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Highlights

• Capillary filling

a. Correct dynamics in the limit of large times for high and low viscosity

ratios (1. scaling of length with time and 2. variation of the dynamic

contact angle)

b. Correct dynamics in the limit of small times (two successive regimes

of length vs time precede the Lucas-Washburn regime)

• Haines jump events

a. Associated with both drainage and capillary filling dynamics

b. Non-local, cooperative events with imbibition occurring during drainage

of a pore body in the surrounding pore throats. This leads to fluid

redistribution in the area of the surrounding draining pore.

c. Role of the Ohnesorge number in determining draining times.

d. Role of the Ohnesorge number in identifying the type of pore filling

dynamics that will occur.
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Abstract

We investigate numerically the dynamics of capillary filling and Haines jump

events using free energy Lattice Boltzmann (LB) simulations. Both processes are

potentially important multi-phase pore-scale flow processes for geological CO2

sequestration and oil recovery. We first focus on capillary filling and demonstrate

that the numerical method can capture the correct dynamics in the limit of long

times for both high and low viscosity ratios, i.e. the method gives the correct

scaling for the length of the penetrating fluid column as a function of time.

Examining further the early times of capillary filling, three consecutive length

vs. time regimes have been observed, in agreement with available experimental

work in the literature. In addition, we carry out simulations of Haines jump

events in idealised and realistic rock pore geometries. We observe that the

Haines jump events are cooperative, non-local and associated with both drainage

and imbibition dynamics. Our observations show that the pore filling dynamics

is controlled by the Ohnesorge number, associated with the balance between

viscous forces and inertial / surface tension forces. Using this concept, we are

able to identify the type of pore filling dynamics that will occur.

Keywords: Capillary filling, Haines jump events, interfacial jumps, pore scale

modeling, drainage, free energy Lattice Boltzmann method
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1. Introduction

Our understanding for multiphase flow, which is extremely important for

many industrial, environmental and biological applications, can be greatly en-

hanced by numerical modeling. As exact solutions to the equations of motion

are not an easy task or in most of the cases impossible to obtain, modeling

multiphase flow can provide invaluable insights, but more importantly can be

a useful predictive tool. In porous media the coupling of the flow, the fluid-

fluid interface displacement and the interactions with the solid surfaces and the

complex geometry adds to the complexity of investigating multiphase systems.

Macroscopic mathematical models developed, based on solving generalisa-10

tions of Darcy’s law, neglect non-equilibrium and inertial effects since the flow

is at small Reynolds numbers. These models are based on the fundamental

assumption of local phase equilibrium [1, 2, 3], which is valid when the charac-

teristic time-scale of a process is much larger than the time for redistribution

of the fluids along their flow paths occurring in multiphase flow due to changes

in capillary pressure [4]. Non-equilibrium effects become, however, important

when the above time-scales are comparable in size [4]. This applies to processes

such as (a) CO2 displacing water (drainage) in geological CO2 sequestration

and (b) water displacing oil (forced imbibition) in oil recovery, where pore scale

instabilities can cause an abrupt increase in the interfacial velocity decreasing20

the characteristic transition time. Haines jump events, a characteristic feature

of two-phase flows in porous media at the pore scale, are an example of the

former [5, 6, 7, 8]. Although first discovered more than 80 years ago [9], it was

only recently that advances in synchrotron micro-CT enabled the direct obser-

vation of such events in porous media flow in real time[5]. For the latter, Ferrari

and Lunati [10] demonstrated numerically that inertial effects induce interfacial

oscillations that can influence the selection of the next pore to be invaded and

hence the displacement pathways. Therefore, in these situations solving the full

Navier-Stokes equations at the pore scale is necessary to resolve the correct fluid

displacement flow paths [10, 8].30
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Here we use the free energy Lattice Boltzmann (LB) method [11, 12] to inves-

tigate drainage and in particular the dynamics of Haines jump events, in light of

recent experimental observations[5, 6] demonstrating that these abrupt events

are associated with both drainage and imbibition dynamics. Hence, we first

examine capillary filling dynamics and the time-scales involved, before turning

our attention to Haines jump events.

The phenomenon of imbibition or capillary filling has been extensively stud-

ied during the last century. A fluid penetrates a hydrophilic channel under the

action of capillary filling, due to the Laplace pressure across the interface, or

equivalently due to the decrease in the free energy of the system as the liquid40

wets the walls of the channel. The system uses the energy liberated from wet-

ting the walls to drive the fluid inside the capillary. A renewed interest in the

subject is due to modern applications of microfluidic devices. Developments

in lithographic techniques and the ability to fabricate microchannels on micron

length scales lead to a plethora of applications where the phenomenon of capil-

lary filling can be exploited to achieve the desired outcome; from entropic traps

for DNA separation [13], chemical detection [14], as microreactors [15] and one

way flow microchannels achieved via surface patterning.

