same as that in HBase. Two data copies were used to guarantee its data

consistency.

5.3.1 Query by subject

The first step of the experiments is to find significant differential SNPs. With clinical

information in a study, such as cohorts and clinical measurement statistics, all available

SNPs of the specified subjects with typical features are loaded for further tests to find the

expected SNPs.

MySQL Cluster used observation and SNP tables. There are two types of queries fre-

quently used. One is used for range query and the other is random read query. The first

query is usually applied on the main cohorts (almost all subject) at the beginning of a

study to roughly find most relevant SNPs. When multiple cohorts are required, the tradi-

tional method generates corresponding random read queries, which are much slower than
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range queries. Currently this tradition method becomes unacceptable slow due to the fast

increasing NGS data amount. Thus, it is much more efficient to merge these queries re-

spectively for each cohort into one big query using range query. The random query is only

used for small queries that can be finished within a few seconds. In order to test the ran-

dom read performance two subjects from each dataset are randomly chosen. The number

of SNPs in datasets ASW and CEU is 119487 and the number of CHB is 317642. MySQL

Cluster used the two statements: range scan query, as shown in Figure 5.7; random read

query, as shown in Figure 5.8.

Figure 5.7: Range scan by position within one study.

Figure 5.8: Random read by position within one study.

For HBase, the subject table is the most suitable one for this query. Two correspond

queries are designed for range scan and random read.

range scan query: Function Scan using starting row ASW+NA00000 and ending row

ASW+NA99999.

random read query: Function Get with List<Get>, each Get represents a subject such as
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NA00000,..., NA99999.

When querying by subject within a single dataset, as shown in Figure 5.9, the Key Value

model on HBase shows an average 269.39 times faster than the relational model on

HBase. The Key Value model on HBase outperforms the relational model on HBase

by 351.33 times in CHB dataset, while in datasets ASW and CEU, the Key Value model

respectively conducts 215.15 and 241.68 times faster than the relational model on HBase

Cluster. The Key Value model on HBase shows about 4 or more times faster data retrieval

time than the relational model on MySQL. Particularly in ASW, The Key Value model

on HBase outperforms the relational model on MySQL by 9.12 times. While in datasets

CEU and CHB, the Key Value model respectively conducts 5.12 and 4.51 times faster

than the relational model on MySQL Cluster.

Figure 5.9: Query by subject. The Key Value bar represents the Key Value model on
HBase. All the other bars represents the relational model on a specific database.

The response time of one subject queries over 119,487 SNPs the Key Value data model on

HBase are 148.25 times faster than the relational model on HBase on average, as shown

in Figure 5.10, while the queries over 317,462 SNPs using the Key Value model outper-

formed the relational model on HBase by 99.20 times. The response time of 119,487

SNPs queries with the Key Value model are 2.61 times faster than the relational one on
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MySQL Cluster on average, while the queries over 317,462 SNPs using the Key Value

outperformed the relation one on MySQL Cluster by 1.57 times.

Figure 5.10: Random read 1 subject. The Key Value bar represents the Key Value model
on HBase. All the other bars represents the relational model on a specific database.

5.3.2 Query by SNP position

After differential expressed SNPs are calculated, the top hundred SNPs are usually tested

by other datasets to further reduce the number of these SNPs. If SNPs associated with cer-

tain diseases are found, queries over a several SNPs across datasets are generated to detect

whether a patient is vulnerable to certain diseases based on his genotypes of the SNPs.

For example, numerous SNPs have each been associated with slightly increased risk for

type-2 diabetes and improve the probability of predicting whether an individual is vulner-

able to type-2 diabetes based on the traditional clinical characteristics, such as age, sex

and weight [VDW+08]. 10 such SNPs (rs4402960, rs775840, rs10811661, rs9300039,

rs8050136, rs1801282, rs13266634, rs1111875, rs7903146, rs5219) have been found in

multiple studies and meta-analyses [SMB+07]. If you have the highest risk genotype for

all 10 of these SNPs, you are estimated to be at double the risk for type-2 diabetes com-

pared to the average person, whereas if you have the lowest risk genotype for every one
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of these 10 SNPs, you are estimated to be at half the risk. Another tens of SNPs relevant

to type-2 diabetes have been reported [CL12].

Therefore, a test case to query 100 discrete SNPs by position is generated and applied on

each dataset and the whole database. This fully random read query cannot be optimised

by any range scan. MySQL Cluster used the two statements: query over one study, as

shown in Figure 5.11; query over multiple trial, as shown in Figure 5.12.

Figure 5.11: Query over one study.

Figure 5.12: Query over multiple studies.

For HBase, Position and Cross-study tables used Function Get and List<Get> for query

over a dataset and the whole database respectively. Each Get object represents a SNP

position such as 23211432 and 78456956.

While querying 100 discrete SNP by position, the Key Value model on HBase performs an

average 15.40 times faster than the relational model on HBase. But the relational model on

MySQL Cluster shows 1.84 times faster than the Key Value HBase on average, as shown
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in Figure 5.13, due to the slow HBase Random Read. However, MySQL Cluster does

not scale well when concurrent queries across studies are considered, as shown in Figure

5.14. The Key Value based data model demonstrates an average 4.66 times of increase

in query processing speed compared to the relational model implemented on MySQL

Cluster. In 6/10 of cases, the Key Value data model is more than 5 times faster than the

relational model on MySQL Cluster. In the worst case, when using only 10 threads, the

Key Value data model is more than 3.07 times faster than relational model on MySQL

Cluster. Compared to the relational model on HBase, the Key Value one performs 105.40

times faster on average. Especially, in 6/10 of cases, the Key Value model is more than

100 times faster than the relational one on HBase.

Figure 5.13: Random read 100 SNPs. The Key Value bar represents the Key Value model
on HBase. The Key Value tests in left three groups use the Position table and the one
in the last group uses the Cross-study table. All the other bars represents the relational
model on a specific database.

5.4 Integration into tranSMART

This implementation is based on HBase 0.96.0. As shown in the Figure 2.11, the study and

subject information is retrieved from a SQL database before a variant data query. Three

types of data queries are created corresponding to the three complementary tables. Figure

5.15 shows the variant data query by subject via the subject table using the Random Read
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Figure 5.14: Concurrent random read 100 SNPs. The Key Value curve represents the Key
Value model on HBase using the Cross-study table. All the other curves represents the
relational model on a specific database.

method; Figure 5.16 indicates the data query via the position table using the sequential

Scan method; Figure 5.17 describes the query method via the cross-study table using the

Scan method. The cacheSize used in the last two Figures may be changed according to

the physical environments and the data scale.

Figure 5.15: The pseudocode of variant data query by subject.
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Figure 5.16: The pseudocode of variant data query by position within a study.

Figure 5.17: The pseudocode of variant data query by position across studies.

5.4.1 Benchmark

An experiment was performed with the same datasets (African ancestry in Southwest

USA (ASW), 87 samples and 119,487 SNPs; Utah residents with Northern and Western

European ancestry from the CEPH collection (CEU), 165 samples and 119,487 SNPs;
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Han Chinese in Beijing, China (CHB), 137 samples and 317,642 SNPs) used in the per-

formance evaluation section to test the time consuming data export function. Each dataset

will be downloaded through tranSMART data export function.

5.4.2 Database configuration

• HBase (Version 0.96.0 on Hadoop 1.0.3): One master server VM (4 CPU cores, 4

GB memory) and three slave VMs (3x4 CPU cores, 3x4 GB memory) with HBase

configured in fully distributed mode. The master server was configured as a HMas-

ter and a HRegionServer, while each slave node was configured as a HRegion-

Server. The Subject table in the Key Value model is chosen to export data by sub-

ject.

• PostgreSQL (Version 9.4.1): One VM was used with 16 CPU cores and 16 GB

memory, on which a standard tranSMART configuration was applied. This is the

original database in tranSMART.

5.4.3 Results

In Figure 5.18 the HBase implementation outperformed the PostgreSQL by average 5.64

times speedup. In the ASW case, HBase performed 6.87 times faster than PostgreSQL,

whilst in CEU and CHB cases HBase showed 4.99 and 5.06-fold speedup respectively.

5.5 Discussion

When using Subject table to perform queries by subject, SNP information are not stored

together with genotypes sharing the same Row Key. This may lead to extra random read

operations when subject number in a dataset is very few. The worst case is only one
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Figure 5.18: Performance evaluation on tranSMART.

subject in a dataset. Then the subject data loading time may be doubled due to the extra

search for SNP information.

The stability of the relational model in MySQL Cluster is higher than the Key Value

model in HBase. The main reason is that the short query in HBase is easy to be disturbed

by the periodical HBase system maintenance and optimization operations, such as data

consistence checking, Region splitting or Region merging. Such operations can delay a

query by a few hundreds of milliseconds. Compared to the usual short query time (only

very few seconds), this delay could lead to a very large deviation. This is also the reason

why longer queries are more stable.

