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Abstract 15 

In this review we discuss a wide range of alternative approaches to the reduction of CO2 emissions 16 

associated with the manufacture of the binder phase in concrete. They are classified broadly as follows:  17 

(1) Use alternative fuels and/or alternative raw materials in the manufacture Portland-based cements. 18 
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(2) Replace Portland clinker with “low-carbon” supplementary cementitious materials (SCMs) in 19 

concrete. 20 

(3) Develop alternative low-carbon binders not based on Portland clinkers. 21 

The first approach mainly represents incremental improvements that can be achieved fairly easily and 22 

cheaply as long as suitable raw materials can be found. The second approach ranges from incremental 23 

improvements, if low levels of SCM substitution are used, all the way to major innovations for binders 24 

with very high Portland clinker replacement levels.  The third approach is the most risky but also holds 25 

the greatest promise for truly significant CO2 reductions if it can be implemented on a large scale. 26 

Keywords: Alternative binders, Blended cement (D), Cement manufacture (E), Hydration (A) 27 

 28 

1. Introduction 29 

The subject of this paper is mineral-based binders which, in their intended use, (but not necessarily 30 

considering their whole usage life cycle), result in the emission of a significantly lower CO2-equivalent 31 

volume of greenhouse gases (GHG) than the equivalent amount (as required for the intended use) of 32 

conventional Portland-cement-based binders.  In practice, the only greenhouse gas of concern here is 33 

CO2, as only very small amounts of other greenhouse gases are emitted in cement manufacture.  However, 34 

there is an important unresolved issue regarding the full life-cycle analysis, relating to in-use CO2 uptake.  35 

It is well known that Portland cement based concretes absorb atmospheric CO2 in service, the rate of this 36 

carbonation being dependent on the porosity of the concrete and the cross section of the concrete members, 37 
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as well as the exposure conditions.  Unfortunately, due to the variability of actual carbonation rates and 38 

the fact that excessive carbonation of steel-reinforced structural concrete is usually considered undesirable 39 

for durability reasons, it is difficult to determine the best way to take into account delayed carbonation of 40 

the binder in use.  Thus, comparisons are generally done by excluding any consideration of long-term 41 

CO2 uptake by the final product (concrete) over its use lifetime, and regulations relating to CO2 emissions 42 

do not take this re-absorption into account.  However, in this article we will make an exception to this 43 

rule by considering, in addition to hydraulic binders, certain binders that harden principally by carbonation.  44 

But it will be understood that such binders are primarily intended for use in precast products due to the 45 

need to provide a concentrated CO2 atmosphere for the curing process; and also that such products will 46 

typically be either unreinforced or else reinforced with materials that do not corrode significantly in a 47 

matrix at pH values typically well below the range needed to passivate mild steel.  These two constraints 48 

currently limit the types of construction product that can be made by means of carbonation hardening.  49 

 50 

In 2013, about 4 billion tons of Portland-based hydraulic cement was used globally, (about half of it in 51 

China) [1], and CO2 emissions from the cement industry amounted to over 5% of global anthropogenic 52 

CO2 emissions [2].  The principal use of cement is to make concrete, and the CO2 emissions associated 53 

with all of the other inputs to concrete can usually be neglected relative to that of the cement.  Concrete 54 

is amongst the most energy- and carbon-efficient of all man-made materials on a volume basis; however, 55 

given the well-established association between global anthropogenic CO2 emissions and global 56 
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environmental changes, we expect there to be a continuing societal need for reductions in industrial CO2 57 

emissions, and the cement industry will certainly not be exempted from this [3].   58 

Faced with this need, the Portland cement industry has several options, listed below in order of ease: 59 

(1) Use alternative fuels and/or alternative raw materials to reduce CO2 emissions for the manufacture of 60 

Portland-based cements. 61 

(2) Replace Portland clinker to the greatest extent possible with low-carbon Supplementary Cementitious 62 

Materials (SCM) in concrete (whether added with the cement or directly into the concrete mix). 63 

(3) Develop alternative low-carbon binders not based on Portland clinkers, (and requiring new standards). 64 

(4) Capture and sequestrate the CO2 emitted by cement plants. 65 

Note that the first two options can each be split into two subsets, depending on whether or not the final 66 

product conforms or not to existing cement and concrete norms or standards in the country concerned.  67 

The question of standards is a complex one, because major reductions in CO2 emissions are likely to 68 

require significant changes in cement and concrete norms, but such changes are likely to be slow, mainly 69 

because of the need to prove the durability of the resulting concretes in service. 70 

There is one other important approach not listed above that can be considered if one looks at the use of 71 

concrete on a functional basis: the use of ultra-high-strength concretes to produce structures which achieve 72 

performance equivalent to that of more conventional concrete structures but use a significantly smaller 73 

volume of concrete.  But, for simplicity, we will restrict the discussion in this paper to reducing the 74 

carbon footprint of concrete on a volumetric performance-equivalent basis. 75 
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Inclusion of the use of alternative fuels under the heading “low-carbon” is somewhat questionable on 76 

scientific grounds, because it does not necessarily reduce CO2 emissions per unit of product; but it is one 77 

of the least costly approaches available to the cement industry, and it is permitted by carbon emissions 78 

regulations in certain circumstances, so it has been included here.  The use of alternative raw materials in 79 

kiln feeds reduces specific CO2 emissions mainly in cases where a significant fraction of the necessary 80 

calcium for the clinker is provided in a de-carbonated form, but sources of such alternative raw materials 81 

are very limited, so, on a global basis, this approach is unlikely to have a large impact.   82 

In most parts of the world, the conventional approach to reducing the carbon footprint of concrete (per unit 83 

volume) remains the partial replacement of Portland clinker with SCMs.  This can reduce the specific 84 

CO2 emissions of concrete provided that the SCM is a low-carbon material (e.g. an industrial waste 85 

product such as fly ash) or a natural raw material requiring little processing (e.g. a natural pozzolan).  But 86 

the local availability of such materials of adequate quality is also very limited, so there may well be a need 87 

to make equivalent materials (e.g. calcined clays as artificial pozzolans) provided that their manufacture is 88 

low enough in CO2 emissions compared to Portland clinker.  89 

Note also that the subject of alkali-activated binders, which also falls under option (3), will not be treated 90 

here, as it will be the subject of a separate review paper in this issue.  Option (4) is also considered to be 91 

beyond the scope of this article.  In the remainder of this article, section 2 deals primarily with 92 

approaches that attempt to keep the resulting cements as close as possible to what is covered by existing 93 

standards, while section 3 mainly covers approaches that require us to go well beyond existing norms.  94 
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2. Alternative fuels and raw materials for the manufacture of Portland-based cements 95 

In Japan, use of waste tires as alternative fuel started in 1980 or around that time [4]. Alternative fuels 96 

commonly used in cement manufacturing include tires, sludge, waste oil, plastics, fabrics and biomass, etc. 97 

Heat can be recovered from waste oil, plastics or other wastes, which were previously simply incinerated, 98 

by recycling as heat source. Use of alternative fuels leads to reduction of CO2 emissions in the sense of 99 

reduced use of fossil fuel. 100 

Replacement of conventional fuels in the cement industry with biomass or wastes is in progress in many 101 

countries. The replacement ratio is close to 100% at advanced manufacturing facilities. As shown in Fig.1 102 

[5], there is highly variable level of replacement ratios among countries and periods. According to the 103 

Cement Technology Roadmap 2009 by the IEA and WBCSD [2], the alternative fuel ratio was 16% in 104 

developed countries and 5% in developing countries in 2006 and is expected to increase to 40% to 60% 105 

and 10% to 20%, respectively, by 2030. 106 

The amount of CO2 produced by decarbonation of limestone in cement kiln feed can be reduced by 107 

increasing CaO input from alternative raw materials, if suitable CaO-rich materials can be found locally. 108 

The use of CaO-rich wastes and by-products as raw materials in the cement industry leads not only to 109 

reduced CO2 emissions but to prolonged life of landfills as well as preservation of natural resources. 110 

Recent figures suggest that alternative raw materials and alternative fuel ash account for 3% to 4% of 111 

kiln-feed raw materials in Europe [6].  112 

Fig.2 shows the alternative raw materials ratio and the clinker/cement ratio of some cement companies. 113 
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The values in Fig.2 were determined by the WBCSD procedure [7] and were reported on the companies’ 114 

websites. “The alternative raw materials ratio” is consumption of alternative raw materials as a percentage 115 

of total raw materials (including SCM) for cement production. “The clinker/cement ratio” is calculated 116 

based on total clinker consumption and cement production (%). The companies in category I in Fig.2 are 117 

considered to be producing mainly Portland cement using conventional raw materials. The companies 118 

which are producing a certain amount of blended cement with SCM such as fly ash and blastfurnace slag, 119 

are considered to be in category IV. Also, the companies which are producing a certain amount of blended 120 

cement with conventional raw materials such as limestone powder, are considered to be in the category III. 121 

On the other hand, the companies in category II are producing mainly Portland cement with a certain 122 

amount of wastes and by-products. This tendency is particularly notable in the Japanese company. 123 

The use of wastes and by-products in cement production is very high in Japan, reaching 320 kg/t of 124 

Portland cement in 2011 [8]. The amount of waste and by-products received by the Japanese cement 125 

industry in 2011 was 27 million tons (Table 1 [9]), which was equivalent to about 7% of the total industrial 126 

waste production of the same year, 381 million tons [10]. Recycling the wastes which are difficult for use 127 

in other industries will significantly contribute to environmental protection as well as to CO2 emission 128 

reduction. Further discussion is necessary to express these contributions to reduce wastes of cement 129 

industry properly. With recent efforts in environmental protection, the recycle rates of many types of 130 

wastes have been increased. The increase in recycle rates was significant especially in sewage sludge, 131 

waste plastics and coal ash in Japan. This increased level of demand for recycling has even caused 132 
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competitive situations to arise in the acquisition of some wastes and by-products [11].  133 

Burning fuels produces residues containing mainly SiO2 and Al2O3 from coal and mainly Fe2O3 from steel 134 

in waste tires. However, these can be again recycled as main components of the raw materials in cement 135 

production, without leaving any by-products from the waste use. The other advantage is that organic 136 

matters contained in alternative fuels and raw materials are degradable at high temperatures. On the other 137 

hand, alternative fuels or raw materials may sometimes contain minor elements or heavy metals. In 138 

addition, burnability of alternative raw materials is different from that of natural raw materials and thus 139 

changes the burning pattern in the kiln. Careful control is required because such factors as minor elements 140 

and burnability may affect quality performance of cement. The following section describes influences of 141 

minor elements and some alternative raw materials. 142 

 143 

2.1 Influences of minor elements 144 

Waste and by-products recycled as alternative fuels or raw materials can contain minor elements that have 145 

adverse effects on quality of cement or the environment. Minor element contents and their influences must 146 

be assessed precisely in determining practical usability, requirements for use and control methods for 147 

waste and by-products. Many studies have already been done [12] and more studies are under way [13] 148 