Lucas [16] and Washburn [17] gave the first account of the phenomenon, but

considered only the regime when all influences apart from the driving force, the50

capillary force, and the viscous drag cease to exist. Still their predictions could

describe the experimentally observed time dependency of the filled length of the

penetrating fluid, which is that the length of the fluid column is proportional

to the square root of time, l ∼ t0.5. Several authors have further progressed the

subject by considering effects not taken into account by Lucas and Washburn,

like inertial [18, 19] and gravitational effects [20], deviations from a Poisseuile

velocity profile at the inlet of the capillary or at the interface [21, 19, 22] and

variations of the dynamic contact angle [18, 23]. Work also extended to rough

capillaries [24] and patterned channels [25, 26]. Moreover, extensive work in the

literature involved the initial stages of capillary filling, as the Lucas-Washburn60

regime is the asymptotic limit for large times [27, 28, 29, 18, 30, 31].
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Capillary filling plays a potentially important role in geological CO2 seques-

tration, as it occurs in both stages of the process. Following the initial stage

of drainage and once the injection of CO2 stops, brine, as the wetting phase,

reenters the pore matrix due to the action of capillary filling. This traps CO2

and determines eventually the amount of CO2 that is stored in the pore space.

Maybe not so evident, capillary filling can occur during the first injection phase

as well, as it can be associated with Haines jump events [6, 7].

We will now give a brief overview of different approaches for pore scale flow

simulations. Pore-network models [32, 33] have been developed to understand70

multiphase flows at the pore scale. These models are simplified representa-

tions of the real pore space and therefore computationally efficient. However,

the simplifications imposed often restricts their predictive capability and ac-

curacy. Traditional Computational Fluid Dynamics (CFD) methods include

the volume-of-fluid (VOF) [34, 35, 36] and level set (LS) approaches [37, 38].

These methods are able to simulate multiphase flows by explicitly solving the

macroscopic Navier-Stokes equations. In addition, these approaches require a

method to track the fluid-fluid interface. Together, this poses a considerable

computational challenge for both VOF and LS when the computational domain

is significant. In addition, using classical CFD approaches, it is difficult to80

incorporate fluid-solid interfacial effects such as surface wettability.

Here we consider the LB method [39, 40, 41, 42] as a numerical algorithm

alternative to conventional CFD methods. LB solves the discrete Boltzmann

equation, and reproduces the Navier-Stokes equations in the continuum limit.

It is becoming increasingly popular in several fields of computational fluid dy-

namic engineering, mainly because of its efficiency and simplicity in terms of

implementation, while it is particularly well suited for computations on a paral-

lel architecture. We take advantage of this and exploit the opportunities offered

by high performance hardware like General Purpose Graphics Processing Units

(GPGPUs).90

The free energy LB method is a thermodynamically consistent extension of

the LB method developed in the Yeomans’ group [11, 12]. The method con-
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stitutes a mesoscale approach [43], because it has the ability to exploit the

underlying microscopic structure of the equations of motion, without resorting

to a description of the fluid in terms of molecular dynamics [44]. This gives

the advantage to easily incorporate complex physical phenomena in the algo-

rithm, ranging from phase behavior, multiphase flows to chemical interactions

between the fluid and the surrounding solid surfaces. Moreover, it avoids the

need to track the time evolution of the interface between different phases [45],

which makes it ideal to study problems involving the time evolution of fluid-fluid100

interfaces [46, 47].

It is worth pointing out that a recent alternative Navier-Stokes solver, called

Direct Hydrodynamics (DHD) also adopts a Cahn-Hilliard description of the

free energy [48]. However, the dynamics of the system is solved using a Density

Functional Theory approach, which is distinctly different from the LB method

used in this paper.

Our aim in this paper is to demonstrate that the numerical approach we

choose, the free energy Lattice Boltzmann method, can be used to effectively

solve the hydrodynamic equations of motion and investigate problems related

to multiphase flow at the pore scale. With regards to capillary filling dynamics,110

the method captures the correct physics of capillary filling, both in the limit of

large and small time-scales. The dynamical testing involves the scaling of the

imbibition length with time, as well as the time variation of the dynamic contact

angle and its dependency on the interface velocity. Then, we demonstrate how

Haines jump events, associated with a drainage situation, are coupled with im-

bibition dynamics. Correctly capturing the dynamics of these transient events,

that involve both drainage and spontaneous imbibition dynamics, ensures that

the fluid spatial redistribution occuring during these events will be correctly

resolved.

