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A Finite Element modelling framework is outlined that enables the investigation of ultrasonic 7 

array imaging within highly scattering, polycrystalline materials. Its utility is demonstrated by 8 

investigating the performance of arrays, within both single and multiple scattering media. By 9 

comparison to well-established single scattering models, it is demonstrated that FE modelling 10 

can provide new insights to study the stronger scattering regimes. In contrast to established 11 

single scattering results, Signal-to-Noise Ratio (SNR) no longer increases monotonically with 12 

respect to increasing aperture, which suggests that maximum apertures are not necessarily 13 

optimal. Furthermore, by measuring the SNR of the individual transmit receive combinations 14 

of the array, it is found that through separating the emitter and receiving source, it is possible 15 

to reduce the received backscatter.  16 
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 Introduction 1 

Ultrasonic arrays have enabled exciting possibilities for NDE in recent years. Not only have 2 

they been adopted for their ease of use, the wealth of spatial information [1] which can be 3 

acquired has enabled imaging capabilities which were previously inconceivable using 4 

monolithic transducers (see e.g. [2], [3]). Such advances have presented promising 5 

opportunities for progress but ultrasonic NDE still faces significant challenges: namely, it is 6 

fundamentally limited by the onset of scattering [4] once the probing wavelength becomes 7 

dimensionally similar to the microstructure of the propagation medium. For many materials, 8 

such as coarse grained polycrystalline metals [5], this occurs at typical inspection wavelengths. 9 

Consequent increases in attenuation, coherent noise, and possibly anisotropic effects, all 10 

contribute to a reduction in the Signal-to-(coherent)-Noise ratio (SNR), thereby limiting the 11 

range of materials which can be reliably inspected, ultrasonically.  12 

Scattering within polycrystalline media has been studied in a great variety of contexts (see e.g. 13 

reviews [5], [6]) where an initial distinction can be made between single and multiple scattering 14 

regimes. Single scattering is a ‘weak’ scattering condition, generally accepted to be valid within 15 

the long-wavelength regime, where the polycrystalline material can be approximated by a 16 

random distribution of discrete scatterers and the contribution of each scatterer can be 17 

considered independently. The Independent Scattering Model (ISM) [7] is a well-respected 18 

implementation of this and has enabled notable progress [8] for the ultrasonic inspection of 19 

scattering materials. Single scattering assumptions however are known to become invalid for 20 

stronger scattering media once multiple scattering arises [9] .  21 

Alternatively, numerical modelling currently presents opportunities to study these more 22 

challenging scattering regimes. Recent Finite Element (FE) models of elastodynamic wave 23 

propagation within polycrystalline materials [10]–[12] have been shown to capture the complex 24 
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scattering physics [13], including multiple scattering [14], with high fidelity. These numerical 1 

methods can also be advantageous over experimental studies, as statistically significant studies 2 

are enabled by repeating multiple FE studies relatively inexpensively, and with complete 3 

knowledge and control of the parameters.  4 

Such advantages present FE as an ideal tool to provide a quantitative understanding and answer 5 

the remaining questions (see e.g. [15]) to determine the optimal array parameters to for instance 6 

maximise imaging SNR and by association the possibility of a successful detection. The latter 7 

can involve a multitude of parameters to optimise, associated to either hardware (e.g. the 8 

aperture size) or software (e.g. the imaging algorithm). Here we pursue an initial interest in the 9 

array configuration, including its number of array elements, which defines the aperture angle 10 

and the element layout, and therefore we constrain software parameters such as the imaging 11 

algorithm.  12 

Within the field of ultrasonic array imaging, there has been a recent surge of advanced imaging 13 

algorithms (see e.g.[2], [3] and reviews [16], [17]) which have shown impressive progress. 14 

Still, it has proven challenging to suppress coherent noise [16], [17] and thereby increase 15 

imaging performance beyond that provided by standard sum-and-delay beamforming. 16 

Consequently, the currently most popular algorithm, the Total Focusing Method (TFM)[18] , 17 

for the time being, remains the benchmark, offering both high performance as well as relative 18 

simplicity. Thus this article will rely on TFM for its investigations and illustrations; it is 19 

expected that the findings will be equally relevant for other imaging algorithms. 20 

This article outlines a FE modelling framework, an extension to the basis reported in [10]–[14], 21 

that enables the investigation of ultrasonic array imaging of highly scattering, polycrystalline 22 

materials. It details modelling devices which allow the isolation of different physical 23 

phenomena (e.g. element directivity, beam spreading, attenuation, backscatter) and therefore 24 
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enables new and useful insights into the effects of scattering, particularly without relying on a 1 

single scattering assumption. The methodology is applied to a relatively simple but also general 2 

case such that it both illustrates and investigates the fundamentals of array performance. The 3 

approach is now also ready for a wide variety of simulations where it can be useful in future 4 

evaluations of performance: for instance to determine the optimal configuration for a more 5 

practical inspection, quantify the smallest detectable defect, or assess new data processing 6 

algorithms such as new candidate array imaging algorithms.  7 

The subsequent sections are organised as follows. Section 2 outlines the FE methodology 8 

starting with the description of a polycrystalline medium and later the ultrasonic array models. 9 