[14] on the influences of minor elements which do not allow general prediction due to their variations 149 

depending on many factors including the amounts, types and combinations of minor elements as well as 150 

main components of clinker raw materials. 151 



 

9 

Minor elements can also affect the mineral proportions of clinker. The conventional method for predicting 152 

the mineralogical composition of clinker is calculation by the Bogue equations. However, it has been 153 

pointed out that discrepancy between the actual mineral contents and those obtained by Bogue calculation 154 

becomes larger with the increase in minor element input (e.g., P2O5 and SO3) from the increased waste and 155 

by-products in cement raw materials, or with the change in cooling conditions [15] [16]. As a solution to 156 

this problem, XRD/Rietveld analysis has been introduced at many plants for quantitative analysis of 157 

minerals. In addition, trials have been made for applying the XRD/Rietveld analysis results to quality 158 

prediction and analysis at production sites. For example, there are reports on development of a system 159 

which enables efficient control of production operation conditions and prediction of cement properties 160 

through an original analysis flow using data from XRD/Rietveld analysis and other process parameters 161 

[17][18]. With this system it is now possible, at the time of production, to predict changes the compressive 162 

strength of the cement and other test data which are usually not available until a certain age is reached. 163 

This system is also capable of providing rapid prediction of changes in product quality with the use of new 164 

fuels and raw materials at a given cement plant. When put in practical operation at production facilities, 165 

this kind of system will greatly contribute to enhanced consistency of cement quality. 166 

Although the mineral composition of a cement can be obtained by XRD/Rietveld analysis, it is more 167 

difficult to evaluate the reactivities of the individual clinker phases. The reactivity of belite is an important 168 

factor for the usability of belite rich cement, which is produced from with a kiln feed with a lower 169 

limestone content than normal. Recently, some studies were reported about how the reactivity and crystal 170 
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structures of pure alite and belite would change when different types of impurities (minor elements) were 171 

added in different quantities [19][20]. Durgun et al. reported that quantitative analysis results on the 172 

charge localization revealed that some impurities or some combinations of them could have favorable 173 

effects on belite reactivity (e.g., Li, K, Be, Sr, B, Al, B+P, Al+P and Li+P) [19]. From the comparison 174 

between the crystal energy and the cement characteristics, Sakurada et al. considered that a -C2S crystal 175 

in which a Ca(2) atom having 8-fold coordination is substituted by one K atom or one Sr atom is less 176 

stable compared with the structure in which a Ca(1) atom having 7-fold coordination is substituted by one 177 

K atom or one Sr atom in (Table 2) [20]. There will be practically an unlimited number of combinations of 178 

impurities, so a very large number of such analyses is needed if one follows this approach. It is expected 179 

that further analytical research on crystal structures and other factors in addition to experimental approach 180 

will lead to some practical proposal about the influence of minor elements and their effective use. A 181 

quality control technique combined with a conduction calorimeter was recently proposed for direct 182 

evaluation of reactivity of minerals [21]. More investigation is needed for the development of new 183 

analytical techniques. 184 

 185 

2.2 Municipal waste incinerator ash 186 

Municipal waste is treated in many different ways. In the EU in 2008, 19.5% was incinerated, 41.0% was 187 

recycled directly, and 39.5% was sent to landfills [11]. Annual generation of municipal waste in Japan was 188 

45.4 million tons in 2011, with most of it incinerated for reduction in volume. Incineration for volume 189 
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reduction accounted for 93.6% of the total generation, with 8.7 million tons of incinerator ash produced 190 

[22]. Incinerator ash directly sent to final disposal amounted to 4.8 million tons. As shown in Table 3 [23], 191 

the main components contained municipal waste incinerator ash are CaO, SiO2, Fe2O3 and Al2O3, but in 192 

proportions very different to those of cement kiln feeds. The content of CaO in incinerator ash is highest in 193 

cases where CaO is blown into an incinerator to control HCl gas generation. Some reports are available 194 

about the use of municipal waste incinerator ash as cement raw material [24][25].  The major issues in 195 

using municipal waste incinerator ash as a cement kiln feed component are as follows: ratio of Al2O3 is 196 

high for a main component compared to clay in natural raw materials; chloride ions contents are often 197 

very high; and some heavy metals are also present. Pre-treatment of ash is proposed as a solution to the 198 

problems of chloride ions and heavy metals [26][27]. 199 

Incinerator ash consists of bottom ash and fly ash. The content of chloride in bottom ash is only about 0.4 200 

to 3%, while that in the fly ash is about 5 to 20% [27]. Therefore, the fly ash cannot be directly used as a 201 

cement raw material but needs to be pre-treated for desalting. When fly ash is desalted simply by washing, 202 

the chloride removal rate remains low due to the chloride ions present as Friedel’s salt. However, Friedel’s 203 

salt can be degraded by blowing in carbon dioxide derived from kiln exhaust gas which decreases pH to 204 

about 7.2 to 10.1 [27]. As a result, chloride ion concentration of fly ash is reduced to around 0.5% after 205 

washing. Calcium ions eluted from Friedel’s salt bond with carbonate ions to form calcium carbonate. Fig 206 

3 shows these process flows of a plant [28]. Filtrate from the washing and desalting process is neutralized 207 

using kiln exhaust gas [29]. Bottom ash is used as alternative to clay in cement raw materials after 208 
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removing metals and debris. The Kumagaya plant in Saitama prefecture, Japan, installed the ash washing 209 

facility in 2001 and is capable of accepting 60,000 tons of bottom ash and fly ash every year, about a 210 

quarter of the total municipal waste incinerator ash discharged from Saitama prefecture. When 67.2 211 

kg/t-cement of cement raw material is replaced by municipal waste incinerator ash, the amount of CO2 212 

emitted by the cement production process is decreased by 22.3kg/t-cement, but producing the ash itself 213 

accounts for CO2 emissions of 6.14kg/t-cement, so the net CO2 emissions are reduced by 16.2kg/t-cement 214 

by this process [30]. 215 

 216 

2.3 Pulverized waste concrete 217 

Concrete accounts for about 45% of construction waste [31]. Many studies have been made on waste 218 

concrete recycling, and standards have been established for separated and recycled aggregate (e.g. JIS A 219 

5021:2011). However, pulverized concrete from the aggregate recycling process has not been re-used 220 

efficiently. Cement paste, which is a major conponent of pulverized concrete, contains high concentrations 221 

of CaO, as shown in Table 4 [32]. Reusing it as clinker raw material will contribute to CO2 emission 222 

reduction. NEDO conducted a comprehensive study related to CO2 reduction techniques in cement 223 

industry in 2010 [33]. The study reported that factors that limit CO2 reduction by reuse of pulverized 224 

concrete include alkali derived from aggregate and CO2 generated during transport. The heat treatment and 225 

abrasion method currently provides the lowest possible aggregate content in pulverized concrete 226 

(aggregate content: 33.0%; CaO content 31.0%). However, use of pulverized concrete obtained by this 227 
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method results in not more than about a 2% reduction in CO2 emissions. The reduction rate will increase 228 

to about 10% if a new technique is made available that can reduce the aggregate content in the pulverized 229 

concrete to 2.4% (CaO content: 45.2%). Choi et al. [34] recently reported a technique for easy separation 230 

of aggregate from cement paste by applying inorganic materials such as cement and pozzolanic materials 231 

to the aggregate surfaces and employing microwave heating to manufacture recycled aggregate. This 232 

technique enables reducing CO2 emissions from aggregate recycling to about one third those by 233 

conventional methods. The other effective approach is to promote use of concrete using limestone 234 

aggregate with low contents of alkalis and SiO2. This approach allows for using most part of waste 235 

concrete including aggregate as clinker raw material. However, it is only available for those areas that 236 

have abundant limestone. 237 

 238 

2.4 Modified Portland cement made using municipal waste incinerator ash as main raw material  239 

Standards for modified Portland cements made using municipal waste incinerator ash as a major raw 240 

material were established in Japan in 2002. Municipal waste incinerator ash contains high concentrations 241 

of chloride, as mentioned in 2.2. However, the “Ecocement” manufacturing process uses municipal waste 242 

incinerator ash in a large volume as clinker raw material, without requiring any pre-treatment like washing 243 

[35]. Chlorine contained in incinerator ash is utilized as a primary mineral component (C11A7·CaCl2) in 244 

Rapid Hardening Ecocement. The rapid hardening properties of the cement are provided by the high 245 

hydration reactivity of C11A7·CaCl2. Ordinary Ecocement was developed on the basis of the 246 
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manufacturing know-how of rapid hardening Ecocement, adjusting volatile-element contents and removal 247 

of chloride ions in the manufacturing process. Ordinary Ecocement consists of similar mineral 248 

components to OPC. Table 5 [23] shows an example of mix proportions of raw materials of Ordinary 249 

Ecocement. Although mineral compositions are similar, limestone content in Ordinary Ecocement is lower 250 

than that in OPC by about 26% as shown in Table 5 due to the presence of CaO in municipal waste 251 

incinerator ash. 252 

Dioxins brought in raw material with incinerator ash are completely decomposed at above 800C. Kiln 253 

exhaust gas needs to be cooled rapidly to below 250C to prevent re-formation of dioxins. Heavy metals 254 

brought in with incinerator ash can be removed as chlorides in the process of volatilization and removal of 255 

chloride ions during the manufacturing of Ecocement. These heavy metals from chloride-containing dust 256 

are recovered by attached equipment (HMX) [36] and reused at a refinery, leaving no waste from this 257 

process. Since aggregation of chloride can lead to clogging and blockage of a cyclone, raw material of 258 

Ecocement is fed directly into a rotary kiln, without using a suspension preheater (Fig.4). This difference 259 

in processes results in a larger heat demand of the Ecocement manufacturing. As a result, despite the low 260 

limestone content in raw materials, CO2 production per ton of Ecocement is almost equal to that of OPC 261 

[37]. It is expected that combination use of some other desalting technique will enable more effective 262 

energy conservation and CO2 emission reduction in the production of Ecocement by allowing using more 263 

energy efficient manufacturing process. 264 

Due to higher contents of Al2O3 in municipal waste incinerator ash than those in clay, C3A content in the 265 
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Ordinary Ecocement clinker is slightly higher than that in OPC as shown in Table 6 [23]. Ordinary 266 