The paper is organised as follows. In Section 2 we briefly present the details120

of the numerical method we choose to solve the governing equations for a system

of a binary fluid, which include both the thermodynamics and hydrodynamics

of the system. Section 3 is devoted to capillary filling, while in Section 4 we
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turn our attention to the Haines jumps problem. Finally, conclusions from this

work are drawn in Section 5.

2. Numerical Model

The free energy LB method belongs to a class of hydrodynamic models,

called diffuse interface models [49, 50, 51, 52], where the fluid-fluid interface has

a finite thickness. Far away from a contact line, the method solves the hydro-

dynamic equations of motion of the fluid, i.e. the Navier-Stokes equations and130

the continuity equation. In the vicinity of the contact line, however, due to the

finite thickness of the interface, the method introduces a diffusive mechanism,

which regularizes the viscous dissipation singularity [53] and allows the contact

line to slip on a solid substrate.

2.1. Thermodynamics of the fluid

The equilibrium properties of a binary (two-phase) fluid can be described by

a Landau free energy functional [52]

F =

∫

V

(
fb +

κφ
2

(∂αφ)2
)
dV +

∫

S

fs dS . (1)

The first term in the integrand is the bulk free energy density given by

fb =
A

2
φ2 +

B

4
φ4 +

c2

3
ρ ln ρ , (2)

where φ is the concentration or order parameter, ρ is the fluid mass density

and c is a lattice velocity parameter. This choice of fb allows binary phase

separation into two phases if A < 0 and B > 0, as the bulk free energy density

takes the form of a double-well potential, with bulk equilibrium solutions φeq =

±(−A/B)1/2. Here we make the choice A = −B, which leads to φeq = ±1 for140

the two phases. The position of the interface is chosen to be at φ = 0. The final

term in the bulk free energy density, c
2

3 ρ ln ρ, does not affect the phase behavior

and is added to enforce incompressibility [54].

The gradient term
κφ

2 (∂αφ)2 in eq. 1 penalizes spatial variations of the order

parameter φ, for example across an interface, and ensures a smooth transition
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from one phase to the other; hence, this term is related to the interface tension

γ =
√
−8κφA3/9B2 and to the interface width ξ =

√
−κφ/A [52].

The final term in the free energy functional, eq. 1, describes the interactions

between the fluid and the solid surface. Following [55], the surface energy density

is taken to be of the form fs = −hφs, where φs is the value of the order

parameter at the surface. Minimisation of the free energy gives an equilibrium

wetting boundary condition [52]

κφ ∂⊥φ = − dfs
dφs

= −h . (3)

The value of the parameter h (the surface excess chemical potential) is related

to the equilibrium contact angle θeq via [52]

h =
√

2κφB sign
[π

2
− θeq

]√
cos
(α

3

){
1− cos

(α
3

)}
, (4)

where α = arccos
(
sin2 θeq

)
and the function sign returns the sign of its argu-

ment.

This choice of the free energy leads to the (exchange) chemical potential

µ =
δF
δφ

= Aφ+Bφ3 − κφ∂γγφ , (5)

which describes the change in F for a small change in concentration, and is

constant in equilibrium. The pressure tensor, which determines how the system

approaches equilibrium, is given by [56, 54]

Pαβ =
[
φ
δF
δφ

+ ρ
δF
δρ
−F

]
δαβ + (∂αφ)

δF
δ(∂βφ)

=
[
pb − κφφ∂γγφ−

κφ
2

(∂γφ)2
]
δαβ + κφ(∂αφ)(∂βφ)

= P isoδαβ + P chemαβ ,

(6)

where pb = c2

3 ρ + 1
2Aφ

2 + 3
4Bφ

4 is the bulk pressure. The pressure tensor150

comprises of two terms, a ‘chemical’ pressure tensor contribution P chemαβ and

an isotropic contribution P iso = c2

3 ρ to ensure constant density [54]. P chemαβ

originates from the fact that, in the presence of concentration gradients, there is

a thermodynamic force density −φ(∂αµ) acting at each point of the fluid, which

8
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can be expressed as the divergence of a ‘chemical’ pressure tensor φ(∂αµ) =

∂βP
chem
αβ . Effectively this thermodynamic force density pulls the two fluids in

opposite directions due to the chemical potential gradient, with the net force

being zero at the interface (φ = 0).

