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Abstract We develop explicit, piecewise-linear formulations of functionsf(x) : R
n 7→ R, n ≤ 3,

that are defined on an orthogonal grid of vertex points. If mixed-integer linear optimization problems

(MILPs) involving multidimensional piecewise-linear functions can be easily and efficiently solved to

global optimality, then non-analytic functions can be usedas an objective or constraint function for large

optimization problems. Linear interpolation between fixedgridpoints can also be used to approximate

generic, nonlinear functions, allowing us to approximately solve problems using mixed-integer linear op-

timization methods. Towards this end, we develop two different explicit formulations of piecewise-linear

functions and discuss the consequences of integrating the formulations into an optimization problem.

Keywords Approximate optimization• Linear interpolation• Simplices• EPA Complex Emissions

Model

1 Introduction

1.1 Optimizing Piecewise-Linear Functions

The field of global optimization has advanced significantly during the last two decades from theoretical,

algorithmic, and application viewpoints (e.g., [1] – [11]). As an example application domain, consider

the advanced oil recovery technique of optimally allocating compressed natural gas, calledlift gas, into a

large, interdependent set of oil wells. Kosmidis et al. [12,13] optimized the profitability of a petroleum

field with lift gas, integrating factors such as pressure drop across tubing, line merging, multiphase flow,

and reservoir pressure into their optimization model. Because they used hydraulic lookup tables to relate

gas injection (QGAS,i) to oil production (QOIL,i), the objective and constraints in their model are non-

smooth, piecewise-affine functions defined by linear interpolation between vertex points. Piecewise-
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linear functions in one dimension have been used to formulate the gas lift problem since the work of

Buitrago et al. [14].

In a recent comparative study of formulations for the gas lift problem, Misener et al. [15] addressed

the gas lift problem using four different representations of piecewise-affine functions in one dimension

proposed by Nemhauser and Wolsey [16], Floudas [17], Sherali [18], and Keha et al. [19]. Each of the

the four algorithms was sufficient to solve the mixed integerlinear program (MILP) to global optimality.

However, the tests we reported in Misener et al. [15] revealed that the special structure method from Keha

et al. [19] consistently out-performed the three other algorithms. Based on these results, we recommended

that industrially-relevant piecewise-linear optimization problems be solved using the Keha et al. [19]

formulation.

This paper develops explicit, piecewise-linear formulations of functionsf(x) : R
n 7→ R, n ≤ 3, that

are defined on an orthogonal grid of vertex points. If MILPs involving multidimensional piecewise-linear

functions can be easily and efficiently solved to global optimality, then non-analytic functions (e.g., the

pointwise-defined functions in the gas lifting problem) canbe used as an objective or constraint function

for large optimization problems. Towards this end, we develop two different explicit formulations of

piecewise-linear functions and discuss the consequences of integrating the formulations into an optimiza-

tion problem.

Linear interpolation between fixed gridpoints can also be used to approximate generic, nonlinear

functions, allowing us to approximately solve problems using linear, rather than nonlinear, programming

techniques. The potential of this method is twofold. First,in cases where efficient solution time is

of paramount importance, a local search near the optimal point of the approximation will yield a good

feasible point of the original nonlinear problem. Second, the solution of the piecewise-linear problem can

be used as awarm startfor a global optimization algorithm by generating a good initial upper bound.

In this paper, we begin in Section 1.2 by discussing previousapplications of piecewise-linear func-

tions to optimization problems. Section 2 introduces the approximation algorithm. Section 3 discusses

interpolation within a simplex. Section 4 formulates explicit, piecewise-linear formulations for two and

three dimensions which confine a point to a simplex. Section 5explicitly presents the equations used in

the approximation algorithm. Section 6 provides illustrative examples on a set of functions and analyzes

the associated error. Finally, Section 7 concludes the paper.

1.2 Literature Review

Williams [20] used linear interpolation to convert separable nonlinear programs (NLPs) into piecewise-
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defined linear programs (MILPs). Kosmidis et al. [13] constructed a two-dimensional piecewise linear

function using a hydraulic lookup table in their study of gaslifting and well scheduling for enhanced oil

recovery. Zhang and Wang [21] solved an approximation of a nonlinear objective function with linear

constraints using a series of linear programs. Magnani and Boyd [22] developed an NLP that can be used

to fit a convex piecewise-linear function to a given set of data.

In addition to approximate methods, other groups have studied piecewise underestimation of nonlin-

ear functions to expedite the global solution of large-scale problems. Rosen and Pardalos [23] and Parda-

los and Rosen [24] addressed large-scale concave programming problems using piecewise linearization

techniques. Meyer and Floudas [25] and Karuppiah and Grossmann [26] took advantage of the spe-

cial structure of bilinear terms to partition the domain andconstruct piecewise-linear underestimators

that strengthened the lower bound on the generalized pooling and integrated water systems problems,

respectively. Based on their success, Wicaksono and Karimi[27] and Gounaris et al. [28] thoroughly

studied piecewise-linear relaxations of bilinear functions and suggested formulations that could improve

the computational times of Meyer and Floudas [25] and Karuppiah and Grossmann [26]. Recognizing that

solution times are sometimes more important than certificates of optimality, Pham et al. [29] designed

a piecewise bilinear programming algorithm that quickly obtains a good feasible point for large-scale

pooling problems.

For more generic functions, Mangasarian et al. [30] discussed a succession of piecewise-linear under-

estimators converging to the global minimum of an NLP, a technique similar to the algorithm designed by

Gounaris and Floudas [31, 32], which converges on the convexenvelope of a function through a piecewise

combination of convex and linear functions.

Dividing a domain into non-overlapping simplices has been previously discussed by Chien and Kuh

[33] in the context of linearly interpolating nonlinear electrical networks. Simplex division also played

a key role in the development of convex envelopes for trilinear terms and edge concave functions [34,

35, 36]. The technique we use in this study, linearly interpolating vertex points within non-overlapping

simplices, generates an easily-solved approximation of the original problem.

2 Introduction to the Approximation Algorithm

2.1 Lookup Tables

Given a continuous functionΩ(x) : R
n 7→ R, an approximation function̂Ω(x) : R

n 7→ R can be

constructed using a lookup table and an interpolation algorithm. For the purposes of this study, a lookup
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table consists of function valuesΩ(x) ∈ R and associated domain pointsx ∈ R
n that are recorded at

orthogonal gridpoints.

Function interpolation between the lookup table gridpoints can be performed using a variety of al-

gorithms, but this paper will study linear interpolation through a convex combination of the gridpoints

Chien and Kuh [33]. As will be shown in Section 3, the linear interpolation function is uniquely defined

only if each point in the domain is restricted to a single simplex. Therefore, the approximation function

will interpolate function values within a tessellation of simplices.