Ecocement which satisfies the JIS requirements for OPC, except for its slightly higher SO3 content (about 267 

3.5%) and presence of chloride ions (about 500 ppm), has a wide range of applications [38]. Actual quality 268 

values of Ordinary Ecocement are equivalent to those of the 42.5 N/mm2 class specified in EN197-1:2000, 269 

proving its adequate performance as general purpose cement that satisfies the international standard 270 

requirements. The high C3A clinker which is the base material of Ordinary Ecocement not only enables 271 

large quantity use of the waste-derived alternative raw materials in its production, but it also reportedly 272 

achieves reduction of porosity and densification of microstructure through generation of carboaluminate 273 

hydrates in reaction with limestone powder of additives, contributing to enhanced strength development 274 

[39]. Some recent research focuses on this reaction to use the high C3A clinker as base material of 275 

limestone filler cement with SCM [40]. Well-balanced design can be established by using such cements, 276 

achieving both effective use of waste as clinker raw materials and reduction in cement-related CO2 277 

emissions. Further verification will be made to put it into practical use in future. The reaction between C3A 278 

and CaCO3 will be treated in more detail in 3.1 279 

Ecocement is defined as a cement using 500 kg or more of waste per ton of production (JIS R 5214:2009). 280 

The amount of waste actually used in the manufacturing of Ordinary Ecocement is usually more than 600 281 

kg/t-cement which is very much larger than that used for OPC. Ecocement also provides a new business 282 

model of cement where small-scale production less than one tenth the conventional system is established 283 

in suburban locations with a good balance between waste disposal cost and manufacturing cost. This 284 
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presents an example of how future cement manufacturing could be. To make an Ecocement plant 285 

commercially feasible, more than 50,000 tons of municipal waste incinerator ash must be available 286 

annually in its vicinity [41]. A Ecocement plant operated in Nishitama, Tokyo, is capable of accepting 287 

about 94,000 tons of municipal waste incinerator ash which was equivalent to waste from a population of 288 

about 3,800,000 and is manufacturing about 130,000 tons of Ordinary Ecocement annually. 289 

 290 

2.5 Belite-melilite clinker – a modified Portland clinker or a novel class of SCM? 291 

Although coal ash and sewage sludge ash can be used as alternative to clay in Portland cement clinker raw 292 

materials, they tend to be higher in Al2O3 content and lower in SiO2 content compared to natural clay.  If 293 

they are used to manufacture Portland cement clinker, the resulting clinker will have an unusually high 294 

C3A content, increasing its potential for problems both at early ages (for example, poor concrete rheology) 295 

and at later ages (for example, reduced sulfate resistance).  Such cements also fall outside the existing 296 

norms in many countries.  There are two rather different ways of tackling this problem.  The first 297 

requires that the excess Al2O3 content be rendered effectively inert at early ages.  This approach is dealt 298 

with in this section.  The second approach is to try and take full advantage of the excess Al2O3 content of 299 

the alternative raw materials to make cements which can use this Al2O3 more effectively to generate 300 

strength.  The latter approach will be treated in section 3.3 of this paper.    301 

To counter the increase of Al2O3 in clinker resulting from the use of alternative raw materials, new clinkers 302 

are being developed in which the Al2O3 is fixed in melilite. Early reports claimed that melilite could 303 
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provide densification of the concrete microstructure through carbonation, thereby contributing to strength 304 

enhancement at later ages [42][43], but carbonation hardening, which will be treated in more detail in 305 

section (3), is not equivalent to hydraulic hardening.  More recently, belite-melilite clinkers obtained by 306 

burning asbestos-containing slate boards have been shown to be effective as an SCM which can be 307 

substituted for up to 20% OPC clinker without causing problems in cement quality [44]. Another study 308 

investigates synthesis and evaluation of belite-melilite cement made using lignite fly ash as raw material 309 

[45]. That experimental study tested various mineral compositions in the specimens, finding all of them 310 

inferior to OPC in strength development. On the other hand, another report argues that strength 311 

development equivalent to OPC can be achieved with compositions in a similar range by adding alkali and 312 

cooling with water after burning [46]. 313 

Belite can coexist with melilite in the system CaO-SiO2-Al2O3 at clinkering temperatures. Kurokawa et al. 314 

carried out analyses on belite-melilite clinkers of a wide range of composition manufactured at a 315 

commercial plant [47]. As shown in Fig.5, they found that generation of a calcium silicate phase plus 316 

melilite was strongly dependent on the C/S ratio in the clinker, and that clinker consisting mainly of belite 317 

and melilite could be obtained at a C/S ratio of 1.7 to 1.9. The generation of calcium aluminates increased 318 

at C/S ratios of over 1.9, but it was successfully suppressed by increasing Fe2O3. As shown in Fig.6, 319 

mixing belite-melilite cement with OPC at a ratio of 20% or below provided strength development of the 320 

52.5 N/mm2 class, and mixing belite-melilite cement at a ratio of 30% or below provided strength 321 

development of the 42.5 N/mm2 class. At a belite-melilite cement mix ratio of below 30%, strength 322 
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equivalent to OPC was obtained after moist curing for about one year.  323 

As mentioned before, the reactivity of belite-melilite cement can be improved by the addition of certain 324 

minor elements. Kurokawa et al. reported that increasing P2O5 content in belite-melilite clinker resulted in 325 

activated belite and enhanced strength especially after the age of 91 days[47]. The other finding was the 326 

concentration of P2O5 in belite which was thought to have contributed to the improved strength 327 

development of belite-melilite cement. It was also found that strength development equivalent to OPC 328 

could be obtained even with belite-melilite cement mixed at 10% in base OPC which had a Blaine specific 329 

surface area about 300 cm2/g larger than that of OPC. This technique is reported to increase the amount of 330 

waste per ton of cement as raw materials by about 30 kg [48]. The amount of limestone used per ton of 331 

cement is thus expected to decrease by a similar amount. 332 

Since Al2O3 in belite-melilite clinker is mostly fixed in melilite, reduced fluidity and other problems of 333 

cement quality are reduced even with an increase in the Al2O3 content of clinker raw materials. These 334 

clinkers can be made in conventional cement kilns, and the absence of alite permits a burning zone 335 

temperature about 150C lower than for OPC [49], which is expected to save energy.   336 

 337 

2.6 Portland clinkers burned at low temperatures by the use of mineralizers 338 

Some of the minor elements derived from alternative fuels and raw materials as described in 2.1 can help 339 

lower clinker burning temperatures. For example, fluorine contained in sludge acts as a mineralizer and 340 

thus lowers clinker burning temperature. On the other hand, an increase in fluorine content in clinker was 341 
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thought to cause delays in setting, decreases in early strengths and other quality problems in the cement 342 

[50][51]. It was found in the 1970s that this issue could be solved by combinations of fluorine compounds 343 

with sulfates, and many related papers were published during 1980s. Practical applications using existing 344 

kilns have been reported since 1990. Effect clinker burning temperature reductions in actual kilns has been 345 

demonstrated by Aalborg Portland. Using a semi-dry two-stage NSP (“new suspension preheater”) kiln 346 

with a daily output of 5,000 tons, burning temperature was successfully lowered from 1500C to 1350C, 347 

with heat consumption reduced by about 3% [52]. As described later, a recent study investigates the 348 

addition of mineralizer as a technique for energy saving cement manufacturing [40]. It is reported that 349 

clinkers using mineralizer tend to be pulverized or powdered due to the decreased viscosity of liquid phase 350 

or similar causes. Also, the nodule sizes of C2S rich clinker (low heat Portland cement clinker) tend to be 351 

smaller mainly because of lack of liquid phase. A study is being made on a technique for accurate burning 352 

point measurement under such conditions by measuring the spectrum inside the kiln [40]. There is also a 353 

study for estimation and control of clinker nodule sizes which are known to have an influence on the 354 

cooling efficiency at the cooler, based on the contents and viscosity values of liquid phase components.  355 

Although many minor elements have been reported to have potential as mineralizer or fluxing agent [53], 356 

other mineralizers than F and SO3 are not likely to have been put in actual use. Fluorine is available 357 

cheaply in some natural raw materials and also in industrial wastes, while sulfur is available cheaply in 358 

high-SO3 petroleum cokes. However, Helmy et al. reported that use of granulated slag as alternative raw 359 

material of clinker showed significant effect as mineralizer [54]. This suggests that not only minor 360 
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elements but also types of raw materials (degree of crystallization) influence the burnability of clinker.  361 

 362 

2.7 Evaluation of heat consumption of several new cement clinkers 363 

In relation to the low temperature burned clinker described in 3.3, it has been pointed out that ratio of heat 364 

consumption reduction with the decrease in burning temperature should be evaluated with not only the 365 

rotary kiln but the whole cement manufacturing process taken into account in calculation[55]. Suemasu et 366 

al. developed a new simulator based on a rotary kiln simulator KilnSimu by expanding the range of 367 

calculation to include the processes of raw material preheating, clinker burning and cooling so that the 368 

whole clinker manufacturing process could be taken into account [56]. They further enhanced the 369 

simulator capable of more precise reproduction of the phenomena inside an actual kiln by coupling the 370 

thermal fluid analysis program Fluent. These studies related to the use of mineralizer for energy saving 371 

cement manufacturing are conducted as a project by the Ministry of Economy, Trade and Industry (METI) 372 

of Japan [40]. 373 

Table 7 shows quantitative evaluation of heat consumption of some of the new clinkers described in this 374 

Chapter. In this evaluation, the heat consumptions were calculated on the assumption that cements were 375 

produced in a conventional kiln. Little heat reduction effect was found when C3A content was increased by 376 

4% from a conventional level. However, 7.6% reduction was expected in heat consumption with F = 0.2% 377 

and SO3 = 4.0% as mineralizers.  Belite sulfo-aluminate cements with 40% and 60% of ye’elimite were 378 

estimated to provide reduction of 21.1% and 24.8%, respectively, in heat consumption. When raw 379 
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materials contain volatile components such as F and SO3, attention needs to be paid to the influence of the 380 

increased amount of sulfur circulating within the kiln which causes increased sulfate deposits on the walls 381 

and affects stable operation of the kiln. The difference in performance between a new clinker and OPC is 382 

likely to be larger as the difference in their chemical compositions is larger. In investigating practical 383 

application of new materials, due consideration should be given not only to CO2 emissions and heat 384 

consumption but also to stable operation of the manufacturing process and performance of the products. 385 