Before considering polycrystalline scattering media, Section 3 uses established theory to study 10 

array performance within a single scattering environment. These results enable comparisons 11 

with Section 4 which repeats the same procedure but considers stronger, multiple scattering by 12 

introducing polycrystalline material properties. Section 5 then compares the results obtained 13 

from both previous sections. Before setting out with these studies, we present the currently 14 

established theory for determining detection performance of an array imaging a noisy medium, 15 

under single scattering assumptions. 16 

1.1 Established Single Scattering Theory  17 

In many circumstances of NDE, such as the inspection of acoustically transparent materials, 18 

detection performance is predominantly defined by random noise such as electrical noise. Once 19 

scattering occurs, coherent noise manifests and typically becomes the limiting factor. 20 

Assuming that random noise has been eliminated by, for example, temporal averaging, SNR 21 

will hereon refer to the Signal-to-(coherent)-Noise Ratio.  22 

Single scattering models, such as the aforementioned ISM [19], [20], determined that SNR is 23 

inversely proportional to the ultrasonic pulse volume for monolithic transducers. This led to 24 
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the adoption of focused transducers to improve sensitivity of industrial inspections of scattering 1 

materials. More recently, Wilcox [4] (and others e.g. [21]) found similar results for arrays by 2 

showing SNR to depend on the Point-Spread Function (PSF) of an array (see Equation 1).  3 

𝑆𝑁𝑅(𝒓) =
𝑞

𝜇

|𝑃(𝒓, 𝒓)|

√∫|𝑃(𝒓, 𝒓′)|2𝑑𝑟′
 

(1) 

Here μ is the backscatter coefficient, derived for polycrystalline materials by Rose [22] and q 4 

is the scattering potential of the imaging target. Outside these two parameters, the remainder 5 

of Equation 1 is defined by two Point Spread Functions, e.g. P(r,r’) is the image response at r 6 

of an idealised single point scatterer located at r’. Thus the remaining fraction is solely 7 

determined by the imaging system and is equivalent  to the reciprocal of the square root of the 8 

normalized PSF area [4], σ. For our purposes of finding an optimum, only relative SNR is of 9 

interest, and hence in the studies presented here we can disregard  the two parameters μ  and q 10 

[21] and redefine a relative SNR, denoted by 𝑆𝑁𝑅𝑝
̅̅ ̅̅ ̅̅ ̅, where pk denotes peak.   11 

𝑆𝑁𝑅𝑝
̅̅ ̅̅ ̅̅ ̅(𝒓) =

|𝑃(𝒓, 𝒓)|𝑝𝑘

√∫|𝑃(𝒓, 𝒓′)|2𝑑𝑟′
  

(2) 

The relation between SNR and the PSF has several interesting connotations. It firstly implies 12 

the monotonic increase of SNR which improves as the PSF is reduced. SNR is thus maximised 13 

when using the largest possible aperture [23]. The PSF area, σ, is a widely used metric and can 14 

be quantified in various ways (see e.g. [18]), the approach adopted here is to calculate the area 15 

of the PSF which encompasses half its peak, and subsequently normalise it against the centre-16 

wavelength squared, denoted by σ̅.  17 

The PSF comprises the imaging system and can thus be controlled by optimising the array and 18 

the imaging algorithm; as previously mentioned, we will focus on the former using a specific 19 

choice of imaging algorithm.  20 
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 Method: Finite Element Simulation of Highly Scattering Materials 1 

Here we discuss how to incorporate polycrystalline material properties into an FE model, 2 

followed by its extension into our model of an ultrasonic array, which consists of a noise and 3 

a signal model.  4 

2.1 Polycrystalline Material Model 5 

Whereas time-domain explicit FE modelling of wave propagation within isotropic media is 6 

well established [24], incorporating a polycrystalline microstructure is a relatively new addition 7 

[10]–[12] which is becoming increasingly popular [13], [14]. The methodology, as used here,  8 

relies on a Voronoi approach which is widely used in other fields of research such as that of 9 

material science (see e.g. [25]) to generate random tessellations which are representative of 10 

polycrystalline morphologies. The main obstacle to its adoption for the study of dynamic wave 11 

propagation has been its computational cost which is significantly higher than for conventional 12 

wave propagation modelling [24] due to a more demanding mesh sampling criterion, defined 13 

by the grain size. The simulation package used here is Pogo [26] and the mesh comprises a 14 

structured grid of triangular elements, sampled such that the length of the element edge is finer 15 

than at least one tenth of the average grain size d to meet the criteria for convergence. 16 