For a free energy based multicomponent LB method we refer the reader to

[57, 58].160

2.2. Equations of motion

The hydrodynamic equations for the system are the continuity, eq. 7, and

the Navier-Stokes, eq. 8, equations for a nonideal fluid

∂tρ+ ∂α(ρuα) = 0 , (7)

∂t(ρuα) + ∂β(ρuαuβ) = −∂βPαβ + ∂β [η (∂βuα + ∂αuβ)] + Fα , (8)

where u, P, η, F = ρg are the fluid velocity, pressure tensor, dynamic viscosity

and body force respectively. For a binary fluid the equations of motion are

coupled with a convection-diffusion equation,

∂tφ+ ∂α(φuα) = M∇2µ , (9)

that describes the dynamics of the order parameter φ. M is a mobility coeffi-

cient.

The above equations are solved using a Multiple Relaxation Time (MRT)

Lattice Boltzmann algorithm [59]. Details of the implementation of the Lat-

tice Boltzmann algorithm are given in the references [52, 45, 23] and are not

repeated here. An important remark here is that the continuity and Navier

Stokes equations are coupled to an advection-diffusion equation and are not

solved independently. This ensures that the equations are solved with an algo-

rithm that is consistent with the thermodynamics of the fluids, which enters the170

equations of motion through the chemical potential and pressure tensor. The

coupling occurs at the level of the distribution functions, as the concentration

and its spatial gradients appear in the equilibrium distribution functions for

9
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Figure 1: Schematic representation of the simulation geometry.

the density and in the Pressure tensor (see [52, 45, 23] for more details). The

evolution of the order parameter (concentration) is obtained from solving the

advection-diffusion equation. The order parameter responds to the flow (ve-

locity field obtained from solving Navier Stokes and continuity), as it can be

advected by the flow, but also responds to chemical potential gradients. This

evolution of the concentration field results in a change of the pressure field which

in turn affects the flow field.180

3. Capillary Filling

3.1. Limit of large times

We first investigate capillary filling dynamics in the limit of large time-scales,

with the aim of comparing to the well-known Lucas-Washburn law [16, 17]. In

this limit the viscous drag counteracts the driving capillary force and we expect

that the filled length l should scale with the square root of time t for sufficiently

high viscosity ratio ηw/ηnw. We consider a two-dimensional system and assume

Poiseuille flow. In this case, the capillary force, 2γ cos θa, and the viscous drag

of the fluid column, 12ηwl
dl
dt/h, are balanced to give the Lucas-Washburn law

[16, 17]

l2 =
γh cos θa

3ηw
(t+ t0) . (10)

Here we use the dynamic contact angle θa, since this controls the Laplace pres-

sure across the interface and, as we will show later, is different from the equilib-

rium contact angle θeq. Moreover, we expect θa > θeq, reflecting the fact that

10
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Figure 2: (a) The length of the penetrating fluid column inside the capillary as a function of

time for varying viscosity ratio rn. (b) The length of the penetrating fluid column inside the

capillary as a function of the square root of time for viscosity ratio rn = 1000. The solid line

is a fit to Washburn’s law using the dynamic contact angle at late times from the simulations.

Length and time in lattice units.

less energy is available to do useful work than the energy liberated from wetting

the channel’s surface due to viscous dissipation.

For the case when the viscosity ηnw of the resident fluid in the capillary is

not negligible, then the viscous drag becomes 12ηwl
dl
dt/h + 12ηnw(L − l) dldt/h,

reflecting the fact that viscous dissipation in the fluid column ahead of the fluid-

fluid interface is increased. In the limit of viscosity ratio 1 (ηw = ηnw) this yields

the following solution for the filled length

l =
γh cos θa

6Lηw
(t+ t0) . (11)

As expected l scales linearly with time t, as the viscous dissipation in the channel

is independent of the position of the fluid-fluid interface and occurs at approxi-

mately the same rate at any given point down the channel.190

We consider a channel of length L=640 and width h=50 in lattice units(l.u).

All the parameters reported here are in l.u. Later on dimensionless formulation

will be denoted with *. Reservoirs of dimensions 460×200 are attached at the

inlet and outlet of the channel. Periodic boundary conditions are imposed in

the x direction, in order to ensure that the reservoirs are connected and have

the same pressure. A schematic representation of the simulation geometry is
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shown in Fig. 1. A viscosity ratio rη = ηw/ηnw = 1000 is achieved by choosing

relaxation times for the two fluids τw = 2.5 and τnw = 0.502, leading to dynamic

viscosities ηw = 6.67 × 10−1 and ηnw = 6.67 × 10−4. The other parameters of

the simulations are chosen to give θeq = 60◦, γ = 1.17×10−2 and ρw = ρnw = 1.200

Lower values for the viscosity ratio rη are achieved by increasing the viscosity

of the non-wetting fluid, ηnw.

