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Abstract We develop explicit, piecewise-linear formulations of étions f(z) : R” — R, n < 3,
that are defined on an orthogonal grid of vertex points. Ifedinteger linear optimization problems
(MILPs) involving multidimensional piecewise-linear fciions can be easily and efficiently solved to
global optimality, then non-analytic functions can be uas@n objective or constraint function for large
optimization problems. Linear interpolation between fixgtpoints can also be used to approximate
generic, nonlinear functions, allowing us to approximaseallve problems using mixed-integer linear op-
timization methods. Towards this end, we develop two déffieexplicit formulations of piecewise-linear

functions and discuss the consequences of integratingtheifations into an optimization problem.
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1 Introduction

1.1 Optimizing Piecewise-Linear Functions

The field of global optimization has advanced significantlyiilg the last two decades from theoretical,
algorithmic, and application viewpointe.g, [1] — [11]). As an example application domain, consider
the advanced oil recovery technique of optimally alloagtompressed natural gas, callgtdgas, into a
large, interdependent set of oil wells. Kosmidis et al. [LZ] optimized the profitability of a petroleum
field with lift gas, integrating factors such as pressurepdaoross tubing, line merging, multiphase flow,
and reservoir pressure into their optimization model. Bseahey used hydraulic lookup tables to relate
gas injection ¢ as,;) to oil production (Qorr ), the objective and constraints in their model are non-

smooth, piecewise-affine functions defined by linear ird&fion between vertex points. Piecewise-
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linear functions in one dimension have been used to forraula gas lift problem since the work of
Buitrago et al. [14].

In a recent comparative study of formulations for the gagplibblem, Misener et al. [15] addressed
the gas lift problem using four different representatiohpiecewise-affine functions in one dimension
proposed by Nemhauser and Wolsey [16], Floudas [17], SH&&]| and Keha et al. [19]. Each of the
the four algorithms was sufficient to solve the mixed intdgezar program (MILP) to global optimality.
However, the tests we reported in Misener et al. [15] reweetidat the special structure method from Keha
et al. [19] consistently out-performed the three other atgms. Based on these results, we recommended
that industrially-relevant piecewise-linear optimizatiproblems be solved using the Keha et al. [19]
formulation.

This paper develops explicit, piecewise-linear formwlas of functionsf(z) : R" — R, n < 3, that
are defined on an orthogonal grid of vertex points. If MILRsining multidimensional piecewise-linear
functions can be easily and efficiently solved to global mplity, then non-analytic functiong(g, the
pointwise-defined functions in the gas lifting problem) ¢tenused as an objective or constraint function
for large optimization problems. Towards this end, we depeivo different explicit formulations of
piecewise-linear functions and discuss the consequeffdgggrating the formulations into an optimiza-
tion problem.

Linear interpolation between fixed gridpoints can also bedu® approximate generic, nonlinear
functions, allowing us to approximately solve problemsigdinear, rather than nonlinear, programming
techniques. The potential of this method is twofold. Fiistcases where efficient solution time is
of paramount importance, a local search near the optimait dithe approximation will yield a good
feasible point of the original nonlinear problem. Secohd,golution of the piecewise-linear problem can
be used as warm startfor a global optimization algorithm by generating a goodiéiupper bound.

In this paper, we begin in Section 1.2 by discussing prevapications of piecewise-linear func-
tions to optimization problems. Section 2 introduces theragimation algorithm. Section 3 discusses
interpolation within a simplex. Section 4 formulates egjtlipiecewise-linear formulations for two and
three dimensions which confine a point to a simplex. Sectiergicitly presents the equations used in
the approximation algorithm. Section 6 provides illust@examples on a set of functions and analyzes

the associated error. Finally, Section 7 concludes therpape

1.2 Literature Review

Williams [20] used linear interpolation to convert sepdeationlinear programs (NLPs) into piecewise-



defined linear programs (MILPs). Kosmidis et al. [13] consted a two-dimensional piecewise linear
function using a hydraulic lookup table in their study of djfgg and well scheduling for enhanced oil
recovery. Zhang and Wang [21] solved an approximation of @inear objective function with linear
constraints using a series of linear programs. Magnani anydi ®2] developed an NLP that can be used
to fit a convex piecewise-linear function to a given set ohdat

In addition to approximate methods, other groups have stugiecewise underestimation of nonlin-
ear functions to expedite the global solution of large-spabblems. Rosen and Pardalos [23] and Parda-
los and Rosen [24] addressed large-scale concave progragmroblems using piecewise linearization
techniques. Meyer and Floudas [25] and Karuppiah and Grassri6] took advantage of the spe-
cial structure of bilinear terms to partition the domain awhstruct piecewise-linear underestimators
that strengthened the lower bound on the generalized ppalnl integrated water systems problems,
respectively. Based on their success, Wicaksono and K§2irhiand Gounaris et al. [28] thoroughly
studied piecewise-linear relaxations of bilinear funei@nd suggested formulations that could improve
the computational times of Meyer and Floudas [25] and Kaialpand Grossmann [26]. Recognizing that
solution times are sometimes more important than certdgaf optimality, Pham et al. [29] designed
a piecewise bhilinear programming algorithm that quicklytaibs a good feasible point for large-scale
pooling problems.

For more generic functions, Mangasarian et al. [30] disedsssuccession of piecewise-linear under-
estimators converging to the global minimum of an NLP, atéghe similar to the algorithm designed by
Gounaris and Floudas [31, 32], which converges on the coemeslope of a function through a piecewise
combination of convex and linear functions.

Dividing a domain into non-overlapping simplices has bervipusly discussed by Chien and Kuh
[33] in the context of linearly interpolating nonlinear efécal networks. Simplex division also played
a key role in the development of convex envelopes for trdineerms and edge concave functions [34,
35, 36]. The technigue we use in this study, linearly intéapog vertex points within non-overlapping

simplices, generates an easily-solved approximationevbtiginal problem.

2 Introduction to the Approximation Algorithm

2.1 Lookup Tables

Given a continuous functiof2(x) : R” — R, an approximation functiof2(x) : R — R can be

constructed using a lookup table and an interpolation #lgor For the purposes of this study, a lookup



table consists of function valué¥(x) € R and associated domain pointsc R"™ that are recorded at
orthogonal gridpoints.

