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Abstract

Information systems have been widely adopted to support service processes in various domains, e.g., in the telecommunication,
finance, and health sectors. Information recorded by systems during the operation of these processes provide an angle for operational
process analysis, commonly referred to as process mining. In this work, we establish a queueing perspective in process mining to
address the online delay prediction problem, which refers to the time that the execution of an activity for a running instance of a
service process is delayed due to queueing effects. We present predictors that treat queues as first-class citizens and either enhance
existing regression-based techniques for process mining or are directly grounded in queueing theory. In particular, our predictors
target multi-class service processes, in which requests are classified by a type that influences their processing. Further, we introduce
queue mining techniques that derive the predictors from event logs recorded by an information system during process execution. Our
evaluation based on large real-world datasets, from the telecommunications and financial sectors, shows that our techniques yield
accurate online predictions of case delay and drastically improve over predictors neglecting the queueing perspective.
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1. Introduction

The conduct of service processes, e.g., in the telecommuni-
cation and health sectors, is heavily supported by information
systems. To manage such processes and improve the operation
of supporting systems, event logs recorded during process op-
eration constitute a valuable source of information. Recently,
this opportunity was widely exploited in the rapidly growing re-
search field of process mining. It started with mining techniques
that focused mainly on the control-flow perspective, namely ex-
tracting control-flow models from event logs [1] for qualitative
analyses, such as model-based verification [2].

In recent years, research in process mining has shifted the
spotlight from qualitative analysis to (quantitative) online opera-
tional support ([3], Ch. 9). To provide operational support, the
control-flow perspective alone does not suffice and, therefore,
new perspectives are mined. For example, the time perspective
exploits event timestamps and frequencies to locate bottlenecks
and predict execution times.

To date, operational process mining is largely limited to black-
box analysis. That is, observations obtained for single instances
(cases) of a process are aggregated to derive predictors for the
behaviour of cases in the future. This approach can be seen as a
regression analysis over individual cases, assuming that they are
executed largely independently of each other. In many processes,
however, cases do not run in isolation but multiple cases compete
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over scarce resources. Only some cases get served at a certain
point in time (complete execution of an activity and progress
in process execution) while others must wait for resources to
become available. Cases that did not get served are enqueued
and consequently delayed.

A specific operational problem that is affected by the com-
petition of multiple cases for scarce resources is online delay
prediction. This problem refers to the time that the execution
of an activity for a particular case is delayed due to queueing
effects. In a simple single-class setting, cases are of a uniform
type and form a single queue that causes delays. However, in
this work, we also address the more complex multi-class setting.
Here, cases are enqueued depending on their type, which calls
for online delay prediction per case type.

Against this background, we argue that there is a need to con-
sider the queueing perspective in operational process mining in
general, and for the online delay prediction problem in particular.
To address this need, we outline various methods to integrate
queueing information in delay prediction, jointly referred to as
queue mining. These techniques are grounded in a model for
service logs that captures queueing related events during the
execution of a service process. The techniques for queue mining
introduced in this paper are described along two dimensions:
Foundation: regression-based vs. queueing models. A first set

of our predictors takes traditional approaches to operational
process mining as a starting point and extends an exist-
ing regression-based technique for time prediction [4] to
consider queues and system load. A second set of predic-
tors originates from queueing theory [5, 6] and leverages
properties of a queueing model, potentially under a widely
known congestion law (the snapshot principle).
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Case types: single-class vs. multi-class. Delay prediction is
sensitive to classifications of cases. In a single-class setting,
all cases are of a uniform type and delay prediction relates
to a single queue of cases. In a multi-class setting, in turn,
cases are classified by a certain type that influences how
cases are enqueued. Hence, delay prediction relates to a
specific case type.

In addition to queue mining techniques that consider the out-
lined spectrum in terms of foundations and case types, our contri-
bution is a comprehensive empirical evaluation of the presented
techniques. We employ two large real-world datasets, one from
telecommunications and one from the financial sector, and il-
lustrate that our techniques yield accurate online predictions of
case delay. In particular, our predictors drastically improve over
those that neglect the queueing perspective and simple heuristics
based on queueing models achieve comparable performance to
complex machine learning techniques.

This paper is an extended and revised version of our earlier
work [7] that focused on single-class settings only. In this work,
we also consider the more complex setup of multi-class settings.
To make the regression-based approach work for the multi-class
setting, we also propose an extension to a prediction method
based on transition systems developed by van der Aalst et al. [4]
and enhanced with context factors by Folino et al. [16]. In
particular, we show how a combination of characteristics of cases
and the overall system state can be incorporated following a
machine learning approach. Further, we extended the evaluation
with experiments related to the multi-class setting.

The remainder of this paper is organized as follows. The
next section provides motivation for the queueing perspective
and background on queueing models and also introduces the
delay prediction problem. Section 3 defines the service log as
the basis to our queue mining methods. Section 4 adapts an
existing method for regression-based time prediction to incorpo-
rate feature-annotations and machine learning. Then, Section 5
focuses on the single-class setting and introduces delay predic-
tors along with mining methods for these predictors. Section 6
presents predictors and queue mining methods for the multi-
class setting. Section 7 presents our experiments and discusses
their results. We review related work in Section 8 and conclude
in Section 9.

2. Background and Problem Specification

An example service process. For illustration, consider a ser-
vice process operated by a bank’s call center. Figure 1(a) depicts
a BPMN [8] model of such a process, which focuses on the
control-flow of a case, i.e., a single customer. The customer di-
als in and is then connected to a voice response unit (VRU). The
customer either completes service within the VRU or chooses
to opt-out, continuing to a call center agent (service provider).
Once customers have been served by an agent, they either hang-
up or, in rare cases, choose to continue for another service (VRU
or forwarding to an agent).

Although this model provides a reasonable abstraction of the
process from the perspective of a single customer, it falls short
of capturing important operational details. Customers that seek

a service are served by one of the available agents or wait in
a queue. Hence, activity ‘Be Serviced by Agent’ comprises a
waiting phase and an actual service phase. Customers that wait
for service may also abandon the queue due to impatience. To
provide operational analysis for this service process and predict
delay of processing, such queues and abandonments must be
taken into account explicitly.

The queueing perspective. For the above example, only
activity ‘Be Serviced by Agent’ involves significant queueing
since the other activities do not rely on scarce resources of
the service provider. Adopting a queueing perspective for this
activity, Figure 1(b) outlines how the activity is conducted under
multiple cases arriving at the system and, thus, emphasizes that
execution time of one case depend on cases that are already in the
system. In fact, Figure 1(b) presents a single-station queueing
system, where customers are classified according to some case
properties (e.g., whether they have a premium service contract)
and the respective queues are served by n homogeneous agents.

Such a queueing system is standardly described by a series
of characteristics, which, for the single-class setting, is denoted
using Kendall’s notation as A/B/C/Y/Z [9]. The arrival pro-
cess (A) is defined by the joint distribution of the inter-arrival
times. No assumption regarding the arrival process is expressed
by replacing A with G for general distribution. The processing
duration of a single case (B) is described by the distribution
of service time. The total number of resources the queueing
station is denoted by C, which stands for system capacity. When
a case arrives and all service providers are busy, the new arrival
is queued. The maximum size of the system, Y , can be finite,
so that new customers are blocked if the number of running
cases is larger than Y . In call centers, which provide our present
motivation, Y is practically infinite and can be omitted. Once a
service provider becomes available and the queue is not empty,
a customer is selected according to a routing policy Z . The
most common policy is FCFS (First-Come-First-Served) and in
such cases Z is also omitted. Queueing models may include
information on the distribution of customer (im)patience (G),
added following a ‘+’ sign at the end of Kendall’s notation.

For mathematical tractability and sometimes backed up by
practice, it is often assumed that sequences of inter-arrival times,
service times and customer (im)patience are independent of
each other, and each consists of independent elements that are
exponentially distributed. Then,A, B and G are replaced byMs,
which stands for Markovian.

The queueing model. In this work, we focus on specific
classes of queueing models. For the single-class queues, we
shall assume the G/M/s+M model and its variations. Specif-
ically, this model assumes that arrivals come from a general
distribution (e.g. Poisson process), service times are exponen-
tial and independent of the inter-arrival times, resource capacity
is of size s, queue size is infinite, routing policy is FCFS and
(im)patience is exponentially distributed.

This model is then directly lifted to the multi-class setting. For
a multi-class system as the one depicted in Figure 1(b), factors
that depend on the customer class are parametrized. In our case,
one defines the arrival processes of each class to be Poisson
processes (denoted Mi), and exponential service times (Mi) per
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Figure 1: Example process in a call center

customer class i. In the presence of multiple classes, the rout-
ing policy may implement a complex protocol to govern how
different queues are served by resources. However, a common
policy, also exploited in this work, is the one of priority queues.
That is, there is a total order of customer classes in terms of their
service priority. In such a setting, the policy for handling cus-
tomers is typically FCFS, within the same class. For derivation
of more accurate routing policies, see [10]. These underlying
assumptions reflect upon our choices of relevant predictors and
parameter estimation techniques throughout the paper.