Given the already large computational cost, the relatively large dimensions necessary for our 17 

studies, and the interest in performing multiple analyses in order to pursue a range of studies, 18 

the models discussed here are limited to a 2D domain. This simplification introduces certain 19 

model limitations (discussed in more detail in [13]): the scattering mechanism is reduced to a 20 

third order frequency dependence in the Rayleigh regime as shown in [13], [27], and it is not 21 

obvious how to relate the spatially incoherent fields, namely the grain noise, perceived by a 2D 22 

transducer to that of a 3D one. It is expected that 2D models overestimate the absolute level of 23 

noise as there is less spatial averaging which occurs across the length of the transducer, as 24 
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opposed to an equivalent area in 3D. Despite this lack of absolute accuracy, the relative 1 

accuracy is expected to be good, as the overall frequency dependent scattering behaviour has 2 

been shown to correlate well to established theory [13]. This is deemed sufficient as we are 3 

primarily interested in examining trends and principles rather than absolute performance 4 

metrics. Moreover, the principles discussed in this paper will apply equally well in 3D, and 5 

since 3D representation has been shown to be possible [13], it will only be a matter of deploying 6 

these methods in 3D once this becomes computationally feasible.  7 

2.2 Array Model 8 

The layout for the general ultrasonic array model used hereon is depicted in Figure 1a. The 9 

model typically simulates N=128 element arrays which are fully sampled, such that the array 10 

pitch and width both measure half a wavelength at the centre-frequency (hereon referred to as 11 

a centre-wavelength). The array data acquisition adopts a Full-Matrix-Capture (FMC) [18] 12 

approach which involves sequentially exciting all N array elements, and for each excitation, 13 

calculating the response also on all N array elements. The excitation at the ith element of the 14 

array is simulated by applying a force load which is perpendicular to the surface (producing a 15 

longitudinal wave but also spurious shear waves), to all the nodes which correspond to the 16 

footprint of the ith array element. In reception, the nodal displacements of all the nodes 17 

belonging to the jth array element are averaged, again taking the component of displacement in 18 

the direction normal to the surface. Varying both j and i from 1 to N, this populates an FMC 19 

matrix, H, of dimensions N×N×t where t corresponds to the number of time samples.  20 

2.2.1 Noise Model 21 

Before the introduction of any imaging target within the model, this procedure yields an array 22 

response matrix, HN, which pertains solely to the grain noise (and reflections from the structural 23 

boundaries). This can be thought of as an artificial baseline measurement, as is commonly 24 

referred to in Structural Health Monitoring [28]. This is useful for separately analysing the 25 
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signal and noise data which enables monitoring the true SNR. This is a valuable tool in general, 1 

as investigations are often limited to measure signals which contain noise, thereby constrained 2 

to solely measuring positive SNRs [17] which offer a limited utility as a performance metric. 3 

There are several ways to circumvent this, one being subtraction [29], and another which is 4 

outlined in the proceeding sub-section.  5 

2.2.2 Signal Model: True Point Scatterer  6 

To obtain the previously defined PSF, we desire an ideal, omnidirectional scatterer - here 7 

referred to as a true point scatterer (TPS).  A widely accepted practice is to use voids or 8 

disconnections within an FE mesh to simulate defects and scatterers. The obvious procedure to 9 

create a single point scatterer then would be to constrain or disconnect a single node. However, 10 

for scattering within elastic materials this does not produce a true omnidirectional scatterer; 11 

instead of the desired isotropic scattering, the scattering amplitude of the longitudinal wave 12 

varies with angle, dropping to null as the difference between the incident and scattered wave 13 

approaches 90°.  14 

This is circumvented here by exploiting reciprocity which allows us to reverse the sender and 15 

receiver. Instead of insonifying the domain using the array, and looking for scattering back 16 

from the defect, the defect is used to insonify the domain, and the projected wave field is 17 

received by the array to produce a Nxt matrix hs. The principle of reciprocity can thereafter be 18 

used to complete the send-receive signals of the array FMC. Namely, the full FMC, 19 

corresponding to the signal model, HS, is obtained by convolution of the N×t vector of received 20 

signals, hs, with its transpose, to obtain the N×N×t matrix.  21 

This approach enables controlling the scattering characteristics of the defect, as previously 22 

mentioned, one which exhibits uniform omnidirectional scattering is desired. This requires the 23 

excitation of a circular wavefront outgoing from the point scatterer, which is achieved here by 24 
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radially exciting six neighbouring nodes of a structured mesh in a hexagonal arrangement (see 1 

Figure 1b). The resultant wave field from such a point source is illustrated in Figure 2, within 2 