In Section Integration into tranSMART, the throughput of the Key Value implementation

is much lower than the results in Section Performance evaluation. The most important

one is the download file cache. Due to the current slow database export function, the

current tranSMART provides an asynchronous export function, which extracts data from

the database and saved in the local file system first. When data is fully extracted, users

can download the file. This disk writing operation slows down the high throughput of the

Key Value implementation and will be improved in the future.
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5.6 Conclusion

The SNP Key Value model is aimed at solving the performance issues faced in transla-

tional research data storage databases, due to the increasing volume of data being pro-

duced. This chapter indicates a Key Value pair model leads to an increase in performance

when querying genotype or phenotype biological data, over the relational model currently

implemented in tranSMART. The Key Value model on HBase outperforms the relational

model on HBase and MySQL Cluster by up to 9.12-fold and 351.33-fold speedup respec-

tively. When integrated into tranSMART this Key Value implementation performs up to

6.87 times faster than the current tranSMART.
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Raw Sequencing Key Value Model

6.1 Introduction

A sequence alignment [MM01] is a method of arranging the sequences of DNA, RNA, or

protein to identify regions of similarity that may be a consequence of functional, struc-

tural, or evolutionary relationships between the sequences. Aligned sequences of nu-

cleotide or amino acid residues are typically represented as rows within a matrix. Gaps

are inserted between the residues so that identical or similar characters are aligned in suc-

cessive columns. If two sequences in an alignment share a common ancestor, mismatches

can be interpreted as point mutations and gaps can be interpreted as indels (insertion or

deletion mutations) [SSH+01].

Very short or very similar sequences can be aligned manually. However, most alignment

cases require the alignment of lengthy, highly variable or numerous sequences that is ex-

tremely difficult to be aligned by human effort. Thus, alignment algorithms have been

designed to produce high-quality sequence alignments automatically and occasionally

manual adjustments of the final results are performed to reflect patterns that are difficult

to represent algorithmically. Generally, computational methods to sequence alignment

107
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fall into two categories: global alignments [HC03] and local alignments [AGM+90]. Cal-

culating a global alignment is a form of global optimization that forces the alignment span

the entire length of all query sequences. By contrast, local alignments identify regions of

similarity within long sequences that are often widely divergent overall. Local alignments

are often preferable, but can be more difficult to calculate because of the additional chal-

lenge of identifying the regions of similarity. A variety of computational algorithms have

been applied to the sequence alignment. Some of these algorithms are slow but formally

correct, such as dynamic programming, while the other algorithms are efficient but can

not guarantee to find best matches, such as heuristic algorithms or probabilistic methods

designed for large-scale database search.

Alignments are commonly represented both in graphical and text format, for example,

GenomeBrowser and SAM. In most sequence alignment representations, sequences are

written in rows arranged so that aligned residues appear in successive columns. In text

formats, aligned columns containing identical or similar characters are indicated with a

system of conservation symbols. Many sequence visualization programs also use color

to display information about the properties of the individual sequence elements. In DNA

and RNA sequences, each nucleotide is assigned its own color.

Sequence alignments can be stored in a wide variety of text-based file formats, many of

which were originally developed in conjunction with a specific alignment program or im-

plementation. Most web-based tools allow a limited number of input and output formats,

such as FASTA format [CSK+03] and GeneBank format [FLW03] and the output is not

easily editable. Several conversion programs that provide graphical and/or command line

interfaces are available, such as ReadSeq [Gil03] and EMBOSS [RLB+00]. There are

also several programming packages which provide this conversion functionality, such as

BioPerl [SBB+02] and BioRuby [GPN+10].

Global alignments, which attempt to align every residue in every sequence, are most use-
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ful when the sequences in the query set are similar and of roughly equal length. A general

global alignment technique is usually based on dynamic programming [BBBB95]. Local

alignments are much better for different sequences that are suspected to contain regions

of similarity or similar sequence motifs within their larger sequence context. Hybrid

methods, known as semi-global methods, attempt to find the best possible alignment that

includes the start and end of one or the other sequence. Pairwise sequence alignment

methods are used to find the best-matching alignments of two query sequences. Pairwise

alignments can only be used between two sequences at a time, but are efficient to calcu-

late for methods that do not require extreme precision, such as searching a database for

sequences with high similarity to a query. Multiple sequence alignment is an extension

of pairwise alignment to process more than two sequences at a time. Multiple alignment

methods try to align all of the sequences in a given query set. Multiple alignments are

widely used in identifying conserved sequence regions across a group of sequences. Mul-

tiple sequence alignments are computationally difficult to produce and most formulations

of the problem lead to NP-complete combinatorial optimization problems.

Sequenced RNA, such as expressed sequence tags and full-length mRNAs, can be aligned

to a sequenced genome to find where there are genes and get information about alternative

splicing and RNA editing. Sequence alignment is also a part of genome assembly, where

sequences are aligned to find overlap so that contigs can be formed. Another use is SNP

analysis, where sequences from different individuals are aligned to find single basepairs

that are often different in a population.

RNA-seq has been used for profiling of transcriptomes in many areas of biology, including

studies in medicine and pharmacy. The purpose of this chapter is to improve clinical

decision making through the discovery of differentially expressed genes across patient and

control cases in a cohort. RNA-seq data processed by the protocol [AMC+13] is a classic

example of the molecular profiling based patient stratification function with sequence

data.
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High-throughput transcriptomic data generated by NGS technologies [LLB+01, VAM+01,

RKP+96] is the most popular data type currently used in translational studies. With its

unprecedented throughput, scalability, and speed, NGS enables researchers to study bi-

ological systems at a level never before possible. For the needs of various collaborative

translational research projects, tranSMART is planning to support NGS alignment data

for translational studies. Anticipating the requirement to store and analyze NGS data,

where the volume of data being produced will be in the terabyte (TB) range, the current

performance exhibited by BAM is unacceptably poor.

A typical query involves searching for alignments overlapping a specific region for a gene

or a trait to count its expression level [RIST+12, RSS+12] and perform data analysis.

The current tranSMART uses BAM files to store alignment data. Once retrieved the

data is passed to analytical tools, such as Samtools [LHW+09], UCSC Genome Browser

[KHK11] and custom R workflows for further analysis or visualization.

6.2 Background

6.2.1 SAM

SAM format [SS11] is a TAB-delimited text format comprised of an optional header

section and an alignment section. Header lines begin with @, but alignment lines do not.

Each alignment line has 11 mandatory fields for crucial alignment information such as

mapping position, and variable number of optional fields for flexible or aligner specific

information. An ever increasing sequence data amount leads to a significant scalability

problem of SAM.

Each header line starts with @ followed by a two-character code indicating a record type

(HTC). In the header, every line is TAB-delimited. Except the lines beginning with @CO,
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each data field uses a format TAG:VALUE in which TAG is a two-letter code that defines

the content and the format of VALUE.

In the SAM format, each alignment data record shows the linear alignment of a segment.

There are 11 required fields in each line, as shown below.

• QNAME: Query template NAME

• FLAG: bitwise FLAG

• RNAME: Reference sequence NAME

• POS: 1-based leftmost mapping POSition

• MAPQ: MAPping Quality

• CIGAR: CIGAR string

• RNEXT: Ref. name of the next read

• PNEXT: Position of the next read

• TLEN: observed Template LENgth

• SEQ: segment SEQuence

• QUAL: ASCII of Phred-scaled base QUALity+33

If the information in a field is unavailable, the corresponding value can be 0 or *. Optional

fields follow the TAG:TYPE:VALUE format where TAG is a two-character string that

starts with a letter and ends with a letter or a number. Each TAG can only appear once in

one alignment line. More details about SAM can be found at [SS11].

CIGAR is the most important field that can be used to describe the details of mapping.

• M: alignment match (can be a sequence match or mismatch)
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• I: insertion to the reference

• D: deletion from the reference

• N: skipped region from the reference; For mRNA-to-genome alignment, an N op-

eration represents an intron. For other types of alignments, the interpretation of N

is not defined.

• S: soft clipping (clipped sequences present in SEQ); S may only have H operations

between them and the ends of the CIGAR string.

• H: hard clipping (clipped sequences NOT present in SEQ); H can only be present

as the first and/or last operation.

• P: padding (silent deletion from padded reference)

• =: sequence match

• X: sequence mismatch

There are two methods to calculate the mapped length in a reference sequence: sum of

lengths of the M, D, N, = and X is the length without padding; sum of lengths of the M,

D, N, =, X and P is the padding length.

This is a data sample from 1000 Genomes project, shown in Figure 6.1.

6.2.2 BAM

BAM file [BGQ+11] is compressed SAM file implemented on top of the standard gzip

file format. The UCSC (University of California, Santa Cruz) binning indexing [KSF+02]

applied on BAM aims to achieve fast retrieval of alignments overlapping a specified region

without scanning the whole alignments. In this index, each bin represents a contiguous
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Figure 6.1: SAM data sample

genomic region. One bin is either fully contained in or non-overlapping with another bin.

An alignment record is contained a bin which represents the smallest region containing

the entire alignment. The binning index is represented by a R-tree. Each bin corresponds

to an internal node in a R-tree [Gut84]. For example, bin A is a child of Bin B, if bin A is

contained in B.

The first step to find the alignments overlapping a specified region is to locate the bins

that overlap the region. Then each alignment in the bins is tested to check overlap. For

example, in Table 6.1 a binning schema consisting of three types of bins was designed for

a genome shorter than 288kbp. Bin 0 spans 0-288kbp, bin 1, 2 and 3 span 96kbp and bins

from 4 to 12 span 32kbp each. An alignment beginning at 130kbp and ending at 134kbp

[130k, 134k] was stored in bin 8. Similarly, an alignment [102k, 140k] was contained in

bin 2, while an alignment between [80k, 98k] in bin 0. If all the alignments overlapping

region [130k, 142k] are searched, bin 0, 2 and 8 will be located and fully scanned to find

the required alignments.