The delay prediction problem. The phenomena of delay
has been a popular research subject in queueing theory, see [12].
The interest in delay prediction is motivated by psychological
insights on the negative effect of waiting on customer satisfac-
tion [13]. Field studies have found that seeing the line ahead
moving and getting initial information on the expected delay,
both have a positive effect on the waiting experience [14, 15].
Thus, announcing the expected delay in an online fashion im-
proves customer satisfaction.

In practice, when incorporating a delay announcements mech-
anism into a recommender system, e.g. in call centers, banks
and other service-driven organizations, the effect on quality-of-
service can be both positive and negative. On the one hand,
customers that hear the announcement might abandon and in
turn cause lost business [30]. On the other hand, as mentioned
above, announcements may relieve uncertainty and calibrate cus-
tomer expectations regarding their remaining wait time. Another
positive effect of abandonments caused by announcements is
that customers that remain in the system wait much less. Since
customer patience and value are positively correlated, this phe-
nomena has a positive effect on the firm’s interest [29]. However,
the topic of the operational influence of announcements on de-
lays and abandonment is beyond the scope of the current paper.
Here, we focus only on predicting the delays, with the goal of
making the announced information as accurate as possible.

We refer to the customer, whose delay time we wish to pre-
dict as the target-customer. In a multi-class setting, the target-
customer always belongs to one of the customer classes in the
system. Further, the target-customer is assumed to have infinite
patience, i.e., the target customer will wait patiently for service,
without abandoning, otherwise our prediction becomes useless.
However, the influence of abandonments of other customers on
the delay time of the target-customer is taken into account.

Formally, the online delay prediction problem can be stated
as follows. Let W be a random variable that measures the delay

time of a target-customer. Denote by ψ the predictor for W .
Then, the online delay prediction problem aims at identifying an
accurate ψ, with respect to the root mean-squared error (RMSE),
i.e. E[(W − ψ)2] with E denoting the expectation over random
variables. As an example, consider a simple predictor ψ that is
defined as the average of all past delays, denoted y1, ..., yn. That
is, ψ = 1

n

∑n
i=1 yi = ȳ. Then, in the absence of knowledge

about the actual mean, the RMSE can be approximated based
on the observed data. That is, the sampled prediction error
(or the root average squared error) ̂E[(W − ψ)2], which is the
average of the squared differences of the observed delays from
the average of past delays, quantifies the actual RMSE:

̂E[(W − ψ)2] =
1

N

N∑
i=1

(ȳ − yi)2.

3. Logs of Service Processes

The queue mining techniques developed in this paper exploit
event logs recorded by an information system during the execu-
tion of a service process. The section gives an overview of the
essential concepts related to these event logs.

An event recorded during the execution of a service process
with a single-station queue captures the following information:
• the time of event occurrence;
• the instance of the service process (aka case), i.e., a specific

customer with a request, who entered the system and has
been served or is still being served;
• the service transition, i.e., the progress of the customer in

the system;
• the class of the customer, which influences how the cus-

tomer is served.
We denote the universe of all such events by S, while S∗ is

the set of all finite sequences over S. Formally, we model the
information carried by an event as a set of function that assign
attribute values to events. Here, time is modelled as UNIX
timestamps; instance identifiers are natural numbers that refer
to a specific customer with a request; service transitions refer
to the arrival of a customer with a request in queue (qArrive),
their abandonment (qAbandon), and the start (sStart) and end
(sEnd) of the service that they receive; and the class is taken
from a pre-defined categorical domain C of customer types, e.g.,
C = {V IP,Regular, LowPriority}.
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Definition 1 (Event). For the events S of a single-station ser-
vice process:
• τ : S → N+ assigns timestamps.
• ι : S → N+ assigns instance identifiers.
• ε : S → E = {qArrive, qAbandon, sStart, sEnd} as-

signs service transitions.
• ξ : S → C assigns classes from a set C of customer types.

A set of example events are given in Table 1. Each of them
describes the transition of a particular instance (for illustration
purposes, we also indicated the name of the customer related to
this instance) in the service process.

Table 1: Example events of a service process

Timestamp Instance Service Transition Class

1415687360 1 (Daniel Will) qArrive VIP
1415687365 2 (John Smith) qArrive Regular
1415687366 1 (Daniel Will) sStart VIP
1415687381 1 (Daniel Will) sEnd VIP
1415687386 7 (Susan Lewis) qArrive Regular
1415687396 2 (John Smith) sStart Regular
1415687451 9 (Sarah Silver) qArrive LowPriority
1415688822 7 (Susan Lewis) qAbandon Regular

Following [3], we consider event logs that are defined as a set
of traces. A trace is a finite sequence of events, all related to
the instance of the service process and ordered by their time of
occurrence. Since the events of an event log of a single-station
service process have the specific structure outlined above, we
refer to the respective log also as a service log (S-Log).

Definition 2 (S-Log). A service log (S-Log) Π ⊆ S∗ is a set
of traces, where for each trace 〈s1, . . . , sw〉 ∈ Π it holds that
ι(si) = ι(sj) and τ(si) ≤ τ(sj) for 1 ≤ i < j ≤ w.

We observe that the events in Table 1 belong to four different
traces, each comprising between one and three events.

4. The Model of Feature-Annotated Transition Systems

In this section, we take up existing work on regression-based
time prediction that exploits annotated transition systems and
provide an extension that allows for flexible integration of queue-
ing information. We first motivate this extension and give an
overview of its main steps in Section 4.1, before we turn to the
details of the method in Sections 4.2 to 4.4.

4.1. Motivation and Overview

Regression-based time prediction can be approached based
on annotated transition systems, as introduced by van der Aalst
et al. [4]. These transition systems are directly constructed by
applying abstractions to the traces recorded during process ex-
ecution. In a second step, the abstract states of the transition
system are annotated with performance information. Although
the transition system method was applied in [4] to predict re-
maining times of running cases, it is a general technique that
can be applied to other supervised learning problems. While
the state abstractions employed by this method allow for direct
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integration of case specific properties, the integration of con-
text factors, e.g., on the load in a service system and queueing
information, is challenging.

To encompass context factors into the state abstraction, Folino
et al. [16] extended the work on performance prediction based
on transition systems and defined a state abstraction that com-
prised of two types of features: (1) ‘internal’ case properties and
(2) ‘external’ factors that characterize system state, e.g. work-
load, resource availability. However, this approach has several
disadvantages, such as the need to cluster over the two feature
types and the targeted outcome (e.g. delays, remaining times)
and the limitation to decision trees as learning techniques (we
discuss these limitations in more detail when reviewing related
work). Therefore, in this paper, we undertake a more flexible
approach that enables the use of various types of learning tech-
niques and combines transition systems that comprise of cases
and case-specific attributes (similarly to the internal features of
Folino et al. [16]) with continuous vectors of system-state factors.
This results in a decoupling of the state (which remains simple
and case-related) from the complex (and possibly continuous)
feature vectors when applying the learning technique.

The outline of our approach based on feature-annotated tran-
sition systems is presented in Figure 2. We shall now briefly
describe the proposed method. A (service) process produces
events that are stored in an event log, i.e., S-Log, as described
above. From the S-Log, the set of possible service transitions is
extracted, which is used to construct an initial transition system
(TS). Then, the log, along with the newly constructed transition
system feed the feature selection step. In this step, relevant
features, such as the queue-length, are attached to the different
states of the transition system.

The resulting featured transition system (FTS) then goes into
the third step of transition system annotation. Here, past values
of the outcome that we wish to predict (e.g. past delays) are
attached to states and features of the FTS. Lastly, the annotated
transition system (AFTS) goes into the learning phase, where
a prediction algorithm is applied to explain the outcome, as
function of the states and their features. Below, we formally
define each state of our approach and demonstrate the three steps
using the aforementioned example of a single-station service
process.

4.2. Step 1: Constructing a Transition System

A transition system is a triplet (Σ, E, T ) where Σ is the set
of states, E is the service transitions that are defined by the
investigated process and T ⊆ Σ×E × Σ is the transition flow
relation that describes state changes.
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In single-station service processes, the set of service transi-
tions is defined as E = {qEntry, qAbandon, sStart, sEnd}, cf.,
Section 3. Moreover, in this setting, the service transitions are
also the basis for the definition of states. That is, a function π is
defined that maps traces of an S-Log into some state abstraction.
For our running example, we choose π such that it transforms
traces into sequences of service transitions, i.e., π : Π → E∗.
As an example, let p ∈ Π be the trace with instance identifier 1
in Table 1. Then, the result of operating function π on this trace
is π(p) = (qEntry, sStart, sEnd). However, other abstrac-
tions, such as the most recent service transition (memoryless),
are also possible.