(a) an isotropic and (b) polycrystalline medium.  3 

One noteworthy consequence of this approach is that the scattering potential of our imaging 4 

target (denoted by q in Equation 1) is arbitrarily defined by the excitation amplitude defined in 5 

the FE simulation. Moreover, we cannot calculate an effective incident amplitude for the 6 

circular wave, as a singularity exists at the centre where the radius equals zero and the 7 

theoretical incident amplitude tends to infinity. In our case however, as discussed in Section 8 

1.1, we are only interested in a relative SNR to find an optimum, and hence to clarify this, we 9 

shall distinguish from the SNR by the term 𝑆𝑁𝑅̅̅ ̅̅ ̅̅  to denote a relative quantity. 10 

 Results I: Simulation of Single Scattering Media 11 

The single scattering theory [4] outlined in Section 1.1 is now used to validate a Finite Element 12 

model of an array operating within a single scattering medium, here modelled by a random 13 

distribution of point scatterers within an isotropic material. By adopting a single scattering 14 

assumption, we can solve the PSF for each scatterer independently [4], [16]. Furthermore, when 15 

considering both the noise scatterers and the imaging target as omnidirectional scatterers, the 16 

solution of one PSF provides that for all others, be it grain noise or target [4], [16]. This 17 

approach purposefully neglects any multiple scattering effects, which serves as a benchmark 18 

for comparisons when the polycrystalline microstructure is introduced later on (see Section 4).  19 

The model defines a fully sampled N=128 element array, generating a 3-cycle tone-burst 20 

longitudinal wave with a 2MHz centre-frequency in contact with an isotropic elastic material. 21 

The medium is arbitrarily defined by a longitudinal wave speed of 6123m/s (E=230GPa, ν=0.3, 22 

ρ= 8200kg/m3). Three defect scenarios are simulated to calculate Hs for a TPS defined by the 23 
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procedure in Section 2.2.2, and introduced respectively at a 25mm, 50mm, and 75mm depth 1 

within the material.   2 

3.1 True Point Scatterer  3 

The behaviour of our model TPS within an isotropic material is validated by calculating 4 

apparent scattering matrices [30], [31] from Hs. An amplitude scattering matrix procedure 5 

follows [31], however, unlike classical scattering matrices, our setup comprises a linear array 6 

with a limited view to sample the wave field, rather than a circumferential full view 7 

configuration. Adopting the notation of an analytical signal [32] the amplitude matrix used here 8 

plots the instantaneous amplitude A(t0), where t0 corresponds to the arrival time of the signal, 9 

as a function of incident θi and scattered θs angle (defined in Figure 1a), to produce a 2D matrix 10 

A(θi,,θs). A phase matrix is also calculated which follows the same syntax but instead of 11 

amplitude, calculates the instantaneous phase ϕ(t0) to obtain ϕ(θi,θs). An example of how to 12 

calculate both instantaneous amplitude and instantaneous phase can be found in [33]. 13 

As can be seen from the amplitude scattering matrix in Figure 3a, the TPS defect exhibits 14 

omnidirectional scattering behaviour, as intended. Due to the absence of noise and attenuation 15 

in this case, the only drop in scattering amplitude occurs due to longer propagation distances 16 

and large receiver angles. The longer propagation distances will cause the wave amplitude to 17 

decrease due to beam spreading effects, and a loss in element sensitivity occurs at large angles 18 

as the array elements exhibit a directional sensitivity, which reduces as the incident wave 19 

moves away from the normal. The rhomboidal features manifest at larger angles are due to the 20 

linear array configuration where the propagation distance is not constant with total aperture 21 

angle (propagation distance increases non-linearly with angle). Figure 3b confirms the 22 

expected absence of aberrations in the phase matrix for the isotropic case, where the extremely 23 

small changes observed are numerically insignificant.  24 
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3.2 Point Spread Function  1 

The PSF for a TPS within an isotropic medium is shown in Figure 4a. Characteristic low-2 

intensity side lobes can be identified and the slightly non-circular appearance of the main lobe 3 

is due to array being linear rather than having a circumferential full-view configuration. The 4 

normalised PSF area (σ̅) is quantified as a function of the half aperture angle, denoted by θp 5 

and calculated by the halved sum of θi and θs. As previously defined, our definition of PSF 6 

calculates the area which encloses the PSF within -6dB from its peak and is normalised against 7 

the centre-wavelength squared. 8 

 Figure 5a plots the resultant PSF area (σ̅) as a function of half aperture angle θp, for three TPS 9 

at various depths. As can be seen the PSF decreases monotonically, where focusing benefits 10 

progressively lessen at high aperture angle as is dictated by the asymptotical diffraction limit 11 