2.2 Justification of Lookup Table Dimensions

Because the domain space of functionΩ(x) is partitioned into orthogonal gridpoints and then tessellated

with a pattern of simplices, one of the sub-problems associated with this study is division of a hypercube

into simplices. Hughes and Anderson [37] summarized the minimum number of simplices needed to

triangulate an n-dimension hypercube and developed results for dimensions six and seven. Dimensions

one, two, and three can be triangulated with as few as one, two, and five simplicies, respectively, but four,

five, six, and seven-dimensional hypercubes require 16, 67,308, and 1493 simplices [37].

Noting the large number of simplices needed to partition hypercubes of dimension greater than three,

this study restricts lookup tables to no more than three dimensions. In other words, the algorithm de-

veloped in this study uses lookup tables to construct an approximationΩ̂(x) : R
n 7→ R of function

Ω(x) : R
n 7→ R whenn ≤ 3.

2.3 Functional Form

Using the lookup tables introduced in Section 2.1, the interpolation algorithm that will be described in

Section 3, and the explicit piecewise linearization for twoand three dimensions presented in Section

4, functionsΩ(x) : R
n 7→ R of dimension three or lower can be approximated as an affine equation

Ω̂(x) : R
n 7→ R. Higher dimension functions consisting of a summation thatcan be separated into

terms of three or fewer terms can be approximated by constructing a number of lookup tables. Functions

Ψ(x) : R
n 7→ R with n ≤ 6 that cannot be separated into low-order terms can be writtenas a summation

of bilinear terms:

Ψ(x1, . . . , x6) =
∑

i

Ω1
i (x1, x2, x3) · Ω

2
i (x4, x5, x6) ≈

∑

i

Ω̂1
i (x1, x2, x3) · Ω̂

2
i (x4, x5, x6). (1)
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Equation (1) can be relaxed using the convex envelope developed by McCormick [38] and Al-Khayyal

and Falk [39]. The resulting bilinear envelope can be tightened using one of the piecewise approaches of

Wicaksono and Karimi [27] and Gounaris et al. [28].

Similarly, a functionΦ(x) : R
9 7→ R with n ≤ 9 can be separated into a summation of trilinear

terms and relaxed using the convex envelopes determined by Meyer and Floudas [34, 35] or the looser

relaxation of Maranas and Floudas [40] and Ryoo and Sahinidis [41]. Although the convex envelope

represents the tightest possible relaxation, determiningthe convex envelopes of trilinear functions requires

a priori permutation of the variables [34, 35]. The relaxation of Maranas and Floudas [40] and Ryoo

and Sahinidis [41], which recursively applies bilinear underestimators, permits tight relaxations through

piecewise partitioning of the variable domains.

This study introduces piecewise linear approximations andexploits lookup tables of dimension one,

two, and three to construct approximation functions that can be written as a summation of linear, bilinear,

and trilinear terms. Note that the algorithm’s generic nature permits approximation of arbitrary functions

which can be written as a summation of nonlinear terms with upto nine dimensions each.

3 Interpolation within a Simplex

After a one-, two-, or three-dimensional domainX is partitioned into an orthogonal grid that spans the

domain, any pointx ∈ X can be written as a convex combination of the gridpoints. Butthe convex

combination of the gridpoints is not necessarily unique. Carathéodory [42] showed that every element of

compact, convex setX ⊂ R
n can be written as a convex combination of at mostn + 1 points ofX . If

the domain ofX is convex, then any point in the domain space can be written asa convex combination

of two points (whenX ⊂ R), three points (whenX ⊂ R
2), or four points (whenX ⊂ R

3).

Although at mostn + 1 gridpoints are needed to express each pointx ∈ X ⊂ R
n, there are many

more thann + 1 gridpoints in any reasonable representation of the domain space. Because there are

many gridpoints, unique interpolation of function values using a convex combination of gridpoints is

unlikely. To guarantee a deterministic interpolation outcome, onlyn + 1 gridpoints are activated at one

time. Section 4 describes appropriately activatingn + 1 gridpoints for each point in the domain space.

Assuming that then + 1 appropriate gridpointsx0, . . . , xn ∈ X for domain pointx ∈ X ⊂ R
n are

activated and that we wish to approximate functionf(x) : X 7→ R, consider the system of equations:
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f̂(x) = w0 · f(x0) + . . . + wn · f(xn),

x = w0 · x0 + . . . + wn · xn,

n
∑

i=0

wi = 1,

wi ≥ 0, ∀ i = 0, . . . , n.

(2)

In the above linear system of equations (2), there aren + 2 unknowns (then + 1 convex combination

weightswi and the value of the approximation functionf̂(x)) andn+2 equations (the interpolation equa-

tion for functionf̂(x), then-dimensional equation forx, and the summation of the convex combination

weights). This system is uniquely determined whenx is in the interior ofn + 1 gridpoints, allowing us

to interpolate the functionf(x) : X 7→ R between then + 1 appropriate gridpoints.

4 Restriction to a Simplex: Explicit Formulations for Two and Three

Dimensions

To uniquely represent each point in the domain as a convex combination of gridpoints, we follow Zhang

and Wang [21] in partitioning the domain space into small boxes (rectangles and rectangular prisms in two

and three dimensions, respectively) and partitioning eachof the boxes into non-overlapping simplices.

Section 4.1 describes the set of constraints that restrictseach point in domain space to a small box.

Sections 4.2 – 4.5 introduce the equations that uniquely confine each point to a single simplex and Section

4.6 describes the interpolation between the simplex vertices. The algorithm described in Sections 4.1 –

4.6 generalizes the one-dimensional piecewise-linear approximation from Floudas [17] and Nemhauser

and Wolsey [16] to two and three dimensions.

4.1 Box Constraints

After variable setX is partitioned into the orthogonal grid, any pointx ∈ X is within a line segment

(whenX ⊂ R), a rectangle (whenX ⊂ R
2), or a rectangular prism (whenX ⊂ R

3) defined by the

gridpoints. The equations introduced in this section activate only the gridpoints at the vertices of the

small box that containsx. Figure 1 diagrams an activated line, rectangle, and rectangular prism within

the domain space for dimensions one, two and three, respectively. All other vertices are deactivated.

If the variable is one dimensional, the domain set isX partitioned intoXi ∈ R, i = 0, . . . , N1, where
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N1 represents the number of segments. To activate a single linesegment, a set of variables,λ1
i ∈ {0, 1}

s.t. i = 1, . . . , N1, is introduced and declared as a Special Ordered Set of type 1(SOS1). Special

ordered sets, proposed by Beale and Tomlin [43] and initially implemented by Forrest et al. [44], are sets

with at most one nonzero component. We use theSOS1 concept because advanced mixed-integer linear

programming solvers such as CPLEX [45] efficiently exploit special ordered sets [15]:

N1
∑

i=1

λ1
i = 1, λ1

i ∈ [0, 1], λ1
i SOS1 ∀ i = 1, ..., N1. (3)

Figure 1: A single active line, square, and box in the domain space for dimensions 1-3

Only the vertices of the single active line segment are allowed to contribute to the interpolation, so contin-

uous variableswi ∈ [0, 1] s.t. i = 0, . . . , N1, which act as convex combination weights, are constrained

by the activated line segment [16, 17]:

w0 ≤ λ1
1,

wi ≤ λ1
i + λ1

i+1, ∀ i = 1, ..., N1 − 1,

wN1
≤ λ1

N1
.