 386 

3. What can be done to make even more carbon-efficient hydraulic binders? 387 

3.1 How might we increase the efficiency of Portland-SCM combinations? 388 

Optimization of the replacement of Portland clinker with SCMs involves four main scientific issues:   389 

(i) How do the properties of the hardened binder depend on its composition and microstructure? 390 

(ii) What should the ideal proportions be, from a thermodynamic (equilibrium) viewpoint? 391 

(iii) How might these proportions be modified in practice by reaction rate (kinetic) issues? 392 

(iv) How might these proportions be modified in practice by fresh concrete placement issues? 393 

Clearly, the above questions cannot be completely separated, as all of the issues become intertwined in 394 

practice.  But they must all be answered to some extent in order to provide the industry with a set of 395 

effective rules to help it design optimal or near optimal binder compositions in order to minimize carbon 396 

footprint (and/or other parameters, such as unit cost,) when using a given basis set of locally-available raw 397 

materials. 398 



 

22 

Considering that most applications of hydraulic binders are predicated on achieving the desired long-term 399 

mechanical properties, (e.g. compressive strength of concrete after curing, etc.,) it seems important to deal 400 

with issue (i) in the above list first.  For many decades, the relationship between mechanical strength and 401 

hydrated cement composition for Portland cement based concretes has been treated reasonably well by 402 

Powers’ “gel-space ratio” (GSR) approach [57], in which it is assumed that the combined hydration 403 

products of a Portland cement can be considered to be a homogeneous “gel” which fills the “capillary” 404 

spaces between the residual anhydrous cement grains and other non-reacting solid particles (fillers or 405 

aggregates) that may be present after hydration for any given time.  In this case, the GSR value is the 406 

fraction obtained by dividing the total volume of all the cement hydrates (Vh) by the sum of itself plus the 407 

total residual “capillary” space, Øcap, between all unreacted solid particles, (including aggregates, fillers, 408 

and unreacted cores of partly hydrated cement particles): 409 

GSR = Vh/(Vh + Øcap)      410 

Powers’ observed that the compressive strengths of hydrated Portland cement-based pastes, mortars or 411 

concretes varied in proportion to (GSR)x, where x is a positive exponent.  Only two constants are 412 

required in this relationship: the value of x, and the (hypothetical maximum) strength at GSR=1. 413 

However, it is found that different calibration constants are required for this relationship for cements that 414 

are somewhat different to conventional Portland cements.  This complicates the use of GSR to predict 415 

strengths, especially for modern complex binder systems incorporating significant fractions of SCMs.  416 

But it has recently been shown [58] that the general form of this relationship can still be used if the 417 



 

23 

volumes and roles of the various hydrates are correctly taken into account.  By means of a 418 

homogenization approach (explained in detail in ref. [59]) it was shown that, for hydrated binder systems 419 

containing major volume fractions of C-S-H, the best correlations with strength can be obtained by 420 

treating the C-S-H plus the porosity as a continuous, percolating porous binder phase, or “foam,” while all 421 

of the other solid phases, including all of the observed crystalline hydrates (e.g. portlandite, ettringite, 422 

AFm phases, etc.,) and also anhydrous phases (residual unhydrated clinker, calcium carbonates, and other 423 

unreactive phases found in fillers or aggregates,) can be treated as simply as solid inclusions dispersed in 424 

this “C-S-H foam.”  What this means is that C-S-H tends to be the most finely-divided solid phase in the 425 

microstructure, and the porosity is effectively “well-mixed” with the C-S-H.  So a porous C-S-H phase 426 

(“foam”) percolates the spaces between the other, more crystalline (and thus coarser and also usually 427 

stronger) solid phases.  This porous C-S-H foam is essentially the glue that holds everything together; but 428 

it is also the weakest link in the system, from a mechanical viewpoint, which is why it dominates the 429 

relationship used to calculate the strength.  It is, however, very important to note that this type of 430 

relationship does not imply that the crystalline hydrates do not contribute to strength.  Their contribution 431 

is all the more important to the extent that they increase the hydrated solid volume by binding large 432 

amounts of water.  It is just that they appear in the GSR in a different place than the C-S-H, because they 433 

serve to reduce the residual capillary porosity, Øcap. 434 

Although this new GSR approach is not yet fully validated for all of the binder systems of potential 435 

interest here, and especially for systems with very low Portland clinker contents in which the binding 436 
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matrix itself may be very different from that found in ordinary Portland cement pastes, it nevertheless 437 

opens up the possibility that one may, in the near future, be able to make fairly accurate predictions of the 438 

compressive strength (as a function of degree of hydration and initial water/binder ratio) for 439 

Portland-cement binders with a very wide range of SCM types and clinker replacement levels. 440 

The second issue to deal with is the question of the “ideal” phase assemblage.  From a durability 441 

viewpoint, we would like the hardened cement paste to comprise only stable phases over the whole range 442 

of environmental conditions to which we expect the final product (concrete) to be exposed.  There is a 443 

reasonably complete thermodynamic data base covering the main hydrates in the system 444 

CaO-SiO2-Al2O3-Fe2O3-SO3-H2O at temperatures of 0-60°C [60], and the chemical effects of the main 445 

secondary components that we usually encounter, (MgO, Na2O, K2O, CO2,) are also reasonably well 446 

understood.  However, the issue of true thermodynamic stability remains a difficult one, because several 447 

apparently metastable phases seem to persist indefinitely in practice.  For example, the amorphous C-S-H 448 

phase, which is the dominant hydrate phase in Portland-based binder systems, is theoretically metastable 449 

with respect to a mixture of crystalline tobermorite and portlandite over the temperature range of interest.  450 

So, in thermodynamic calculations, formation of tobermorite must be specifically forbidden in order to get 451 

realistic predictions.  Part of the problem may be related to the fact that Al2O3 has significant solubility in 452 

C-S-H, so the true amorphous percolating hydrate is actually C-S(A)-H; but full thermodynamic data on 453 

this solid solution are not yet available.  The distribution of Al between the major phases is also 454 

apparently subject to strong kinetic limitations, because in many Portland-based cement systems certain 455 
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members of the large range of possible hydrogarnet solid solution phases {of general composition 456 

C3(A(1-x)Fx)(SyH(6-2y))} appear to be thermodynamically stable over a wide range of temperatures, but in 457 

practice they do not form to any great extent, so they too must be artificially excluded from the 458 

calculations.  But both hydrogarnets and tobermorites form far more readily in cements cured at 459 

temperatures well above 60°C, so it appears that crystal growth kinetics is a very important but still poorly 460 

understood factor in Portland-SCM systems. 461 

Regarding crystalline aluminate hydrates, the amount of water bound in solid form per mole of Al2O3 462 

varies very widely amongst the possible products, being highest in ettringite (H/A = 32), intermediate in 463 

AFm phases (H/A = 11-19), and low in hydrated alumina and hydrogarnet phases (H/A ≤ 3).  Thus, from 464 

the viewpoint of converting liquid water into space-filling solid phases, and thereby increasing GSR, the 465 

formation of ettringite would appear to be the most efficient way to use the aluminium in the binder.  In 466 

hydrating Portland-based cement systems at normal exposure temperatures, ettringite is stable relative to 467 

aluminate phases with lower H/A ratios as long as sufficient soluble calcium sulfate is still available.  In 468 

practice, however, we are unable to take advantage of this fact for kinetic reasons.  This is because the 469 

addition of the amount of (calcium) sulfate needed to convert all of the aluminium to ettringite (i.e. to give 470 

a Š/A molar ratio of 3 in the binder) results in strongly retarded hydration of the aluminate phases (C3A 471 

and C4AF) in Portland clinker, with the result that most of the ettringite forms very slowly over a long 472 

period of time, well after a rigid skeleton is formed with C-S-H as the main binder; and this slow ettringite 473 

formation is usually expansive and often leads to strength loss (which we refer to here as the “ettringite 474 
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formation problem.”) Thus, all norms for Portland-based cements contain tight limits on sulfate content in 475 

order to protect users from this problem; but this comes at the expense of a rather inefficient use of 476 

sulfates and the aluminate phases in such binders. This is all the more true in cases where a significant 477 

fraction of the aluminate is contained in SCMs, (as it often is,) since the sulfate limits on such cements 478 

have been developed for Portland cements with fairly low total aluminate contents; and also because the 479 

aluminate in the SCMs itself also reacts too slowly and thus cannot be used to make more useful 480 

(strength-giving) ettringite – another manifestation of the ettringite formation problem.   481 

The realization that the aluminates are not being used to their greatest potential in modern blended 482 

Portland cement binders has, over recent years, forced a rethinking of our approach to reducing the carbon 483 

footprint of hydraulic cements.  One approach has been to redesign clinker compositions to try and avoid 484 

the ettringite formation problem.  This approach was initially inspired by the observation that one 485 

well-known class of calcium aluminosilicates-based binders - supersulfated blast-furnace slag cements - 486 

manages to avoid the problem of expansive ettringite formation.  Such cements contain essentially all of 487 

their aluminate intimately mixed with silicate and calcium oxide in the ground granulated slag - a uniform 488 

glassy anhydrous phase with relatively low C/(A+S) and high A/S ratios compared to those of Portland 489 

clinker.  It is observed that supersulfated cements can be hydrated together with sufficient calcium sulfate 490 

to give ettringite plus a relatively low-lime amorphous C-S-H as the two main hydrate phases, and such 491 

cements show no problem of either slow expansion or strength loss.  This may be due to the 492 

simultaneous formation of ettringite and C-S-H throughout the hydration process and/or the lower 493 
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ettringite supersaturation produced by slag-gypsum mixtures.  However, such binders have at least two 494 

practical disadvantages: (1) they gain strength relatively slowly; and (2) suitable granulated slags, 495 

available as industrial by-products and thus having a relatively low carbon footprint, are currently in high 496 

demand for other applications, typically as SCMs in more standard blended Portland-cement based 497 

binders.  Unfortunately, the direct manufacture of calcium aluminosilicate glasses similar in composition 498 

to granulated blast-furnace slags would be prohibitively expensive because of the need to use a melting 499 

furnace, and the resulting product would have a far higher carbon footprint than ordinary Portland cement, 500 

so this is not a good solution.  However, these observations led to renewed interest in clinkers comprising 501 

ye’elimite (C4A3Š) as the main reactive aluminate phase, as it was thought that they potentially offered a 502 

more kinetically-efficient route to the formation of an ettringite/C-S-H binder [61].  This subject will be 503 

dealt with in more detail in section 3.4. 504 

Instead of considering making alternative clinkers which can use sulfates more effectively, an easier 505 

approach, especially from the normalization viewpoint, is to find ways of increasing the overall H/A ratio 506 

of Portland-SCM-based binders while keeping the total sulfate content low.  Recent work in this area has 507 

focused on the fact that carbonate-AFm phases are very stable and can be formed readily and 508 

inexpensively by the introduction of finely-ground limestone into the cement.  Formation of these phases 509 

avoids the decomposition of ettringite once all of the available calcium sulfate has been consumed, and 510 

thus allows, on average, a higher bound water content per unit of clinker.  This is demonstrated by the 511 

following simplified comparison, which assumes a fairly typical sulfate content in the cement (Š/A = 0.6), 512 
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and ignores any uptake of alumina by solid solution in the C-S-H phase.  It also treats all of the aluminate 513 

as being present as C3A, whereas some will actually be contained in C4AF; but that aluminate also reacts 514 

in a very similar manner. 515 

A)   Hydration of C3A with 0.6 moles of gypsum and lime to give typical AFm phases: 516 