Fig. 2(a) shows the results from simulations for the length of the wetting

fluid column as a function of time for varying viscosity ratio rn. Decreasing

rn by increasing the viscosity of the non-wetting fluid, ηnw, results in slowing

down the moving interface as the viscous dissipation in the fluid column ahead

of the meniscus is increased. For rn = 1 we confirm the linear dependency,

eq. 11. Fig. 2(b) shows the results for the length of the column of the filling

fluid plotted against the square root of time for rn = 1000. The solid line is a

fit to Lucas-Washburn law, verifying that in the limit of high viscosity ratios we210

recover the theoretically predicted scaling length vs. time.

Next, we examine the variation of the dynamic contact angle θα and its

dependency on the velocity of the fluid interface. Cox [60] derived a relation for

θα, θeq and the capillary number, Ca = ηwu/γ, which later on Sheng and Zhou

[61] showed that, to lowest order in the capillary number, reduces to

cos(θα) = cos(θeq)− Ca ln(KLs/ls) . (12)

K is a constant, Ls is a characteristic lengthscale of the system and ls is the

effective slip length at the contact line.

For high viscosity ratio the interface velocity scales as 1/l, i.e. the interface

slows down as it advances inside the capillary and time progresses, while for

rn = 1 the interface moves at a constant velocity. This is evident from Fig. 2(a).

Fig. 3(a) shows that for high viscosity ratio (rn = 1000) the dynamic contact

angle decreases as time progresses, with initial values being much higher than the

equilibrium value of θeq = 60◦. This is consistent with the theoritical prediction

[61, 62] as initially the interface is advancing at a higher velocity, thus leading220

to higher θα. For rn = 1 the dynamic angle θα ∼ 61.5◦.
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(a) (b)

Figure 3: (a) The dynamic contact angle θα as a function of time for viscosity ratio rn = 1000

and rn = 1 (θeq = 60◦). (b) The cosine of θα plotted against the capillary number Ca. The

solid line is a linear fit of cos(θα) to Ca for rn = 1000.

The linear dependency of cos(θα) on Ca, predicted by eq. 12, is verified in

Fig. 3(b). Fitting the results for rn = 1000 and extrapolating to Ca = 0, reveals

θαCa=0 = 60.3◦ and, hence, the dynamic contact angle tends to the correct value

for the equilibrium contact angle of θeq = 60◦.

3.2. Time-stages of capillary filing

In this section we turn our attention to the initial time stages of capillary

filling. In terms of dimensional analysis, the following characteristic time-scales

can be constructed [18, 31]

t1 ∼
√
ρL3

s

γ
and t2 ∼

ρL2
s

ηw
. (13)

t1 is related to initial settling phenomena and the reorientation of the interface

at the inlet of the channel to a meniscus when the channel comes into contact

with the fluid reservoir. The second time-scale t2, known as the viscous time-

scale, roughly determines the crossover to the viscous regime (Lucas-Washburn230

regime) for times t� t2.

Using these two time-scales, the Ohnesorge number,

Oh =
ηw√
ργLs

, (14)
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Figure 4: Length of the penetrating fluid column for a simulation with t1 = 3.3 × 103,

t2 = 1.5 × 105, Oh = 2.18 × 10−2 and total simulation time tsim = 4.0 × 105 (in l.u). All

three successive regimes (l ∼ t2, l ∼ t, l ∼ t0.5) are observed as t2 is comparable in size with

tsim. Dashed lines serve as a guide for the different regimes (short intermediate regime l ∼ t

not shown on the right subfigure). Inset: Length vs t∗ - the transition to the Lucas-Washburn

regime occurs at approximately t∗ ∼ 1.

can be obtained as the ratio of the time-scales t1/t2. Oh relates the viscous

forces to inertial forces and surface tension and is known as a damping measure

for capillary dominated oscillations. Depending on the Oh and the relative

size of experimental times compared to t1 and t2, three successive length vs.

time (l − t) regimes can be obtained [28, 31], namely (a) l ∼ t2, (b) l ∼ t

and (c) l ∼ t0.5. Usually the total experimental time is much larger than the

above two time-scales (large Oh) and the Lucas-Washburn regime is obtained.