(4)

When the domainX has two dimensions, it is partitioned intoXi,j ∈ R
2 i = 0, . . . , N1, j =

0, . . . , N2. Two sets of variables,λ1 ∈ [0, 1] s.t. i = 1, . . . , N1 andλ2 ∈ [0, 1] s.t. j = 1, . . . , N2,

activate each rectangle. As in the one dimension case, thesevariables areSOS1:

N1
∑

i=1

λ1
i = 1, λ1

i ∈ [0, 1], λ1
i SOS1 ∀ i = 1, ..., N1, (5)

N2
∑

j=1

λ2
j = 1, λ2

j ∈ [0, 1], λ2
j SOS1 ∀ j = 1, ..., N2. (6)
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Only the vertices of a single activated rectangle contribute to the interpolation within that rectangle, so

the convex combination of continuous weightswi,j ∈ [0, 1] s.t. i = 0, . . . , N1, j = 0, . . . , N2 are

constrained as follows:

Variable1







































N2
∑

j=0

w0,j ≤ λ1
1,

N2
∑

j=0

wi,j ≤ λ1
i + λ1

i+1, ∀ i = 1, ..., N1 − 1,

N2
∑

j=0

wN1,j ≤ λ1
N1

,

(7)

Variable2



































N1
∑

i=0

wi,0 ≤ λ2
1,

N1
∑

i=0

wi,j ≤ λ2
j + λ2

j+1, ∀ j = 1, ..., N2 − 1,

N1
∑

i=0

wi,N2
≤ λ2

N2
.

(8)

Finally, when the domainX has three dimensions, it is partitioned intoXi,j,k ∈ R
3 s.t. i =

0, . . . , N1, j = 0, . . . , N2, k = 0, . . . , N3. Three sets of variables:λ1 ∈ [0, 1] s.t. i = 1, . . . , N1,

λ2 ∈ [0, 1] s.t. j = 1, . . . , N2 andλ3 ∈ [0, 1] s.t. k = 1, . . . , N3, denote the active rectangular prism.

As in the other two cases, these variable sets areSOS1:

N1
∑

i=1

λ1
i = 1, λ1

i ∈ [0, 1], λ1
i SOS1 ∀ i = 1, ..., N1, (9)

N2
∑

j=1

λ2
j = 1, λ2

j ∈ [0, 1], λ2
j SOS1 ∀ j = 1, ..., N2, (10)

N3
∑

k=1

λ3
k = 1, λ3

k ∈ [0, 1], λ3
k SOS1 ∀ k = 1, ..., N3. (11)

Only the vertices of the activated rectangular prism contribute to the interpolation of points within that

prism, so convex combination weightswi,j,k ∈ [0, 1] s.t. i = 0, . . . , N1, j = 0, . . . , N2, k = 0, . . . , N3

are constrained as follows:

Variable1







































N2
∑

j=0

N3
∑

k=0

w0,j,k ≤ λ1
1,

N2
∑

j=0

N3
∑

k=0

wi,j,k ≤ λ1
i + λ1

i+1, ∀ i = 1, ..., N1 − 1,

N2
∑

j=0

N3
∑

k=0

wN1,j,k ≤ λ1
N1

,

(12)
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Variable2



































N1
∑

i=0

N3
∑

k=0

wi,0,k ≤ λ2
1,

N1
∑

i=0

N3
∑

k=0

wi,j,k ≤ λ2
j + λ2

j+1, ∀ j = 1, ..., N2 − 1,

N1
∑

i=0

N3
∑

k=0

wi,N2,k ≤ λ2
N2

,

(13)

Variable3







































N1
∑

i=0

N2
∑

j=0

wi,j,0 ≤ λ3
1,

N1
∑

i=0

N2
∑

j=0

wi,j,k ≤ λ3
k + λ3

k+1, ∀ k = 1, ..., N3 − 1,

N1
∑

i=0

N2
∑

j=0

wi,j,N3
≤ λ3

N3
.

(14)

The constraints in this section restrict each point in the domain to a line segment (defined by 2 points),

rectangle (defined by 4 points), or rectangular prism (defined by 8 points). But, as described in Section

3, convex combinations of points in the interior of the smalltwo and three dimensional shapes will not

be unique. To achieve a unique interpolation, we partition the rectangles and rectangular prisms into

non-overlapping simplices. Sections 4.2 through 4.5 divide the shapes into simplices and, for each point

in the domain, activate only the vertices of the appropriatesimplex.

4.2 Triangulation Classes

In two dimensions,X ⊂ R
2, there is one representative triangulation class with two distinct orientations

that divide a rectangle into non-overlapping simplices. The two possible triangulation orientations of a

rectangle are shown in Figure 2.

1 2

3 4

(a)
1 2

3 4

(b)

Figure 2: The two possible divisions into nonoverlapping simplices for a 2-cube

The three dimensional case,X ⊂ R
3, has six representative classes that divide the rectangular prism

into non-overlapping simplices [36]. The six standard representatives are diagrammed in Figure 3. Each

triangulation type has multiple orientations.

To partition the domain spaceX , we choose a particular triangulation class and triangulation orienta-

tion. Section 4.3 justifies choosing triangulation type B (see Figure 3) as the representative triangulation.

After choosing a triangulation type, the specific triangulation orientation for each variable set can be se-

lected to reduce interpolation error. The triangulation type and orientation is tessellated across the entire
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domain, as shown in Figure 4 [33].
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3

6
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4

5

3

6
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21

4

5

3

6

87

21

4

5

3

6

87

21

4

5

(a) Triangulation type A (b) Triangulation type B

(c) Triangulation type C (d) Triangulation type D

(f) Triangulation type F(e) Triangulation type E

Figure 3: Triangulation types of the 3-cube [36]

Figure 4: Chosen triangulation type and orientation tessellated over domain space (two dimensions)

4.3 Justification of Triangulation Type B

There are two major advantages to using triangulation B, shown in Figure 3(b), as the representative

triangulation for three dimensional domains (X ⊂ R
3). First, only the three planes illustrated in Figure

5 need to be considered to isolate a point in a small rectangular prism into a particular simplex. Second,

each of the six simplices in triangulation type B have equal volume in the case of uniform partitioning,

increasing the accuracy of the interpolation. The three planes which partition the rectangular prism into

simplices,Y1368, Y1458 andY1278, are defined by the numbers of their vertex points.
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1
2

3 4

5
6

7
8

1
2

3 4
5

6

7
8

1
2

3 4

5
6

7
8

Figure 5: Three planes define triangulation:Y1368, Y1458 & Y1278

Figure 6 diagrams each of the six simplices after the three planes are used to divide the prism. Because

the six simplices are of equal volume in the case of uniform partitioning, the relative error from the

approximation will be relatively uniform across the rectangular prism.