[4]. 12 

3.3 Predicted Signal-to-Noise Ratio 13 

The previously obtained PSF now allows the prediction of a relative SNR in a single scattering 14 

environment, 𝑆𝑁𝑅𝑃
̅̅ ̅̅ ̅̅ ̅, as defined in Equation 2. Figure 5b shows 𝑆𝑁𝑅𝑃

̅̅ ̅̅ ̅̅ ̅ versus half aperture 15 

angle θp and predicts a monotonically increasing SNR, independent of defect depth. These 16 

results agree with the experimental and model findings of Wilcox [4], thereby validating our 17 

single scattering model. Now we investigate the effects of multiple scattering by repeating the 18 

same simulation but with the introduction of polycrystalline material properties. 19 

 Results II: Simulation of Multiple Scattering Media 20 

The procedure outlined in Section 3 is now repeated for a polycrystalline medium which 21 

introduces inherent scattering and thus no longer relies on a single scattering assumption. Using 22 

the same layout depicted in Figure 1a, with a 2MHz 3-cycle tone-burst, exciting longitudinal 23 

waves from a N=128 element array, images are acquired of targets buried at depths of 25mm, 24 
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50mm, and 75mm. The medium comprises cubic Inconel 600, non-textured and monophasic, 1 

defined by the single elastic stiffness constants taken from [14] (see Table 1). The grain 2 

morphology consists of equiaxed grains with their mean size set at 500μm (and a standard 3 

deviation of 70 μm), which places the scattering behaviour at centre-wavelength, in between 4 

the Rayleigh and stochastic scattering regimes. Although we are not aware of a formal 5 

definition for its onset, for the material considered here which exhibits a relatively high 6 

anisotropy (anisotropic ratio, A=2.8), it is believed that multiple scattering occurs within the 7 

stochastic regime which begins for kd values of unity, where k is the wavenumber and d is the 8 

mean grain size. Eight independent models are run, each with the same mean grain properties 9 

but different realisations of a random morphologies and orientations. This provides us with a 10 

basis, albeit with a modest number of samples, to consider statistical variations.  11 

In contrast to the single scattering results in Section 3, where the PSF provided solutions for 12 

both the noise and signal model, separate simulations are now required to obtain the noise data 13 

HN and Hs: the data from a TPS.    14 

4.1 Aberrated True Point Scatterer 15 

Similarly to Section 3.1, we establish the behaviour of a TPS, in this instance however by 16 

considering propagation within a polycrystalline medium. In comparison to the isotropic 17 

medium considered in Section 3, which incorporated beam spreading and element directivity, 18 

our signal model, Hs, now includes additional physics such as the scattering induced 19 

attenuation, dispersion, and phase aberrations.   20 

The scattering amplitude and phase matrices (see Section 3.1 for methodology) for a TPS at 21 

25mm depth, are shown in Figure 6 for one random realisation of a polycrystalline material. 22 

When compared to the isotropic case in Figure 3 it can be seen that the amplitude fluctuates, 23 

but in general depicts a similar picture to that of the isotropic case where the highest amplitudes 24 
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occur at (0°,0°) angles. In terms of phase however, whereas Figure 3b showed no variations 1 

for the isotropic case, significant phase aberrations can be seen of up to 1π radians. This 2 

observation is further illustrated in the earlier Figure 2b, where aberrations can be seen to occur 3 

along the circular wavefront. These aberrations in the phase matrix also appear to reveal some 4 

regularity, namely there seems to be some symmetry. This is possibly due to dispersion which 5 

has a different effect for longer propagation paths. However, even in a non-dispersive medium 6 

there will be some regularity to this matrix, since, as illustrated by our reciprocity method to 7 

calculate Hs, there are only N unique values corresponding to those of hs. The phase matrix has 8 

illustrated some of the detrimental effects which can be expected to significantly hinder 9 

focusing ability of the array, which is quantified next by calculating the PSF. 10 

4.2 Aberrated Point Spread Function  11 

Figure 4b shows an aberrated PSF for a TPS within a polycrystalline material where 12 

perturbations have now arisen when comparing to Figure 4a.  The normalised PSF area is 13 

calculated similarly to the procedure adopted in Section 3.2, but repeated for eight realisations 14 

of a random polycrystalline material to consider statistical variation. The eight PSF areas are 15 

then averaged and their standard deviation is also recorded.  16 

Figure 7a plots the mean normalised PSF area (σ̅) and its standard deviation bars, versus half 17 

aperture angle, θp, for the three TPS cases. Comparison with Figure 5a reveals that the 18 

polycrystalline material has induced several changes. Firstly, it can be seen that the absolute 19 

focus has worsened, indicating a PSF which is larger relative to the previous case. This 20 

indicates that even before considering the effects of coherent noise, which probably presents 21 

further hindrance to image quality, the focus (which is related to SNR) has already been 22 

harmed. Furthermore, although PSF area remains a monotonic function with respect to aperture 23 

angle, it has become also a function of depth. Several physical effects can contribute to this 24 
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effect, such as the scattering induced attenuation which removes more high frequency 1 

information for the longer propagation paths and thereby reduces focusing.  2 

Similarly to the previous section, the PSF enables a prediction of SNR, as defined in Equation 3 