Increasing the two time-scales to the order of the experimental time can make

the observation of the first two regimes possible.240

Numerically we consider the same geometry as in section 3.1. The viscosity

contrast is set to rn = 50.5, by choosing relaxation times for the two fluids

τw = 0.55 and τnw = 0.501. This ratio is sufficient to give the Lucas-Washburn

regime, l ∼ t0.5, in the limit of large times (t � t2). The other parameters of

the simulations are chosen to give θeq = 60◦, γ = 1.17×10−2 and ρw = ρnw = 1.

In order to examine the initial time-stages of capillary filling, we vary the

characteristic time-scales by varying the height h of the capillary. Setting h = 50

leads to t1 = 3.3 × 103, t2 = 1.5 × 105 and Oh = 2.18 × 10−2. Fig. 4 shows

14
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Figure 5: Length of the penetrating fluid column for a simulation with t1 = 9.2 × 103,

t2 = 6.0 × 105, Oh = 1.54 × 10−2 and total simulation time tsim = 3.0 × 105 (in l.u).

results from a simulation with total simulation time tsim = 4.0× 105. Although

tsim > t2, these times are of the same order allowing us to observe all three250

successive regimes reported experimentally in the literature [28, 31]. When

rescaling time with the viscous time-scale, t∗ = t/t2, the transition to the Lucas-

Washburn regime, l ∼ t0.5, appears to commence at approximately t∗ ∼ 1, as

shown in the inset of Fig. 4. This indicates that t2 is the appropriate time-scale

for evaluating the transition to the Lucas-Washburn regime.

Increasing the height of the channel to h = 100 increases the characteristic

time-scales, leading to t1 = 9.2 × 103, t2 = 6.0 × 105 and Oh = 1.54 × 10−2.

Fig. 5 shows results from a simulation with total simulation time tsim = 3.0×105.

Now, tsim < t2, meaning that there is not enough time now to reach the Lucas-

Washburn regime and, hence, we observe first the l ∼ t2 regime followed by the260

l ∼ t regime.

Finally, increasing the height of the channel further to h = 250 results in

t1 = 3.7× 104, t2 = 3.7× 106 and Oh = 9.75× 10−3. Fig. 6 shows results from

a simulation with total simulation time tsim = 1.0× 105. In this case the total

simulation time is comparable to the first time-scale t1, enabling us to observe

the initial interface fluctuations as can be seen from Fig. 6. Negative values for

the interface position correspond to locations within the reservoir, as the mid-

position of the interface retracts initially, while the contact line moves inside the

15
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Figure 6: Length of the penetrating fluid column for a simulation with t1 = 3.7 × 104,

t2 = 3.7 × 106, Oh = 9.75 × 10−3 and total simulation time tsim = 1.0 × 105 (in l.u).

capillary. After the fluctuations-influenced regime, the interface position follows

a time squared scaling (see Fig. 6(b)).270

3.3. Rescaling - Universal curve

In this section we revisit the limit of large times with the aim of obtaining

a universal relation describing the length traveled by the meniscus inside the

capillary as a function of time in reduced units. The equation of motion reads

0 = Fcap − Fvisc = 2γ cos(θα)− 12ηw
h

l
dl

dt
. (15)

Rescaling length with the characteristic lengthscale of the system Ls = h and

time with the the viscous time-scale leads to

ζ2 =
γρh

3η2w

∫
cos(θα)dt∗ , (16)

where ζ = l/h and t∗ = t/t2. Identifying the prefactor in front of the time

integral as the inverse of Oh leads to

l∗ = ζ ×Oh =

√
1

3

∫
cos(θα)dt∗ . (17)

Note here that, contrary to the classical treatment by Lucas [16] and Washburn

[17], the dynamic contact angle depends on time, as shown in section 3.1.
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Figure 7: (a) Length of the penetrating fluid column for simulations with θeq = 60◦ and

channels with different heights. (b) Length vs T ime in reduced units. Results collapse on a

single curve.

In order to examine the validity of eq. 17 we carry out simulations with

viscosity ratio rn = 1000 (τw = 2.5, τnw = 0.502) and equilibrium contact

angles θeq = 20◦, 60◦. Fig. 7 shows the results for θeq = 60◦ and varying channel

heights h. The wetting fluid penetrates at a faster rate with increasing channel

height, if all other parameters are kept fixed, consistent with the predictions

of eq. 10. Triangles denote results from a simulation with a wetting fluid with

smaller viscosity. As expected from eq. 10 the interface advances faster in this280

case. Results for θeq = 20◦ are qualitatively the same.