These multi-dimensional range queries in databases are topics gaining attentions for more

than 20 years. R-tree, R+-tree [SRF87], and their successors extend B-tree, divide the
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0 (0-288kp)
1 (0-96kp) 2 (96-192kp) 3 (192-288kp)

4 (0-32kp) 5 (32-64kp) 6 (64-96kp) 7 (96-128kp) 8 (128-160kp) 9 10 11 12

Table 6.1: BAM Index

multi-dimensional space, and store the recursively divided spaces as tree nodes. Queries

walk through the tree to find out the data block. These schemes does not consider the

reliability problem over DOT, unless they are implemented in a scalable and reliable way,

just like the distributed B-tree [MMN+04]. Even though, the performance degradation

also exists due to missing clustered data.

6.3 Key Value Model

HBase is implemented on a LSM Tree, which only supports query based on Row Key

instead of dual dimensional (2D) queries powered by R-tree. Inspired from the UCSC

binning index, I designed a new binning schema to both support alignments retrieval

overlapping a specific region and take full advantage of HBase fast scan operations.

One popular way to solve this problem is to reduce the dimensionality by searching in

one-dimension firstly to find the minimum range containing all possible result and then

using the other dimension to filter unexpected alignments. In this case, the starting base

position minus the maximum mapped length (MML) could be a Row Key to find all

possible alignments overlapping a specified range. The MML of a dataset is calculated

from CIGAR of each read and stored in a table. For example, searching range [start, end]

can be converted into query [start - MML, end] on the starting index. If starting position

minus MML is below zero, zero will be the starting point. Then the ending position can

filter the unexpected alignments. When searching a region in the other bin, searching

range [start, end] can be converted into query [start - MML, end] on the starting index

first. Then the end position filters unexpected alignments.
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There are many methods [APH14, ARH12, GHR12a] and tools (baySeq [HK10], BBSeq

[ZXW11], NOISeq [TGAD+11], QuasiSeq [LNM+12], etc.) to count reads. Some of the

methods count them by pair and others by single read. Thus, all alignment in this Key

Value schema are stored and searched by read in order to meet the requirements from both

kinds of methods.

A alignment Key Value schema has been implemented according to generic data model in

order to provide fast query over alignment data. Unlike a normal HBase table, which has

at least three data copies in HDFS, each table in this design has only one copy. The three

tables together complete the data consistence and fault tolerance. This design allows for

high-speed queries for three different purposes without needing to use any extra storage

space. To compensate, a manual data consistency check is required on changing data.

However, data stored in tranSMART is updated infrequently and one of its main aims is

to provide fast data queries over the database.

Three tables are created in this schema to provide fast query over alignments overlapping

a certain region to calculate gene or trait expression level for clinical decision making,

as shown in Figure 6.2. The Subject table serves for queries over subject in a study, the

Position table is used for for queries over reference sequence positions in a study and the

Cross-study table supports queries over reference sequence positions in multiple studies.

In each table there are two parts in a dataset, header information and alignment data.

The Row Key of the header in Subject table is a composite key containing a subject

identity and a HTC. All header records use the Family header. The qualifier represents

each TAG in the corresponding header line. All mandatory fields in the alignment are

stored in Family align, while the optional fields uses Family opt. Not all the mandatory

fields are required all the time. Some Qualifiers, which are more frequently used than

others, can have their own families to accelerate specific queries. For example, MAPQ

mapping quality is a most frequently used filter. Then MAPQ can be stored in a new



116 Chapter 6. Raw Sequencing Key Value Model

Figure 6.2: Raw sequencing Key Value model.

Family named mapq. In that case, MAPQ may have two copies in both Family align and

mapq or only one copy in Family mapq. As described in Chapter 3, different Families

are store in different HFiles. If only Family mapq is added to a Scan operation, only

the corresponding HFiles are searched. Thus, the query with Family mapq will be much

faster than the query with Family align. Furthermore, multiple such small Families may

be used together to provide faster queries.
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6.3.1 Subject table

As shown in Table 6.2, Study, Subject and HTC consist of the Row Key for Key Value

pairs in Family header. The header TAG is used as Qualifier. Each Value contains the

value of each TAG. Study, Subject, RNAME, POS and QNAME are comprised of the

Row Key for alignment data in both Family align and Family opt. The Qualifiers with

Family align are mandatory fields in SAM alignment structure, such as FLAG, RNAME,

etc. An alignment row with optional information places each optional TAG as a Qualifier

and the corresponding Value of each TAG use format TYPE:VALUE. In addition, a pair

of paired-end reads share a same QNAME. Thus, each row in this QNAME table has two

versions when loading paired-end reads.

Key
Value

Row Key
Column Key

Family Qualifier
Study+Subject+HTC header TAG Value of TAG
Study+Subject+HTC header ... ...

Study+Subject+RNAME+POS+QNAME align FLAG Value of FLAG
Study+Subject+RNAME+POS+QNAME align MAPQ Value of MAPQ
Study+Subject+RNAME+POS+QNAME align CIGAR Value of CIGAR
Study+Subject+RNAME+POS+QNAME align RNEXT Value of RNEXT
Study+Subject+RNAME+POS+QNAME align PNEXT Value of PNEXT
Study+Subject+RNAME+POS+QNAME align TLEN Value of TLEN
Study+Subject+RNAME+POS+QNAME align SEQ Value of SEQ
Study+Subject+RNAME+POS+QNAME align QUAL Value of QUAL
Study+Subject+RNAME+POS+QNAME align END Value of END
Study+Subject+RNAME+POS+QNAME opt TAG TYPE:VALUE
Study+Subject+RNAME+POS+QNAME opt ... ...

Table 6.2: Alignment Key Value Subject table

Determining Row Key and Column Key of transcriptomic data

In order to speed up queries, the Study, Subject and HTC are comprised of the Row Key

for data in Family header. HTC is the unique main field in the header that can be used as
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Key. Study, Subject, RNAME, POS and QNAME are comprised of the Row Key for data

in Family align and opt. All the other fields are placed in the Column Key. For a typical

use case when multiple subjects within a study are retrieved, the HFile storing the data

will be loaded into memory caches. Therefore, only retrieving the first record causes a

significant delay when loading data from disk to memory, while all other records in the

same HFile are fetched directly from memory caches. This design takes full advantage of

the caches.

Optimizing the Column Key to increase cache hit rate

One way to further increase cache hit rate is to design a new structure by classifying differ-

ent types of data under Column Key. The Family divides different types of data (header,

align and opt) into different HFiles and the Qualifier orders the general information and

subject values lexicographically.

6.3.2 Position Table

This Subject table only provides faster queries over Subject within one study. However, if

queries by reference position in a study are required, these queries may not be performed

as fast as the queries over Subject. Thus, the Position table is created to improve the

performance for these queries.

As shown in Table 6.3, the header in the Position table uses the same schema as that

in the Subject table in order to keep enough data copy for the fault tolerance. Study,

RNAME, POS, QNAME and Subject are comprised of the Row Key for alignment data

in both Family align and Family opt. The Qualifiers with Family align are mandatory

fields in SAM alignment structure, such as FLAG, RNAME, etc. In addition, an END

field (ending position in a reference) calculated from CIGAR is added to Family align.
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An alignment row with optional information places each optional TAG as a Qualifier and

the corresponding Value of each TAG use format TYPE:VALUE.

Key
Value

Row Key
Column Key

Family Qualifier
Study+Subject+HTC header TAG Value of TAG
Study+Subject+HTC header ... ...

Study+RNAME+POS+QNAME+Subject align FLAG Value of FLAG
Study+RNAME+POS+QNAME+Subject align MAPQ Value of MAPQ
Study+RNAME+POS+QNAME+Subject align CIGAR Value of CIGAR
Study+RNAME+POS+QNAME+Subject align RNEXT Value of RNEXT
Study+RNAME+POS+QNAME+Subject align PNEXT Value of PNEXT
Study+RNAME+POS+QNAME+Subject align TLEN Value of TLEN
Study+RNAME+POS+QNAME+Subject align SEQ Value of SEQ
Study+RNAME+POS+QNAME+Subject align QUAL Value of QUAL
Study+RNAME+POS+QNAME+Subject align END Value of END
Study+RNAME+POS+QNAME+Subject opt TAG TYPE:VALUE
Study+RNAME+POS+QNAME+Subject opt ... ...

Table 6.3: Alignment Key Value Position table

Determining Row Key and Column Key of transcriptomic data

To speed up queries over gene positions, the Study, Subject, RNAME and POS should be

placed in the Row Key. The reason is that RNAME with POS is identical information, as

mentioned in the Subject table section. But RNAME with POS is not unique. Row Key

should be a unique key. Thus, QNAME has been added at the end of Row Key to make

Row Key unique. A second reason is that when a region is retrieved in a typical use case,

the HFiles storing the data in these positions will be loaded into MemStore. Thus, only

retrieving the first record leads to a long delay due to fetching data from disk to memory,

while all other records in the same HFile are loaded directly from memory caches. This

design speeds up queries by taking advantages of the caches.
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Optimizing the Row Key to speed up data location

The order of the fields in the Row Key also greatly affects the query performance. Typical

user cases may start with a gene information query in a study. By placing the Subject

after the reference attributes (QNAME, RNAME and POS), the composite key becomes

two indices on the subject and genetic information respectively. By placing RNAME with

POS before QNAME, the composite key becomes three indices on the subject, reference

sequence position and sequence template name respectively.

When alignments overlapping a specified region [start, end] in a subject are retrieved, this

Row Key can find all the possible HFiles using this Row Key to compare to the (start -

MML) and End. Then the END value of this alignment determines whether this alignment

is required.

6.3.3 Cross-study Table

The Position table only provides faster queries over reference positions within one study.