We are now ready to define the states of the transition system.
The set of states Σ consists of abstracted traces that result from
operating π on all prefixes of traces in Π:

Σ = {∅} ∪
⋃

(s1,...,sw)∈Π

⋃
1≤i≤w

{π((s1, . . . , si))}

Customers that have not yet arrived into the system are in
state ∅. According to this definition, the aforementioned trace
of our running example (π(p) = (qEntry, sStart, sEnd)) in-
duces four states, i.e., ∅, (qEntry), (qEntry, sStart), and
(qEntry, sStart, sEnd).

Finally, we define the last component T of the transition
system. Let σ.σ′ denote the concatenation of two sequences of
service transitions. Then, the state transitions T are defined as

T = {(σ, e, σ′) ∈ Σ× E × Σ | σ′ = σ.(e)}.

For our running example from Table 1, the corresponding
transition system is demonstrated in Figure 3.

4.3. Step 2: Feature Selection

In the current step, each state of the TS is related to a sequence
of features. In essence, it would be possible to enrich every state
σ ∈ Σ with these features, however that would cause state
‘explosion’ and the transition system would ‘loose’ its process
qualities. Moreover, we aim at making a distinction between
case-specific states (i.e. case type and other case attributes) and
system state, such as queue-lengths.

The features that we consider are state-dependent, e.g. for
state (qEntry), which corresponds to customer being in a queue,
we add queueing parameters, such as queue-length, while for ser-
vice state, (qEntry, sStart), we add the customer class (since
service duration is assumed independent of queue-length).

Let X be the feature universe, e.g. queue-length Q can be
considered as one of the features Q ∈ X and denote X ∗ the
finite sequences of features. We define the feature selection
function as f : Σ→ X ∗. In other words, we attach a sequence
X ∈ X ∗ to each state σ ∈ Σ. We refer to the resulting transition-
system as the featured transition system (FTS), which can be
written as (Σ, E, T, f). The feature function can be either man-
ually defined, or it could be mined by applying feature selection
algorithms on the service log.

4.4. Step 3: Annotation

Let Y be the set of outcomes that we wish to learn from a
given service log Π . Each prefix of a trace Π is related to a
single state in the transition system. From these prefixes, we
mine the observed values x of the sequence of features X that
are relevant for a particular state σ, i.e., X = f(σ). This way,
we get a sample of size N (given that there were N relevant
events in the log) of the pairs (σ, xi),∀ σ ∈ Σ, i = 1, ..., N .

For each observed pair (σ, xi) we also extract the observed
outcome (e.g. real value of delay) from the service log. We
denote this observed measure yi ∈ Y , and at the end of the third
step, for each state σ ∈ Σ we get a sample of pairs (xi, yi) ∈
X ∗ × Y ∗.

For our running example, for instance in state (qEntry), we
observe pairs of feature values (e.g. queue-lengths, waiting
times of the most-delayed customer) and the corresponding real
delays that occurred in the log.

In the remainder of the paper, we show how to formulate and
annotate suitable featured transition systems and learn prediction
functions that can be written as ψ ∈ Σ × X ∗ → Y . In other
words, the prediction function receives a state and a sequence
of feature values; then, an algorithms approximates ψ from past
outcomes, and returns a predicted value (which can also be
categorical for classification problems.)

5. Delay Prediction for Single-Class Settings

In this section, we focus on the delay prediction problem in
the single-class setting, where customers are homogeneous. We
propose mining techniques for three classes of delay predic-
tors that implement two different strategies. First, we follow
a learning-based analysis that utilizes the extended transition
system framework that we presented in Section 4. Our second
and third class of predictors, in turn, follow a completely dif-
ferent strategy and are grounded in queueing theory. For each
technique, we first define the actual predictor before turning to
the queue mining techniques for the construction of the predictor
from a service log.

5.1. Transition System Prediction

Our first predictor exploits the feature-annotated transition
systems discussed in Section 4. First, we define the outcome
that we wish to learn from the service log to be the delay of a
customer. Formally, let Y = N be the space of possible delays
and (Σ, E, T, f) the feature-annotated transition system that
corresponds to the initial system that we described in Figure 3.
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As a first baseline predictor, we use the method without any
features, i.e. f(σ) = ∅,∀σ ∈ Σ. At the annotation stage
we couple the state (qEntry) with the observed delays and
thus receive data-based couples (qEntry, yi) with i = 1, ..., N
indexing past N queueing events that appear in the S-Log. As
such, this predictor corresponds to the original approach for time
prediction as introduced by van der Aalst et al. [4].

As a next step, we add a feature ‘queue-length’ Q ∈ X to the
transition system. The state (qEntry) in the feature-annotated
transition system is then assigned with both past queue-lengths
and past delays. Consequently, for the (qEntry) state, we mine
the observed pairs (q(t), yi), i = 1, ..., N with q(t) being the
queue-length at time t, which is the arrival time of the target
customer (customer who’s time we aim at predicting).

Queue Mining. Given an S-Log, we first construct a predictor
for the feature-less transition system. For each recorded delay,
attached to σ = (qEntry), we calculate the average over past
delays, which yields the plain transition system predictor ψPTS :

ψPTS =
1

N

N∑
i=1

yi,

For the featured transition system, we apply two learning
methods that approximate the prediction function given the pairs
(q(t), yi), i = 1, ..., N . Specifically, we apply non-linear regres-
sion and use regression trees, c.f. [17, Ch. 9] and denote the two
prediction functions as ψNLR and ψTREE , respectively.

5.2. Queueing Model Predictors

Our second class of predictors does not follow a regression
analysis, but is directly grounded in queueing theory. These
predictors relate to the G/M/s + M model, so that upon the
arrival of a target-customer, there are s homogeneous working
providers at the station. We denote the mean service time by
m and assume that service duration is exponentially distributed.
Therefore, the service rate of an individual service provider
is µ = 1/m. Impatient customers may leave the queue and
customer individual patience is exponentially distributed with
mean 1/θ, i.e., the individual abandonment rate is θ. Whenever
customers do not abandon the system (θ = 0), the model reduces
to G/M/s.

We define two delay predictors based on the G/M/s and the
G/M/s+M models, respectively. We refer to the first predic-
tor as queue-length (based) predictor (QLP) and to the second
as queue-length (based) Markovian (abandonments) Predictor
(QLMP) [18]. As their names imply, these predictors use the
queue length (in front of the target customer) to predict its ex-
pected delay. We define the queue-length, q(t), to be a random
variable that quantifies the number of cases that are delayed at
time t. The QLP for a target customer arriving at time t is:

ψQLP (q(t)) =
(q(t) + 1)

sµ

with s being the number of service providers and µ being the
service rate of an individual provider.

The QLMP predictor assumes finite patience and is defined
as follows:

ψQLMP (q(t)) =

q(t)∑
i=0

1

sµ+ iθ
.

Intuitively, when a target-customer arrives, it may progress in
queue only if customers that are ahead of him enter service
(when a resource becomes available, at rate sµ) or abandon (at
rate iθ with i being the number of customers in queue). For the
QLP, θ = 0 and thus the QLMP predictor (Eq. 5.2) reduces to
the QLP predictor (5.2).

Queue Mining. Provided with an S-Log that is up-to-date,
at time t, we extract the primitives required for calculating the
QLP and QLMP. We start with the queue length q(t) and the
number of active service providers s:

q̂(t) = |{(s1, . . . , sw) ∈ Π | ε(sw) = qEntry ∧
∧ τ(sw) ≤ t}|,

ŝ = |{(s1, . . . , sw) ∈ Π | ε(sw) = sStart}|.

In other words, the queue length is estimated by the number
of paths that have experienced only a qEntry event, while the
number of providers online is estimated by the number of cus-
tomers that are in service at time t. Note that the latter estimator
can be inaccurate, when the queue is empty, since it does not
account for idle resources.

To obtain µ and θ we first define a auxiliary relations as
follows:

Q = {(p1, p2) ∈ S × S | ∃ (s1, . . . , sw) ∈ Π,
i ∈ N+, 1 ≤ i ≤ w : si = p ∧ si+1 = p′}

R1 = {(s1, s2) ∈ Q | ε(s1) = sStart

∧ ε(s2) = sEnd};
R2 = {(s1, s2) ∈ Q | ε(s1) = qEntry

∧ (ε(s2) = sStart ∨ ε(s2) = qAbandon)};
R3 = {(s1, . . . , sw) ∈ Π | ε(sw) = qAbandon}.

Relation Q, indicates that two events follow each other directly
in a trace. Relation R1 contains pairs of events from the same
trace that correspond to service start and end transitions, respec-
tively. Similarly, R2 contains pairs of events that are sequential
in the same trace and indicate waiting in queue (until abandon-
ment or service). Lastly, R3 contains traces that ended with an
abandonment. We use R1 to estimate the average service time,
m, as follows:

m̂ =

∑
(s1,s2)∈R1

(τ(s2)− τ(s1))

|R1|
,

and deduce a naı̈ve moment estimator for µ̂, µ̂ = 1/m̂ [19].
Lastly, we estimate θ based on a statistical result that relates it
to the total number of abandonments and the total delay time for
both served and abandoned customers, cf., [20]. Formally,

θ̂ =

∑
(s1,s2)∈R2

(τ(s2)− τ(s1))

|R3|
.
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5.3. Snapshot Predictors
The (heavy-traffic) snapshot principle [21], p. 187 is a heavy-

traffic approximation, which refers to the behavior of a queue
model under limits of its parameters, as the workload converges
to capacity. In the context of the delay prediction problem,
the snapshot principle implies that under the heavy-traffic ap-
proximation, delay times (of other customers) tend to change
negligibly during the waiting time of a single customer [18].
In other words, the system is assumed to be in a temporary
steady-state, at least during the delay of the target customer.