C3A     +   0.6 CŠH2  +  0.4 CH  +  10.8 H           0.6 C4AŠH12  +  0.4 C4AH13     517 

270 +    103     +      30   +    194             373     +    224     (g/mol) 518 

 89    +     45       +     13.2      +   194          185.4    +   109.6  (ml/mol)   519 

Solid volume ratio (hydrates/cement) = 2.00 520 

 521 

B)   Hydration of C3A with 0.6 moles of gypsum plus excess calcite: 522 

C3A      +   0.6 CŠH2   +  0.8 CČ  +  14 H          0.2 C6AŠ3H32  +  0.8 C4AČH11   523 

270 +     103       +     80    +   252          251        +     454    (g/mol) 524 

 89      +     45        +    29.6   +   252         141.4      +    209.6  (ml/mol)   525 

  Solid volume ratio (hydrates/cement) = 2.15  526 

One can see that addition of excess limestone leads to a higher bound water content per unit cement, 527 

which results in a higher volume of solid products. It also avoids the consumption of lime to produce 528 

hydroxyaluminate AFm phase (usually found as a solid solution with monosulfoaluminate), leaving more 529 

lime available for the pozzolanic reaction.  But this is just the baseline case, in the absence of SCM 530 

additions to the cement.  In the presence of pozzolans or slags containing reactive alumina (as well as 531 
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reactive silica), much of the reactive alumina from the pozzolanic reaction will end up in AFm phases, 532 

(although some will also end up in the C-S-H).  However, if this reactive alumina (“A”) is not balanced 533 

by a suitable amount of reactive calcium carbonate, the presence of this excess alumina plus excess lime 534 

will lead to the conversion of ettringite to monosulfoaluminate, with significant loss of hydrate volume: 535 

C)  Hydration of reactive alumina with portlandite plus ettringite to give monosulphoaluminate: 536 

  C6AŠ3H32   +   6 CH  +  2 “A”           3 C4AŠH12  + 2H 537 

  1254      +    444   +   204        1866    +  36   (g/mol) 538 

   707    +      198   +     52             927    +   36    (ml/mol)   539 

  Solid volume increase (products - reactants) =  -30 ml/mol  =  -15 ml/mol of “A” 540 

 541 

D) Hydration of reactive alumina with portlandite plus calcite to give monocarboaluminate: 542 

   CČ    +    3 CH   +   “A”   +  8H          C4AČH11   543 

   100   +    222   +   102    +  144           568          (g/mol) 544 

    37    +    99   +    26    +  144            262         (ml/mol)   545 

  Solid volume increase (products - reactants) =  +100 ml/mol of “A” 546 

(Note: the molar volume used for “A” in the above two equations is that of corundum. Its value in actual 547 

raw materials will be different, but that will not change the results of the comparison, which are relative). 548 

 549 

The above equations show that it is preferable to have an excess of reactive calcium carbonate present 550 
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whenever reactive alumina is available from any source (e.g. a pozzolan or a slag) to react with excess 551 

lime in the cement paste.  If insufficient calcium carbonate is available and reaction (C) occurs instead of 552 

reaction (D), one loses about 115 ml of solid phase per mol of A reacted, which is a significant loss, 553 

although the maximum loss would be limited by the total (potential) amount of ettringite present in the 554 

paste.  Note also that we have shown the reactions as giving monocarboaluminate AFm phase, but, in 555 

fact, the hemicarboaluminate AFm phase, C8A2ČH24, is similarly stable and can produce the same type of 556 

effect with only half the amount of calcium carbonate.  In volume terms, the hemicarboaluminate is 557 

actually preferable, as it has a greater volume per mol of “A” than the monocarboaluminate.  But, since 558 

calcium carbonate fillers are usually very cheap and also help to accelerate early-age alite hydration by 559 

providing nucleation sites for C-S-H growth, it is usually preferable to have an appreciable excess of 560 

calcium carbonate in the system just to be sure that reactions (B) and (D) predominate.  In such cases 561 

hemicarboaluminate forms first but is ultimately replaced by monocarboaluminate as more calcite reacts. 562 

 563 

3.2 Portland-based binder systems with greatly-increased SCM contents 564 

Recent developments in composite Portland cement technology reflect the above theoretical analysis.  565 

The application of this theory to explain the observed synergetic effect of adding limestone as well as 566 

reactive alumina was first clearly demonstrated in a thorough study of Portland-slag-limestone blended 567 

cements by Hoshino et al [62] in 2006, but it took some time before others investigated it seriously in 568 

systems containing low-lime SCMs such as fly ashes and calcined clays.  A family of patent applications 569 
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starting in 2009 and assigned to Aalborg cement [63] claims blended cements based on Portland cement 570 

with additions of both mineral carbonates (e.g. ground limestone) and calcined clays, and highlights the 571 

synergies of the coupled addition.  It was shown that, for a 35% level of clinker replacement, maximal 572 

28-day strengths were typically obtained from blends in which from about one half to about three quarters 573 

of the total SCM addition was in the form of a calcined clay, the rest being in the form of ground 574 

limestone.  De Weerdt et al. [64][65] demonstrated that this approach could be used to optimize blended 575 

cements with coupled fly ash and limestone substitution, while Moesgaard et al. [66] showed that the same 576 

approach could be used to good effect when an artificial lime-alumina-silica glass was used instead of fly 577 

ash.  More recently, Antoni et al. [67] showed that the same approach could be used to permit very high 578 

levels (up to 45%) of OPC replacement by using a 2:1 blend of metakaolin and limestone, while still 579 

obtaining strengths at least as good as those of the control OPC at 7 and 28 days.  They also pointed out 580 

that even better results could be obtained by slightly increasing the calcium sulfate addition levels in such 581 

blends, consistent with the volume-filling theory; but the optimum sulfate level was still quite low, 582 

presumably for the reasons discussed earlier. 583 

 584 

Although the approach of coupled limestone-alumina source SCM substitution holds great promise for the 585 

development of a wider range of Portland-based hydraulic cements with lower carbon footprints, the full 586 

industrial exploitation of these advances is likely to be slow because many of the most desirable 587 

compositions fall outside existing norms.  Thus, a considerable amount of testing will be required to 588 



 

32 

demonstrate that the new compositions are durable and robust enough for practical use.  The main 589 

durability issue is likely to be the increased carbonation rate arising from the lower lime content and thus 590 

lower carbonation buffering capacity of the cement paste, thus reducing its ability to protect mild steel 591 

from corrosion.  This is an unavoidable consequence of the need to reduce CO2 emissions by reducing 592 

the amount of “carbonatable CaO” (CaO capable of reacting with atmospheric CO2 after the cement has 593 

been hydrated, i.e. in hardened concrete), and it is an issue for essentially all of the low-CO2 binder 594 

systems being proposed.  However, with the application of good concrete design for the intended use, 595 

good quality control procedures and good workmanship (especially good curing), this should not stop the 596 

widespread application of such binders, as there are many applications where carbonation rate is not a 597 

durability issue.   598 

 599 

Other issues that may also have to be dealt with relate to the stability of the hydrate assemblage over a 600 

wide range of temperatures.  Reactions (A) – (D) are thermodynamically favored under humid conditions 601 

at temperatures typical of standard test procedures, but at significantly higher temperatures the 602 

carboaluminate/ettringite couple becomes less stable relative to monosulfoaluminate plus calcite, and 603 

formation of (siliceous) hydrogarnets may also become more likely.  These effects might have some 604 

durability implications, so a considerable amount of careful work is still needed to demonstrate the 605 

performance of these new ultra-high SCM replacement binders under the whole range of conditions which 606 

may occur in their intended concrete applications.  As with any binder system, there are bound to be 607 
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certain applications to which they are less well-suited than other binder systems, and this will have to be 608 

taken into account in future norms. 609 

 610 

We have not tried to deal in any general way with the fourth issue listed at the beginning of this section, 611 

namely, how blend proportions might be influenced by fresh concrete placement issues.  This usually 612 

depends strongly on the details of the raw materials used in the blended cement, and also of their particle 613 

size distributions.  It is, therefore, very complex and very dependent on local issues, and so is not easily 614 

dealt with by a theoretical approach.  Some common observations are useful, however.  Clays calcined 615 

at low temperatures (or, even worse, not calcined at all) can significantly increase the water demand of a 616 

blended cement.  Fly ashes are very variable and so can give either very low or very high water demands 617 

depending on circumstances.  But ground limestone generally has a lower water demand than OPC 618 

unless it happens to contain very significant levels of clay minerals.  Thus, combinations of calcined 619 

clays and ground limestone are almost always preferable to calcined clays alone in terms of overall water 620 

demand, and this can be helpful in keeping the water content of the concrete low.  But the control of 621 

concrete water content is still an important quality issue which must be dealt with locally. 622 

 623 

3.3 Belite-Ye’elimite-Ferrite cements 624 

Belite-rich Portland cements are well known, reasonably well understood, and largely covered by existing 625 

cement and concrete standards.  However, they are not widely used, primarily due to their low early age 626 
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strengths, mainly due to the low dissolution rates of belites (compared to alites).  In addition, 627 

manufacture of belite-rich Portland clinkers results only modest reductions in CO2 emissions, because (a) 628 

the manufacture of belite instead of alite only reduces CO2 emissions by about 10%, and in any case  629 

alite is not usually completely eliminated; and (b) the aluminate is present as C3A or C4AF and thus still 630 

has a fairly high associated CaO content.  But much work has been done over the past few decades, 631 

especially in China, to develop “CSA” cements, based on clinkers rich in the calcium sulfoaluminate 632 

phase, ye’elimite (C4A3Š) [68].  Such cements are capable of giving very rapid early strength 633 

development because, unlike C3A and C4AF hydration, ye’elimite hydration is not strongly retarded by the 634 

presence of gypsum, and this allows ettringite + hydrated alumina gel formation to be used to give early 635 

strengths: 636 

E) C4A3Š   +   2 CŠH2  +  34 H        C6AŠ3H32  +  2 AH3(amorphous) 637 

 610     +    344    +   612  1254     +      312     (g/mol) 638 

 234 +    149     +   612    707     +      64     (ml/mol) 639 

Solid volume ratio (hydrates/cement) = 2.01 640 

Due to the moderate liquid phase content during clinkering, the manufacture of CSA-rich clinkers is 641 

possible in rotary kiln systems that are essentially the same as used for manufacturing Portland clinkers.  642 