However, if queries across studies are required, these queries may not be performed as

fast as the queries within one study. Therefore, a cross-study table has been created to

overcome this disadvantage.

As shown in Table 6.4, the Cross-subject table is very similar to the Position table except

the order of the fields in the Row Key. The header in this table is also used to keep enough

data copy for the fault tolerance of the header data.

Optimizing the Row Key to speed up data location

The order of the fields in the Row Key focuses on the performance of queries across

studies. Typical user cases may start with a gene information query across studies. By
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Key
Value

Row Key
Column Key

Family Qualifier
Study+Subject+HTC header TAG Value of TAG
Study+Subject+HTC header ... ...

RNAME+POS+QNAME+Study+Subject align FLAG Value of FLAG
RNAME+POS+QNAME+Study+Subject align MAPQ Value of MAPQ
RNAME+POS+QNAME+Study+Subject align CIGAR Value of CIGAR
RNAME+POS+QNAME+Study+Subject align RNEXT Value of RNEXT
RNAME+POS+QNAME+Study+Subject align PNEXT Value of PNEXT
RNAME+POS+QNAME+Study+Subject align TLEN Value of TLEN
RNAME+POS+QNAME+Study+Subject align SEQ Value of SEQ
RNAME+POS+QNAME+Study+Subject align QUAL Value of QUAL
RNAME+POS+QNAME+Study+Subject align END Value of END
RNAME+POS+QNAME+Study+Subject opt TAG TYPE:VALUE
RNAME+POS+QNAME+Study+Subject opt ... ...

Table 6.4: Alignment Key Value Cross-study table

placing the Study and Subject after the reference position (RNAME, POS and QNAME),

the composite key becomes an efficient index for cross-subject gene location.

When alignments overlapping a specified region [start, end] within several are retrieved,

this Row Key can find all the possible HFiles using this Row Key to compare to the (POS

- MML) and END.

6.4 Performance Evaluation

6.4.1 Test environment and datasets

A datasets HG00097CH11 including about 13 million reads from 1000 Genome project

[Siv08] was used to test this new Key Value data schema on a cloud computing platform,

OpenStack, installed at Imperial College London. In this experiment Samtools was in-

stalled in a VM with 32 CPU cores and 32 GB of memory for queries over BAM files.

A simple socket based server implemented in Java was used as BAM server to respond



122 Chapter 6. Raw Sequencing Key Value Model

alignment queries. The HBase cluster (Version 0.96.0 on Hadoop 1.0.3) is comprised of 4

virtual machines, each with 8 CPU cores and 8 GB of memory. Each VM used a 100 GB

disk. HBase was used to implement the Key Value model. An extra Family count, includ-

ing MAPQ and END, is added to accelerate queries for gene expression calculation. The

other fields in the original Family align are still stored in align. The BAM-based model is

also implemented in HBase. The STUDY, SUBJECT and a unique column ID are added

to the basic 11 SAM columns. The ID is the Row Key. The STUDY, SUBJECT and

RNAME+POS are indexed using the secondary index. The value in the index tables is the

ID. One master server and four region servers in HBase are configured in fully distributed

mode. The master server and one region server reside in one VM. The other region servers

reside in the other three VMs respectively. In addition, one independent VM with 8 CPU

cores and 8 GB or memory was used as a test client to send query requests to and receive

data from both the BAM server and the HBase cluster.

6.4.2 Query over alignments overlapping specified regions

Query over alignments overlapping specified regions is the most important operation for a

RNA-Seq based expression level calculation because many regions are linked with influ-

encing disease risk. For example, about 18 regions of the genome have been linked with

influencing type 1 diabetes risk [SBAJ+09]. These regions, each of which may contain

several genes, have been labeled from IDDM1 to IDDM18. IDDM1 contains the HLA

genes and IDDM2 contains the insulin gene INS. They were both originally identified

by investigating the suspected genes, HLA genes and INS, respectively, using case con-

trol studies. The remaining type 1 diabetes susceptibility loci, IDDM3 to IDDM18, were

mainly discovered by genome scan linkage studies, for exmaple, looking for linkage be-

tween regions of the genome and disease in affected sib-pairs. Many genes are mapped

to the loci, such as IL2RA and CTLA4. Except loci IDDM1 to IDDM18, other genes as-
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sociates type 1 diabetes as well. For example, gene IFIH1 associates with different rates

of progression from autoimmunity to type 1 diabetes.

In order to improve risk prediction of a specific disease, most corresponding linked re-

gions are collected for the calculation. These genes are distributed in multiple places with

various lengths. For example, in type 1 diabetes, INS spans about 4000 bases in chromo-

some 11, HLA-DQB1 spans around 7000 bases in chromosome 6, IL2RA spans around

50,000 bases in chromosome 10, CTLA4 spans about 6000 bases in chromosome 2 and

IFIH1 spans about 52,000 bases in chromosome 2. The longest human gene DMD spans

more than 2,000,000 bases.

Therefore, test cases using 5,000, 10,000, 50,000, 100,000 and 500,000 bases are gener-

ated to fully test this Key Value schema. In each case the region is searched concurrently

using from 5, 10, 50 and 100 threads. The locations of these regions are generated ran-

domly.

With the thread number less than 10 and the region size less than 500,000, the Key Value

model in HBase outperforms the SAM model in HBase by 72.63 times on average. With

thread number and region size increasing, the advantage of the Key Value model is more

significant. Especially, in 100,000-base cases the Key Value implementation performs

more than 115 times faster than the SAM model in HBase. Though both the Key Value

model in HBase and BAM server responded every request within one second, the Key

Value model in HBase outperformed the BAM server in the 10 tests out of the total 12

tests, as shown in Figure 6.3. Especially in the test with 10 threads and 100,000 bases,

the Key Value model in HBase performed more than 2 times faster than the BAM server.

With concurrent query number increasing, the BAM server did not scale well. While

more than 50 concurrent requests were arrived with larger regions, the Key Value model

greatly outperformed the BAM server, as shown in Figure 6.4. In 7/10 test cases, the Key

Value model performed more than 3 times faster than the BAM server. In 4/10 cases,
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Figure 6.3: Alignment query using less than 10 threads. The region size is less than
100,000 bp.

HBase outperformed the BAM server by more than 5 times. In the 500,000 base tests, the

Key Value model performed more than 9 times faster than the BAM server. In the largest

case the BAM server execution time increased largely, up to 37 seconds. Compared to

the BAM model in HBase, the Key Value model shows an average 76.78-fold speedup.

Especially, in the 500,000 base tests, the Key Value model outperforms the BAM model

in HBase by more than 440 times.

Figure 6.4: Alignment query using more than 50 threads. The maximum region size is
500,000 bp.

In sum, the response time of the Key Value model was no longer than the BAM server

in most cases, except 5-thread-5,000-base and 1-thread-10,000-base. The reason is that

some of the small tests in 5-thread-5,000-base and 1-thread-10,000-base cases suffer from

long time responses of HBase. The probable reason is the periodical HBase system main-
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tenance that could lead to hundreds of milliseconds delay. Also, the execute time did

not rise greatly when thread number increased and the longest execution time is only less

than 4 seconds, 9.61 times faster than BAM server, as shown in Figure 6.4. This mainly

results from the special Family count design. As shown in Figure 6.5, when concurrent

queries were executed, the queries with Family align performed even worse than BAM.

But when a specific Family used, such as count, HBase outperformed BAM by up to 6

times.

Figure 6.5: Alignment query with different Familes. The maximum thread number is 100
and the maximum region size is 500,000 bp.

6.5 Integration into tranSMART

This implementation is based on HBase 0.96.0. As shown in the Figure 2.11, the patient

information is retrieved from a SQL database before a variant data query. Three types

of data queries are created corresponding to the three complementary tables. Figure 6.6

shows the alignment data query overlapping a specific region within a subject using the

Scan method; Figure 6.7 indicates the alignment data query overlapping a specific region

across subjects using the sequential Scan method; Figure 6.8 describes the alignment data

query method by RNAME using the Scan method. The cacheSize used in the last two

Figures may be changed according to the physical environments and the data scale.
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Figure 6.6: Scan overlapping a specific region within a subject.

Figure 6.7: Scan alignment records overlapping a specific region across subjects.

6.6 Discussion

6.6.1 Family organization

If a Family becomes smaller, query over the Family will be much faster than a larger

one. But when many Families are searched concurrently, the combination of smaller
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Figure 6.8: Random read alignment records by RNAME.

Families may be even slower than the larger one. Thus, the Family organization should

be determined by applications. For example, in the gene expression application, except

fields stored in the Row Key, MAPQ and END may be the most useful information and

stored in a Family named count.

6.6.2 Extra disk space

The Key Value model is a space for time approach and gains a lot of velocity. The current

space overhead is large. For example, in the performance evaluation section the BAM

file size is 1.29 GB (the corresponding SAM is 5.69 GB), but HBase used 29.16 GB to

store three copies of the data. Each used 7.53 times of storage space of BAM. The main

reason for this large overhead is the column number. If a row contains N columns, the

Row Key will be duplicated N-1 times. Further the composite Row Key in the Key Value

model contains multiple columns, which lead to a even larger overhead. A possible way to

reduce this overhead is to merge columns. If some columns are frequently used together,

such RNEXT and PNEXT, it is possible to reduce one Row Key space by merging column

RNEXT and column PNEXT into column RNEXT+PNEXT.
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6.6.3 Long MML binning schema

In the most popular NGS sequencing machines, such as Illumina [Gen10] and SOLiD

[Dek07], the length of a RNA-Seq read is usually less than 300 bp.