Simplex 1: 1 2 4 8

1
2

3
4

5
6

7
8

Simplex 2: 1 2 6 8

1
2

3
4

5
6

7
8

Simplex 3: 1 5 6 8

1
2

3
4

5
6

7
8

Simplex 4: 1 5 7 8

1
2

3
4

5
6

7
8

Simplex 5: 1 3 7 8

1
2

3
4

5
6

7
8

Simplex 6: 1 3 4 8

1
2

3
4

5
6

7
8

Figure 6: Six simplices result from triangulation type B using 3 planes
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Orientation: 1 - 8

1
2

3
4

5
6

7
8

(a)

Orientation: 2 - 7

1
2

3
4

5
6

7
8

(b)
Orientation: 3 - 6

1
2

3
4

5
6

7
8

(c)

Orientation: 4 - 5

1
2

3
4

5
6

7
8

(d)

Figure 7: The four orientations of triangulation type B are defined by their primary diagonal

Figure 7(a) illustrates the triangulation orientation diagrammed in Figure 6, while Figures 7(b) through

7(d) delineate the three alternative orientations for triangulation type B. Each of the four type B triangu-

lation orientations is defined by one of the four rectangularprism diagonals: 1 – 8, 2 – 7, 3 – 6, or 4 –

5. Analogous to the division by planes scheme in Figure 5, thethree other triangulation orientations each

contain three planes which share a common diagonal. For clarity, Sections 4.4 and 4.5 will introduce

vertex activation using the triangulation orientation along diagonal 1 – 8 that is illustrated in Figure 7(a),

but different triangulation orientations can be considered to reduce the error of approximating a given

function.

4.4 Isolating a Simplex in a Single Box

Given an isolated box of two / three dimensions, this sectionintroduces equations that partition the rect-

angle and rectangular prism into two and six simplices, respectively, and, for a given point in the box,

activate only the relevant simplex vertices. In Section 4.5, the results of this section are generalized to the

case of a box situated inside of a domain of gridpoints.

4.4.1 Isolating a Simplex in a Rectangle

For rectangleA of two dimensions:

(a, b) ∈ A ⊂ R
2 such thata ∈

[

aL, aU
]

and b ∈
[

bL, bU
]

, (15)
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each simplex is defined by its relation to one of the lines shown in Figure 2 of Section 4.2. Assume for the

purpose of illustration that the rectangle is divided usingthe orientation shown in Figure 2(a). Defining

∆a = aU −aL and∆b = bU −bL to be the two side lengths of the rectangle, the equation of the diagonal

line in Figure 2(a) is:

(

a − aU
)

· ∆b −
(

b − bU
)

· ∆a = 0. (16)

To activate the vertices of the appropriate simplex within the rectangle, define binary variableY14 ∈

{0, 1} that is activated on one side of the line and deactivated on the other. Figure 8 delineates the region

whereY14 is activated. In the following two inequalities, the binaryvariable representing the line is

explicitly determined according to the scheme shown in Figure 8,

−∆a · ∆b · (1 − Y14) ≤
(

a − aU
)

· ∆b −
(

b − bU
)

· ∆a ≤ ∆a · ∆b · Y14. (17)

1 2

3 4

Figure 8: Region of activated binary variable:Y14 = 1

All four of the rectangle vertices diagrammed in Figure 8 areactivated, so the remaining task is to set

the convex combination weight of either vertex 3 (waL,bU ) to zero whenY14 = 1 or vertex 2 (waU ,bL ) to

zero whenY14 = 0:

waL,bU ≤ 1 − Y14, waU ,bL ≤ Y14, (18)

so that, given any point[a, b] ∈ A, the point can be expressed as a unique convex combination ofthe

three activated vertices.

4.4.2 Isolating a Simplex in a Rectangular Prism

Consider point[a, b, c] in rectangular prismA of three dimensions:

(a, b, c) ∈ A ⊂ R
3 such thata ∈ [aL, aU ], b ∈ [bL, bU ] and c ∈ [cL, cU ], (19)

13



where each simplex inA is defined by its relation to the three planes shown in Figure 5of Section 4.3.

Defining∆a = aU − aL, ∆b = bU − bL and∆c = cU − cL to be the three orthogonal lengths of the

rectangular prism, the equations of the planes in Figure 5 are

PlaneY1368 → (a − aU ) · ∆c − (c − cU ) · ∆a = 0, (20)

PlaneY1458 → (a − aU ) · ∆b − (b − bU ) · ∆a = 0, (21)

PlaneY1278 → (b − bU ) · ∆c − (c − cU ) · ∆b = 0. (22)

To activate the vertices of the appropriate simplex, define three binary variables,Y1368 ∈ {0, 1},

Y1458 ∈ {0, 1} andY1278 ∈ {0, 1} that are each activated on one side of the plane and deactivated on

the other. Figure 9 highlights the regions whereY1368, Y1458 andY1278 are activated. The following set

of three sets of inequalities, Equations (23) to (25), explicitly determine the binary variables representing

the planes corresponding to the scheme shown in Figure 9.

1
2

3
4

5
6

7
8

(a)Y1368 = 1

1
2

3
4

5
6

7
8

(b) Y1458 = 1

1
2

3
4

5
6

7
8

(c) Y1278 = 1

Figure 9: Regions of activated binary variable:Y1368, Y1458, Y1278

−∆a · ∆c · (1 − Y1368) ≤ (a − aU ) · ∆c − (c − cU ) · ∆a ≤ ∆a · ∆c · Y1368, (23)

−∆a · ∆b · (1 − Y1458) ≤ (a − aU ) · ∆b − (b − bU ) · ∆a ≤ ∆a · ∆b · Y1458, (24)
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−∆b · ∆c · (1 − Y1278) ≤ (b − bU ) · ∆c − (c − cU ) · ∆b ≤ ∆b · ∆c · Y1278. (25)

Now, the equations in Section 4.1 restrict the active gridpoints to eight box vertices, so the remaining

task is to allow only the relevant simplex vertices to remainactive. For example, ifY1278 = 1, then

the convex combination weights of vertices 5 and 6 are set to zero. Table 1 lists the vertices that are

deactivated for each value of the binary variables. Notice that, in every case, the vertices deactivated by

each binary variable lie on a single edge.