When results are plotted in reduced units, see Fig. 7(b), then a single curve

describes the imbibition length. This implies that the integral
∫

cos(θα)dt∗ in

eq. 17 is roughly identical for all simulations irrespective of the different channel

heights. In other words the dynamic contact angle scales in the same way with

the rescaled time t∗ and the only lengthscale dependency is included in the

Ohnesorge number. This is verified from Fig. 8(b). Moreover, the dynamic

contact angle approaches the equilibrium value much more rapidly for smaller

channel heights as shown in Fig. 8(a). This can be explained considering the

dependency of θα on the interface velocity. Increasing channel height increases290

interface velocity, thus leading to higher Ca and larger θα, i.e. smaller cos(θα).

Finally, results for the imbibition length for varying equilibrium contact
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Figure 8: (a) The cosine of the dynamic contact angle as a function of time for simulations

with θeq = 20◦, 60◦ and channels with different heights. (b) The same plot in reduced units.

The dashed lines are the corresponding values for the cosines of the equilibrium contact angles.

Figure 9: Length vs T ime in reduced units for simulations with θeq = 20◦ and 60◦.
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Figure 10: The geometry used in the LB simulations. Velocity boundary conditions are

applied in the inlet and outlet of the simulation domain to drive the flow, while periodic

boundary conditions are imposed in the y direction. In the z direction walls are located at

z=0 and z=h.

angles (θeq = 20◦, 60◦) are shown in Fig. 9. The interface advances faster for

θeq = 20◦ consistent with the higher driving force and results are described

by two distinct paths. The collapse of results from simulations with fixed θeq,

when analysed in terms of rescaled lengths and times, provides a useful tool for

predicting the imbibition length in experiments when a single set of results is

known.

4. Haines jump events

We next proceed to investigate the dynamics of Haines jumps events [9],300

which can occur during drainage. Whether drainage can be considered as a

cascade of events where the pore space is invaded by a non-wetting fluid pore-

by-pore while neglecting the dynamics of the process in order to simplify things

is becoming increasingly questioned. Pore-network modeling, which takes ad-

vantage of a decomposition of the pore space in an ensemble of geometric shapes

that drain in a sequential manner, based on the capillary entry pressures, ne-

glects dynamical effects at the pore-scale. However, dynamical effects due to

pore-scale instabilities can alter the displacement pathways [10] or lead to fluid

redistribution at a time-scale comparable to the time-scale of general advance-

ment of fluid front propagation [6], and hence the quasistatic approach used in310

pore-network modeling may not be able to predict correctly the residual satura-

tion after drainage and imbibition. Considering that capillary or viscous forces
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may not be acting in a purely local way, as demonstrated recently [5, 6], this

illustrates the importance of considering the full dynamics at the pore-scale for

modeling displacement processes.

During drainage the pressure generally increases steadily. However, as the

non-wetting phase travels through a narrow throat to a wider pore-body, be-

cause it exceeds the capillary entry pressure, the pressure drops instantaneously

and the pore-space fills quickly. Recent developments in synchrotron-based X-

ray computed microtomography improved the temporal resolution in the range320

of seconds, enabling the imaging of pore-scale displacement events while main-

taining the flow, the pressure gradients and the viscocapillary balance during

imaging [5]. This offers the possibility to directly visualise rapid events, such as

the Haines jumps, and other pore-scale displacement events in porous rock in

real time. These rapid events are very important to the upscaling of multiphase

flow, since they account for a significant fraction of the energy dissipation within

the system [63, 5]. Moreover, although often questioned, as an irreversible dis-

placement process, they may also contribute to macroscopic properties of the

rock such as the relative permeability [64].

4.1. Haines jumps in simplified geometries330

Here, as a first step, we investigate whether the LB method can capture the

dynamics involved in this dynamical process. Fig. 10 shows the geometry used

in the three dimensional simulations. In order to drive the drainage process, the

injected non-wetting phase (blue) enters the simulation domain at a given flow

rate Q =
∫ ∫

A
u ·dA at the inlet, while imposing the same flow rate at the outlet

allows the wetting phase (red) to exit the system. The geometry is effectively a

Hele-Shaw cell with walls located at z=0 and z=h=10 l.u, platelets of diameter

dp = 60 l.u. as the wider pore-bodies and 6 throats of width dt = 12 l.u. and

length lt = 22 l.u. connecting the pore bodies. Small reservoirs of length 16 l.u.