Function interpolation between the lookup table gridpeicdn be performed using a variety of al-
gorithms, but this paper will study linear interpolatiomdgbgh a convex combination of the gridpoints
Chien and Kuh [33]. As will be shown in Section 3, the linedeipolation function is uniquely defined
only if each point in the domain is restricted to a single derp Therefore, the approximation function

will interpolate function values within a tessellation ahglices.

2.2 Justification of Lookup Table Dimensions

Because the domain space of functiofx) is partitioned into orthogonal gridpoints and then tesdet
with a pattern of simplices, one of the sub-problems assettiaith this study is division of a hypercube
into simplices. Hughes and Anderson [37] summarized thamuim number of simplices needed to
triangulate an n-dimension hypercube and developed ssfrldimensions six and seven. Dimensions
one, two, and three can be triangulated with as few as one gmbfive simplicies, respectively, but four,
five, six, and seven-dimensional hypercubes require 163®3,,and 1493 simplices [37].

Noting the large number of simplices needed to partitiongngpbes of dimension greater than three,
this study restricts lookup tables to no more than three dsimms. In other words, the algorithm de-
veloped in this study uses lookup tables to construct ancepation Q(x) : R™ — R of function

Q(x) : R” — Rwhenn < 3.

2.3 Functional Form

Using the lookup tables introduced in Section 2.1, the pakation algorithm that will be described in
Section 3, and the explicit piecewise linearization for tared three dimensions presented in Section
4, functions)(x) : R™ — R of dimension three or lower can be approximated as an affinatem
Q(x) : R™ — R. Higher dimension functions consisting of a summation &t be separated into
terms of three or fewer terms can be approximated by corstgia number of lookup tables. Functions
U(x) : R™ — R with n < 6 that cannot be separated into low-order terms can be widensummation

of bilinear terms:

U(zy,...,26) = »_Qf(z1,72,33) - QF (24,75, 76) ~ Y _ (21,72, 73) - O (24,75, 76). (1)
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Equation (1) can be relaxed using the convex envelope desdlby McCormick [38] and Al-Khayyal
and Falk [39]. The resulting bilinear envelope can be tighttusing one of the piecewise approaches of
Wicaksono and Karimi [27] and Gounaris et al. [28].

Similarly, a function®(x) : R? — R with n < 9 can be separated into a summation of trilinear
terms and relaxed using the convex envelopes determineddygiMand Floudas [34, 35] or the looser
relaxation of Maranas and Floudas [40] and Ryoo and Sakifddi]. Although the convex envelope
represents the tightest possible relaxation, determiti@gonvex envelopes of trilinear functions requires
a priori permutation of the variables [34, 35]. The relaxation of kaas and Floudas [40] and Ryoo
and Sahinidis [41], which recursively applies bilinear arektimators, permits tight relaxations through
piecewise partitioning of the variable domains.

This study introduces piecewise linear approximationsexploits lookup tables of dimension one,
two, and three to construct approximation functions thatlmawritten as a summation of linear, bilinear,
and trilinear terms. Note that the algorithm’s generic rafermits approximation of arbitrary functions

which can be written as a summation of nonlinear terms wittougine dimensions each.

3 Interpolation within a Simplex

After a one-, two-, or three-dimensional domaihis partitioned into an orthogonal grid that spans the
domain, any point: € X can be written as a convex combination of the gridpoints. tBatconvex
combination of the gridpoints is not necessarily uniquera@e&odory [42] showed that every element of
compact, convex seX C R"™ can be written as a convex combination of at most 1 points of X. If
the domain ofX is convex, then any point in the domain space can be writtenasvex combination
of two points (whenX C R), three points (wheX C R?2), or four points (whenX C R3).

Although at most: + 1 gridpoints are needed to express each poimt X C R", there are many
more thann + 1 gridpoints in any reasonable representation of the domaaces Because there are
many gridpoints, unique interpolation of function valuesng a convex combination of gridpoints is
unlikely. To guarantee a deterministic interpolation aute, onlyn + 1 gridpoints are activated at one
time. Section 4 describes appropriately activating 1 gridpoints for each point in the domain space.

Assuming that the: + 1 appropriate gridpointsg, ..., z, € X for domain pointr € X C R” are

activated and that we wish to approximate functfgm) : X — R, consider the system of equations:



f(@) =wo - f(z0) + ...+ wn - f(xn),

=Wy Lo+ ...+ Wy" Ty,

n
E w; = 1,
=0

w; >0, Vi=0,...,n.

(2)

In the above linear system of equations (2), thererase 2 unknowns (the: + 1 convex combination
weightsw; and the value of the approximation functiﬁ(m)) andn+ 2 equations (the interpolation equa-
tion for function f (z), then-dimensional equation for, and the summation of the convex combination
weights). This system is uniquely determined wheis in the interior ofn + 1 gridpoints, allowing us

to interpolate the functiorf(x) : X — R between the: + 1 appropriate gridpoints.

4 Restrictionto a Simplex: Explicit Formulations for Two and Three
Dimensions

To uniquely represent each point in the domain as a convebitation of gridpoints, we follow Zhang
and Wang [21] in partitioning the domain space into smalldsxectangles and rectangular prisms in two
and three dimensions, respectively) and partitioning eddhe boxes into non-overlapping simplices.
Section 4.1 describes the set of constraints that rese@th point in domain space to a small box.
Sections 4.2 — 4.5 introduce the equations that uniquelfirm@each point to a single simplex and Section
4.6 describes the interpolation between the simplex \estidhe algorithm described in Sections 4.1 —
4.6 generalizes the one-dimensional piecewise-linearppation from Floudas [17] and Nemhauser

and Wolsey [16] to two and three dimensions.

4.1 Box Constraints

After variable setX is partitioned into the orthogonal grid, any pointe X is within a line segment
(whenX C R), a rectangle (wheX C R2), or a rectangular prism (whel C R?) defined by the
gridpoints. The equations introduced in this section at&wonly the gridpoints at the vertices of the
small box that contains. Figure 1 diagrams an activated line, rectangle, and rgcian prism within
the domain space for dimensions one, two and three, respBcthll other vertices are deactivated.