2. Figure 7b plots the resulting 𝑆𝑁𝑅𝑃
̅̅ ̅̅ ̅̅ ̅ versus half aperture angle θp and as can be seen, depicts 4 

a similar picture to that of Figure 7a. It must be noted that this prediction is based on single 5 

scattering assumptions, and as previously mentioned, is no longer valid within a multiple 6 

scattering regime. Instead however, since both signal and noise data are available, the SNR can 7 

be measured.  8 

4.3 Measured Signal-to-Noise Ratio  9 

Following the procedure for a noise model outlined in Section 2, HN is calculated by using the 10 

same eight material realisations mentioned earlier, however removing the defect and 11 

sequentially exciting the array to obtain a baseline FMC. This produces an array image as 12 

shown in Figure 4c. From such an array image, similar to [16], we can calculate the Root-13 

Mean-Square (RMS) of the pixel intensities at an image area of interest, to obtain a measure of 14 

the noise.  15 

This noise data becomes useful when combined with the previously obtained Hs, as it enables 16 

a calculation of the 𝑆𝑁𝑅𝑚
̅̅ ̅̅ ̅̅ ̅̅ , in this case performed as a function of aperture θp. The signal 17 

intensity is calculated from the peak pixel intensity (pk) within the array image Is (the PSF in 18 

this case shown in Figure 4b). The noise area considered forms a box around the hypothetical 19 

defect which extends 10mm beyond the defect in the negative and positive, lateral and axial 20 

directions of the noise image IN (see Figure 4c). SNR is subsequently calculated as shown in 21 

Equation 3 where < >xy denotes the mean across both x and y. To distinguish from the previous 22 

SNR, we shall label this the 𝑆𝑁𝑅𝑚
̅̅ ̅̅ ̅̅ ̅̅ .  23 
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𝑆𝑁𝑅𝑚
̅̅ ̅̅ ̅̅ ̅̅  (𝜃𝑝) =

|𝐼𝑠(𝑥, 𝑦, 𝜃𝑝)|𝑝𝑘

√〈𝐼𝑁(𝑥, 𝑦, 𝜃𝑝)2〉𝑥𝑦

 
(3) 

 

4.3.1 Aperture 1 

Figure 8 plots the mean image 𝑆𝑁𝑅𝑚
̅̅ ̅̅ ̅̅ ̅̅  and the standard deviation bars for 8 different random 2 

realisations of materials, for the three TPS cases as a function of half aperture angle. As was 3 

previously predicted by the aberrated PSF results, SNR becomes a function of depth. 4 

Contrastingly however, it can be seen that SNR no longer behaves monotonically with respect 5 

to aperture angle; beyond an initial increase with aperture, it decreases for the widest aperture 6 

angles. Hence unlike the findings from Section 3, this suggests for the strong scattering regime 7 

considered here, that the largest array aperture does not always optimise image SNR. This 8 

reaffirms that within the highly scattering regimes considered here, single scattering 9 

approximation no longer apply and new methods are required, such as those shown here.  10 

4.3.2 SNR Matrix 11 

Taking the analysis one step further, and similar to the previously mentioned scattering matrix 12 

calculations (see Section 3.1), equivalent noise and SNR matrices are calculated. The noise 13 

matrix is computed using the amplitude matrix procedure but instead of calculating the 14 

instantaneous amplitude at t0, an average noise level is calculated, defined by the RMS value 15 

of a 1μs time-window surrounding t0. The SNR matrix is then obtained by the division of the 16 

signal and noise scattering matrices, similar to Equation 3. Although it may be more intuitive 17 

to plot the noise matrix against the received and emitted array element index, we will maintain 18 

the scattered and incident angle labels for consistency with the SNR matrix. 19 

Figure 9 plots the (a) mean noise and (b) mean 𝑆𝑁𝑅𝑚
̅̅ ̅̅ ̅̅ ̅̅  as a function of received and scattered 20 

angle, θi, and θs, averaged for eight realisations of the 25mm depth TPS. Several observations 21 

can be made. Firstly, high intensity noise and low SNR can be found along the leading diagonal 22 

of Figs 9a and 9b respectively, which corresponds to the pulse-echo elements exhibiting the 23 
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worst SNR. This is a coherent multiple scattering effect (see e.g. [34]) previously known to 1 

manifest also in FE simulations of elastic wave scattering [14]. Due to reciprocity, a multiple 2 