Table 1: Deactivated vertices according to the 3 binary variables representing the planes in Figure 9

Value Deactivated Vertices
Y1368 = 0 2 → (aU , bL, cL) 4 → (aU , bU , cL)

1 5 → (aL, bL, cU ) 7 → (aL, bU , cU )

Y1458 = 0 2 → (aU , bL, cL) 6 → (aU , bL, cU )
1 3 → (aL, bU , cL) 7 → (aL, bU , cU )

Y1278 = 0 3 → (aL, bU , cL) 4 → (aU , bU , cL)
1 5 → (aL, bL, cU ) 6 → (aU , bL, cU )

(

waU ,bL,cL + waU ,bU ,cL

)

≤ Y1368,

(

waL,bL,cU + waL,bU ,cU

)

≤ 1 − Y1368,

(

waU ,bL,cL + waU ,bL,cU

)

≤ Y1458,

(

waL,bU ,cL + waL,bU ,cU

)

≤ 1 − Y1458,

(

waL,bU ,cL + waU ,bU ,cL

)

≤ Y1278,

(

waL,bL,cU + waU ,bL,cU

)

≤ 1 − Y1278.

(26)

4.5 Activating a Single Simplex in a Domain of Gridpoints

Sections 4.5.1 and 4.5.2 use the equations introduced in Section 4.4 and re-cast them in an entire domain

of points. Notice that this method requires constraints of orderN2 for both domains of two and three

dimensions. The constraints are of orderN2 for two dimensional domains because the equations consider

each of the gridpoints (N1 × N2) and turn off exactly one of the vertices. The method is orderN2

for three dimension domains because the constraint equations select three lines to switch off (there are

approximatelyN1 × N2 + N1 × N3 + N2 × N3 lines). Additionally, the method in Sections 4.5.1 and

4.5.2 requires equal partitioning of each variable. Because∆x1, ∆x2, and∆x3 are constants, there is no

room to use finer partitioning in a portion of a variable’s domain.

Section 4.5.3 and 4.5.4 introduce a method for activating a simplex in a domain of gridpoints that is

15



based on work by Kosmidis et al. [13], who use triangulation orientation 1 – 4 to tessellate a function

with a two dimensional domain. Section 4.5.4 generalizes their results to a three dimension domain. In

this method, the constraints are of orderN for a domain of two dimensions and of orderN2 for a domain

of three dimensions.

Because the method described in Section 4.5.3 and 4.5.4 doesnot require the definition of constants

like ∆x1, it can be used to irregularly partition the variable domains. Regions of higher curvature can be

partitioned with more gridpoints, while nearly-linear regions can be coarsely partitioned.

4.5.1 2D Domain with 1 Binary Variable

When the domain has two dimensions (x ∈ X ⊂ R
2), define vectorse1 = [1, 0]T ande2 = [0, 1]T

which select the first and second component respectively from variablex (i.e, the first element ofx is

x · e1). Then, assuming even grid spacing, the distances between the gridpoints (represented as∆a and

∆b in Section 4.4.1) are:

∆x1 = (xi+1,1 − xi,1) · e1, ∀ i = 0, . . . , N1, (27)

∆x2 = (x1,j+1 − x1,j) · e2, ∀ j = 0, . . . , N2. (28)

Notice that both the second index ofx in Equation (27) and the first index ofx in Equation (28) are

irrelevant. Since the grid spacing of the first index is independent of the grid spacing of the second index,

the index1 is used arbitrarily. The distances between the gridpoints could be equivalently defined using

other placeholder indices.

Equation (16) of the diagonal line connecting vertices 1 and3 of the rectangle becomes:

(

x −

N1
∑

i=1

xi,1 · λ
1
i

)

· e1 · ∆x2 −



x −

N2
∑

j=1

x1,j · λ
2
j



 · e2 · ∆x1 = 0. (29)

The SOS1 variablesλi andλj are only activated for a singlei ∈ 0, . . . , N1 and j ∈ 0, . . . , N2, so

Equation (29) describes exactly one line for a givenx.

To activate the vertices of the appropriate simplex, define binary variableY14 ∈ {0, 1} that is activated

as in Section 4.4.1:
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−∆x1 · ∆x2 · (1 − Y14) ≤

(

x −

N1
∑

i=1

xi,1 · λ
1
i

)

· e1 · ∆x2

−



x −

N2
∑

j=1

x1,j · λ
2
j



 · e2 · ∆x1 ≤ ∆x1 · ∆x2 · Y14. (30)

Finally, the convex combination weight of either vertex 3 (whenY14 = 1) or vertex 2 (whenY14 = 0) is

set to zero:

wi−1,j ≤ 3 − Y14 − λ1
i − λ2

j , ∀ i = 1, . . . , N1, j = 1, . . . , N2, (31)

wi,j−1 ≤ 2 + Y14 − λ1
i − λ2

j , ∀ i = 1, . . . , N1, j = 1, . . . , N2. (32)

The variablesλi andλj ensure that only one vertex within the entire domain is deactivated.

4.5.2 3D Domain with 3 Binary Variables

When the domain has three dimensions (x ∈ X ⊂ R
3), define vectorse1 = [1, 0, 0]T, e2 = [0, 1, 0]T

ande3 = [0, 0, 1]T to isolate each individual component of the vectorx. Then, assuming even grid

spacing, the distances between the gridpoints are:

∆x1 = (xi+1,1,1 − xi,1,1) · e1, ∀ i = 0, . . . , N1, (33)

∆x2 = (x1,j+1,1 − x1,j,1) · e2, ∀ j = 0, . . . , N2, (34)

∆x3 = (x1,1,k+1 − x1,1,k) · e3, ∀ k = 0, . . . , N3. (35)

As in Section 4.5.1, the indices labeled1 are only placeholders. The grid spacing for each variable is

independent of the other two variables, so any arbitrary placeholder could have been used.

Equations (20) – (22) of the planes in Figure 5 become:

PlaneY1368

(

x −

N1
∑

i=1

xi,1,1 · λ
1
i

)

· e1 · ∆x3 −

(

x −

N3
∑

k=1

x1,1,k · λ3
k

)

· e3 · ∆x1 = 0, (36)

PlaneY1458

(

x −

N1
∑

i=1

xi,1,1 · λ
1
i

)

· e1 · ∆x2 −



x −

N2
∑

j=1

x1,j,1 · λ
2
j



 · e2 · ∆x1 = 0, (37)
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PlaneY1278



x −

N2
∑

j=1

x1,j,1 · λ
2
j



 · e2 · ∆x3 −

(

x −

N3
∑

k=1

x1,1,k · λ3
k

)

· e3 · ∆x2 = 0. (38)

As in Section 4.5.1, the variablesλi, λj andλk are active for just one value ofi ∈ 0, . . . , N1, j ∈

0, . . . , N2 andk ∈ 0, . . . , N3 so that only the three appropriate planes are defined.