If the variable is one dimensional, the domain seXipartitioned intoX; € R,: =0, ..., N1, where



N; represents the number of segments. To activate a singledigment, a set of variables, € {0,1}

s.t. i = 1,..., Ny, is introduced and declared as a Special Ordered Set of ty@#¥51). Special
ordered sets, proposed by Beale and Tomlin [43] and inftiadblemented by Forrest et al. [44], are sets
with at most one nonzero component. We use4hks'1 concept because advanced mixed-integer linear

programming solvers such as CPLEX [45] efficiently explpiésial ordered sets [15]:

Ny
S A=1, A e€0,1], ASOSL Vi=1,..,Ny. (3)
=1

Figure 1: A single active line, square, and box in the domaiace for dimensions 1-3

Only the vertices of the single active line segment are albto contribute to the interpolation, so contin-
uous variablesv; € [0, 1] s.t.< = 0, ..., Ny, which act as convex combination weights, are constrained

by the activated line segment [16, 17]:

wWo S )\%7
w; <A AL, Vi=1,.,N -1, (4)
wn, < )‘}Vf

When the domainX has two dimensions, it is partitioned inf6, ; € R? i = 0,..., Ny, j =

0,...,No. Two sets of variables\! € [0, 1]st.i = 1,...,N; and)? € [0, 1] st. j = 1,..., No,

activate each rectangle. As in the one dimension case, aeisbles aré6OS1:

Ny
DA =1, AMe0,1, MSOS1 Vi=1,.. N, (5)
=1
N2
DX =1, Mel0,1], AMS0S1 Vji=1,.,N,. (6)
j=1



Only the vertices of a single activated rectangle contghliotthe interpolation within that rectangle, so
the convex combination of continuous weights; € [0, 1] s.t. ¢ = 0,..., N1, j = 0,..., N, are

constrained as follows:

No 1
Yowo; <A
j=o

N2
Variablel Ewi’j S)\11+)\71+1, Vi=1,..,N1 —1, (7)
=0

Swio <A

. Ny
Variable2 szj S )\?+A?+1, V,] - 17---7N2 _17 (8)

Z Wi, Ny < )‘?\72'

Finally, when the domainX has three dimensions, it is partitioned ind ;, € R3 st i =
0,...,N1,j = 0,...,No,k = 0,...,N3. Three sets of variables\! € [0, 1] s.t. i = 1,..., Ny,
A ef0,1]st.j=1,...,Nyand)\® € [0, 1] s.t. k = 1,..., N3, denote the active rectangular prism.

As in the other two cases, these variable setsSaré'1:

N1

SN = 1, A€, 1], A SOST Vi=1,..,N, (9)
=1

N2

DN =1, Mel0,1], ASOS1 Vi=1,.,N,, (10)
j=1

N3

DX = 1, Ael01], A\ SOS1 Vk=1,..,Ns. (11)
k=1

Only the vertices of the activated rectangular prism conte to the interpolation of points within that
prism, so convex combination weights ; , € [0, 1]s.t.i =0,...,N,j=0,..., N3, k=0,...,N3

are constrained as follows:

Ny N3 1

> D wok <AL

j=0 k=0

. Ny N3

Variablel ¢ > > w;jr <A\ +Ay,, Vi=1,..,N —1, (12)
=0 k=0

Ny N3 1

2 2 wNk S AN,

=0 k=0




N1 N3
>owior <A,
1=0 k=0
. N1 N3
Variable2 ¢ 57 5" wi e <A AL, Vji=1,..,Na—1, (13)
i=0 k=0
N1 N3
Z Z wi7N27k S A?Vz’
1=0 k=0
N1 N2
> Y wigo <A
i=0 j=0
i N1 N2
Variable3 E Z Wi 5.k < )\:;;-f—)\i_,'_l, Vk=1,..,N3—1, (14)
i=0 j=0
N1 N2 3
> Y wijN, S AR,

i=0 j=0

The constraints in this section restrict each point in thedim to a line segment (defined by 2 points),
rectangle (defined by 4 points), or rectangular prism (defime 8 points). But, as described in Section
3, convex combinations of points in the interior of the sntalh and three dimensional shapes will not
be unique. To achieve a unique interpolation, we partitiom iectangles and rectangular prisms into
non-overlapping simplices. Sections 4.2 through 4.5 dtfte shapes into simplices and, for each point

in the domain, activate only the vertices of the appropsatglex.

4.2 Triangulation Classes

In two dimensionsX C RZ, there is one representative triangulation class with tigtirct orientations
that divide a rectangle into non-overlapping simplicese Tlwo possible triangulation orientations of a

rectangle are shown in Figure 2.

(a) (b)
Figure 2: The two possible divisions into nhonoverlappinggiices for a 2-cube

The three dimensional cask, C R?, has six representative classes that divide the rectanguigan
into non-overlapping simplices [36]. The six standard esgntatives are diagrammed in Figure 3. Each
triangulation type has multiple orientations.

To partition the domain spack, we choose a particular triangulation class and triangarairienta-
tion. Section 4.3 justifies choosing triangulation type &g(§&igure 3) as the representative triangulation.
After choosing a triangulation type, the specific triangiola orientation for each variable set can be se-

lected to reduce interpolation error. The triangulatiopetyand orientation is tessellated across the entire



domain, as shown in Figure 4 [33].

7. 8 7, _, 8
5 6 5
T N 4 O 4
1 2 14 2
(a) Triangulation type A (b) Triangulation type B
7. 8 7. 8
5 6 5] 6
K N 4 K N Y 4
1 2 1 2
(c) Triangulation type C (d) Triangulation type |
7 8 7. 8
5 6 5] 1 6
N A 4 N A 4
1 2 1 2
(e) Triangulation type E (f) Triangulation type F

Figure 3: Triangulation types of the 3-cube [36]

Figure 4: Chosen triangulation type and orientation tetsteld over domain space (two dimensions)

4.3 Justification of Triangulation Type B

There are two major advantages to using triangulation Bwshim Figure 3(b), as the representative
triangulation for three dimensional domaink (C R?). First, only the three planes illustrated in Figure
5 need to be considered to isolate a point in a small rectangulm into a particular simplex. Second,
each of the six simplices in triangulation type B have equiime in the case of uniform partitioning,

increasing the accuracy of the interpolation. The threagdavhich partition the rectangular prism into

simplices,Y136s, Y1458 andYiars, are defined by the numbers of their vertex points.

10



Figure 5: Three planes define triangulatiol; 36s, Y1458 & Yi27s

Figure 6 diagrams each of the six simplices after the thraeqs are used to divide the prism. Because
the six simplices are of equal volume in the case of uniformiti@ning, the relative error from the

approximation will be relatively uniform across the redatar prism.