We define two snapshot predictors: Last-customer-to-Enter-
Service (LES or ψLES) and Head-Of-Line (HOL or ψHOL).
The LES predictor is the delay of the most recent service entrant,
while the HOL is the delay of the first customer in line.

In real-life settings, the heavy-traffic approximation is not
always plausible and thus the applicability of the snapshot prin-
ciple predictors should be tested ad-hoc, when working with
real data sets. Results of synthetic simulation runs, conducted
in [18], show that the LES and HOL are indeed appropriate for
predicting delays.

Queue Mining. Given an S-Log that is up-to-date, at time t
we mine the snapshot predictors as follows. Assuming the FCFS
policy, we estimate HOL as follows:

ψHOL = min
s∈R4

t− τ(s),

where,

R4 = {s ∈ S | ε(s) = qEntry ∧ ∃(s1, . . . , sw) ∈ Π : sw = s},

are the events of process instances that are currently waiting.
The LES is estimated in two phases. First, we obtain the trace
that has sStart as the most recent event:

υ = argmax(s1,...,sw)∈R5
τ(sw),

where,

R5 = {(s1, . . . , sw) ∈ Π | ε(sw) = sStart}.

Then, υ is the trace of the LES. Here, we assume that events are
instantaneous and cannot co-occur. Finally, in order to obtain
the LES, we calculate the waiting time for υ:

ψLES = τ(pυ)− τ(pυ−1).

6. Queue Mining for Multi-Class Settings

As discussed in Section 2, many single-station systems in
real-life scenarios consist of multiple classes of customers. In
this section, we present similar families of delay predictors as in
the single-class setting, but extend the methods to accommodate
for multi-class services.

Among the different customer types, we consider the follow-
ing priority policy. Let C = {c1, ..., ck} be the set of k customer
classes and let η be the priority function that assigns each ci
a corresponding priority, i.e. η(ci) ∈ {1, ..., k} with 1 being
the highest priority and k being the lowest. We assume that the
priorities among customers are totally ordered and hence waiting
customers of higher priority shall always enter service before
lower-priority customers. The policy for handling customers
within the same class is FCFS (First-Come-First-Served).

6.1. Transition System Predictors

Starting with predictors based on transition systems, the ap-
proach based on feature-annotated transition systems proposed
in Section 4 allows for direct integration of multiple classes.
First, we enrich the states of the transition system to include
customer classes. That is, the state abstraction is now a function
π′ : Π → (E×C)∗ that maps traces of an S-Log into sequences
that are built of pairs of a service transition and a class.

Considering the example trace p ∈ Π with in-
stance identifier 1 from Table 1, for instance, it holds
π′(p) = ((qEntry, V IP ), (sStart, V IP ), (sEnd, V IP )).
Deriving the states of the transition system with this
adapted state transition means that the transition system
for our example has no longer five states (cf., Figure 3),
but 13 states (under the assumption that the customer
class of an instance does not change during process-
ing). For instance, the state (qEntry) turns into three states
(qEntry, V IP ), (qEntry,Regular), (qEntry, LowPriority).

Next, we adapt the used set of features. Instead of using the
length of a single queue, a vector of queue-lengths is attached to
each state. Let q(t) = (qc1(t), . . . , qck(t)) be a vector of queue
lengths at time t, where c1, . . . , ck ∈ C are the customer classes.

Queue Mining. Given a service log Π and time t, the queue
length qci(t) is estimated by q̂ci(t) as follows:

q̂ci(t) = |{(s1, . . . , sw) ∈ Π | ε(sw) = qEntry

∧ τ(sw) ≤ t ∧ ξ(sw) = ci}|.

Once the vector of queue-lengths is mined, we apply the non-
linear regression and regression trees once more, without chang-
ing the notation of ψNLR and ψTREE .

6.2. Queueing Model Approximation

In this part, we extend the queueing model that we consider in
Section 5.2. We assume that the target-customer of type c ∈ C
arrives at time t into an Mi/Mi/s+Mi queueing system with a
priority discipline, η, as defined above. Note that, for notational
convenience, we consider the customer type in terms of the
priority, i.e. given a customer of class c we write the resulting
η(c) ∈ {1, ..., k} with 1 being the highest priority, instead of c.

We assume that during the stay of the target-customer, the
arrival rate of all customer types is a multi-dimensional (and
independent among classes) Poisson process with a vector of
rates (λ1, λ2, ..., λk) and an initial vector of busy resources (or
customers in service) (r1, ..., rk) with

∑k
i=1 ri = r and r being

the number of service providers online. We assume that the
number of providers does not change during the customer’s
waiting time.

Service times are assumed exponential, independent of each
other and of the arrival process. Service rates are represented
by the vector (µ1, ..., µk) that corresponds to the k customer
classes. Customer (im)patience is assumed exponential with
abandonment rates (θ1, ..., θk), corresponding to the various
classes. Note that the queue-lengths vector q(t) is available
(e.g. mined on-the-fly) with qj(t) being the queue-length of the
customer with priority j (not class j) at time t. We can think
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of q(t) as the original vector of queue-lengths, ordered with
respect to class priorities.

For the above model, only an approximation via upper and
lower bounds is possible due to the uncertainty in the order of
service completions. In the evaluation section we shall calculate
both bounds and check for their proximity to each other; if these
bounds prove to be close enough, then we can deduce that one
of them, e.g. the upper bound (for safety) can be used as a
proxy for the desired QLP delay predictor. Our technique is
somewhat similar to the approximation proposed in Section 4
of [22]. However, we develop bounds for queues with a strict
priority discipline, while in [22] the bounds are for first-come
first-served queues. We start by approximating the top-priority
customers, i.e. customers with priority level of 1. Then, we
inductively build upon the results from the top-priority queue to
show the upper and lower bounds for general-priority customers.

6.2.1. Top-Priority Customers
We provide an iterative algorithm for calculating the upper

and lower bounds for the expected delay of top-priority cus-
tomers, i.e. we consider customers of class c such that η(c) = 1.
Denote ψ1

QLPU the upper bound and ψ1
QLPB the lower bound

for their expected delay. Let n be the n-th iteration of our
algorithm, with n = 1, ..., q1 (queue-length of top-priority cus-
tomers). Algorithm iterations correspond to the process of ser-
vice completions, i.e. n = 1 is the first stage, into which the
target-customer arrives, while n = 3 means that two customers
have completed service since the arrival.

Let (rn1 , ..., r
n
k ) to be the vector of customers in service (for

each customer type) during the n-th iteration. For example,
r11 = 3, can be interpreted as 3 top-priority customers are being
served at the first iteration of the algorithm. Let argmax(n)
be the index of the slowest customer class in service at the
n-th iteration (there is such customer as long as the queue is
non-negative).

Between consequent iterations the update rule for the vector
of customers in service is:

rn+1
1 = rn1 + 1,

rn+1
argmax(n) = rnargmax(n) − 1,

i.e. we assume that at each step of the algorithm the slowest
customer finishes service (hence the upper bound). The other el-
ements of the service vector remain the same between iterations.

The idea of the upper bound calculation for top-priority cus-
tomers is similar to the single-class QLMP predictor:

ψ1
QLPU =

q1+1∑
n=1

1

(q1 − n+ 1)θ1 +
∑k
i=1 r

n
kµk

.

The calculation holds due to the fact that top-priority customers
are ‘aware’ only of customers in service (non-preemptive prior-
ity) and other top-priority customers.

We shall now provide the lower bound for the delay of the
top-priority queue. Let argmin(n) be the index of the fastest
customer class in service at the n-th iteration. Now, the update

rule is that fastest customers leave service:

rn+1
1 = rn1 + 1,

rn+1
argmin(n) = rnargmin(n) − 1,

and then we can write the lower bound on the delay predictor
ψ1
QLPB as follows:

ψ1
QLPB =

q1+1∑
n=1

1

(q1 − n+ 1)θ1 +
∑k
i=1 r

n
kµk

.

Note that the difference between the bounds in the top-priority
case is only the update rule of the iterative algorithm. For a
general class, it will not be the case, since the upper bound will
also be influenced by higher-priority customers.

Remark 1. Computationally, the iterative algorithm can be
costly, since the number of iterations, per customer type is equal
to the number of customers in both queue and service, which
can become large. Therefore, an approximation to the quan-
tity

∑k
i=1 r

n
kµk can be

∑k
i=1 rkµk, i.e. the number of service

providers that serve each class (out of r) remains constant dur-
ing the delay of the target customer. This approximation turned
out to be accurate in our experimental setting.