For example, the alignment dataset HG00096CH11 published in 1000 Genomes only

contains reads mapped to less than 200 bases. But if long mapped reads are emerging, the

scan method used in this Chapter may not be suitable. The whole dataset can be divided

into two bins: one containing reads whose MML is shorter than a certain number CLEN

and the other one containing all remaining alignments, including alignments with MML

not shorter than CLEN bases. Then a Long MML schema is required.

There are tables in this schema for fast query over alignments overlapping a certain region.

Two Position tables (Starting position and Ending position) serve for queries over refer-

ence sequence positions in a subject and two Cross-subject tables (Starting cross-subject

and Ending cross-subject) support queries over reference sequence positions in multiple

subjects. The Starting position table uses the same schema as Position table in Table 6.3.

The Starting cross-subject table uses the same schema as Cross-subject table in Table 6.4.

The ending position is the rightmost mapped base for most of the read. However, if a read

is mapped to different reference sequences, the ending position is the ending position of

the next reference sequence. If the next reference information is unknown, the ending

position is the ending position of the current segment.

A pair of Position tables

The Starting position table uses the same schema as Position table in Table 6.3. The

Ending position table uses similar schema to the Starting position table, as shown in Table

6.5.

The header in the reference index table uses the same schema as that in the Position table
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Key
Value

Row Key
Column Key

Family Qualifier
Subject+HTC header TAG Value of TAG
Subject+HTC header ... ...

Subject+RNAME+END+QNAME align FLAG Value of FLAG
Subject+RNAME+END+QNAME align MAPQ Value of MAPQ
Subject+RNAME+END+QNAME align CIGAR Value of CIGAR
Subject+RNAME+END+QNAME align RNEXT Value of RNEXT
Subject+RNAME+END+QNAME align PNEXT Value of PNEXT
Subject+RNAME+END+QNAME align TLEN Value of TLEN
Subject+RNAME+END+QNAME align SEQ Value of SEQ
Subject+RNAME+END+QNAME align QUAL Value of QUAL
Subject+RNAME+END+QNAME align END Value of QUAL
Subject+RNAME+END+QNAME opt TAG TYPE:VALUE
Subject+RNAME+END+QNAME opt ... ...

Table 6.5: Alignment Key Value Position END table

in order to keep enough data copy for the fault tolerance. In the alignment part DATASET,

RNAME, END and QNAME are composed of the key. The value includes Family align

and opt, which are the same as Table 6.3.

Associated with Starting position table, the pair position tables can speed up queries over

gene positions. When searching a region [start, end] in this bin, there are two methods to

find all possible alignments: searching [start - MML, end] in the Starting position table

and searching [start, end + MML] in the Ending position table. If the MML is very close

to the length of the reference sequence, query over [start - MML, end] using the Starting

position table usually means searching [0, end]. The situation of Ending position table

is the same as Starting position table. Thus, if the middle position of the region resides

ahead of the middle position of the bin, most of the expected alignments should reside in

the first half of bin. In that case, Starting position table should be searched. Otherwise, it

is better to search Ending position table.
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A pair of Cross-subject table

The pair of Position tables can only offer faster queries by reference position within one

subject. If queries over multiple subjects are required, these queries may not be performed

as fast as the queries within one subject. Therefore, a pair of Cross-subject tables has been

created to overcome this disadvantage.

The Starting cross-subject table uses the same schema as Table 6.4. The Ending cross-

subject table uses similar schema to the Starting cross-subject table, as shown in Table

6.6.

Key
Value

Row Key
Column Key

Family Qualifier
Subject+HTC header TAG Value of TAG
Subject+HTC header ... ...

RNAME+END+QNAME+Subject align FLAG Value of FLAG
RNAME+END+QNAME+Subject align MAPQ Value of MAPQ
RNAME+END+QNAME+Subject align CIGAR Value of CIGAR
RNAME+END+QNAME+Subject align RNEXT Value of RNEXT
RNAME+END+QNAME+Subject align PNEXT Value of PNEXT
RNAME+END+QNAME+Subject align TLEN Value of TLEN
RNAME+END+QNAME+Subject align SEQ Value of SEQ
RNAME+END+QNAME+Subject align QUAL Value of QUAL
RNAME+END+QNAME+Subject align END Value of QUAL
RNAME+END+QNAME+Subject opt TAG TYPE:VALUE
RNAME+END+QNAME+Subject opt ... ...

Table 6.6: Alignment Key Value Cross-subject END table

The Cross-subject END table is very similar to the position table except the order of the

fields in the Row Key. The header in this table is still used to keep enough data copy for

the fault tolerance of the header data.

Associated with Starting cross-study table, the pair of cross-study tables provides fast

queries over gene positions across multiple subjects. The same searching strategy as the

pair of position tables can be applied on this pair of cross-subject tables.
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When searching a region in the long TLEN bin, the average position ((start + end) / 2)

determines starting or ending index should be used. The middle position, which cuts the

reads into 2 bins each containing the same amount of alignments, is recorded after datasets

imported. If the MML is very close to the length of the reference sequence, query over

[start - MML, end] using the starting position index usually means searching [0, end].

The situation of ending position tables is very similar. Thus, if the average position is

located in the first half of alignments, the starting tables will be utilized. Otherwise, the

ending tables will be used. The average scan range is 1/4 positions and the worst case is

1/2 positions.

6.7 Conclusion

This chapter describes a Key Value data model for queries over raw sequence data, com-

pared to the SAM data format implemented in HBase and a BAM server. In the perfor-

mance evaluation experiments, the Key Value data model performs up to 440 and 22 times

faster than the SAM format implemented in HBase and the BAM server.



Chapter 7

Gene expression based patient

stratification application

7.1 Introduction

Information from genomic, proteomic and metabolic measurements benefits molecular

profiling based patient stratification. Biomedical research is moving towards using high-

throughput molecular profiling data to improve clinical decision making. One approach

for building classifiers is to stratify subjects based on their molecular profiles. Unsuper-

vised clustering algorithms can be used for stratification purposes. This chapter introduces

a hierarchical clustering application using four kinds of correlation methods with high-

dimensional molecular profiling data (gene expression data), by taking full advantage of

a programming model specifically designed for parallel processing of big datasets.

The motivation for optimization of hierarchical clustering is based on the experiences

in using tranSMART Advanced Workflow functions. For example, in Figure 7.1, two

cohorts in the study GSE31773 [TWM+12] are selected, one for severe patients with

CD4+ T-cells and the other for severe patients with CD8+ T-cells. [TWM+12] indicates

132
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comparison of mRNA expression showed widespread changes in the circulating CD8+

but not CD4+ T-cells from patients with severe asthma. No changes were observed in the

CD4+ and CD8+ T-cells in non-severe asthmatics versus healthy controls. Thus, severe

patients with CD4+ T-cells and severe patients with CD8+ T-cells should be significantly

different in their mRNA expression. The Hierarchical Clustering function of Advanced

Workflow, as shown in Figure 7.2, can be used to validate this result. If [TWM+12] is

correct, the two cohorts should be exactly divided into two groups. In this example, 50

probes are used to validate the result. The Figure 7.3 validated the results in [TWM+12].

To the opposite, healthy individuals and non-severe patients with CD4+ T-cells and those

with CD8+ T-cells should not be significantly different in their mRNA expression, as

shown in Figure 7.4. If using hierarchical clustering, the two subsets should not be divided

into accurate two clusters in most probes. The Figure 7.5 validated the hypothesis.

Figure 7.1: Cohorts selection of severe samples. In subset1 there are two condition boxes.
The first box contains all CD4+ T-cells and the second box contains all severe samples.
Thus, the subset1 contains all the samples who are both CD4+ T-cells and severe. Then,
the subset2 contains all samples who are both CD8+ T-cells and severe.

The aim is to optimize tranSMART so that clinicians can make use of it for faster clinical

decision making. However, the current tranSMART’s performance of preparing correla-

tion matrices when analyzing high dimensional molecular data is sub-standard.
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Figure 7.2: Hierarchical Clustering parameters. The cohorts are set in Figure 7.1. No
gene is specified. So all probe data are loaded, but only the first 50 probes are shown in
the heatmap. Clustering is applied for both rows and columns.

For example, an unsupervised hierarchical clustering has been performed on the publicly

available MULTMYEL dataset taken from NCBI’s GEO (GSE24080). The dataset con-

tains 559 subjects’ gene expression data produced by an Affymetrix GeneChip Human

Genome U133 Plus 2.0 Array. In order to build the classifiers, the subjects are clustered

using a hierarchical clustering algorithm implemented in R. In previous tests, running

this algorithm on a virtual machine configured with 32 cores and 32 GB of member took

over 6 minutes using a Euclidean distance matrix, and more than a week if performing a

Kendall rank correlation. Compared to the correlation matrix calculation, the hierarchical

clustering function in R only needs less than one second to execute. These observations

show that the bottleneck in the hierarchical clustering algorithm is in generating the cor-
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Figure 7.3: Hierarchical Clustering result of severe samples. The first 8 columns are
samples in subset1 and the remaining 8 columns are samples in subset2. According to the
clustering by column shown at the top of the graph, two subset are exactly divided.

relation matrix. Clearly optimizing the performance of these analyzes would expedite

clinical decision making. With high throughput sequencing technologies promising to

produce even larger datasets per subject, the performance of the state-of-the-art statistical

algorithms is to be further impacted unless efforts towards optimization are carried out.
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Figure 7.4: Cohorts selection of not severe samples. In subset1 there are two condition
boxes. The first box contains all CD4+ T-cells and the second box contains all healthy
and non-severe samples. Thus, the subset1 contains all the samples who are healthy and
non-severe CD4+ T-cells. Then, the subset2 contains all samples who are healthy and
non-severe CD8+ T-cells.