Simplex1: 1248 Simplex2: 1268

Simplex5:1378 Simplex6:1348

Figure 6: Six simplices result from triangulation type Bngi3 planes
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Orientation: 1 - 8 Orientation: 2 - 7

() (b)

Orientation: 3 - 6

(©) (d)
Figure 7: The four orientations of triangulation type B arefthed by their primary diagonal

Figure 7(a) illustrates the triangulation orientationgieEanmed in Figure 6, while Figures 7(b) through
7(d) delineate the three alternative orientations fongislation type B. Each of the four type B triangu-
lation orientations is defined by one of the four rectangplesm diagonals: 1 -8,2-7,3 -6, 0r4 —
5. Analogous to the division by planes scheme in Figure 5Sthifee other triangulation orientations each
contain three planes which share a common diagonal. Fatyl&ections 4.4 and 4.5 will introduce
vertex activation using the triangulation orientationrggaliagonal 1 — 8 that is illustrated in Figure 7(a),
but different triangulation orientations can be consideie reduce the error of approximating a given

function.

4.4 Isolating a Simplex in a Single Box

Given an isolated box of two / three dimensions, this sedtitmoduces equations that partition the rect-
angle and rectangular prism into two and six simplices, eeipely, and, for a given point in the box,
activate only the relevant simplex vertices. In Section thé results of this section are generalized to the

case of a box situated inside of a domain of gridpoints.

4.4.1 Isolating a Simplex in a Rectangle

For rectangled of two dimensions:

(a, b) € A C R* suchthat € [a”, a”] and b € [b", bV], (15)

12



each simplex is defined by its relation to one of the lines shiowiFigure 2 of Section 4.2. Assume for the
purpose of illustration that the rectangle is divided udimg orientation shown in Figure 2(a). Defining
Aa = a¥ —a® andAb = bY — b” to be the two side lengths of the rectangle, the equationeodidgonal

line in Figure 2(a) is:

(a—a") -Ab— (b—bY) Aa=0. (16)

To activate the vertices of the appropriate simplex withia tectangle, define binary variabitge,
{0,1} that is activated on one side of the line and deactivated@ottirer. Figure 8 delineates the region
whereYy, is activated. In the following two inequalities, the binargriable representing the line is

explicitly determined according to the scheme shown in &)

—Aa-Ab-(1-Yi4) < (a—a¥) - Ab— (b—bY) - Aa < Aa- Ab-Yiy. 17)

Figure 8: Region of activated binary variabléy, = 1

All four of the rectangle vertices diagrammed in Figure 8@atvated, so the remaining task is to set
the convex combination weight of either vertex3,¢ ,v) to zero wher’y, = 1 or vertex 2 (v,v ,z) to

zero whenyy4 = 0:

Wor pv <1 — Y14, wev pr < Yy, (18)

so that, given any poirt, b] € A, the point can be expressed as a unique convex combinatithe of

three activated vertices.

4.4.2 lIsolating a Simplex in a Rectangular Prism

Consider poinfa, b, ¢ in rectangular prismd of three dimensions:

(a, b, ¢) € A C R such thau € [a”, aY], b € [b*, bY]and c € [¢", Y], (29)

13



where each simplex idl is defined by its relation to the three planes shown in Figuoé Section 4.3.
DefiningAa = oV — o, Ab = bV — bL andAc = ¢V — c” to be the three orthogonal lengths of the

rectangular prism, the equations of the planes in Figuree5 ar

PlaneYisgs — (a— aU) - Ac—(c— cU) -Aa =0, (20)
PlaneYisyss — (a—a¥)-Ab—(b—bY)-Aa=0, (21)
PlaneYisrs — (b—bY) -Ac—(c—cY)-Ab=0. (22)

To activate the vertices of the appropriate simplex, defired binary variablesyisss € {0, 1},
Yiass € {0,1} andYia7s € {0,1} that are each activated on one side of the plane and deactivat
the other. Figure 9 highlights the regions whéfigess, Y1458 andYiqrs are activated. The following set
of three sets of inequalities, Equations (23) to (25), exyi determine the binary variables representing

the planes corresponding to the scheme shown in Figure 9.

(@) Yi3es =1 (b) Yias8 = 1

(€) Y1278 =1

Figure 9: Regions of activated binary variabl®isgs, Y1458, Y1278

—Aa-Ac-(1—Yizes) <(a—a¥) - Ac—(c—cV)-Aa < Aa-Ac-Yises, (23)

~Aa-Ab-(1—Yiss) <(a—a¥)-Ab—(b—-0bY)-Aa < Aa-Ab- Yigss, (24)

14



—Ab-Ac-(1—=Yiorg) < (b=bY)-Ac—(c—cY)- Ab < Ab- Ac - Yigrs. (25)

Now, the equations in Section 4.1 restrict the active gnidisdo eight box vertices, so the remaining
task is to allow only the relevant simplex vertices to remadtive. For example, it7278 = 1, then
the convex combination weights of vertices 5 and 6 are seeto.zTable 1 lists the vertices that are
deactivated for each value of the binary variables. Notieg, tin every case, the vertices deactivated by

each binary variable lie on a single edge.

Table 1: Deactivated vertices according to the 3 binary ablés representing the planes in Figure 9
Value Deactivated Vertices

Yizes = O 2 — (a¥, bE, ) 4 — (a¥, bY, cF)
1 5— (al, bl V) 7 — (ak, Y, Y)
Yiuss = 0 2 — (a¥, bE, ) 6 — (aY, bE, YY)
1 3— (ak, bY, ) 7 — (a, bY, Y)
Yiors= 0 3— (ab, bY, ) 4 — (aY, bY, )
1 5— (al, bl V) 6 — (a¥, bl V)

WaU pL oL T+ WaU pU oL

(26)

4.5 Activating a Single Simplex in a Domain of Gridpoints

Sections 4.5.1 and 4.5.2 use the equations introduced tilo8dc4 and re-cast them in an entire domain
of points. Notice that this method requires constraintsraieo N2 for both domains of two and three
dimensions. The constraints are of ordé&t for two dimensional domains because the equations consider
each of the gridpoints; x N) and turn off exactly one of the vertices. The method is oriér

for three dimension domains because the constraint equsasielect three lines to switch off (there are
approximatelyN; x Na + Ny x N3 + No x Nj lines). Additionally, the method in Sections 4.5.1 and
4.5.2 requires equal partitioning of each variable. Beeaus,;, Az,, andAx3 are constants, there is no
room to use finer partitioning in a portion of a variable’s dam

Section 4.5.3 and 4.5.4 introduce a method for activatinig@lex in a domain of gridpoints that is

15



based on work by Kosmidis et al. [13], who use triangulaticerdation 1 — 4 to tessellate a function
with a two dimensional domain. Section 4.5.4 generalizes tlesults to a three dimension domain. In
this method, the constraints are of ordéfor a domain of two dimensions and of ord&¥ for a domain
of three dimensions.