To activate the vertices of the appropriate simplex, define three binary variables,Y1368 ∈ {0, 1},

Y1458 ∈ {0, 1} andY1278 ∈ {0, 1} that are each activated as in Section 4.4.2:

−∆x1 · ∆x3 · (1 − Y1368) ≤

(

x −

N1
∑

i=1

xi,1,1 · λ
1
i

)

· e1 · ∆x3

−

(

x −

N3
∑

k=1

x1,1,k · λ3
k

)

· e3 · ∆x1 ≤ ∆x1 · ∆x3 · Y1368, (39)

−∆x1 · ∆x2 · (1 − Y1458) ≤

(

x −

N1
∑

i=1

xi,1,1 · λ
1
i

)

· e1 · ∆x2

−



x −

N2
∑

j=1

x1,j,1 · λ
2
j



 · e2 · ∆x1 ≤ ∆x1 · ∆x2 · Y1458, (40)

−∆x2 · ∆x3 · (1 − Y1278) ≤



x −

N2
∑

j=1

x1,j,1 · λ
2
j



 · e2 · ∆x3

−

(

x −

N3
∑

k=1

x1,1,k · λ3
k

)

· e3 · ∆x2 ≤ ∆x2 · ∆x3 · Y1278. (41)

The remaining equations allow only the relevant simplex vertices to remain active according to the

scheme in Table 1. Noticing that the vertices inactivated lie on a single edge, the following constraints

deactivate the entire edge:

N1
∑

i=0

wi,j,k−1 ≤ 2 + Y1278 − λ2
j − λ3

k, ∀ j = 1, . . . , N2, k = 1, . . . , N3, (42)

N1
∑

i=0

wi,j−1,k ≤ 3 − Y1278 − λ2
j − λ3

k, ∀ j = 1, . . . , N2, k = 1, . . . , N3, (43)

N2
∑

j=0

wi,j,k−1 ≤ 2 + Y1368 − λ1
i − λ3

k, ∀ i = 1, . . . , N1, k = 1, . . . , N3, (44)

N2
∑

j=0

wi−1,j,k ≤ 3 − Y1368 − λ1
i − λ3

k, ∀ i = 1, . . . , N1, k = 1, . . . , N3, (45)

N3
∑

k=0

wi,j−1,k ≤ 2 + Y1458 − λ1
i − λ2

j , ∀ i = 1, . . . , N1, j = 1, . . . , N2, (46)
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N3
∑

k=0

wi−1,j,k ≤ 3 − Y1458 − λ1
i − λ2

j , ∀ i = 1, . . . , N1, j = 1, . . . , N2. (47)

As in Section 4.5.1, the variablesλi, λj andλk allow only one line to be deactivated in the domain space

for each plane.

4.5.3 2D Domain with SOS2 Index

In this section, we describe domain partitioning for orientation 1 – 4, but note that this method can be

similarly developed for any triangulation orientation. When triangulation orientation 1 – 4 (shown in

Figure 2) is tessellated across the domain as shown in Figure10, we can define a new indext such that

t ∈ {0, 1, . . . , N1 − 1, N1, N1 + 1, . . . , N1 + N2 − 1, N1 + N2}.

i = 0      i = 1      i = N1    j = 0      

j = 1      

j = N2 - 1

j = N2    

t =
 0

t =
 1

t =
 2

t =
 N 1

 - 
1

t =
 N 1

   
 

t =
 N 1

 +
 1

t =
 N 1

 +
 N 2

 - 
1

t =
 N 1

 +
 N 2

   
 

Figure 10: Triangulation tessellation in two dimensions.

Eacht represents a diagonal of gridpoints, so that each gridpointalong a given diagonalt can be

represented byxi,j = xi,i−N1+t wheremax{0, N1 − t} ≤ i ≤ min{N2 + N1 − t, N1}. Since two

adjacent diagonals activate a simplex, we can defineSOS2 variable setΩt such that:

Ωt =
∑

i

wi,i−N1+t, ∀ t, (48)

∑

t

Ωt = 1, (49)

Ωt SOS2. (50)

wherewi,j is the convex combination weight associated with gridpointxi,j .

Notice that this change in formulation has changed the orderof the constraints fromN2 to N . Using

the indext requires us to introduceN1 + N2 + 1 newSOS2 variables, but it also eliminates the binary
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variable representing the switch between the two trianglesin the rectangle.

4.5.4 3D Domain with 3 SOS2 Indices

Triangulation orientation 1 – 8 partitions domains of threedimensions into six equal simplices using the

planes shown in Figure 5. As in Section 4.5.3, we introduce new indicest1, t2, t3, each representing a

diagonal of gridpoints;

t1 ∈ {0, 1, . . . , N1, . . . , N1 + N2 − 1, N1 + N2} → xi,j,k = xi,i−N1+t1,k

where max{0, N1 − t1} ≤ i ≤ min{N2 + N1 − t1, N1}, ∀ k, (51)

t2 ∈ {0, 1, . . . , N1, . . . , N1 + N3 − 1, N1 + N3} → xi,j,k = xi,j,i−N1+t2

where max{0, N1 − t2} ≤ i ≤ min{N3 + N1 − t2, N1}, ∀ j, (52)

t3 ∈ {0, 1, . . . , N2, . . . , N2 + N3 − 1, N2 + N3} → xi,j,k = xi,j,j−N2+t3

where max{0, N2 − t3} ≤ j ≤ min{N3 + N2 − t3, N2}, ∀ i, (53)

and we can use these indices to define three newSOS2 variable setsΩt1 , Ωt2 , andΩt3 . As in Section

4.5.3, these new variables and constraints represent the observation that each point in the domain can be

written as a convex combination of points on two adjacent planes:

Plane Y1458



































Ωt1 =
∑

i

wi,i−N1+t1,k, ∀ t1, k,

∑

t1

Ωt1 = 1,

Ωt1 SOS2,

(54)

Plane Y1368



































Ωt2 =
∑

i

wi,j,i−N1+t2 , ∀ t2, j,

∑

t2

Ωt2 = 1,

Ωt2 SOS2,

(55)
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Plane Y1278



































Ωt3 =
∑

j

wi,j,i−N2+t3 , ∀ t3, i,

∑

t3

Ωt3 = 1,

Ωt3 SOS2.

(56)

Like the previously-presented method (Sections 4.5.1 and 4.5.2), these constraints are orderN2. But

this method requires introduction of[2 × (N1 + N2 + N3) + 3] continuous variables as opposed to the 3

binary variables that the other method needs to deactivate the appropriate vertices. So, when the distances

between the gridpoints are constant and the partitioning isrelatively fine, it is better to use the previous

method for deactivating vertices. But, if there is a need to use non-equal partitioning of the domain, then

it may be advantageous to use this new method, as it does not rely on equal grid spacing.

4.6 Interpolation within a Simplex

With the box and simplex constraints described in Sections 4.1 to 4.5, the appropriaten + 1 vertices

discussed in Section 3 have been activated for domainX ∈ R
n. Interpolation of functionf(x) : X 7→ R

is performed by taking the convex combination of the activated vertices. For approximation of an one

dimensional variable, linear system of equations (2) described in Section 3 becomes:

X ⊂ R



















































f̂(x) =
N1
∑

i=0

wi · f(xi),

x =
N1
∑

i=0

wi · xi,

N1
∑

i=0

wi = 1,

wi ≥ 0, ∀ i = 0, . . . , N1.