In this chapter, an optimization method [WPJ+14] is provided for correlation calculations

used by the hierarchical clustering algorithm in tranSMART. The optimization method

contains a series of processing optimizations based around the MapReduce programming

model [DG08]. The chapter also presents how the correlation matrix calculations im-

plemented on R Rhipe [GHR+12b] plugin which works on Hadoop, a popular and well-

supported distributed data storage and computation framework that supports MapReduce,

significantly outperform their comparable implementations configured for distributed ex-

ecution in R using Snowfall [KPB09], a parallel computing package for R scripts. The

experiments use four correlation calculation methods, including the Pearson product-

moment correlation [Wil96], Spearmans rank-order correlation [Spe04], Kendalls rank

correlation [Ken48], and Euclidean distance correlation. In addition, the data in current

tranSMART are stored in a Oracle or PostgreSQL database and moving to a big data
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Figure 7.5: Hierarchical Clustering result of severe samples. The first 10 columns and
21st and 23rd columns are samples in subset1 and the remaining 12 columns are samples
in subset2. According to the clustering by column shown at the top of the graph, two
subset are not divided into two clusters.

warehouse, a mixed data storage, including traditional relational databases and new Key

Value databases. Another experiment is carried out to show how the Key Value model

affects the execution time of the whole analysis workflow.
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7.2 Background

7.2.1 Correlation Algorithms

In data mining, hierarchical clustering is a method of cluster analysis that seeks to build

a hierarchy of clusters using correlation matrices. Currently there are three main types

of correlation coefficient calculation algorithms: Product-moment correlation, rank cor-

relation and other dependence measurements. Pearsons product-moment correlation is

a measure of the linear correlation between two variables X and Y, giving a value be-

tween +1 and -1 inclusive, where 1 is total positive correlation, 0 is no correlation, and

-1 is total negative correlation. Spearman and Kendall correlation methods are two ex-

amples of using a rank correlation coefficient. Spearman’s rank correlation coefficient

is a non-parametric measure of statistical dependence between two variables by using a

monotonic function. If there are no repeated data values, a perfect Spearman correla-

tion of +1 or -1 occurs when each of the variables is a perfect monotone function of the

other. Kendall tau rank correlation coefficient is a statistic used to measure the associa-

tion between two measured quantities using a tau test, a non-parametric hypothesis test

for statistical dependence based on the tau coefficient. Euclidean distance is a popular de-

pendence measurement that differs from correlations by calculating the distance between

two points according Pythagoras theorem within a metric space.

7.2.2 Parallel R packages

R is a widely used analysis tool for clustering and correlation calculation. Many emerging

parallel R packages, such as RHIPE, SparkR [ZCF+10], RABID [LYM], Snowfall, Rmpi

and pbdMPI [COS+12], can be used to parallelize R processes. Snowfall is a conventional

parallel plugin that works in a master-slave mode, where all code and data are distributed

to each process within a cluster, then the code works respectively in each process, and
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finally the master collects the final result. Rhipe is a MapReduce based R plugin that

transforms R functions into MapReduce jobs.

R is a widely used analysis tool for clustering and correlation calculation. RHIPE is a

Hadoop MapReduce based R package that transforms R functions into MapReduce jobs.

SparkR and RABID are MapReduce packages, which works in combination with Apache

Spark [20]. Though Hadoop performs slower than Spark in several cases, such as itera-

tive computations, Hadoop is much more mature to provide a more stable performance.

Snowfall with Rmpi is a combination of parallel packages that works in a masterslave

interactive mode, where all code and data are distributed to each process within a cluster,

then the code works respectively in each process, and finally the master collects the final

result. While pbdMPI uses Single Program Multiple Data parallel programming model,

which is not as popular as Snowfall.

MapReduce is a simple processing model based around two functions that execute at two

distinct stages: the mapper function, Map(), transforms raw input data into a set of in-

termediate Key Value pairs; then the reducer function, Reduce(), takes the related data

(usually sorted by the key in the Key Value pairs emitted by the mapper) and merges the

data together. The MapReduce task division is based around how the input data is dis-

tributed and processed by the mapper and reducer at each stage. Initially the input data is

split and distributed to mappers that run on different compute nodes. After emitting some

Key Value pairs, the MapReduce system sorts the pairs into related groups by key. These

groups are then each provided as input to reducers that also run on different compute

nodes. Finally, the output of the reducers in collected and combined into a single output

dataset.

Snowfall and RHadoop are two R packages widely used to parallelize single-process R

functions to achieve higher calculation speed. Snowfall supports socket connections and

the Message Passing Interface (MPI). Snowfall operates MPICH cluster, an MPI imple-
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mentation, through LAM/MPI [SL03]. RHadoop supports several Apache Hadoop sub-

projects, including HDFS, MapReduce and HBase.

Rmpi [Yu02] allows users to create R programs that run cooperatively in parallel across

multiple machines, or multiple CPUs on one machine, to accomplish a goal more quickly

than running a single program on one machine.

7.3 Parallel R approaches

There are two classical types of R parallelizing methods, parallelizing independent for

loop functions in R statements or splitting input data matrices.

7.3.1 Statement level parallelizing

The statement level parallelizing method can only be applied on independent for loop

statements written in R. Thus, this method is widely used and very simple to implement.

For example, POPGEN [KNV+06] is a R package used for genotype clustering that fo-

cuses on statistical and population genetics methods. The motivation behind the package

is to produce an easy to use interface to many of the commonly used methods and mod-

els used in statistical and population genetics and an alternative interface for some of the

methodology produced by our group. It suffers from CPU and memory limitations due to

being designed as a single computing process, and consumes a large amount of memory.

For example, a variant value matrix for 100,000 SNPs with 10,000 subjects consumes 10

GB memory. If the number of SNPs or subjects increases, the memory requirement rises

sharply to an amount that a single machine cannot support.
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Design

In the statement level a loop function including the clustering methods is re-written to a

new function to be parallelized by Snowfall sfLapply functions. For example, in POPGEN

nps function there is a loop statement that contains 100 independent clustering functions

by default, as shown in Figure 7.6. This for loop function is replaced with a sfLapply

function. In this sfLapply the fun parameter is filled by a new function including all codes

in the for loop bracket. Thus, the sfLapply is able to parallelize the for loop by executing

many instances of the new function concurrently.

Performance evaluation

As shown in the Figure 7.7, each dataset contains different number of subjects, from

75 to 600, but all the other parameters are the same, including the number of unlinked

loci (30,000), the number of alleles (2) at each locus and genotype data distribution. 4

VM, with each 8 virtual CPU cores and 8 GB memory, are used to deploy the LAM/MPI

cluster.

Figure 7.6: Parallelizing R nps function. The grep part on the left is the for loop code to
be parallelized. The code within the brackets is node changed. The new function gaploop
has a similar parameter i. This new function can be used by R parallel packages, such as
Snow or Snowfall. The sfLapply is a function in the Snowfall package.

In this experiment parallel MPI function outperforms native R greatly with the subject

number increasing. Especially in the last two bars the MPI function is more than 10 times
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faster than native R.

Figure 7.7: Statement level parallel method evaluation.

7.3.2 Data level parallelizing

The other method is data level parallelizing, usually used for large quantities of functions

implemented by other programming language, such C, C++ and Fortran. It requires li-

brary re-compilation to modify such functions. Thus, data splitting is the most common

way to parallelize such functions for most R users.

Design

This approach to applying MapReduce-like framework to calculating correlation ma-

trices on gene expression data is inspired by work presented in [LKS10] who used a

MapReduce-like model for distributing large datasets on GPUs to calculate Euclidean

distance. In the case of this approach implementation, the input corresponds to a set of

vectors, each containing the probesets intensity values for a single subject. This input
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set of vectors is divided into data blocks that are dispatched to different mappers, depen-

dent on the total number of CPU cores available. In the mapper stage, each data block is

copied to each reducer by emitting as a key the index of the corresponding reducer and as

the value the data block. Each reducer then calculates correlation values by loading the

data block corresponding to the key and calculating the correlation coefficients against

each data block output from the mappers.

In the example shown in Figure 1, each data block can contain several subjects, where in

this example two subjects are showed per data block. Each block is loaded by a mapper,

and then copied to each reducer. Based on the reducer ID, a corresponding data block is

loaded and coefficients calculated against all other data blocks. For example, Reducer1

loads Data block 1 and pairwise it with outputs from each Mapper (Data block 1, Data

block 2, and Data block 3), producing coefficient values d11, d12 and d13.

Figure 7.8: Basic correlation matrix calculation using MapReduce

To further optimize this MapReduce model, further modifications are made to the one

presented by [LKS10]. There is a certain amount of redundancy in the calculation of a

full correlation matrix. Each coefficient appears twice in the correlation matrix. Looking

back at the example in Figure 7.8, each of d12 and d21, d13 and d31, and d32 and d23

correspond to the same pair-wise calculations. To avoid this, the ID of each mapper can

be compared with that of the target reducer before distributing data. If the Data block ID

is greater than the reducer ID, then that particular data block distribution and correlation
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coefficient calculation can then be skipped. For example, in Figure 2 mapper 2 does not

send Data block 2 to reducer 1. This results in only d12 being calculated, instead of both

d12 and d22. This optimization results in all correlation coefficients only being calculated

once.