6.2.2. General-Priority Customers
For a target customer of a general priority c, the approximation

depends on the resulting bounds for all higher priorities. A target
customer of type c ‘sees’ only queues of classes from the high-
or-equal priority set, H(c) = {j|η(j) ≤ η(c)}, as well as the
vector of customers that are already in service, (r1, ..., rk) (we
assume a non-preemptive policy). The order of service entries is
the following. First, all queues that have higher priorities must
enter service. Then, all customers of higher priority that arrived
while customer type c was waiting enter service (in case they
did not abandon). Lastly, all customers of the same priority as c
that were ahead in the queue must enter service and only then
the target-customer will enter service.

Given that the arrival processes of the various customer types
are assumed Poisson with rates (λ1, λ2, ..., λk), we can approxi-
mate the amount of work that higher-priority customers bring
during the waiting time of the target customer. Formally, let Oc

be the amount of work units that ‘overtaking’ customers bring
into the system while target customer of type c waits. Then we
can write

Oc ≈
η(c)−1∑
i=1

(λi ×W c)× 1

rµi
,

with W c being the real waiting time of the target-customer
(of class c), λi ×W c being the number of priority i (higher-
priority) customers that arrived during the wait time of the target-
customers and 1

rµi
is the approximated service time for these

arriving customers.
For the n-th iteration, we assume that we have the service vec-

tor (number of active resources that serve the various customer
types), given by (rn1 , ..., r

n
k ) and as before we use the argmin(n)
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and argmax(n) notation. Note that the service vector is already
updated to the point in time for which higher-priority customers
from the set H(c) have left service and only similar priority
customers remain in queue. This implies that even when we
calculate the delay for a c type customer, we need to run the
algorithm for all higher priority classes. The update between
iterations for both upper and lower bound is similar to the top-
priority case, as demonstrated in Equations (1) and (1). Let
j = η(c) and denote ρi = λi/(niµi). Then we write:

ψjQLPU =

j−1∑
m=1

ψmQLPU +

+

qj+1∑
n=1

1

(qj − n+ 1)θj +
∑k
i=1 r

n
kµk

+ Ôc,

with Ôc being the estimator of Oc and given as follows:

Ôc = ψjQLPU

η(c)−1∑
i=1

ρi.

Therefore,

ψjQLPU =

∑j−1
m=1 ψ

m
QLPU +

∑qj+1
n=1

1
(qj−n+1)θj+

∑k
i=1 r

n
kµk

1−
∑η(c)−1
i=1 ρi

.

Note that ρi can be interpreted as the workload that a customer
of priority i brings into the system.

For the lower bound, we do not consider overtaking and we
assume that the fastest service is always completed, therefore:

ψjQLPB =

qj+1∑
n=1

1

(qj − n+ 1)θj +
∑k
i=1 r

n
kµk

.

6.2.3. Mining Queueing Parameters
In order to complement the algorithms that we proposed in

this part, we need to mine several queueing parameters from the
service log. The queue-lengths vector was already presented
at the beginning of the section. What remains to be extracted
from the log is patience rates, service rates, number of customers
in service (for each customer type) and the arrival rates. The
first three components, θj , µj , rj are trivial extensions of the
mining methods proposed in the previous sections. To each
of the methods, we add the predicate ξ(s1) = c in order to
differentiate customer types. For example, given an S-Log Π ,
we estimate the number of top-priority customers in service as,

r̂1 = |{(s1, . . . , sw) ∈ Π | ε(sw) = sStart ∧ ξ(s1) = 1}| .

For the arrival rates vector, we consider fixed time intervals
during which we assume that the arrival rates are constant. For
service processes in call centers as described in Section 2 and
considered in our evaluation, for instance, a time interval of 15
minutes is appropriate. Let [t1, t2) be a time-window for which
we aim at calculating the arrival rate λj , then given an S-Log Π:

λ̂j = |{(s1, . . . , sw) ∈ Π | ε(sw) = qEntry

∧ ξ(s1) = c ∧ τ(s1) < t2 ∧ τ(s1) ≥ t1}|.

Then, as the target customer arrives at time t we find a time-
window [tl, tv) such that t ∈ [tl, tv) and use the arrival rate from
that time-window for our calculations.

6.3. Multi-Class Snapshot Predictors

The last strategy for prediction is based on the snapshot prin-
ciple, extended for multi-class settings. Previously, we have
shown that the Last-customer-to-Enter-Service (LES) and Head-
Of-Line (HOL) predictors yield very similar results [7], so that
we focus on the HOL predictor in this section.

Instead of predicting the delay by providing the waiting time
of the head-of-line (HOL) among all classes, we use a per-class
HOL predictor. In other words, we mine a vector of head-of-line
customers as follows: denote by h(t) = (hc1(t), . . . , hck(t))
the vector of the longest waiting customers in each queue (the
delays of the HOL), with c1, . . . , ck ∈ C as before. For an
S-Log Π and time t, this vector can estimated from the log as:

ĥci(t) = min
s′∈{s∈S | ε(s)=qEntry

∧ ξ(s)=ci ∧ ∃ (s1,...,sw)∈Π:sw=s}

t− τ(s′).

The HOL predictor for class ci ∈ C is then defined as
ψciHOL(t) = hci(t).

7. Evaluation

This section presents an empirical evaluation of the delay
predictors, for both single-class and multi-class scenarios. For
the single-class scenario we test our techniques on real-world
data, while for the multi-class scenario, we use both real-world
data and synthetic logs.

The evaluation shows that for data that comes from a single-
class service station, the best predictors are the snapshot predic-
tors. As expected, when applying the single-class predictors to
a service log that represents a multi-class service process these
predictors are less accurate and require an adjustment. When
multi-class predictors are applied, accuracy is improved and
both snapshot predictors and transition system methods (e.g.,
regression trees applied to queue-length vectors) are shown to
have good predictive power.

A sensitivity analysis of our approach is conducted on the
synthetic logs. The results for the synthetic logs show several
interesting phenomena, some of which add validity to our tech-
niques, while others show in which situations the presented
predictors mediocre accuracy.

Below, we first describe two real-world service logs and three
synthetic logs that we used for our experiments (Section 7.1).
Then, we describe the experimental setup and mention imple-
mentation details of our approach (Section 7.2). We report on
the main results in Sections 7.3 and 7.4, for the single-class
and multi-class real-world data settings, respectively. Then, we
present the results of the sensitivity analysis for the multi-class
scenario conducted with synthetic logs. Finally, we discuss the
results in Section 7.6 and conclude with applicability and threats
to the validity of our approach (Section 7.7).
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7.1. Data Description
The real-world data for our experiments stems from two call

centers: (1) a call center of an Israeli bank and (2) a call center
of an Israeli telecommunication company. The data is gathered
and stored in the Technion laboratory for Service Enterprise
Engineering (SEELab)1. The experiments for the first call center
correspond to the single-class scenario, since we have focused
on a single type of customers. For the second call center, three
customer types that represent the private sector are considered:
VIP, Regular and Low priority (see [10] for further description
of the dataset and the priority setting). The synthetic data that we
later use for sensitivity analysis comes from a set of simulation
runs, based on a multi-class service process. We shall first
provide a brief overview of the two real-world datasets. Then,
we describe the assumptions and the generation of the synthetic
data logs.

Israeli Bank’s Call Center. The dataset contains a detailed de-
scription of all operational transactions that occurred within the
call center, between January 24th, 2010 and March 31st, 2011.
The log contains, for an average weekday, data on approximately
7000 calls. For our delay prediction experiments, we selected
three months of data: January 2011-March 2011 (a service log
of 879591 records). This amount of data enables us to gain
useful insights into the prediction problem, while easing the
computational complexity (as opposed to analysing the entire
data set). The three months were selected since they are free of
Israeli holidays. In our experiments, we focused only on cases
that demanded ‘general banking’ services, which is the majority
of calls arriving into the call center (89%). This case selection
is appropriate, since our single-class queueing models assume
that customers are homogeneous.

Below, we provide the result of a short analysis of the Bank’s
dataset2. Figure 4 demonstrates the number of customers in
queue on January 2nd, 2011. One may notice that the queue-
length changes over the day and that the heavy load hours are
between 9:00 and 11:00 in the morning (over 32 customers in
queue), moderate load hours are between 8:00 and 12:00 exclud-
ing 9:00 to 11:00 (over 12 customers, less than 32 customers)
and the rest would be considered typical load hours.

Figure 5 presents the mean service time over a single day (Jan-
uary 2nd, 2011, which is a typical working day in our training
log). The horizontal axis presents the time-of-day in a 30 min-
utes resolution and the vertical axis presents the mean service
time in seconds, during each of the 30 minutes. We see that the
mean service time is mostly stable, and short on average, except
towards boundaries (mornings and later afternoons).