(57)

For approximation of a function of two dimensions, the interpolation is:

X ⊂ R
2























































f̂(x) =
N1,N2
∑

i,j=0

wi,j · f(xi,j),

x =
N1,N2
∑

i,j=0

wi,j · xi,j ,

N1,N2
∑

i,j=0

wi,j = 1,

wi,j ≥ 0, ∀ i = 0, . . . , N1, j = 0, . . . , N2.

(58)
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Finally, for a three dimensional function, the interpolation is:

X ⊂ R
3























































f̂(x) =
N1,N2,N3
∑

i,j,k=0

wi,j,k · f(xi,j,k),

x =
N1,N2,N3
∑

i,j,k=0

wi,j,k · xi,j,k,

N1,N2,N3
∑

i,j,k=0

wi,j,k = 1,

wi,j,k ≥ 0, ∀ i = 0, . . . , N1, j = 0, . . . , N2, k = 0, . . . , N3.

(59)

5 Summary of Explicit Equations

This section presents explicit equations for two- and three-dimensional domains to summarize the de-

velopment in Sections 3 – 4. Equation Sets (62) and (67) – (69)use the simplex activation technique

described in Sections 4.5.3 – 4.5.4. An alternative method is described in Sections 4.5.1 – 4.5.2.

5.1 2D Domain

Variable1























































∑N1

i=1
λ1

i = 1, λ1
i ∈ [0, 1], λ1

i SOS1 ∀ i = 1, ..., N1,

N2
∑

j=0

w0,j ≤ λ1
1,

N2
∑

j=0

wi,j ≤ λ1
i + λ2

i+1, ∀ i = 1, ..., N1 − 1,

N2
∑

j=0

wN1,j ≤ λ1
N1

,

(60)

Variable2



















































∑N2

j=1
λ2

j = 1, λ2
j ∈ [0, 1], λ2

j SOS1 ∀ j = 1, ..., N2,

N1
∑

i=0

wi,0 ≤ λ2
1,

N1
∑

i=0

wi,j ≤ λ2
j + λ2

j+1, ∀ j = 1, ..., N2 − 1,

N1
∑

i=0

wi,N2
≤ λ2

N2
.

(61)

Simplex Line































Ωt =
∑

i

wi,i−N1+t, ∀ t,

∑

t

Ωt = 1,

Ωt SOS2,

(62)
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X ⊂ R
2























































f̂(x) =
N1,N2
∑

i,j=0

wi,j · f(xi,j),

x =
N1,N2
∑

i,j=0

wi,j · xi,j ,

N1,N2
∑

i,j=0

wi,j = 1,

wi,j ≥ 0, ∀ i = 0, . . . , N1, j = 0, . . . , N2.

(63)

5.2 3D Domain

Variable1























































N1
∑

i=1

λ1
i = 1, λ1

i ∈ [0, 1], λ1
i SOS1 ∀ i = 1, ..., N1 − 1,

N2
∑

j=0
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6 Applying the Approximation and Estimating the Error

This section applies the approximation algorithm to three examples of increasing difficulty. The function

in Section 6.1 has two variables, so it can be directly approximated using a two-dimensional grid. The

multilinear function in Section 6.2 has four dimensions, but the function can be separated into a sum of

one two- and one three-dimensional function, so the exampleis approximated using two lookup tables.

Finally, the example in Section 6.3 represents an 11-dimensional model that had to be approximated using

the extensions discussed in Section 2.3. The approximated models were solved using CPLEX (version

9.0.2) [45] within the modeling language GAMS [46] on a Pentium 4 running Linux.

6.1 Six-Hump Camelback Function

This example is taken from Problem 8.2.5 in Floudas et al. [47]. The objective function is:

f2(x, y) = 4 · x2 − 2.1 · x4 +
1

3
· x6 + x · y − 4 · y2 + 4 · y4. (71)

The domains of the 2 continuous variables arex ∈ [−2, 2] andy ∈ [−1, 1]. The 6-hump camelback

function has 6 local solutions and1 global optimum withf2(x = 0.08984, y = −0.71266) = −1.03163.
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The average value of the function across the1 × 107 sample points is 1.128 and the maximum function

value isf2(x = −2, y = −1) = 5.733. Table 2 records five partitioning schemes for the two variables

and Table 3 displays the associated errors.

Table 2: Partitions CB-1 through CB-5 represent the number of segments in the two variable domains.
Estimated error associated with each partitioning scheme shown in Table 3.

Partition x y
CB-1 4 4
CB-2 8 8
CB-3 16 16
CB-4 32 32
CB-5 64 64

Table 3: Estimate of the errors associated with each of the partitioning schemes introduced in Table 2.

Partition Absolute Absolute Absolute
Max Error Ave Error Std Dev

CB-1 1.934 0.589 0.499
CB-2 1.108 0.175 0.311
CB-3 0.416 0.046 0.092
CB-4 0.126 0.012 0.024
CB-5 0.035 0.003 0.006

Replacing the 6-hump camelback function with the piecewise-linear approximations, the approxi-

mation functions were solved to global optimality. Table 4 compares optimizing the piecewise-linear

approximations with optimizing the actual nonlinear function. Note that, in this case, the approximation

algorithm finds one of the non-global local minima, which is generated quickly.

Table 4: Optimizing the camelback function using each of theTable 2 partitioning schemes.

Partition Obj Value f2(x, y) x y # Vars # of Nodes # Iter CPU (s)
f2(x, y) -1.032 -1.032 0.090 -0.713 3 495 0 0.41
CB-1 -0.750 -0.752 0.000 -0.500 45 0 2 0.00
CB-2 -0.984 -0.984 0.000 -0.750 117 0 3 0.00
CB-3 -0.984 -0.984 0.000 -0.750 357 0 4 0.00
CB-4 -1.021 -1.022 -0.125 0.688 1221 0 9 0.01
CB-5 -1.028 -1.029 -0.063 0.719 4457 0 9 0.05

6.2 Multilinear Function

This example is taken from the second problem in Table 2 of Gounaris and Floudas [32]. The objective

function is

f1(x1, x2, x3, x4) = x1 · x2 − x2 · x3 − x3 · x4 + x1 · x2 · x3 − x1 + x4. (72)
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Table 5: Partitions MF-1 through MF-3 represent the number of segments in each of the four variable
domains.

Partition x1 x2 x3 x4

MF-1 4 4 4 4
MF-2 8 8 8 8
MF-3 16 16 16 16

The domains of the 4 continuous variables arexi ∈ [0, 1] ∀ i. The average function value across the

1 × 107 sample points is -0.125 and there are infinitely many globally optimal solutions withf1 = −1.

Examples includef1(1, 0, α, 0) = −1 ∀ α ∈ [0, 1] andf1(1, 0, 1, β) = −1 ∀ β ∈ [0, 1]. The

global maximum of the function is 2. Table 5 records partitioning schemes for the 4 variables and Table

6 displays the associated errors. Finally, Table 7 shows that the approximations were able to capture the

important features of the function well enough to reach the global optimum.