This optimization the coefficient calculations shown in Figure 7.9 on results, however,

now produces an imbalanced workload on the reducers. Reducer 1 receives a workload

corresponding to one pair-wise calculation (d11), while Reducer 2 pairs calculations (d21,

d22), and so forth. With this pattern of workload, the longest running reducer determines

the overall performance of the MapReduce workflow. If the load can be balanced on the

reducers, the workload will execute fully in parallel, thus reducing the overall execution

time.

Figure 7.9: Correlation matrix calculation with redundant coefficient calculations skipped

To do this, a matrix transformation algorithm (see pseudo code below) has been created to

balance all reducers by moving the bottom left triangular section of the correlation matrix

to the top right, as shown in Figure 7.10.

Denote:

• k is the number of all the data blocks.

• i is the id of a data block.



7.3. Parallel R approaches 145

Figure 7.10: Matrix transformation. The elements in the bottom left triangle are mapped
to the top right triangle. Each row represents a Reducers load, which contains either c
elements or f elements.

• a is the average number of distance calculation per reducer, a =
k∑

i=1

i/k.

• c is the ceiling of a, c = dae.

• f is the floor of a, f = bac.

Algorithm pseudo:

For the data block i in each Mapper

if (i <= f )

Mapper send this block to Reduceri, Reduceri+1, ..., Reduceri+f−1;

else if (i >= c)

Mapper send this block to Reduceri%k, Reducer(i+1)%k, ..., Reducer(i+c−1)%k;

By using this matrix transformation to balance the reducers, each reducer will process

either c pairs or f pairs of data blocks, where in theory all reducers load are fully bal-

anced. In the example shown in Figure 7.9, six pairs of data blocks are calculated with an

imbalanced workload. After balancing using the above matrix transformation, in Figure

7.11 each reducer now only calculates two pairs of data block.
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Figure 7.11: Balanced reducers.

Finally the workflow takes into account uneven numbers of available reducers to mappers.

The hash function in MapReduce cannot always map mappers output to the expected

number of reducers even if the mapper output keys are well designed. For example,

if six mapper output keys are sent to six respective reducers, and only three reducers

are available to receive the data, this results in one or more reducer receiving a greater

workload to process sequentially. To ensure all reducers are fully utilized, calculations in

reducers are shifted to combiners, which read pairwise data blocks directly from the file

system, that calculate the result at the mapper stage before the hash mapping, as shown in

Figure 7.12.

Performance Evaluation

Test datasets This parallelizing method was tested against large datasets to validate be-

ing able to handle large studies that would be expected to applied in tranSMART. Three

publicly available datasets: ONCOLOGY (GSE2109) [YMO+10] taken from NCBI GEO

consisting on 2158 subjects and 54,675 probesets (1.9 GB comma-delimited value file),

LEukemia (GSE13159) [KKR+08, HKW+10] consisting on 2096 subjects and 54,675

probesets (1.8 GB comma-delimited value file) MULTMYEL consisting on 559 subjects

and 54,675 probesets (493 MB comma-delimited value file), and a breast invasive carci-

noma dataset taken from TCGA [Net12] consisting of 547 subjects and 17,814 probesets
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Figure 7.12: Calculation in Combiner. This is the MapReduce framework where all cal-
culations in Reducers are moved to Combiner according to the algorithm in Figure 7.11.

(157 MB comma-delimited value file). OpenStack, a computational testbed, has been set

up at Imperial College London for comparable virtual machine configurations for the R

implementation and the MapReduce implementation.

In order to verify the parallelizing method all types of correlation functions were tested.

Currently, there are three main types of correlation coefficient calculation algorithms,

productmoment coefficient, rank correlation coefficients and other dependence measure-

ments. Pearson correlation is used for productmoment type, Spearman and Kendall for

rank type and Euclidean distance for other dependence measures, which are implemented

in R packages, r-base and fields. A vanilla R instance is deployed to test the performance

against parallel R (Snowfall) and MapReduce via RHIPE.

Benchmarks Two benchmarks are used for the performance evaluation.

The micro-benchmark used datasets MULTMYEL (559 subjects) [WPE+14]. The vanilla
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R configuration used 32 CPU cores and 32GB of memory in a single VM. Snowfall used

4 VMs each with 8 CPU cores, 8GB of memory and 6 workers. RHIPE used 4 VMs each

with 8 CPU cores, 8GB of memory and 6 Mappers.

The macro-benchmark used datasets ONCOLOGY, LEukemia and TCGA. Three main

tests are performed using three datasets, including ONCOLOGY (2158 subjects), a cross-

study consisting of ONCOLOGY and LEukemia (4254 subjects), and an artificial dataset

consisting of dual ONCOLOGY and dual LEukemia (8508 subjects). Due to the ex-

tremely long execution time of Kendall correlation, only the smallest TCGA data was

used to calculate Kendall correlation. The vanilla R configuration used 64 CPU cores and

64GB of memory in a single VM. The master node of Snowfall used 8 CPU cores, 8GB

of memory and 6 workers, with 14 slave VMs each with 4 CPU cores, 4 GB of memory

and 3 workers. The master node of RHIPE used 8 CPU cores and 8GB of memory using

6 Mappers, with 14 slave VMs each with 4 CPU cores and 4 GB of memory using 42

Mappers.

Each experiment consists of two stages: data preparation and calculation. There are five

methods for comparison: vanilla R, default Snowfall using socket connections, optimised

Snowfall using the Rmpi package, and RHIPE using both the basic MapReduce algorithm

and the optimised one.

The vanilla R data preparation is loading comma-separated value (CSV) data matrix from

an Ext4 (fourth extended filesystem) local file system to an R matrix object. With default

Snowfall, the data preparation overhead consists of loading the CSV data matrix from

an Ext4 local file system, initializing the worker nodes, and exporting the data matrix and

code to the workers. The data matrix is split by row (subject) rather than data block, where

the corresponding computation calculates the correlation between rows. With Snowfall

using Rmpi, the data preparation overhead includes splitting the data matrix using the

Linux split command and copying each of the data block files to every VM. The number
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of data blocks depends on the number of workers.

During the calculations, Rmpi workers perform the same tasks as in the Mappers in

MapReduce. Each worker loads each corresponding data block sequentially from the

local Ext4 filesystem. After each data block is loaded, the worker performs the corre-

sponding calculations. Using RHIPE, the data preparation overhead consists of splitting

the data matrix and uploading each file to HDFS. The calculation then follows the algo-

rithms described in the method section.

Results A performance evaluation was carried out between vanilla R, parallel R with

Snowfall, and MapReduce implementation. A subject correlation was calculated on the

all subjects, calculating the coefficient matrices of the two benchmarks using Euclidean

distance, Pearson and Spearman correlation functions.

In the micro-benchmark, as shown in Figures 7.13, vanilla R performs fastest and default

Snowfall performs the slowest. Vanilla R has a larger data preparation overhead than

RHIPE, but the calculation itself greatly outperforms all the other methods. All parallel R

methods do not perform any better due to the data communication overhead. There is an

extreme example in default Snowfall Spearman where the parallel calculation is 9 times

slower than vanilla R.

However, this result only considers loading data from a data matrix stored in a local disk.

The actual data in current tranSMART are stored in databases. Data retrieval time should

be taken into account. As shown in Figure 4.8, if relational model are used to store this

microarray data, another three hundred seconds are added to the whole workflow. All

vanilla R tests will become at least 7 times longer than the current results, as shown in

Figure 7.14. Similar affection will happen to the optimized parallel R methods. Compared

to the calculation time, data preparation time occupies much larger proportion. If the

Microarray Key Value data model is used for this application, the vanilla R execution
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Figure 7.13: Performance on the micro-benchmark. This is the performance evaluation
using vanilla R, default Snowfall package with socket connection, optimised Snowfall
with Rmpi package and RHIPE package with the basic MapReduce algorithm and the
optimised one. The bottom three bars in each method show the data preparation time.
The vanilla R data preparation indicates loading data from a local file into memory; while
in all parallel R methods, data copy almost occupy the whole data preparation time. The
upper three bars respectively indicate the Euclidean (E), Pearson (P) and Spearman (S)
calculation time. The bottom three bars indicate the data preparation time.

time will be doubled only, as shown in Figure 7.15.

Though the vanilla R outperformed parallel R methods in the micro-benchmark, vanilla

R may not scale very well due to its single data flow and single execution flow. Thus, the

macro-benchmark was utilized to further test the optimised parallel R methods against

vanilla R.

In the tests using the macro-benchmark, as shown in Figure 7.16, 7.17 and 7.18, though

the optimised RHIPE outperforms all other methods, the optimised RHIPE calculation

time is longer than optimised Snowfall. The only advantage using RHIPE is the faster

data transfer via HDFS. In Figure 7.16 (2158 subjects), benefiting from the 3.30 times

faster data preparation, the optimised RHIPE performs 1.22 - 1.30 times faster than the

optimised Snowfall. In Figure 7.17 (4254 subjects), benefiting from the 3.69 times faster

data preparation, the optimised RHIPE performs 1.31 - 1.49 times faster than the opti-

mised Snowfall. In Figure 7.18 (8508 subjects), benefiting from the 5.13 times faster



7.3. Parallel R approaches 151

Figure 7.14: Performance on the micro-benchmark. This is the performance evaluation
using vanilla R, default Snowfall package with socket connection, optimised Snowfall
with Rmpi package and RHIPE package with the basic MapReduce algorithm and the
optimised one. The bottom three bars in each method show the data preparation time,
including data retrieval from a relation database. The vanilla R data preparation indicates
loading data from a local file into memory; while in all parallel R methods, data copy
almost occupy the whole data preparation time. The upper three bars respectively indicate
the Euclidean (E), Pearson (P) and Spearman (S) calculation time. The bottom three bars
indicate the data preparation time.

data preparation, the optimised RHIPE performs 1.50 - 1.71 times faster than the opti-

mised Snowfall and 7.24-16.56 times faster than the vanilla R. If multi-thread database

retrieval functions are used for Snowfall data preparation, Snowfall can perform better

and outperform RHIPE.