Interestingly, the phenomena of slowdown that is well-known
in service systems during busy hours is not observed. Between
9:00 and 11:00 in the morning, service times seem steady. How-
ever, an increase in service time (slowdown), would be an in-
teresting ‘what-if’ analysis to conduct, when considering delay

1http://ie.technion.ac.il/Labs/Serveng
2The statistical analysis was performed by SEEStat, a software for statistical

analysis of service systems that is accessible online at http://seeserver.
iem.technion.ac.il/see-terminal/
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Figure 4: Queue-length as function of time-of-day (January 2nd, 2011)
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Figure 5: Service times as function of time-of-day (January 2nd, 2011)

prediction. In case of service time increase, system load would
also increase (assuming that arrival rates remain unchanged),
and in turn, one would expect that snapshot predictors that are
based on heavy-traffic approximations would be more accurate.
On the other hand, a large increase in service times, with a de-
crease in the arrival rate should keep the system stable and thus
keep the accuracy of the snapshot predictors unchanged across
all runs. We will later explore these aspects with synthetic data
in our sensitivity analysis.

Israeli Telecommunication Company Call Center. The call cen-
ter processes up to 50,000 service requests a day, routes requests
according to various resource skills, and simultaneously queues
requests across multiple sites. The center is operated with around
600-800 resource positions on weekdays and 200-400 service
providers on weekends. Further, several types of services are
provided; the most common are Private, Business, Technical and
Content Internet. In this paper, we focus on the Private service,
which handles requests with low, regular and VIP priorities. For
our evaluation, we selected three months of data to serve as our
service logs, from January 1, 2008 to March 31, 2008.

In an exploratory data analysis of the data we observe similar
behaviour compared to the first dataset. That is, load is time-
varying, whereas service times are rather stable.

Synthetic Data of a Multi-Class Service System. To create syn-
thetic data for a sensitivity analysis, we simulated a Mi/Mi/s+
Mi system, which resembles the setting that we assume for the
multi-class telecommunication company call center data. We
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modelled the system (with i = 3 classes) as a Coloured Petri Net
(CPN) [33] and used CPNTools3 to simulate different scenarios.
As a baseline model, we inferred the parameters (arrival rates,
service times, patience, number of servers) from the telecommu-
nication company data, for a busy period (10:00-10:30). Then,
we created three scenarios that correspond to three different
‘what-if’ analyses.

In the first scenario (Scenario 1), service times were gradually
increased, while the rest of the parameters were kept constant.
This increase imitates a ‘disastrous’ day in a service center,
where workload of an already busy hour increases without addi-
tional resources.

The second scenario (Scenario 2) compares systems of var-
ious sizes. Specifically, we start with the baseline system and
increase service times (by two-fold), while decreasing the ar-
rival rates (also by two-fold). This created a stable queue-length
and workload among the different runs with the emphasis being
on the increasing durations of service. Here, patience was not
changed, and thus even though services grew longer, customers
were as (im)patient as in the baseline scenario.

Lastly, in the third scenario (Scenario 3) we repeat the proce-
dure from Scenario 2, however we scale the patience to increase
as service time durations become longer. This scenario is based
on a well-known phenomena that experienced customers are
willing to wait longer for long services [30].

For each scenario, we conducted several simulation runs while
changing the respective parameters. For each run, we simulated
10 of 8 hours working days. Depending on the configuration,
these runs featured between 83,000 and 660 process instances.

7.2. Experimental Setup
Controlled and Uncontrolled Variables. The controlled variable
in our experiments is the prediction method (or the delay predic-
tor). The various methods that we defined in Sections 4 and 6
are used. Further, the definition of the online delay prediction
problem given in Section 2 refers to the root mean-squared error
(RMSE) in order to assess the performance of a certain predic-
tor (see Equation 2 for the definition of RMSE). A data-driven
approximation of the RMSE is the root of the average-squared
error, RASE. It serves as the uncontrolled variable in our experi-
ment and is defined as follows:

RASE =

√√√√ 1

N

N∑
i=1

(di − pi)2, (1)

with i = 1, ..., N being the i-th test-log delay out of N delays,
di the real duration of the i-th delay and pi the corresponding
predicted delay. The RASE is a proxy to the difference between
the real waiting time W and the predictor ψ and, thus, the lower
the value the better the prediction.

For our synthetic experiments we have also considered as
the uncontrolled variable the root mean relative error (RMRE),
which can be written as:

RMRE =

√
(E[(W − ψ)2]

E[W ]
,

3http://cpntools.org/

and approximated by the root average relative error (RARE):

RARE =

√
1
N

∑N
i=1(di − pi)2

1
N

∑N
i=1 d

2
i

.

We add this performance measure to normalize the error with
respect to the actual delays. This is due to the increase of service
time in our experiments, that naturally leads to an increase in
waiting times.

Implementation and Run-Time. The prototypes for our algo-
rithms that calculate the various predictors and their parameters
were implemented in R4. Specifically, we used the implemen-
tations of the rpart package for decision trees, and the mgcv
package for non-linear regression. The queueing algorithms
were encoded manually, without reliance on existing packages.
Data manipulations were performed in Visual Basic.

For learning-based methods, we divided the service logs into
two subsets: a training log and a test log. This is common
practice when performing statistical model assessment [17]. We
addressed each delayed customer in the test logs as the target-
customer, for whom we aim to solve the delay prediction prob-
lem.

We finish this section with a brief discussion of the off-line and
online computational effort that our algorithms require. We refer
to run-time as the online cost, while off-line cost is assumed to
be negligible (does not influence response time for online delay
prediction). The run-time of the snapshot prediction algorithms
is very fast, since it is assumed that the log contains all current
queueing information.

For queueing models, the run-time of the iteration-based
method (that approximates the upper and lower bounds) de-
pends on queue-length and number of customers in service.
For three months of data, it takes about 5 minutes (on an Intel
Core i7, 16GB RAM computer) to run the iteration-based algo-
rithm. However, in Section 6, we proposed an approximation
that reduces the computational effort of the algorithm to several
seconds. Another assumption is that queueing model parameters
(arrival rates, service times, patience and number of expected
resources) can be estimated off-line.

Transition-system techniques require intensive off-line learn-
ing (2 minutes run-time), but operate fast online, given a new
target customer. However, if concept drifts occur during the
day, which is a very likely scenario in uncertain systems it is
expected that transition-based algorithms will in fact require
online refinements and re-calculations.

7.3. Results: Single-Class Setting

Figure 6 summarizes the results that we received with the
presented predictors for the single-class setting, i.e., the plain
time prediction using a transition system (Plain TS), the feature-
annotated version (QL-based TS) that incorporates the queue
length, the queue length predictor without and with Markovian

4http://www.r-project.org/
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Figure 6: Prediction error for the first dataset: single-class techniques

abandonments (QLP and QLMP), and the Last-Customer-To-
Enter-Service and Head-Of-Line snapshot predictors.

For the methods based on transition systems, we consider past
delays of customers with similar path-history, when predicting
the delay of the target-customer. The problem with the Plain TS
method, however, is that, when applied to our real-life process,
it considers all past delays. Considering all past delays is appro-
priate in steady-state analysis, i.e., when the relation between
demand and capacity does not vary greatly over time. Transition
system method that considered the queue-length performed sig-
nificantly better, since it captures system load. The performance
of this method was second best only to snapshot predictors.

The queueing model predictors consider the time-varying
behaviour of the system and attempt to quantify the system-
state based on the number of delayed cases. The QLP fails in
accuracy, since it assumes that customers have infinite patience,
which is seldom the case in call center processes. We presume
that the QLP would perform better for processes with negligible
abandonment rates such as healthcare scenarios where customers
typically have more patience.

On the other hand, the QLMP outperforms the Plain TS
method. Therefore, accounting for customer (im)patience is
indeed relevant in the context of call centers, and other processes
in which abandonments occur [23]. In contrast, the QLMP is in-
ferior when compared to snapshot predictors or the queue-length
transition system predictor. This phenomena can be explained
by deviations between model assumptions and reality.

Throughout our experiments, snapshot predictors have shown
the largest improvement in accuracy (of up to 40%) over the rest.
Thus, we conclude that for the considered queueing process (of a
call center), an adequate delay prediction for a newly enqueued
customer would be the delay of the current Head-Of-Line (HOL)
or the delay of the Last-Customer-To-Enter-Service (LES). Our
main insight is that in time-varying systems, such as call center,
one must consider only recent delay history when inferring on
newly arriving cases.

7.4. Results: Multi-Class Setting

We first present the results of operating single-class predic-
tors on the dataset that actually features multiple customer
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Figure 7: Prediction error for the multi-class dataset: single-class techniques
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Figure 8: Prediction error for the multi-class dataset: multi-class techniques

classes. Figure 7 indicates that the previously superior snap-
shot predictors deteriorate in accuracy (we only depict the Head-
Of-Line since the Last-Customer-To-Enter-Service predictor
yielded equivalent results). This is especially true for the higher-
priority customers, since the single-class method does not distin-
guish between Head-Of-Line delays of Low, Regular and VIP
customers. We observe that across the three classes, the plain
TS method works best for VIP customers, indicating that VIP
delays are predictable and that the system from their viewpoint is
in fact in steady state. However, for other classes, both the non-
linear regression (NLR) and the regression tree (TREE) methods
prevail across all customer types. For the low-priority class, the
snapshot predictor is comparable to other predictors, because
these customers experience a large dependency on recent events.