Because the method described in Section 4.5.3 and 4.5.4qdbesquire the definition of constants
like Az, it can be used to irregularly partition the variable donsaiRegions of higher curvature can be

partitioned with more gridpoints, while nearly-linear regs can be coarsely partitioned.

4.5.1 2D Domain with 1 Binary Variable

When the domain has two dimensions¢ X C R?), define vectorg; = [1, 0]T andes = [0, 1]T
which select the first and second component respectivety frariablex (i.e, the first element of: is
x - e1). Then, assuming even grid spacing, the distances betweggritdipoints (represented as: and

Ab in Section 4.4.1) are:

AIL‘l = (l’i+1’1 —xm) - €1, VZ'ZO,...,Nl, (27)

Azy = (T1541—215) €2, Vji=0,...,Na. (28)

Notice that both the second index ofin Equation (27) and the first index of in Equation (28) are
irrelevant. Since the grid spacing of the first index is ingleghent of the grid spacing of the second index,
the index1 is used arbitrarily. The distances between the gridpoiotdccbe equivalently defined using
other placeholder indices.

Equation (16) of the diagonal line connecting vertices 1 a&wfithe rectangle becomes:

N1 N>
(x—inﬁl-)\}>-el-Ax2— {L‘—Z.%'Lj-)\? ~eg - Az = 0. (29)
i=1 j=1

The SOS1 variables); and \; are only activated for a singlec 0,...,N; andj € 0,..., N, so
Equation (29) describes exactly one line for a giwen
To activate the vertices of the appropriate simplex, definary variableY;, € {0, 1} thatis activated

asin Section 4.4.1:
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Ny
—Axy - Azg - (1 —Y1y) < <a: — me . /\@1> ~e1 - Axy
i=1

Na
— Z‘—ZJ?LJ' /\? * €9 'A.]?l S Al‘l 'AJ)Q 'Yi4. (30)
7j=1

Finally, the convex combination weight of either vertex hémYy, = 1) or vertex 2 (whert’;4, = 0) is

set to zero:

IN

w1, 3=Yiu—A—-XA, Vi=1..., Ny, j=1 ..., Ny (31)

Ws,5—1 S 2—|—Y14—A%—)\?, VZ.Zl,...,Nl,jZL...,NQ. (32)
The variables\; and; ensure that only one vertex within the entire domain is deaietd.

4.5.2 3D Domain with 3 Binary Variables

When the domain has three dimensionss( X C R?), define vectorg; = [1, 0, 0], e2 = [0, 1, 0]
andes = [0, 0, 1]T to isolate each individual component of the vectorThen, assuming even grid

spacing, the distances between the gridpoints are:

Azy = (iy111 —2i11) €1, Vi=0,...,Ny, (33)
AJ)Q = ($17j+171 — .2317]'71) + €9, V] = 0, ey NQ, (34)
Azs = (Z1api1 —T1ak)- €3, VEhk=0,..., N (35)

As in Section 4.5.1, the indices labelédare only placeholders. The grid spacing for each variable is
independent of the other two variables, so any arbitrarggiialder could have been used.

Equations (20) — (22) of the planes in Figure 5 become:

N1 NB
P|an95/1368 <J) — 2.237;7171 . )\}) -eq A.I?g — <J) — 2.231717]‘; . )\i) ce3 Az = 0, (36)
=1 k=1

N1 N2
PIaneY1458 <{E — Zwi,lyl . )\}) -e1 - ALCQ — |z - le,jyl . )\? - €9 - A:rl =0, (37)
i=1 j=1
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N2 NS
PlaneYia7s T — le’j’l . )\? ceg - Arg — <£C — ZLCLL]C . )\i) -e3 - Axg = 0. (38)
j=1 k=1

As in Section 4.5.1, the variables, \; and A, are active for just one value afe 0,..., Ny, j €
0,...,Nsandk € 0, ..., N3 so that only the three appropriate planes are defined.
To activate the vertices of the appropriate simplex, defiee binary variablesyisss € {0, 1},

Y1458 € {0,1} andYi275 € {0, 1} that are each activated as in Section 4.4.2:

Ny
—AIEl . A{E3 . (]. — Y136g) S <{E — Zwi,lyl . )\}) €1 A{E3
=1
N3
- <x - me,k . Ai) ez - Azy < Az - Axs - YVises, (39)
k=1

Ny
—AIEl . A{EQ . (]. — Y145g) S <{E — Zwi,lyl . )\}) A A{EQ
=1

Na
—|z- Z$1,j,1 . )\? ~eg - Axy < Azq - Az - Yigss, (40)
=1
Na
—A{EQ . A{E3 . (]. — Y127g) S X — le’j’l . )\3 €9 - Axg
=1

N3
— <a: - Zml,m’ . Ai) ez - Azg < Az - Axs - Yiors. (41)
k=1

The remaining equations allow only the relevant simplexiges to remain active according to the
scheme in Table 1. Noticing that the vertices inactivatedh a single edge, the following constraints

deactivate the entire edge:

N1
Zwi’j’kfl < 2+Y127g—)\§—>\z, Vj:].,...,NQ,kZ].,...,Ng, (42)
=0
N1
> wijak < 3=Yiors—A =N, Vji=1,...,No k=1,...Ns (43)
=0
N2
Zwi’j’kfl < 2+Y1368_)\%_>\i7 Vi=1,...,N1, k=1,..., N3, (44)
§=0
N2
> witige < 3—VYiss— A -\, Vi=1... N, k=1,..., N (45)
§=0
N3
wijiak < 24 Yuss— A=A, Vi=1,.., Ny, j=1,...,Ny, (46)
k=0
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N3
wiijk < 3=Yiss— AN -, Vi=1,... Ny, j=1,... N, (47)
k=0

As in Section 4.5.1, the variables, A; and); allow only one line to be deactivated in the domain space

for each plane.