Therefore, Key Value data models hold great promise for large data analysis with the data

size increasing. Other types of data, such as SNP or alignment, can be changed into data

matrix before any calculation is performed. All such data can fully take advantage of

these Key Value models.
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Figure 7.15: Performance on the micro-benchmark. This is the performance evaluation
using vanilla R, default Snowfall package with socket connection, optimised Snowfall
with Rmpi package and RHIPE package with the basic MapReduce algorithm and the
optimised one. The bottom three bars in each method show the data preparation time,
including data retrieval from a Key Value database. The vanilla R data preparation in-
dicates loading data from a local file into memory; while in all parallel R methods, data
copy almost occupy the whole data preparation time. The upper three bars respectively
indicate the Euclidean (E), Pearson (P) and Spearman (S) calculation time. The bottom
three bars indicate the data preparation time.

7.4 Conclusion

This chapter uses an analysis application the hierarchical clustering algorithm in tranS-

MART to show how the Key Value model affects the whole analysis workflow. An op-

timization method is also provided for correlation calculations used by the hierarchical

clustering. The experiments in the performance evaluation section indicate the optimised

RHIPE can perform up to 16.56 times faster than vanilla R, while Snowfall can conduct

up to 9.68 times faster than vanilla R. Both the parallel R finished the long parallel Kendall

correlation with all subjects of TCGA within 7 hours and conducted about 30 times faster

than the estimated vanilla R. Compared to the traditional relational model, the optimized

Rhipe method using the Key Value model performs more than 7 times faster than the same

method using the relational model implemented in MySQL Cluster.
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Figure 7.16: This is the performance evaluation using vanilla R, optimised Snowfall and
optimised RHIPE package. The upper part of each figure indicates the total execution
time. In this part, the bottom three bars in each method show the data preparation time;
while the upper three bars respectively indicate the Euclidean (E), Pearson (P) and Spear-
man (S) calculation time. The lower part of each figure details the data preparation of
each method. In this part, data split shows the time used for splitting the large data matrix
into smaller pieces, data transfer for the Snowfall shows data copy time for the pieces to
corresponding MPI workers, data transfer for the RHIPE shows the data uploading time
for the same pieces to HDFS, system boot respectively shows the boot time of the MPI
cluster and the Hadoop cluster, and the direct load shows the data loading time for vanilla
R. Performance on ONCOLOGY dataset.
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Figure 7.17: This is the performance evaluation using vanilla R, optimised Snowfall and
optimised RHIPE package. The upper part of each figure indicates the total execution
time. In this part, the bottom three bars in each method show the data preparation time;
while the upper three bars respectively indicate the Euclidean (E), Pearson (P) and Spear-
man (S) calculation time. The lower part of each figure details the data preparation of
each method. In this part, data split shows the time used for splitting the large data matrix
into smaller pieces, data transfer for the Snowfall shows data copy time for the pieces to
corresponding MPI workers, data transfer for the RHIPE shows the data uploading time
for the same pieces to HDFS, system boot respectively shows the boot time of the MPI
cluster and the Hadoop cluster, and the direct load shows the data loading time for vanilla
R. Performance on the cross-study consisting of ONCOLOGY and LEukemia (4254 sub-
jects).
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Figure 7.18: This is the performance evaluation using vanilla R, optimised Snowfall and
optimised RHIPE package. The upper part of each figure indicates the total execution
time. In this part, the bottom three bars in each method show the data preparation time;
while the upper three bars respectively indicate the Euclidean (E), Pearson (P) and Spear-
man (S) calculation time. The lower part of each figure details the data preparation of
each method. In this part, data split shows the time used for splitting the large data matrix
into smaller pieces, data transfer for the Snowfall shows data copy time for the pieces to
corresponding MPI workers, data transfer for the RHIPE shows the data uploading time
for the same pieces to HDFS, system boot respectively shows the boot time of the MPI
cluster and the Hadoop cluster, and the direct load shows the data loading time for vanilla
R. Performance on the large artificial dataset (8508 subjects).



Chapter 8

Conclusion

8.1 Summary of Thesis Achievements

8.1.1 Generic -omics big data model

A generic omics Key Value data model has been created for molecular profiling data.

Three instances, including microarray data model, SNP data model and raw sequencing

data model have been implemented and fully evaluated. Finally, an application demon-

strates how Key Value models affect the performance.

8.1.2 Microarray Key Value model

A Key Value data model for microarray data is created and compared to the relational

model currently implemented in HBase, MySQL Cluster and MongoDB. The perfor-

mance evaluation experiments shows the Key Value data model implemented in HBase

outperformed the relational model implemented in HBase, MySQL Cluster and Mon-

goDB by up to 246, 7 and 20 times. When this Key Value implementation integrated into

156



8.1. Summary of Thesis Achievements 157

tranSMART, it performs up to 7 times faster than the current tranSMART.

8.1.3 SNP Key Value model

The SNP Key Value model is aimed at solving the performance issues faced in transla-

tional research data storage databases, due to the increasing volume of data being pro-

duced. In the performance evaluation tests, the Key Value model in HBase outperforms

the relational model on HBase and MySQL Cluster by up to 9-fold and 351-fold speedup

respectively. When integrated into tranSMART this Key Value implementation performs

up to 7 times faster than the current tranSMART.

8.1.4 Raw Sequencing Key Value model

The raw sequencing Key Value data model is designed for queries over genotype and

phenotype data, compared to the SAM data format implemented in HBase and a BAM

server. In the performance evaluation experiments, the Key Value data model performs

up to 440 and 22 times faster than the SAM format implemented in HBase and the BAM

server.

8.1.5 Gene expression based patient stratification application

The hierarchical clustering algorithm in tranSMART has been used as an analysis ap-

plication to show how the Key Value model affects the whole analysis workflow. An

optimization method is also provided for correlation calculations in the hierarchical clus-

tering. Compared to the traditional relational model, the optimized method using the Key

Value model performs more than 7 times faster than the same method using the relational

model implemented in MySQL Cluster.
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8.2 Future Work

8.2.1 Microarray Model

There are two query functions in HBase, Scan and Get. The current queries in the Key

Value data model are optimized manually by choosing to perform either a pure Scan

or pure Random Read operation. If a query optimizer built into the HBase system to

automatically generate query plans, a mixed dynamically selected query method may

perform better than choosing one or the other.

8.2.2 SNP Model

For queries by subject using the Subject table, the general SNP information are not stored

together with genotypes sharing the same Row Key. An extra random read operation is

required to read the general SNP information. The worst case is only one expected subject

in a dataset. Then the subject data loading time may be doubled due to the extra search

for SNP information.

8.2.3 Raw Sequencing Model

Extra disk space

The Key Value model is a space for time approach and consumes large disk space. For

example, in the performance evaluation section of Chapter 6, the BAM file size is 1.29

GB (the corresponding SAM is 5.69 GB), but HBase used 29.16 GB to store three copies

of the data. Each used 7.53 times of storage space of BAM. The main reason for this

large overhead is the column number. If a row contains N columns, the Row Key will



8.2. Future Work 159

be duplicated N-1 times. Further the composite Row Key in the Key Value model con-

tains multiple columns, which lead to a even larger overhead. A possible way to reduce

this overhead is to merge columns. If some columns are frequently used together, such

RNEXT and PNEXT, it is possible to reduce one Row Key space by merging column

RNEXT and column PNEXT into column RNEXT+PNEXT. When consider Family to-

gether, if a Family becomes smaller, query over the Family will be much faster than

a larger one. But when many Families are searched concurrently, the combination of

smaller Families may be even slower than the larger one. Also, new Families will lead to

extra copies of Row Key.

Long MML binning schema

In the most popular NGS sequencing machines, such as Illumina [Gen10] and SOLiD

[Dek07], the length of a RNA-Seq read is usually less than 300 bp. For example, the

raw sequencing dataset HG00096CH11 published in 1000 Genomes only contains reads

mapped to less than 200 bases. But if long mapped reads are emerging, the scan method

used in Chapter 6 may not be suitable. The whole dataset can be divided into two bins:

one containing reads whose MML is shorter than a certain number CLEN and the other

one containing all remaining raw sequences, including raw sequences with MML not

shorter than CLEN bases. Then a Long MML schema is required.

8.2.4 Coprocessors

HBase has very effective MapReduce integration for distributed computation over data

stored within its tables, but pushing the computation up to the server where the data can

be operated directly without communication overheads can give a dramatic performance

improvement over HBases already scanning performance.
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Before HBase-0.92, it was not possible to extend HBase with custom functionality ex-

cept by extending the base classes. But new Coprocessors feature of HBase [VS11], a

framework for both flexible and generic extension, and of distributed computation di-

rectly within the HBase server processes. The idea of HBase Coprocessors was inspired

by Googles BigTable coprocessors. Thus, many calculations, such as correlations and

tests [H+51, Law38, SB01], can be done in the server side without communication over-

heads.
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