Figure 8 describes the prediction error when applying multi-
class predictors from Section 6 on the multi-class dataset. Here,
we observe that upper and lower bounds of the queueing approxi-
mation perform similarly across classes. Furthermore, we notice
that after the adjustment to multi-class, the Head-Of-Line pre-
dictor is again superior to all methods across scenarios, except
the regression tree method. Note that regression tree method
performs especially well for the most difficult class to predict,
which is the low-priority class (it ‘suffers’ from largest variation
and dependencies on high-priority classes). Moreover, unlike the
case in the single-class dataset, queueing model approximation
predictors are comparable to the Head-Of-Line predictor.
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To conclude the overview of the results, we compare the over-
all improvement of adjusting single-class methods to the multi-
class scenario. Figure 9 compares single-class and multi-class
methods for all customers and essentially merges the information
that we gain from Figures 7 and 8. We observe a lower predic-
tion error for all methods, when accounting for the existence of
several customer classes.

7.5. Results: Multi-Class Setting in the Synthetic Log

Figures 10, 11 and 12 present the results of the three experi-
mental settings of increasing load (Scenario 1), steady load (Sce-
nario 2), and steady load with scaled patience (Scenario 3) in
terms of absolute RASE values, respectively. In the first two
scenarios, the horizontal axis, provides with the relative increase
of service times with respect to baseline parameters: B being
the baseline service time, which was estimated from a real-world
log and 3B meaning that service time was increased by three-
fold. For the third scenario, the horizontal axis represents the
relative increase in both service times and customer patience.
The vertical axis presents the RASE, with the different series in
the chart corresponding to the various predictors.

For the experiments, we considered one of the predictors
from each of the three classes. That is, the experiments include
the predictor based on regression trees (Tree), the queueing
model predictor (Queuing Model), and the Head-Of-Line (HOL)
predictor. For the queueing model predictor, we found that there
was no significance difference between the two bounds. Thus,
the upper and lower bounds are a good approximation of the
expected delay, under model assumptions. This is consistent to
the results of our previous experiments. Therefore, the figures
always present an average of the upper and lower queueing
bound, calculated with the approximation method presented in
Section 6.2.

Figure 10 shows that when load increases, the Head-Of-Line
predictor performs better than for an intermediate load, in which
system is not in steady-state. Tree-based methods perform as
well as the Head-Of-Line predictor, when load-increases. Since
delays are more predictable in steady-state, less data is required
for generalization. The queueing model predictors perform
worse as load gets heavier. However, for lower values of the
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Figure 11: Scenario 2 – Root Average Squared Error for Steady Workload with
Stable Patience

service time, it outperforms the snapshot predictor and there is a
light improvement when service times are 8B.

Scenario 2 (Figure 11) presents an interesting phenomena. For
steady load with increasing service times, the snapshot predictor
and the tree-based transition-system method perform adequately
without a deterioration of their accuracy. The queueing model
performs better than the other two predictors, as service times are
close to baseline values. Then, its accuracy heavily deteriorates
as service times increase and arrival rates decrease, and the
predictor becomes incomparable to the other two predictors.

In Figure 12 (Scenario 3), we observe a similar phenomena
among all predictor types. Here, all predictors fail to provide
with an accurate prediction as service time and patience grow.
However, when we observe the root mean relative error (mea-
sured by the root averaged relative error), depicted in Figure 13,
we notice that the relative error is actually stable.

7.6. Discussion

Below, we provide a three-part discussion of the results, with
each part corresponding to the three sets of experiments (two
real-world and synthetic data). In the first part, we discuss the
difference in foundation between the two families of predictive
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Figure 13: Scenario 3 – Root Average Relative Error for Steady Workload with
Scaled Patience

methods: data mining techniques that are based on the transition
system and queueing predictors that are based on models, ap-
proximations and congestion laws. In the second part, we focus
on the effort and consequences of analysing a multi-class system.
Lastly, in the third part, we discuss the effect that system load
has on the accuracy of prediction.

Data Mining Methods vs. Queueing Methods. The single class
analysis shows a slight superiority of the queueing methods
(Figure 6). Indeed, both the difference in the predictive power
and the complexity of the snapshot predictors seems appealing
for answering operational questions such as ‘how long will this
customer wait?’. However, when moving to a dataset with new
characteristics, namely several types of customers, the snapshot
predictors turn out to lack robustness. Other methods, such as
transition system techniques show reasonable results, despite
their ignorance of the multiple classes.

This difference emphasizes the strong dependence of tech-
niques that are based on specific models, such as queueing
models and their approximations. The strength of model-based
predictors is in their conceptual validity, i.e. how well do the
assumptions fit reality. On the other hand, data mining tech-

niques do not provide with deep insights on the reality, besides
the accuracy of prediction. However, these black-box techniques
are extremely robust when shifting among various datasets and
scenarios. Once we have adjusted the snapshot predictor and its
assumptions to the new reality, its performance became second
best only to regression trees.

Single-Class vs. Multi-Class. In most services nowadays, cus-
tomers are divided into classes in correspondence to, e.g., sophis-
ticated Customer Relationship Management (CRM) tools. This
could either be as function of the financial value that a customer
brings into the company or according to a patient’s current health
status. Therefore, prediction methods must accommodate for
these multi-class services. This point is strengthened by the re-
sults of our experiments with the multi-class dataset. Moreover,
the accuracy of the predictors depends on both case-dependent
characteristics (e.g. VIP customers have longer service times)
and system-dependent characteristics that are unique to each
class (e.g. customer or resource scheduling protocols). The first
type can be mined via the ‘case’ perspective in process mining,
while the second type can be inferred by applying different queue
mining techniques. For example, in [10], resource-scheduling
protocols are learned from data and can later be used for delay
prediction or simulations of the service process.

Analysing the classes separately can provide insights into the
service process. For example, from Figure 8 we learn that the
performance of the VIP system is stable, whereas low priority
customers experience changes in load and thus in delay duration.

Effects of Load in Service Processes. In this part, we mainly
discuss the results of our synthetic experiments that we presented
in 7.5. The term of system load is centric in service processes.
The load represents the demand that arrives into the system,
and is driven by the arrival rates, service times and customer
patience. The relation between the demand for service (the load)
and system capacity, dictates queue-length, delays, resource
utilization and the probability that a customer abandons. In our
sensitivity analysis with synthetic logs, we validated the queue
mining methods against increasing load and stable load.

In the increasing load scenario (Scenario 1), when resource
utilization increases and heavy-traffic conditions drive the sys-
tem to a steady-state (of long queues and prolonged delays), the
Head-Of-Line predictor performs very well. Specifically, Fig-
ure 10 shows a non-surprising result, that when a (heavy-traffic)
steady state is reached (load increases), the Head-Of-Line pre-
dictor performs better than for an intermediate load. Tree-based
methods perform as well as the Head-Of-Line predictor, when
load-increases, since delays are more predictable in steady-state;
less data is therefore required for generalization.

In contrast, the queueing model seems to ‘miss out’ the steady-
state that results from heavy-traffic conditions. The worsening
of the queueing model predictor is related to its insensitivity to
steady-state behaviour, being a time-varying (state-dependent)
predictor. For intermediate load, the queueing model predictors
are comparable to head-of-line and tree predictors and therefore
can be considered accurate for delay prediction.

14



In the second scenario (Figure 11), when service times in-
crease but load is stable, we observe that the snapshot predictor
and the transition-based method are stable in performance. On
the other hand, the queueing model predictor deteriorates. We
explain this phenomena by the fact that in the second scenario
we did not scale customer patience according to the increase
in service times. A well-known phenomena in service systems
is that customer patience is typically a function of the service
time. Customers are willing to wait longer for a longer ser-
vice [31]. Hence, we conducted the third experiment, and in
Scenario 3 scaled the patience as well. Scenario 2 indicates
that the Head-Of-Line and the transition-system methods are
invariant to increase in service times. However, for the queueing
model predictors, a refinement of experiments is required to
check for their accuracy under increasing service times.

Scenario 3 is demonstrated in Figures 12 and 13; in this sce-
nario the load is stable, although patience and service times
increase by order of magnitude. For absolute values, all predic-
tors perform worse as service times increase. However, when
we consider the relative error, with respect to the average delay,
we observe that all predictors are stable across simulation runs.
This is an expected result, since for the same load and queue-
lengths, the relative prediction accuracy per predictor should
remain the same. Clearly, an error of 50 seconds is substantial
for an average delay of 20 seconds and is considered low for
average delay of 5000 seconds.