scattering source-receiver path illuminates in both the direct and reciprocal directions, hence 3 

doubling the intensity of the received noise. This explains why in practice twin-crystal probes 4 

have been observed to perform better than pulse-echo inspections relying on single probes to 5 

inspect highly scattering materials. 6 

Another interesting feature is the presence of a noisy region which comprises a band adjacent 7 

and roughly parallel to the leading diagonal in Figure 9a. Within the band we can make several 8 

observations. Firstly by assessing the change in noise along the leading diagonal and those 9 

adjacent but also parallel to it, we can see that the measured noise amplitude decays very slowly 10 

if at all, which shows that backscatter is a weak function of depth in this case (as the angle 11 

between receiving and transmitted array element is constant along these lines). Contrarily, the 12 

noise seems to decay much quicker in the direction which is normal to the leading diagonal 13 

which suggests a much stronger dependence on angle. In addition, before reducing to lower 14 

levels of backscatter, towards the edge of the band there is a significant rise in backscatter 15 

which is shown by the quarter-circle bands (labelled R in Figure 9a) and correspond to the 16 

Rayleigh wave (i.e. the Rayleigh wave in these cases arrived at previously defined t0). Thus the 17 

high noise region contained within this band (defined for one side of the matrix by a dashed 18 

line in Figure 9a), hereby termed the backscatter envelope, can be broadly defined by the time-19 

window corresponding to the arrival from transmitter to receiver of the Rayleigh wave. 20 

The implication of the backscatter envelope is that it presents an opportunity to operate outside 21 

it. Namely, using large pitch-catch angles allows a longitudinal wave to arrive at the receiver 22 

before the majority of backscatter has arrived. This implies that pitch-catch configurations, 23 

using for example two arrays to separate the emitter and receiver, can be advantageous. At 24 

large aperture angles, it is possible that electrical noise sources become more significant as the 25 
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received signal amplitudes, depending on the defect, can be significantly reduced. Such 1 

incoherent noise problems are much easier to overcome than coherent ones however, and hence 2 

in certain scenarios, it is possible that operating outside the backscatter envelope may provide 3 

benefits.  4 

 Discussion: Spatial Averaging Theory 5 

The findings from Section 3 and 4 can be combined to compare the prediction of 𝑆𝑁𝑅𝑝
̅̅ ̅̅ ̅̅ ̅  using 6 

the aberrated PSF (results from Section 4.2 and Equation 2) to that obtained from the full signal 7 

and noise measurements 𝑆𝑁𝑅𝑚
̅̅ ̅̅ ̅̅ ̅̅   (Section 4.3 and Equation 3). In addition however, a 8 

simplifying argument is proposed here, namely one which assumes that within highly scattering 9 

environments, the noise, albeit temporally coherent, is entirely uncorrelated between the 10 

different array elements (i.e. spatially incoherent). This would enable modelling of the noise 11 

by an averaging law which is simply the reciprocal of square-root n, where n represents the 12 

number of spatially independent time-traces used. Although the FMC holds N2 time-traces, 13 

n=N(1+N)/2 due to reciprocity. Namely, in the absence of temporally random noise (e.g. 14 

electrical) only the half of the FMC (known as Half Matrix Capture (HMC)) holds unique 15 

information, as reciprocity dictates that a sender and receiver combination can be reversed and 16 

the received wave field remains identical. This defines a new SNR based on averaging theory, 17 

𝑆𝑁𝑅𝑎
̅̅ ̅̅ ̅̅ ̅  defined in Equation 4.  18 

𝑆𝑁𝑅𝑎
̅̅ ̅̅ ̅̅ ̅ (𝑁) =

|𝐼𝑠(𝑥, 𝑦, 𝜃𝑝)|𝑝𝑘

√𝑁(1 + 𝑁)/2
 

(4) 

 19 

As an initial verification, Figure 10 plots the RMS image noise amplitude against the averaging 20 

law. It shows good overall matching; the closest match occurring for the noise which stems 21 
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deepest within the material (i.e. 75mm). Interestingly, this suggests that the grain noise is 1 

largely uncorrelated between array elements in the highly scattering regime simulated here. 2 

5.1 Comparison of Multiple Scattering Results to Single Scattering Theory  3 

The SNR comparisons are shown in Figure 11a-c for the three TPS. The 𝑆𝑁𝑅𝑚
̅̅ ̅̅ ̅̅ ̅̅  is shown with 4 

error bars, against both theoretical predictions, 𝑆𝑁𝑅𝑝
̅̅ ̅̅ ̅̅ ̅ and the averaging law 𝑆𝑁𝑅𝑎