This is an advantage, industrially, if one compares CSA cements to their close cousins, calcium aluminate 643 

cements (CAC), which usually require melt-processing and thus need a different type of kiln, typically 644 

with lower energy-efficiency.   But manufacture of both CSA and CAC cements generally requires large 645 
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fractions of bauxite in the kiln feed, which adds greatly to the cost of the raw materials, and which in turn 646 

results in both CSA and CAC being sold only as specialty cements with relatively high prices and thus 647 

relatively small market volumes compared to Portland-based cements.   648 

In an attempt to circumvent these disadvantages while still taking advantage of the low-CO2 emissions of 649 

alumina-rich cements, recent studies, mainly in Europe, have focused on systems that are intermediate 650 

between “classical” CSA cements and belite-rich Portland cements [69].  Such cements have in the past 651 

been referred to by the rather clumsy name of “Belite-Calcium Sulphoaluminate-Ferrite” (BCSAF) 652 

cements, but are now preferably referred to as “Belite-Ye’elimite-Ferrite” (BYF) cements.  The 653 

composition range of such binders is not yet formally defined by any standards, but they can be said to lie 654 

at or below the low-CSA end of the range of binders recognized in the Chinese CSA cement norms.  655 

More importantly, the major phase (“B”) in BYF clinkers is based on dicalcium silicate: either one or 656 

more of the polymorphs of belite, or a mixture of belite(s) and ternesite (2C2S·CŠ) [70]. The other two 657 

main phases are always ye’elimite (“Y”) and a calcium aluminoferrite solid solution phase (“F”), and the 658 

order of phase abundance is B>Y>F.  BYF cements generally comprise BYF clinker plus calcium sulfate 659 

(e.g. anhydrite or gypsum) plus other ingredients such as SCMs similar to those used with Portland 660 

cements.  The theoretical advantages of BYF cements were initially proposed based on the following 661 

rather idealistic assumptions: 662 

(i) Early-age strengths develop rapidly due to ye’elimite hydration together with added calcium 663 

sulfates, giving an initial rigid framework of ettringite + AH3 “gel” 664 
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(ii) Later-age strength development continues due to belite, ternesite and ferrite phase hydration, 665 

producing various phases (e.g. stratlingite, monosulfoaluminate, siliceous hydrogarnets and 666 

C-S-H) [71].  The key to this later-age strength development is ensuring that the calcium 667 

silicate phase(s) hydrate effectively, which can be done by the inclusion of belite activators 668 

such as borates [72], or by the presence of ternesite formed at relatively low kiln temperatures 669 

[73]. 670 

(iii) By choosing an appropriate B:Y:F ratio, the kiln feed required to make BYF clinkers may not 671 

need an excessively high fraction of bauxite.  Other less expensive sources, such as 672 

alumina-rich fly ashes and clays, can provide much of the alumina (and iron) needed.  673 

(iv) Due to their high aluminate and low lime contents, the sulfate contents in BYF cements can be 674 

significantly higher than for Portland-based cements without any risk of expansion or strength 675 

loss. The extra added calcium sulfate, (which, if available locally, is generally “low-carbon,”) 676 

can make an important contribution to strength by forming a stable ettringite framework. 677 

As for Portland cements, however, the kinetics of hydration reactions often limit what can actually be 678 

achieved relative to what might be hoped for in theory.  Reaction (E) effectively limits the amount of 679 

ettringite that can be formed at early ages to an amount equivalent to one third of the aluminate contained 680 

in the ye’elimite phase, plus the small fraction of the ferrite phase that reacts at early ages.  Much more 681 

ettringite could be formed, in theory, if the excess lime contained in the belite phase could be made 682 

available to react with the AH3 formed at early ages; but, in practice, it is found that the presence of the 683 
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extra calcium sulfate required for this reaction has a negative effect on belite reactivity for reasons that are 684 

not yet fully clear [74].  However, the use of ternesite, instead of belite, provides an interesting route to 685 

supplying both the extra lime and the extra sulfate at the same time, which may be one reason why the 686 

ternesite phase appears to be more reactive than usual when incorporated into BYF cements [75].  687 

The development of BYF cement technology is still at a relatively early stage, and relatively little has yet 688 

been published in peer-reviewed scientific journals on the long term mechanical and chemical durability 689 

of concretes made from such binders.  Initial concrete durability test results from the EU-funded 690 

“Aether” project are encouraging [76]. However, many of the potential durability issues facing BYF-based 691 

concretes are quite similar to those that face concretes made from Portland-based binders with high SCM 692 

replacement levels.  Thus, comparisons between the two approaches would be helpful.  An initial 693 

attempt at this is made in the next section. 694 

 695 

3.4 Comparison of high-SCM Portland-based cements with BYF cements as a means of reducing 696 

CO2 emissions and other aspects of the environmental impact of hydraulic binders.  697 

One of the major motivations for the development of ultra-high SCM-substituted Portland-based binders 698 

based on OPC/calcined-clay/limestone blends was the observation that conventional (natural or 699 

by-product) SCMs of adequate quality for use with Portland cements are already in short supply in many 700 

places, and are not likely, in the long term, to be available in anything like the quantities required to have a 701 

major impact on the cement and concrete industry’s global specific CO2 emissions [67]. This is essentially 702 
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the same motivation that initially led to the development of BYF-type binders [61].  Both approaches are 703 

based on the assumption that the most abundant raw materials suitable for making hydraulic binders will 704 

remain calcium carbonates and aluminosilicates such as clay minerals, but that it is possible to reduce the 705 

calcium content of the hardened binder significantly and still get adequate strength development rates if 706 

one changes the cement chemistry appropriately.  In fact, the main difference between the two 707 

approaches is related to the pyroprocessing step.  For making BYF clinkers, a mixture of limestone plus 708 

an alumina-rich clay (ideally, kaolinite) can be burned together in a rotary kiln to make a clinker 709 

containing all of the reactive phases needed in the final cement apart from the calcium sulfate (either 710 

additional calcium sulfate must be added with the kiln feed, or a sulfur-rich kiln fuel must be used).  711 

Limestone fillers can also be added to the BYF cement if desired, and carboaluminate phases will in 712 

theory form similarly to those formed in the Portland-SCM binders; but this is less necessary than with 713 

OPC because significantly higher sulfate contents can be used in BYF binders.  On the other hand, the 714 

ultra-high SCM-based binders require an alumina-rich clay (again, ideally, kaolinite) to be calcined in a 715 

separate kiln at low temperatures and then blended or inter-ground with a conventional Portland cement, 716 

together with finely-ground limestone, (typically at a mass ratio of about 2 parts metakaolin to limestone).  717 

The similarity of the two approaches in terms of overall cement composition is shown in Table 8 for a 718 

simplified system containing only the five major oxides.  It can be seen that a BYF clinker, (assumed to 719 

contain only its three major phases) is, in this case, equivalent, in terms of its content of the five major 720 

oxide components, to a mixture of an OPC with metakaolin, in this case only at a 14% replacement level.  721 
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Note that the 14% replacement level of metakaolin shown here is not necessarily unrealistic when one 722 

considers that it has been assumed that well under half of the added “metakaolin” in a 55:30:15 723 

OPC:MK:limestone blend will react by 90 days [67].  The remainder of the calcined clay will 724 

presumably behave as an inert filler.  Note also that the addition of limestone (especially for the 725 

OPC/calcined clay binder) or of extra calcium sulfate (especially for the BYF binder) is not included in 726 

the table, but in both cases will allow the clinker phases to be further diluted while at the same time 727 

producing useful volumes of hydrates. 728 

The above results serve to show that one can obtain either a blended OPC/MK cement or a BYF cement 729 

with effectively the same elemental composition, i.e. effectively starting from the same raw materials in 730 

the same proportions.  This tells us immediately that the CO2 emissions associated with decarbonation of 731 

limestone will be the same in both cases; and we know that this decarbonation reaction also accounts for 732 

the major part of the enthalpy of clinker formation.  Thus, the only real differences in terms of cement 733 

manufacturing process will be the need to calcine the clay in a separate kiln (for the OPC/MK approach), 734 

and to add it to the cement during grinding.  It is thus likely that the overall energy efficiencies will also 735 

be similar for both approaches.  The main difference is more likely to be one of practical convenience.  736 

Making BYF clinker requires very careful control of kiln feed composition and kiln operating conditions, 737 

whereas the OPC/MK approach allows the use of a standard OPC of the type that is already in production 738 

and thus very easy to obtain.  So the OPC/MK approach is far easier to adopt in the short term.  One 739 

disadvantage, however, is that the OPC/MK approach requires that a suitable kaolinite-rich clay deposit be 740 
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available for calcining, whereas the BYF clinker approach broadens the range of raw materials that can in 741 

principle be used to make the clinker to include other aluminium-rich industrial wastes, as discussed in 742 

section 2 of this paper.  Thus, the choice of approach is likely to depend on circumstances such as the 743 

local availability of suitable kilns and of suitable raw materials.   744 

They calculation in Table 8 also serves to show that one may well arrive at fairly similar final equilibrium 745 

hydrate phase assemblages by using either the OPC/calcined clay approach with high levels of clinker 746 

replacement (e.g. with limestone additions), or the BYF clinker approach, (which can also potentially be 747 

combined with the addition of conventional SCMs or limestone).  This observation is important because 748 

it suggests that the long-term durability issues for both approaches may well be very similar. 749 

 750 

3.5 Carbonation-hardening systems based on calcium silicates 751 

Carbonation hardening of lime (in air) has been used for many centuries, and carbonation-assisted curing 752 

of Portland cement concrete (often using flue gases as a source of heat, humidity and CO2) is well known 753 

and practiced to varying degrees in precast concrete manufacture.  The concept of accelerated hardening 754 

of various calcium silicates, both hydraulic and non-hydraulic, by carbonation in an atmosphere artificially 755 

enriched in CO2 is certainly not new, as was pointed out by Bukowski and Berger in 1979 [77].  756 