To summarize, service processes operate under varying loads.
Some systems never experience heavy-load and therefore queue-
ing model predictors can be adequate. For overloaded systems,
snapshot predictors and learning methods seem to perform better
when predicting delays. When load is stable, we expect that
the performance of all predictors be adequate, regardless of the
value of the load.

7.7. Applicability and Threats to Validity
Finally, we discuss the applicability and threats to validity

of the predictors that are grounded in queueing theory. The
transition-system predictor clearly suffers from state-space ex-
plosion, when applied to large logs with many possible routes
(or activities). Otherwise, the method is general enough to be
applied for any process model with corresponding features.

Therefore, we divide the discussion into two parts, according
to the two queueing predictor types. For every predictor-type, we
discuss its applicability by over-viewing the set of assumptions
under which these predictors can be applied. Then, we provide
some empirical evidence that may constitute a threat to the
validity of our approach.

Snapshot Principle Predictors: Heavy-Traffic Assumption.
Throughout our real-world data experiments, snapshot predictors
outperformed the queueing model predictors in their precision.
Thus, we conclude that for the considered queueing process
(of a call center), an adequate delay prediction for a newly
enqueued customer would be the delay of either the current
Head-Of-Line (HOL) or the delay of the Last-Customer-To-
Enter-Service (LES). Our main insight is that in service pro-
cesses one must often consider only recent delay history when

inferring on newly arriving cases, since that customer arrives
into a temporary ‘steady-state’. This is especially characteris-
tic of periods in which the system is in ‘heavy-traffic’, since
heavy-traffic assumptions imply a steady-state. In ‘heavy-traffic’
the system changes negligibly during the processing time of the
target customer. Moreover, the snapshot principle was shown to
work well with multiple service stations as well [21]. Therefore,
investigating its applicability to complex processes that can be
represented by a network of queues may provide competent
prediction.

The applicability of the snapshot predictors can be threatened
by the absence of heavy-traffic conditions in the service process.
If system state changes frequently, then even if the load is heavy,
these conditions are unfulfilled. For instance, during certain
hours of the day the service process can be in light-traffic, and
since call centers are time-varying systems, the steady-state
assumption will not hold.

Indeed, as we observed in Figure 4, not all hours can be con-
sidered heavy, according to the formal conditions. However,
in systems, such as our call center, it is often times so that the
convergence to heavy-traffic limit (steady-state) is fast, and thus
the method is still applicable. Moreover, service times in our
system are comparable to the inter-arrival times of the customers,
and therefore assuming that a customer will experience a similar
delay with the Head-Of-Line is plausible. Lastly, when consider-
ing the time-changing system in a piecewise manner, often times
(as we saw in our real-world data experiments), a steady-state
constitutes a plausible assumption.

Queueing Model Predictors: Model Assumptions Matter. The
queueing model predictors consider the time-varying behaviour
of the system and attempt to quantify the system-state based on
the number of delayed cases. In other words, unlike the snapshot
predictors, no steady-state (while waiting) is assumed. The QLP
method (for single-class queues) has mediocre accuracy, since it
assumes that customers have infinite patience, which is seldom
the case in real call center processes. We presume that the QLP
would perform better for processes with negligible abandonment
rates, e.g. in emergency departments and transportation.

On the other hand, the queueing models that do consider
abandonments (QLMP in single-class and QModelUpper/Lower
in multi-class), are comparable to the NLR transition-system
method. Therefore, accounting for customer (im)patience is
indeed relevant in the context of call centers, and other processes
in which abandonments occur [23].

As we showed in our experiments, the queueing model predic-
tors are often times inferior when compared to snapshot predic-
tors or transition-system methods. This lack of accuracy can be
explained by deviations between model assumptions and reality.
To demonstrate this deviation, we further explore service times
data from the Israeli bank’s call center data.

Figure 14 presents the histogram of service times for all days
in three months of the bank’s call center data (January 2011-
March 2011). The exponential distribution density is denoted
by a dashed line, while the log-normal distribution is a solid
line. We see a better fit of the empirical data to the log-normal
distribution, which is a known phenomena in call centers [31].
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Figure 14: Service time distribution - data from January to March, 2011

However, it is often time noticed in the literature, that even
when queueing model assumptions do not hold, the model has
value when compared to data [32]. As such, we conclude that
further investigation of the conditions under which the simplify-
ing models hold in reality is required.

8. Related Work

Our work mainly relates to three streams of work, i.e., process
mining in general, time prediction based on mined models in
particular, and delay prediction in queueing theory.

Process Mining. Lately, process mining has seen a remarkable
uptake, providing tools for the creation of process models from
event data, over the assessment of the conformance of mod-
els and events, to extensions of models for operational support,
see [3] for a recent overview. Despite the wide-spread focus on
the control flow perspective, process mining techniques would
benefit from additional information, such as time and resource
utilization. In particular, several approaches addressed the prob-
lem of predicting process completion times for running cases.
Van der Aalst et al. [24] highlight the importance of capturing re-
source utilization appropriately and provide techniques for min-
ing a simulation model. The approach creates a Coloured Petri
net that comprises resource and timing information and serves as
the basis for time prediction. Rogge-Solti and Weske [11] follow
a similar approach, but ground the analysis in a probabilistic
model, formalized as a stochastic Petri net. Then, Monte-Carlo
simulation allows for predicting completion time.

Time Prediction. A generic framework for time prediction based
on state transition systems constructed from process logs was
developed in [4]. Furthermore, state transition annotation-based
predictors haven been combined with decision trees, thus taking
into account context features such as queue-length, resource
availability, and customer characteristics [16]. A continuation
of this line of research can be found in [25, 26], where the
methods from [16] are extended and applied to low-level event
logs, respectively. A general discussion on mining context from
event logs can be found in [27].

The work by Folino et al. [16] is close to our model of feature-
annotated transition systems as it defines states to comprise
of two types of features: (1) ‘internal’ case properties and (2)
‘external’ factors that characterize system state. However, this
approach has several shortcomings. First, cases are clustered
over the two feature types and the targeted outcome, which
results in an artificial (method-dependent) partition of the joint
feature-outcome space. As a consequence, fine-grained details
of the feature space could be lost, while non-existent values
of the outcome space could be added. Further, the learning
method is limited to decision trees, partially due to the discrete
nature of the resulting clustering of the feature space, so that
other statistical learning methods cannot be applied to the full
extent [16].

In this work, we undertake a more flexible approach that en-
ables the use of various types of learning techniques. Further,
our approach combines transition systems that comprise of pro-
cess traces and case-specific attributes with continuous vectors
of system-state factors to achieve decoupling of the state (which
remains simple and case-related) from the complex (and possibly
continuous) feature vectors when applying learning techniques.

Queueing Theory. Predicting queueing delays has been a popu-
lar research subject in queueing theory; see [12] for an overview.
Statistical techniques for estimating delays were applied mainly
for systems in steady-state [28, 20]. Real-time delay predictors
that do not assume steady-state, in analogy to the online de-
lay prediction problem addressed in this work, were proposed
in [22, 18]. We use these predictors as a basis to our queue
mining techniques and address the derivation of these predictors
from event data.

9. Conclusion

In this paper, we showed how to consider a queueing per-
spective in operational process mining for service processes. In
particular, we state the problem of online delay prediction and
provide different techniques, jointly referred to as queue mining,
that take recorded event data as input and derive predictors for
the delay of a case caused by queueing. We addressed delay
prediction for the single-class setting that assumes homogeneous
customers as well as the multi-class setting that features different
classes of customers.

First, we considered mining of regression-based predictors
that are based on state transition systems, for which queueing
information has been integrated. To this end, we took up exist-
ing methods and presented feature-annotated transition systems
that separates case state and system state characteristics. This
enables us to consider various features of different sizes, without
expanding the state space of the transition system and allows for
direct application of various machine learning techniques. We
further argued for predictors that are grounded in queueing the-
ory and presented mining techniques for predictors that emerge
from a queueing model, either based on queueing theory or the
snapshot principle.

For all predictors, we tested accuracy using real-life service
logs from the telecommunications and financial sectors. Our ex-
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periments show that predictors incorporating queueing informa-
tion or directly grounded in queueing models improve accuracy
by 30%-40% on average compared to the plain regression-based
method. Also, we observed that the multi-class methods are
superior to single-class methods in their predictive power. Re-
gression trees that build upon the extended transition system
method provided with the most accurate predictions, improving
over the snapshot predictors by almost 25%. Finally, we also
reported on a sensitivity analysis of the predictors with synthetic
data. By exploring scenarios of increasing load, various sizes,
and under varying impatience. Here, methods based on transi-
tion systems that incorporate queueing information as well as
snapshot predictors have been shown to be particularly robust
across the different scenarios.

In future work, we intend to expand queue mining to that
stem from complex service processes with several stations, i.e.,
process activities that comprise of resource delays. The nat-
ural models, when considering such processes, are queueing
networks. These models are often mathematically intractable
and thus the analysis of queueing networks resorts to simulation
or approximation methods in the spirit of the snapshot principle.
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