Table 6: Estimate of the errors associated with each of the partitioning schemes introduced in Table 5.

Partition Absolute Absolute Absolute
Max Error Ave Error Std Dev

MF-1 0.040 0.0026 0.0083
MF-2 0.011 0.0007 0.0021
MF-3 0.003 0.0002 0.0005

Table 7: Optimizing the multilinear function using each of the Table 5 partitioning schemes.

Partition Obj Value x1 x2 x3 x4 # Vars # of Nodes # Iter CPU (s)
f1(x, y) -1.00 1.00 0.00 0.00 0.00 5 1 0 0.02
MF-1 -1.00 0.00 1.00 1.00 0.75 188 0 102 0.01
MF-2 -1.00 1.00 0.00 0.75 0.00 872 0 155 0.03
MF-3 -1.00 1.00 0.00 1.00 0.00 5312 0 329 0.27

6.3 EPA Complex Emissions Model

Environmental Protection Agency (EPA)Title 40 Code of Federal Regulations Part 80.45: Complex

Emissions Model[48] codifies a mathematical model of gasoline emissions forboth reformulated and

conventional gasoline. The model calculates three emissions types based on the eleven fuel qualities

recorded in Table 8: volatile organic (VOC), NOX (NOX) and toxics (TOX).

EPA Complex Emissions Model legally certifies the emissionsperformance of gasoline within the

bounds specified by Table 8, providing the basis for other legislation, such asTitle 40 Code of Federal

Regulations Part 80.41: Standards and requirements for compliance [49], to set emissions standards.

Final products exiting an oil refinery must comply with thesestandards, or upper bounds, on volatile

organic (V OCMAX), NOX (NOXMAX) and toxics (TOXMAX) emissions.

Although the EPA Model can be formulated as an MINLP [50], it is difficult to solve even a small

problem using the EPA Model as a constraint set for optimal reformulated gasoline blending. But, by
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approximating the functions representing each of the emissions types, we can construct a reasonable sub-

stitute for the EPA Model that can be integrated into an optimization algorithm for process improvement.

Table 8: Variables Relevant to the EPA Model [48]. The boundsare the limits of model accuracy for
reformulated gasoline. The different upper bounds for conventional gasoline are bracketed.

Variable Fuel Quality Applicable Bounds Measuring Units
1 OXY Oxygen content 0.0-4.0 Weight %
2 SUL Sulfur content 0.0-500.0 [1000.0] Parts per million
3 RVP Reid Vapor Pressure 6.4-10.0 [11.0] Pounds per square inch
4 E200 200oF distillation fraction 30.0-70.0 Volume %
5 E300 300oF distillation fraction 70.0-100.0 Volume %
6 ARO Aromatics content 0.0-50.0 [55.0] Volume %
7 BEN Benzene content 0.0-2.0 Volume %
8 OLE Olefins content 0.0-25.0 Volume %
9 MTB Methyl tertiary butyl ether Weight % oxygen
10 ETB Ethyl tertiary butyl ether Weight % oxygen
11 ETH Ethanol content Weight % oxygen

Because the three components of the EPA emissions model haveup to 9 variables in each term, we

used the techniques discussed in Section 2.3 to decompose the problem into bilinear and trilinear terms

of approximate functions. To estimate the error introducedby the approximations, we randomly sample

a large number of domain points (1 × 107) and compute the difference between the interpolated estimate

and the actual function value for each sample point.

To reduce the error, we carefully choose the lookup table partitioning and triangulation orientation for

the EPA Complex Emissions Model functions. We balance the increased accuracy of finer partitioning

with the higher computational times required for many gridpoints. Tables 9 and 10 estimate the error

associated with a number of different partitioning schemes. Partitions EPA-1 though EPA-5 in Table 9

represent increasingly accurate approximations.

Table 9: Partitioning schemes EPA-1 through EPA-5 represent the number of segments that partition the
eleven variable domains. Estimated error associated with each partitioning scheme shown in Table 10.

Partition OXY SUL RVP E200 E300 ARO BEN OLE MTB ETB ETH
EPA-1 1 1 1 1 1 1 1 1 1 1 1
EPA-2 4 4 4 4 4 4 4 4 4 4 4
EPA-3 4 4 4 4 4 4 4 4 4 8 8
EPA-4 8 4 8 8 8 8 4 4 8 8 8
EPA-5 8 8 8 8 8 8 8 8 8 8 8

Notice from Table 10 that dividing each of the variables intoeight segments (Partition EPA-5) is sig-

nificantly more accurate than dividing each of the variablesinto only four segments (Partition EPA-2).

Partitions EPA-3 and EPA-4 combine the accuracy of a finer partition with the computational practicality

of a coarser mesh. The variables associated with ethyl tertiary butyl ether content (ETB) and ethanol con-

tent (ETH) are refined in Partition EPA-3 because the constant coefficients associated with these variables
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in the calculation of acetaldehyde emissions (a component of the toxics emissions) are approximately an

order of magnitude larger than the constant coefficients of the other variables. Refining the mesh of these

two high-impact variables leads to the significant gains in toxics emissions accuracy of Partition EPA-3

over Partition EPA-2. Using similar logic, Partition EPA-4further refines specific variables for increased

accuracy.

Table 10: Estimate of the errors associated with each of the partitioning schemes introduced in Table 9.

Partition Absolute Relative Absolute Relative Absolute Relative
Max Error Max Error Ave Error Ave Error Std Dev Std Dev

EPA-1 VOC 318.87 17.78% 105.28 8.16% 45.74 3.82%
NOX 99.65 7.80% 30.14 2.34% 19.44 1.58%
TOX 155.62 164.48% 66.46 66.10% 27.08 25.98%

EPA-2 VOC 44.03 3.53% 8.71 0.66% 5.87 0.45%
NOX 20.30 1.57% 3.42 0.27% 3.12 0.25%
TOX 29.36 12.23% 4.15 3.66% 3.13 1.58%

EPA-3 VOC 44.26 3.47% 8.71 0.66% 5.87 0.45%
NOX 20.22 1.58% 3.42 0.27% 3.12 0.25%
TOX 11.76 4.75% 1.97 1.84% 1.07 0.60%

EPA-4 VOC 24.75 1.96% 2.49 0.19% 2.29 0.17%
NOX 15.39 1.20% 2.16 0.17% 2.02 0.16%
TOX 9.46 3.59% 1.43 1.31% 0.87 0.43%

EPA-5 VOC 24.43 1.96% 2.42 0.18% 2.27 0.17%
NOX 11.70 0.90% 1.11 0.09% 1.60 0.13%
TOX 8.76 3.58% 1.05 0.92% 0.80 0.40%

7 Conclusions

The explicit, piecewise-linear functions for two and threedimensions developed in this paper can be

easily integrated into an MILP model, allowing us to approximately solve large-scale problems. As we

show in Section 6, the algorithm produces good approximations for large, industrially relevant models.
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