However, it has not, to date, become a commercially viable approach to the production of concrete 757 

products.  But this situation may change if political pressures to reduce the concrete industry’s carbon 758 

footprint increase, or if technical improvements lead to better and more commercially attractive 759 
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performance attributes.   760 

There is some reason to believe that this is now the case with the technology being developed by Solidia, a 761 

US-based start-up company that was originally based on the research of Riman and Atakan at Rutgers 762 

University, New Jersey, USA [78].  Solidia’s current approach is described in a recent paper [79].  It 763 

involves the use of an essentially non-hydraulic binder based primarily on wollastonite or 764 

pseudo-wollastonite (CaSiO3).  Clinkers close to this composition can be manufactured in conventional 765 

cement kilns, requiring significantly less energy and giving a significantly lower carbon footprint than the 766 

manufacture of Portland cement clinker: the reduction in CO2 emissions can be as great as 30%.  767 

Clinkering temperatures can be as low as 1200°C, which may make it easier to use increased amounts of 768 

alternative fuels with relatively low heating values; and the clinkers can also be easier to grind than typical 769 

Portland clinkers.  The CO₂-curing process is a counter-diffusion process in which CO₂ gas replaces 770 

water inside the pores of the concrete and reacts with the anhydrous calcium silicate phases to produce 771 

calcium carbonate and silica.  Curing is typically done at atmospheric pressure in a sealed chamber with 772 

gas circulation, using CO2 concentrations of 60-90% and a temperature of about 60°C, but the carbonation 773 

reaction is itself highly exothermic, and is thus capable of providing most if not all of the latent heat 774 

required to evaporate the water from the pore system and maintain the concrete at the desired temperature.  775 

By means of an appropriate control system the conditions in the curing chamber can be maintained at the 776 

optimal values for rapid carbonation, which can give full curing in a few hours to a day or so, depending 777 

on sample size and geometry.  A typical concrete made with 16 mass% Solidia binder will sequester CO₂ 778 
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equivalent to about 5% of its total mass, i.e. for every tonne of Solidia binder used, the amount of CO₂ 779 

consumed by the concrete will be about 300 kg.   780 

The mechanical properties of concrete products made from Solidia Cement are reportedly similar to those 781 

of Portland cement concrete products [80], but the chemical properties are clearly different, the pH of the 782 

residual pore solution falling to well below 10 after carbonation [81].  This implies that Solidia concretes 783 

will not directly protect mild steel from corrosion; but they could either be used without reinforcement, or 784 

else with other forms of reinforcement, e.g. galvanized steel, or glass fibers, or polymer fibers, that 785 

perform well at moderate pH values.  The final binder phase assemblage of well-carbonated 786 

(fully-hardened) Solidia cement pastes consists primarily of calcium carbonate (usually mainly present as 787 

calcite) plus a silica-rich amorphous phase which usually contains some calcium, and which may be 788 

considered to be either amorphous silica containing adsorbed Ca, or else a low-lime form of C-S-H [77]. 789 

Its microstructure is also very different to that of hardened Portland cements.  A recent microstructural 790 

study of carbonated wollastonite pastes [82] showed them to contain two principal classes of porosity: 791 

micropores, below about 2nm in diameter, which only empty at relative humidities below about 40%; and 792 

capillary pores, mostly well above 10nm in diameter, most of which are already empty at relative 793 

humidities below about 95%.  These results can be explained by a microstructure in which the original 794 

grains of wollastonite are replaced by relict grains of porous amorphous silica (or low-lime C-S-H), while 795 

the CaCO3 formed from the calcium leached out of the original grains deposits around them in the original 796 

capillary spaces, bonding together the relict-grains in a matrix of finely-crystalline calcium carbonate, as 797 
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shown diagrammatically in Fig. 7. It appears that the calcium carbonate phase is the percolating phase 798 

responsible for the mechanical cohesion of the hardened paste, and this phase slowly fills the large 799 

inter-granular capillary pores during carbonation.  However, even with wollastonite pastes made at an 800 

initial water/solid mass ratio as low as 0.2, the residual porosity after a high degree of carbonation was still 801 

above 20% by volume, of which over 80% was in the form of large capillaries empty below 95% RH [82].  802 

Thus, it appears that further carbonation curing should still be possible under these conditions, as there is a 803 

percolating network of large capillaries that should allow fairly rapid exchange of water vapor and CO2 804 

between the inside of the hardened specimen and the external curing atmosphere. 805 

 806 

A generalized reaction pathway for the water-catalyzed carbonation of alkaline-earth silicate minerals was 807 

represented diagrammatically by Gartner et al. [83], as shown in Fig. 8.  It is known that direct 808 

carbonation in the absence of water is extremely slow at temperatures below several hundred °C, so only 809 

water-catalyzed carbonation need be considered for Solidia-type binders.  The main steps in the process 810 

are believed to be:  811 

(i) Dissolution of the alkaline earth silicate in “liquid” water (even though this water may only be present 812 

as a thin film on the surfaces of the solid phases present; and thus the species dissolved in it may have 813 

reduced mobility compared their mobility into bulk liquid water). 814 

(ii) Dissolution of CO2 gas in the same aqueous phase. 815 

(iii) Slow hydrolysis of dissolved CO2 to give dissolved carbonic acid, followed by its rapid dissociation 816 
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into solvated ions:      H2CO3(aq.)  ↔   H+  +  HCO3-  ↔   2H+  +  CO3=  817 

(iv) Transport of dissolved species from their “source phase” to their “sink phase” by diffusion processes 818 

in the aqueous phase (arrows in Fig. 8 indicate net fluxes). 819 

(v) Growth of alkaline earth carbonates, which may be either hydrated or anhydrous, and either 820 

amorphous or crystalline. 821 

(vi) Growth of silica, (or, possibly, silica-rich intermediate phases), which are usually amorphous but may 822 

be either hydrated or anhydrous. 823 

The microstructure resulting from this type of process will be strongly influenced by the relative 824 

solubilities of the reacting phases in the aqueous phase.  Typically, we would expect the aqueous phase 825 

to have a fairly low pH due to the presence of carbonic acid, and thus to be a rather poor solvent for silica 826 

but a much better solvent for the alkaline earth carbonate (which is effectively dissolved as a bicarbonate).  827 

Thus, we would expect the silica-rich product to precipitate closer to the uncarbonated mineral silicate 828 

phase than the carbonate-rich product; and this is consistent with the microstructural observations.  It also 829 

suggests that, in order for carbonation to continue at an appreciable rate, the pores in the silica-rich 830 

product must maintain a significant content of aqueous phase in order for them to continue to transport 831 

alkaline-earth metal ions towards the more CO2-rich zone where the alkaline-earth carbonate precipitates.  832 

Thus, while carbonation continues, there will always be a certain concentration of alkaline-earth ions in 833 

the process of traversing the silica-rich phase, some of which may be adsorbed on its surfaces.  It is also 834 

conceivable that an intermediate phase, such as a calcium silicate hydrate phase, could precipitate first, in 835 
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which case it would be expected to occupy a zone between the alkaline earth silicate and the silica-rich 836 

precipitate; but there is apparently no indication of this in the recent study on wollastonite carbonation 837 

[80].  838 

There is as yet little data available on the durability of Solidia concretes, although “chemical common 839 

sense” dictates that they should not be susceptible to alkali-aggregate reactions or sulfate attack.  An 840 

initial study of the freeze-thaw and salt-scaling resistance of air-entrained Solidia concretes has shown 841 

results that are comparable with or better than those of air-entrained Portland cement-based concretes with 842 

a moderate level (20%) of fly-ash replacement [84]. 843 

 844 

3.6 Hydraulic cements based on magnesium silicate raw materials 845 

From the viewpoint of reducing global carbon dioxide emissions, magnesium silicates hold out a 846 

tantalizing promise.  They constitute enormous reserves of highly basic raw materials theoretically 847 

capable of capturing CO2 in stable solid form as magnesium carbonate.  Global reserves of ultra-basic 848 

magnesium silicate minerals are more than sufficient to capture all anthropogenic CO2 emissions for the 849 

foreseeable future [85].  These minerals are close to the composition of the Earth’s upper mantle, i.e. 850 

close to M2S (di-magnesium orthosilicate, which crystallizes as olivine) with about one in ten magnesium 851 

(Mg++) ions being replaced by a ferrous ion (Fe++).  At the surface, deposits of rocks derived from these 852 

magnesium silicates (peridotites) tend to become partly hydrated, leached and oxidized, producing mainly 853 

magnesium serpentine (M3S2H2).  This is because forsterite (magnesium olivine, M2S,) the magnesium 854 
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equivalent of belite, is relatively reactive with water compared to most minerals found in igneous rocks.  855 

However, it is still nowhere near reactive enough to be directly useful in hydraulic binders or even in 856 

carbonatable binders, nor indeed in direct CO2 capture from industrial flue gases.  Olivines are very hard 857 

minerals (Mohs 6.5-7) and thus require a lot of energy to grind, especially to the very high finesses that 858 

would be required to overcome their low reactivity at ambient temperatures and pressures.  In nature, 859 

slow hydration of olivines near the surface results in formation of serpentines, which, with Mohs 860 

hardnesses typically closer to 4, are far easier to grind than olivines.  But they are even less reactive with 861 

water or CO2.   862 

Interestingly, a thermodynamic analysis of typical seawater, taking into account dissolved CO2, shows it to 863 

be significantly supersaturated with respect to both main classes of magnesium silicate hydrates, 864 

(serpentine and talc) but significantly undersaturated with respect to forsterite.  This is presumably 865 

because the ocean floor is rich in basic magnesium silicate rocks, which dissolve continuously, but the 866 

magnesium silicate hydrates that should precipitate as a result of this hydration reaction do not crystallize 867 

easily at ambient temperatures.  Seawater appears to be only slightly supersaturated with respect to both 868 

common forms of CaCO3 (calcite and aragonite), a bit more supersaturated with respect to magnesite 869 