4.5.3 2D Domain with SOS2 Index

In this section, we describe domain partitioning for oraitn 1 — 4, but note that this method can be
similarly developed for any triangulation orientation. @htriangulation orientation 1 — 4 (shown in
Figure 2) is tessellated across the domain as shown in Fidyrere can define a new indésuch that

tE{O,].,...,Nl—1,N1,N1+1,...,N1+N2—1,N1+N2}.

N

N N
X X X
] //é\/ //é\/ //é\/ //é'\’,\/
J:N2 h h A \/é\'
j=N,-1 7
\//Q/
j=1 <
4
_ Ik
120 Z07=1 i=N,

Figure 10: Triangulation tessellation in two dimensions.

Eacht represents a diagonal of gridpoints, so that each gridmdortg a given diagondl can be
represented by; ; = z;;—n,++ Wheremax{0, N1 — ¢} < i < min{N, + N; — ¢, N;}. Since two

adjacent diagonals activate a simplex, we can definé2 variable sef2, such that:

Q= Z Wi i— N+t Vi, (48)

ZQt = ]-7 (49)
t

Q S0S2. (50)

wherew; ; is the convex combination weight associated with gridpojnt
Notice that this change in formulation has changed the atigre constraints froniv?2 to V. Using

the indext requires us to introduc®; + N, + 1 new.SOS2 variables, but it also eliminates the binary
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variable representing the switch between the two trianigléise rectangle.

4.5.4 3D Domain with 3 SOS2 Indices

Triangulation orientation 1 — 8 partitions domains of thdémensions into six equal simplices using the
planes shown in Figure 5. As in Section 4.5.3, we introduce ingicest, ts, t3, each representing a

diagonal of gridpoints;

t1 € {O, 1,....,N1,..., N+ Ny — 1, N1 + NQ} — Tjjk = Tii—Ny+t1,k

wheremax{0, Ny —t;} <i <min{Na + N1 —t1, N1}, Vk, (51)

to € {0, 1,.. .,Nl, .. .,Nl + N3 — ].,N1 + Ng} — Tk = Tiji—Ni+ts

WheremaX{O, N1 — tQ} << min{N3 + N1 — t27 Nl}, \V/j, (52)

t3 S {071,...,N27...,NQ+N3_1,N2+N3} — Xj .k = Lij,j—No+ts

Wheremax{O, Ny — tg} <3< min{N3 + Ny — t3, NQ}, V1, (53)

and we can use these indices to define three §i@§2 variable set$2,,, €2;,, andQ,,. As in Section
4.5.3, these new variables and constraints represent genation that each point in the domain can be

written as a convex combination of points on two adjacentgda

Q, =D Wi imNi 41k, Vi1, k,
i

Plane Y5530, =1, (54)
ty
Q, SOS2,

iy = D Wi ji-Ni+ts, Y t2, ],
7

Plane Yi3es S| Q, =1, (55)
ta
Q, SOS2,
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Qts = Zwi,j,i—N2+t37 Vi3, 1,
J

Plane Yiars Zﬂta =1, (56)
t3
0., SOS2.

Like the previously-presented method (Sections 4.5.1 afhi@¥ these constraints are ordé?. But
this method requires introduction & x (N + N2 + N3) + 3] continuous variables as opposed to the 3
binary variables that the other method needs to deactiwatafpropriate vertices. So, when the distances
between the gridpoints are constant and the partitionimgl&ively fine, it is better to use the previous
method for deactivating vertices. But, if there is a needs® mon-equal partitioning of the domain, then

it may be advantageous to use this new method, as it doeslyoirequal grid spacing.

4.6 Interpolation within a Simplex

With the box and simplex constraints described in Sectiadst@ 4.5, the appropriate + 1 vertices
discussed in Section 3 have been activated for dod¥ain R™. Interpolation of functioryf (x) : X — R
is performed by taking the convex combination of the actidatertices. For approximation of an one

dimensional variable, linear system of equations (2) diesdrin Section 3 becomes:

R Ny
flz) = Zjowz f(@i),
Ny
T =) wi-x,
XCR i=0 (57)
Ny
Z Wy = ]-7
1=0
w; Z 07 \V/’L = 07 ,N1

For approximation of a function of two dimensions, the iptdation is:

R N1,N2
f(z) = > wij- fzig),
i,j=0
N1,N2
£ = 2. Wij T,
X cR? i,j=0 (58)
N1,N2
> wiy =1,
i,j=0
Ws, 5 ZO, Vi:O,...,Nl,j:O,...,NQ.
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Finally, for a three dimensional function, the interpatatis:

R N1,N2,N3
f(@) = 2 wigk f(@ige),
1,5,k=0
N1,N2,N3
4 = Wi,j,k * Lij,k>
X cR? i,j,k=0 (59)
N1,N3,N3
> wigk =1
1,7,k=0
W;, 45,k ZO, VZ.ZO,...,Nl,jZO,...,NQ,]CZO,...,Ng.

5 Summary of Explicit Equations

This section presents explicit equations for two- and tteeensional domains to summarize the de-

velopment in Sections 3 — 4. Equation Sets (62) and (67) —{60)the simplex activation technique

described in Sections 4.5.3 — 4.5.4. An alternative methalscribed in Sections 4.5.1 —4.5.2.

5.1 2D Domain

> wo; <AL
7=0

Variable1 { "y,
Zowj <A AL Vi=1,.,N -1,
=
No L
j;)thj S)‘va
N. .
SN =1, Meo,1], ASOS1 Vj=1,.
Ny
Swio <A,
Variable2 { “=°

Ny
Zowj SAZ4A2,, Vi=1,.,Np— 1,

Yo wiN, <R,
1=0

Qe =3 wii—N+t, Vi,
1

Simplex Line SO =1,
t

Q, SOS52,
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SMAL =1, Aleo, 1], ASOS1 Vi=1,..