̅̅ ̅̅ ̅̅ ̅. The 5 

correlations for both theories are qualitatively good in (b) and (c), and less so for case (a). In 6 

general, the averaging approximation is the better of the two as the limitation of the single 7 

scattering theory is that it only predicts monotonic SNR functions. Within the materials 8 

simulated, when multiple scattering arises, this is shown not to be the case, and hence the 9 

degradation of signal information through attenuation, phase aberration, and possibly 10 

dispersive effects are detrimental to the performance of the array.  11 

When using a single array, this notion suggests that for a given array element budget, it is 12 

preferable to spend it on a 2D configuration (to obtain either a spatially compounded 2D or 3D 13 

image), i.e. rather than arrange the elements along a line, to extend them into a grid. A similar 14 

amount of spatial averaging will occur but more importantly, the signal information captured 15 

by the array will maintain a higher quality (amplitude).  16 

 Conclusions 17 

This article has described a FE modelling framework to simulate ultrasonic arrays imaging 18 

within highly scattering, polycrystalline materials. Its utility is demonstrated by investigating 19 

the performance of array imaging, which is fundamentally limited by the onset of scattering 20 

noise. By comparison of multiple scattering simulations results to those of well-established 21 

single scattering models, it is found that FE modelling can provide interesting and new insights 22 

to study the stronger scattering regimes. It must be noted that the simulations were confined to 23 

a 2D domain, which doesn’t fully capture the physics of 3D scattering. 24 
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The numerical simulations found that within highly scattering environments, the maximum 1 

aperture does not necessarily maximise the SNR, which suggests that 2D arrays should offer 2 

improved performance over linear arrays. By demonstrating the existence of a backscatter 3 

envelope, it is also shown that in certain inspection scenarios, significant advantages can be 4 

derived from separating the emitting and receiving transducer. Lastly, it was found that treating 5 

the noise as spatially incoherent between the different array elements makes as a good 6 

approximation as a noise model in this strong scattering case.  7 
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Material Property Inconel 600 

C11 234.6 GPa 

C12 145.4 GPa 

C44 126.2 GPa 

ρ 8260 kg/m3 

Table 1: material properties for Inconel 600 from [14]. 
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(a)  

 
 

(b) 

 

Figure 1: (a) Schematic of the Finite Element array model layout (not drawn to scale) and (b) schematic of the true point 

scatterer implementation into FE. 

θi    θs 
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Figure 2: FE illustration of the wave field emanating from a true point source (TPS) 

propagating after 5µs within (a) isotropic homogenous and (b) polycrystalline material. The 

colour scale denotes the displacement amplitude at the selected time.  
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(a) 

 

(b) 

Figure 3: Scattering matrix for a TPS embedded in isotropic material at a 50mm depth showing 

(a) amplitude normalised by the peak, and (b) wrapped instantaneous phase shown in radians.
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Figure 4: (a) Point Spread Function for an isotropic material (b) aberrated Point Spread 

Function for a polycrystalline material (c) noise baseline for a polycrystalline material. 
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(a) 

 

(b) 

Figure 5: Simulation results for a true point scatterer embedded within a single scattering 

medium at 25mm, 50mm, 75mm depth. (a) PSF area versus half aperture angle (b) relative 

SNR versus half aperture angle. 
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(a) 

 

(b) 

Figure 6: Scattering matrices for a true point scatterer at 50mm depth in a single realisation of 

a polycrystalline material, indicating (a) instantaneous amplitude and (b) instantaneous phase 

against incident and scattered angle.
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(a) 

 

(b) 

Figure 7: (a) PSF against half aperture angle for a true point scatterer embedded within a 

polycrystalline material. (b) mean SNR against half aperture angle calculating under single 

scattering assumptions. Results obtained by averaging from eight realisations of material 

with the same grain statistics. 
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. 

 

Figure 8: The mean SNR versus half aperture angle for 8 different realisations of a 

polycrystalline material and for three true point scatterers at 25,50, and 75mm depth.  
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(a) 

 

(b) 

Figure 9: The (a) RMS noise and (b) mean SNRm averaged from eight realisations of a 

polycrystalline material, and calculated as a function of incident and scattered angle. Both 

figures are normalised to the peak value in the image. 
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Figure 10: Comparison of the averaging law against the RMS image noise at three different 

depths, 25mm, 50mm, and 75mm, each from calculated from eight images of backscattering 

from polycrystalline materials. The results are plotted as a function of the number of array 

elements N.  
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(a) 

 

(b) 

 

 

(c) 

 

Figure 11: Comparison of the measured (true) SNRm with two predicted SNRs: SNRp which is 

calculated under single scattering approximations, and a second SNRa, based on an averaging 

law. The results are plotted as a function of array element N which varies from 16 to 128, for 

three true point scatterers embedded at (a) 25mm (b) 50mm and (c) 75mm depth within eight 

realisations (see error bars) of a polycrystalline, highly scattering medium. Each curve is 

normalised according to their maximum. 

 