(MgCO3), and even more supersaturated with respect to dolomite (CaCO3·MgCO3).  It is notable that 870 

sedimentary rocks based on calcite or aragonite are far more common that magnesite or dolomite, and this 871 

can perhaps be attributed to the fact that many marine organisms can make use of calcite or aragonite to 872 

form their skeletons, but not magnesite or dolomite, (although a small amount of Mg can replace calcium 873 
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in aragonite and calcite).  It appears that the catalysis of calcium carbonate crystal growth by marine 874 

organisms evolved quite early and has never been superseded by a biological mechanism for crystallizing 875 

magnesite or dolomite, despite the greater supersaturation of these phases and greater abundance of 876 

magnesium in seawater (which has an Mg/Ca atomic ratio of about 5).  These observations suggest that 877 

absorption of atmospheric CO2 by carbonation of basic rocks can continue to occur via the oceans, but it 878 

seems likely that most of the carbonate precipitates as calcite or aragonite, rather than as magnesite or 879 

dolomite.  Thus, in the oceans, carbonation of magnesium silicates is a rather inefficient process, and 880 

much of the magnesium may well precipitate as silicates rather than carbonates. 881 

Given that natural carbonation of basic magnesium silicates seems to be too far slow to deal with the 882 

short-term problem of rapidly increasing atmospheric CO2 from anthropogenic sources, it is reasonable to 883 

look for practical ways in which we might accelerate this process, while of course ensuring that the overall 884 

system remains a net sink for CO2.  For this reason, the concept of making binders from basic 885 

magnesium silicates seems attractive.  Thus, at the time of the previous ICCC, there was great interest in 886 

the Novacem approach [86], which proposed to use as its first step the known high pressure 887 

water-catalyzed reaction between supercritical CO2 and finely-ground magnesium silicate rocks to give 888 

primarily magnesite plus amorphous silica as products: 889 

For forsterite olivine:  Mg2SiO4 + 2CO2  2MgCO3 + SiO2    (1a)  890 

For antigorite serpentine:  Mg3Si2O5(OH)4 + 3CO2  3MgCO3 + 2SiO2 + 2H2O    (1b)  891 

Much of the prior work on such high-pressure processes had been done in the context of attempts to 892 
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develop processes for using carbonation of basic magnesium silicate rocks for permanent CO2 storage 893 

[87], for which separation of the magnesite and silica was not necessary.  But the initial Novacem 894 

approach required separation of the two products, because the second step was low-temperature (≈700°C) 895 

calcination of magnesite to give a reactive periclase (MgO): 896 

MgCO3        MgO    +   CO2    (2) 897 

Any residual silica in the products of reaction (1) could potentially cause a problem here, because it might 898 

recombine with the MgO during calcination to form a magnesium silicate, thus defeating the purpose of 899 

the reaction cycle. Thus, a reasonable degree of separation was thought to be needed between steps (1) and 900 

(2).  This was to be achieved by running reaction (1) at sufficient dilution to permit all of the MgCO3 to 901 

dissolve in the liquid phase as “magnesium bicarbonate”: 902 

MgCO3   +   CO2   +   H2O        Mg++(aq.)  + 2HCO3-(aq.)  (3) 903 

Under these conditions, SiO2 was to be separated by filtration or sedimentation, and solid MgCO3 then 904 

recovered by reducing the CO2 partial pressure, thus reversing reaction (3).  However, a recently 905 

published Novacem patent application [88] suggests that the idea of separating the silica prior to calcining 906 

the magnesite was not pursued, perhaps because the degree of formation of magnesium silicates during 907 

calcination was found to be too small to justify what would be a rather difficult separation step.  It may 908 

also be related to the fact that the presence of some reactive silica in the cement appears to be desirable, 909 

according to two other recently-published patent applications [89][90].  910 

Regarding the composition and hydration mechanism of the cement itself, there is still relatively little 911 
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information available in print. This can be attributed in part to the fact that Novacem itself went out of 912 

business in 2012, and also that, as far as can be determined from the level of publications, no-one else is 913 

currently continuing to do research on the type of binder that Novacem had been trying to develop.  So 914 

the only source of information on the subject comes from the patent applications that have been published 915 

over the last two years (even though there may be no active research going on.)    916 

Recent process developments in the area of mineral CO2 capture by magnesium silicate carbonation, and 917 

life-cycle analyses (LCA) of their overall thermodynamic and CO2 efficiencies, are discussed by Nduagu 918 

et al. [91]. In the “NETL process” (developed over two decades ago at the US National Energy 919 

Technology Laboratory, and used by Novacem as the basis for their approach,) a pressurized stream of 920 

pure CO2 is reacted with the ground minerals (in the form of a concentrated slurry in a sodium 921 

bicarbonate/chloride solution) under the following reaction conditions: T = 185°C, P(CO2) = 150 bars, 922 

P(H2O) = 6.5 bars.  These are not too different from the conditions proposed by Novacem.  However, 923 

Nduagu et al. [91] conclude that the NETL process is not the most competitive process for industrial CO2 924 

mineralization using magnesium silicates, in large part because of the need to purify CO2 from flue gases 925 

prior to its pressurization.  They conclude that their own more recent “ÅAU” process is, overall, more 926 

efficient than the NETL process for CO2 capture.  The ÅAU process involves a closed-loop chemical 927 

cycle in which the magnesium silicates are first reacted directly with ammonium sulfate or bisulfate at 928 

about 400°C to form magnesium sulfates plus ammonia, and then re-absorbing the ammonia gas into 929 

aqueous solution at low temperatures and using it to precipitate magnesium hydroxide (brucite) by its 930 
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reaction with magnesium sulfate.  Brucite is then used to scrub CO2 directly from compressed flue gases 931 

in a fluidized bed reactor operating at 500-550°C and “only” 20 bars total pressure, giving magnesite.   932 

Both the NETL and ÅAU processes require significant levels of gas pressurization in order to catalyze the 933 

carbonation of basic magnesium silicates, and the electrical energy required for this is substantial.  More 934 

recently, researchers at Lafarge [83] have outlined a novel process that operates at atmospheric pressure, 935 

and makes use of a cycle involving alkali carbonates to catalyze the process.  However, the work on this 936 

cycle is not yet complete and so there has as yet been no LCA study of this approach, so its CO2-efficiency 937 

cannot yet be compared quantitatively with the NETL or ÅAU processes. 938 

Regardless of the issue of the unproven industrial practicality of the various processes that have been 939 

developed to date for the carbonation of basic magnesium silicate rocks, the LCA data given by Nduagu et 940 

al. [91] on both the NETL and ÅAU processes can allow us to make an initial estimate of the energy and 941 

CO2 balances required to make magnesite from natural magnesium silicate rocks, which is the first step in 942 

the Novacem process.  The calculated energy requirements of both processes, if run with full heat 943 

recovery, are similar: 3.4 and 3.6 GJ per tonne of flue-gas CO2 mineralized, respectively.  However, the 944 

net CO2 capture efficiency, which takes into account the equivalent CO2 value of all the GHGs emitted in 945 

order to operate the process, is reportedly significantly higher for the ÅAU process (0.483) than for the 946 

NETL process (0.317), which implies that the ÅAU process effectively consumes 7.5 GJ of primary 947 

energy per net tonne of CO2 captured, whereas the NETL process consumes 10.7 GJ.  These are rather 948 

large numbers, which at first seem discouraging.  Putting them into the context of manufacturing a 949 
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“Novacem-like” cement, and assuming that one tonne of CO2 captured is equivalent to the production of 950 

about one tonne of MgO-based cement after additional processing (which requires additional energy, 951 

principally for decarbonation of the magnesite), it looks like a very high primary energy requirement per 952 

tonne of cement.  However, this calculation is probably too pessimistic for three reasons.  Firstly, these 953 

very high primary energy requirements are mainly required to make the capture process CO2-neutral. 954 

Secondly, the CO2 cycle in the Novacem manufacturing process could be more efficient because the CO2 955 

can be produced in a concentrated stream from the calciner, and thus the gas concentration step can be 956 

avoided, which makes quite a big difference if we use the NETL approach.  Thirdly, if we instead use the 957 

ÅAU process, the intermediate product, brucite, could be dehydrated directly to MgO at moderate 958 

temperatures and fairly modest additional energy consumption, thus avoiding the need for the pressurized 959 

fluidized bed reactor.  So it seems likely at a first glance that a “Novacem-like” cement could be 960 

manufactured with zero net CO2 emissions for a primary energy requirement perhaps in the 7 GJ/tonne 961 

range.  This could well be energy-competitive with Portland cement, if we consider that, to make 962 

Portland cement with zero net CO2 emissions we would have to add a gas scrubbing system (with either 963 

mineral capture or underground sequestration) to the Portland cement plant.  The MgO-based cement 964 

would also have some potential for further CO2 absorption during use – but then so does Portland cement.  965 

So it is still too early to say whether or not the manufacture of a “Novacem-like” magnesium 966 

hydroxy-carbonate cement (possibly with additional siliceous components) from magnesium silicate raw 967 

materials might theoretically be an effective way to reduce the cement industry’s net specific CO2 968 
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emissions.  Additional research on more efficient production cycles, coupled with careful and realistic 969 

LCA calculations, is needed.   970 

 971 

4. Summary of main points 972 

This review has covered a wide range of alternative approaches to the reduction of the CO2 emissions 973 

associated with the manufacture of binder phase in concrete.  These range from the relatively 974 

straightforward and easily implementable use of alternative raw materials and fuels for the manufacture of 975 

standard Portland-based cements, all the way to the as-yet unproven technology for the manufacture of 976 

totally non-standard novel binders based on magnesium hydroxy-carbonates derived from basic 977 

magnesium silicate raw materials.  In addition to highlighting the need for the optimization of the 978 

manufacturing technologies involved in producing hydraulic binders, it is also made clear that the efficient 979 

use of known hydraulic binder components is a very important issue in terms of environmental impact.  980 

Currently, existing norms for hydraulic binders are very conservative in order primarily to try and protect 981 

the users of the final hardened products against errors resulting from poor workmanship and the use of the 982 

wrong product for any given application.  More energy- and CO2-efficient binder systems may already 983 

exist which would be quite suitable for certain applications, but which are not yet normalized, so their use 984 

involves a higher risk and requires a greater level of education on the part of the users.  Thus, even 985 

without the development of any more new technologies, progress is needed both in the normalization 986 

process and in user-education, if we wish to progress more rapidly towards greater sustainability. 987 
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Finally, it is clear that the industrial development of the more novel (and thus more expensive to develop) 988 

approaches to CO2 emissions reduction will depend on the economic and regulatory landscape at the 989 

global level.  Without fairly strong globally-binding agreement on limits to cement- and concrete-related 990 

CO2 emissions, only the relatively simple and immediately cost-effective approaches, such as increased 991 

use of wastes as raw materials, are likely to be implemented.  But it is important for legislators to know 992 

that many other potentially more effective options (in terms of total global CO2 emissions reduction) exist 993 

and at least some of them could be implemented on a large scale with a decade or so if the regulatory 994 

incentives were put in place to encourage their development.  995 
 996 
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