V1,
(60)
-+ N,
(61)
(62)



R N1,N2
f(x) = > wij
4,j=0
N1,N2
z = W,
X CcR? i.j=0
Ni,N2
> wiy =1,
4,j=0
ws, 5 2 0
5.2 3D Domain
Ny
ST =1, Alejo,
i=1
N2 N3
> wogqk <AL
. =0 k=0
Variable1 Ny N ) 1
Do Wik <A+ AL,
=0 k=0
No N3 1
Z Z leyj;k S )‘Nla
=0 k=0
AL 2
2. A =1, Ajelo,
J=1
N1 N3
> Y wior <A,
Variable2 { i=0k=0
Z W;, 45,k < )\J + /\j+1a
=0 k=0
N1 N3 9
Wi N,k < AR
1=0 k=0
N3
>N =1, X elo,
k=1
N1 N2
> wijo <A
. i=0 j=0
Variable3 Ny N, , \
D2 Wik <A+ >‘k+1v
i=04=0
N1 N2 3
2 WiNg < AR,
i=0 ;=0
Plane Yi4ss S, =1,
t1
Q:, SOS2,
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f(@i ),

" Tigs

o Na.

1], A SOS1 Vi=1,..,N; —1,

Vi=1,..,N —1,

1, AMS0S1 Vj=1,.,Na—1,

1], A SOS1 Vk=1,..,N3—1,

Vk=1,.,Nsy—1,

Qtl = Zwiyi*N1+t1,kv Vi, k,
1

(63)

(64)

(65)

(66)

(67)



Uy = D Wi ji-Nyi+ts, Vb2, ]
7

Plane Yisgs ZQQ =1, (68)
to
Q,, SOS2,

Qg =D Wi ji—Notts, Vi3, 0,
J

Plane Yiorg SO, =1, (69)
t3

0, SOS2,

N1,N3,N3
f(z) = 2 Wik f(@igw),
0,4, k=0
N1,N2,N3
x = D> Wijk-Tijk
X CR3 1,5,k=0 (70)
N1,N2,N3
wijk =1,
%,5,k=0

Wi 4.k ZO, Vi:O,...,Nl,j:O,...,NQ,k:O,...,Ng.

6 Applying the Approximation and Estimating the Error

This section applies the approximation algorithm to thnezneples of increasing difficulty. The function
in Section 6.1 has two variables, so it can be directly apprated using a two-dimensional grid. The
multilinear function in Section 6.2 has four dimensiong the function can be separated into a sum of
one two- and one three-dimensional function, so the exam@pproximated using two lookup tables.
Finally, the example in Section 6.3 represents an 11-dilnaatmodel that had to be approximated using
the extensions discussed in Section 2.3. The approximatetiswere solved using CPLEX (version

9.0.2) [45] within the modeling language GAMS [46] on a Penti4 running Linux.

6.1 Six-Hump Camelback Function

This example is taken from Problem 8.2.5 in Floudas et all. [4fie objective function is:

1
fg(a:,y):4-x2—2.1-x4+§-x6+x-y—4-y2+4-y4. (71)

The domains of the 2 continuous variables are [-2, 2] andy € [—1, 1]. The 6-hump camelback

function has 6 local solutions and1 global optimum wftliz = 0.08984, y = —0.71266) = —1.03163.
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The average value of the function across the 107 sample points is 1.128 and the maximum function

value isfo(x = —2, y = —1) = 5.733. Table 2 records five partitioning schemes for the two vdeisb

and Table 3 displays the associated errors.

Table 2: Partitions CB-1 through CB-5 represent the numbesegments in the two variable domains.
Estimated error associated with each partitioning schetrans) in Table 3.

Partition x vy

CB-1 4 4

CB-2 8 8

CB-3 16 16

CB-4 32 32

CB-5 64 64

Table 3: Estimate of the errors associated with each of thétfmning schemes introduced in Table 2.

Partition Absolute  Absolute Absolute
Max Error Ave Error  Std Dev

CB-1 1.934 0.589 0.499
CB-2 1.108 0.175 0.311
CB-3 0.416 0.046 0.092
CB-4 0.126 0.012 0.024
CB-5 0.035 0.003 0.006

Replacing the 6-hump camelback function with the piecelrs=sar approximations, the approxi-
mation functions were solved to global optimality. Table@mpares optimizing the piecewise-linear
approximations with optimizing the actual nonlinear fuant Note that, in this case, the approximation

algorithm finds one of the non-global local minima, which &grated quickly.

Table 4: Optimizing the camelback function using each offdige 2 partitioning schemes.

Partition Obj Value f2(x,y) X y #Vars #ofNodes #lter CPU (s)

fa(z,y) -1.032 -1.032 0.090 -0.713 3 495 0 0.41
CB-1 -0.750 -0.752 0.000 -0.500 45 0 2 0.00
CB-2 -0.984  -0.984 0.000 -0.750 117 0 3 0.00
CB-3 -0.984  -0.984 0.000 -0.750 357 0 4 0.00
CB-4 -1.021 -1.022 -0.125 0.688 1221 0 9 0.01
CB-5 -1.028 -1.029 -0.063 0.719 4457 0 9 0.05

6.2 Multilinear Function

This example is taken from the second problem in Table 2 offada and Floudas [32]. The objective

function is

fl(],‘l, To, I3, $4) =XT1 T2 —T2-T3 — T3 T4 + 2129 L3 — I + x4. (72)
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Table 5: Partitions MF-1 through MF-3 represent the numb&segments in each of the four variable
domains.

Partition 1 X2 T3 T4

MF-1 4 4 4 4
MFE-2 8 8 8 8
MF-3 16 16 16 16

The domains of the 4 continuous variables arec [0, 1] V i. The average function value across the
1 x 107 sample points is -0.125 and there are infinitely many glgbagitimal solutions withf; = —1.
Examples includgi (1, 0, o, 0) = -1 Va € [0, 1Jandfi(1, 0, 1, 8) = -1 V €0, 1]. The
global maximum of the function is 2. Table 5 records pantiiiy schemes for the 4 variables and Table
6 displays the associated errors. Finally, Table 7 showsiesapproximations were able to capture the

important features of the function well enough to reach tloba optimum.

Table 6: Estimate of the errors associated with each of thétfming schemes introduced in Table 5.

Partition Absolute  Absolute Absolute
Max Error Ave Error  Std Dev

MF-1 0.040 0.0026 0.0083
MF-2 0.011 0.0007 0.0021
MF-3 0.003 0.0002 0.0005

Table 7: Optimizing the multilinear function using eachlod ffable 5 partitioning schemes.
Partition ObjValue ) z3 x4 #Vars #ofNodes #lter CPU (s)

fi(z,y) -1.00 1.00 0.00 0.00 0.00 5 1 0 0.02
MF-1 -1.00 0.00 1.00 1.00 0.75 188 0 102 0.01
MF-2 -1.00 1.00 0.00 0.75 0.00 872 0 155 0.03
MF-3 -1.00 1.00 0.00 1.00 0.00 5312 0 329 0.27

6.3 EPA Complex Emissions Model

Environmental Protection Agency (EPAjtle 40 Code of Federal Regulations Part 80.45: Complex
Emissions Mode]48] codifies a mathematical model of gasoline emissiondfith reformulated and
conventional gasoline. The model calculates three emmisdigpes based on the eleven fuel qualities
recorded in Table 8: volatile organic (VOC), NOINOX) and toxics (TOX).

EPA Complex Emissions Model legally certifies the emissipegormance of gasoline within the
bounds specified by Table 8, providing the basis for otheslation, such agitle 40 Code of Federal
Regulations Part 80.41: Standards and requirements forpimmce[49], to set emissions standards.
Final products exiting an oil refinery must comply with thedandards, or upper bounds, on volatile
organic VOCyax), NOx (NOXyax) and toxics TOXyax) emissions.

Although the EPA Model can be formulated as an MINLP [50]sitifficult to solve even a small

problem using the EPA Model as a constraint set for optimfarneulated gasoline blending. But, by
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approximating the functions representing each of the @arisgypes, we can construct a reasonable sub-

stitute for the EPA Model that can be integrated into an ojatition algorithm for process improvement.

Table 8: Variables Relevant to the EPA Model [48]. The bouasthe limits of model accuracy for
reformulated gasoline. The different upper bounds for eatienal gasoline are bracketed.

Variable Fuel Quality Applicable Bounds Measuring Units
1 OXY Oxygen content 0.0-4.0 Weight %
2 SUL Sulfur content 0.0-500.0 [1000.0] Parts per million
3 RVP Reid Vapor Pressure 6.4-10.0 [11.0] Pounds per sqnelne i
4 E200 200°F distillation fraction  30.0-70.0 Volume %
5 E300 300°F distillation fraction 70.0-100.0 Volume %
6 ARO Aromatics content 0.0-50.0 [55.0] Volume %
7 BEN Benzene content 0.0-2.0 Volume %
8 OLE Olefins content 0.0-25.0 Volume %
9 MTB Methyl tertiary butyl ether Weight % oxygen
10 ETB Ethyl tertiary butyl ether Weight % oxygen
11 ETH Ethanol content Weight % oxygen

Because the three components of the EPA emissions modebipaee9 variables in each term, we
used the techniques discussed in Section 2.3 to decompogeablem into bilinear and trilinear terms
of approximate functions. To estimate the error introducgdhe approximations, we randomly sample
a large number of domain points & 107) and compute the difference between the interpolated astim
and the actual function value for each sample point.

To reduce the error, we carefully choose the lookup tablétfaring and triangulation orientation for
the EPA Complex Emissions Model functions. We balance theessed accuracy of finer partitioning
with the higher computational times required for many gaduipps. Tables 9 and 10 estimate the error
associated with a number of different partitioning schenteartitions EPA-1 though EPA-5 in Table 9

represent increasingly accurate approximations.

Table 9: Partitioning schemes EPA-1 through EPA-5 repregenumber of segments that partition the
eleven variable domains. Estimated error associated vattheartitioning scheme shown in Table 10.

Partition OXY SUL RVP E200 E300 ARO BEN OLE MTB ETB ETH

EPA-1 1 1 1 1 1 1 1 1 1 1 1
EPA-2 4 4 4 4 4 4 4 4 4 4 4
EPA-3 4 4 4 4 4 4 4 4 4 8 8
EPA-4 8 4 8 8 8 8 4 4 8 8 8
EPA-5 8 8 8 8 8 8 8 8 8 8 8

Notice from Table 10 that dividing each of the variables iaight segments (Partition EPA-5) is sig-
nificantly more accurate than dividing each of the varialiés only four segments (Partition EPA-2).
Partitions EPA-3 and EPA-4 combine the accuracy of a finditjmar with the computational practicality
of a coarser mesh. The variables associated with ethyatgtiutyl ether content (ETB) and ethanol con-

tent (ETH) are refined in Partition EPA-3 because the constafficients associated with these variables
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in the calculation of acetaldehyde emissions (a comporfehedoxics emissions) are approximately an

order of magnitude larger than the constant coefficiente@bther variables. Refining the mesh of these

two high-impact variables leads to the significant gain®okids emissions accuracy of Partition EPA-3

over Partition EPA-2. Using similar logic, Partition EPARther refines specific variables for increased

accuracy.

Table 10: Estimate of the errors associated with each of Hrétpning schemes introduced in Table 9.

Partition Absolute Relative  Absolute Relative Absolute |d&iee
Max Error Max Error Ave Error Ave Error  Std Dev  Std Dev
EPA-1 VOC 318.87 17.78% 105.28 8.16% 45,74 3.82%
NOX 99.65 7.80% 30.14 2.34% 19.44 1.58%
TOX 155.62 164.48% 66.46 66.10% 27.08 25.98%
EPA-2 VOC 44.03 3.53% 8.71 0.66% 5.87 0.45%
NOX 20.30 1.57% 3.42 0.27% 3.12 0.25%
TOX 29.36 12.23% 4.15 3.66% 3.13 1.58%
EPA-3 VOC 44.26 3.47% 8.71 0.66% 5.87 0.45%
NOX 20.22 1.58% 3.42 0.27% 3.12 0.25%
TOX 11.76 4.75% 1.97 1.84% 1.07 0.60%
EPA-4 VOC 24.75 1.96% 2.49 0.19% 2.29 0.17%
NOX 15.39 1.20% 2.16 0.17% 2.02 0.16%
TOX 9.46 3.59% 1.43 1.31% 0.87 0.43%
EPA-5 VOC 24.43 1.96% 2.42 0.18% 2.27 0.17%
NOX 11.70 0.90% 1.11 0.09% 1.60 0.13%
TOX 8.76 3.58% 1.05 0.92% 0.80 0.40%

7 Conclusions

The explicit, piecewise-linear functions for two and thiienensions developed in this paper can be

easily integrated into an MILP model, allowing us to appmately solve large-scale problems. As we

show in Section 6, the algorithm produces good approximatfor large, industrially relevant models.
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