are added at the inlet and the outlet. Simulations were performed using fluids of340

the same viscosity, while the equilibrium contact angle was set to θeq = 30◦ and

60◦. Fig. 11(a) shows consecutive snapshots from simulations during drainage,
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Figure 11: (a) Illustration of Haines jumps events [9] during drainage. Pore drainage event

is labeled with white arrow, meniscus recession is labeled with dotted yellow arrows and the

flow direction is labeled with the yellow arrows. En Zc stands for the nth event in zone c,

where zone labels the distance from the inlet (see Fig. 10). (b) The capillary number Ca

versus time during several pore drainage events from a simulation with injection flow rate

Qh ∼ 10−1 (l.u.). (c) The distance traveled by the interface versus time during jump events

in (b). Results (E1 Z3) from a simulation with a lower injection flow rate Ql ∼ 10−2 (l.u.) are

shown with yellow triangles. The two fluids have the same viscosity ηw = ηnw = 1.67× 10−2,

surface tension γ = 1.17 × 10−2 (l.u.) and θeq = 30◦.
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Figure 12: The average components of the velocity ūi during drainage. The peaks denote

the occurrence of Haines jumps. The flow is in the x-direction. Non-zero values for ūy denote

jumps perpendicular to the direction of the flow, which if averaged over longer times it is

expected to be zero.

where Haines jumps events are observed. During the drainage of a pore-body,

imbibition occurs in the neighboring throats and the fluid interface retracts as

shown by the dotted yellow arrows. These imbibition events provide a fraction of

the fluid necessary for draining the pore-body and lead to rearrangement of the

fluids in the surrounding area of a pore drainage event. These observations are in

agreement with recent experiments by Armstrong and Berg [6] and demonstrate

that pore drainage dynamics are cooperative and nonlocal, since they extend

beyond the draining pore-body.350

Examining the flow field during a jump event reveals that the fluid-fluid in-

terface velocity is larger than the mean fluid velocity. This is demonstrated in

Fig. 11(b), where we analyse the magnitude of the velocity field during several

events from the same simulation, and in Fig. 12 where we plot the average com-

ponents of the velocity ūi (i = x, y, z) during drainage. When the non-wetting

fluid reaches the wider pore-body and the pressure exceeds the pore entry pres-

sure, the interface “jumps” into the pore body accelerating until it reaches a

maximum velocity (t = t1) and then decelerates. This initial acceleration is

due to the viscous resistance of the resident wetting fluid in the pore body and

inertial forces being too small to resist the rapid fluid motion driven by capillary360
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forces. Differences in the curvature of the meniscus in the pore body and the

menisci in the surrounding throats generate high transient pressure gradients

and therefore capillary forces act in a nonlocal way, since a capillary pressure

difference can exist over multiple pores [6].

The events shown in Fig. 11(a) have different fluid distributions prior to

the Haines jump event. The first column corresponds to the beginning of the

events (t = t0), the second one to the time of maximum interfacial velocity

(t = t1), while the third one denotes the time when all the non-wetting fluid

from the surrounding pore throats was provided for draining the pore body

(t = t2) and marks the end of fluid rearrangement during a Haines jump event.370

It is evident from Fig. 11(b),(c) that the fluid distributions prior to the jump

event affects both the scaling of length with time, as well as the time-scale over

which higher interfacial velocities are obtained, t0 ≤ t ≤ t2. Results from events

with similar fluid distributions prior the event (see E1 Z3, E1 Z4) completely

overlap. Nevertheless, after fluid rearrangement has completed (t = t2) all

results collapse.

The bulk pressure field pb during a Haines jump event is shown in Fig. 13

(middle panel). This reveals the pressure drop during the onset of the event, as

well as the differences in capillary forces between the meniscus in the draining

pore-body and the neighboring throats, throughout the duration of the drainage380

event. This is shown more clearly in the last column where we plot the pressure

field along the lines shown in the middle panel. Examining further the pressure

differences ∆P developed due to differences in the curvature of the advancing

meniscus and the receding menisci, we clearly see in Fig. 14, that the duration

of higher interfacial velocities coincides with the duration of these transient

pressure gradients and the fluid redistribution in the neighboring area.

Gauglitz and Radke [65] demonstrated the importance of the Ohnesorge

number during Haines jump events for compressible bubbles. The Ohnesorge

number gives the ratio of viscous forces over inertia and surface tension, i.e. Oh

= viscous forces / (inertia × surface tension)0.5 = ηw/
√
ργdt. Considering the390

relevant forces during a jump event, we can identify that after t = t1 the driving

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 13: Concentration (left panel) and pressure field (center panel) during a Haines jump

event (E2 Z5). Right panel: The pressure field pb along the lines L1 (draining pore), L2, L3

(surrounding throats), shown in the middle panel. Times t0, t1, t2, tf denote the onset of

the event, the time of maximum interfacial velocity, the time when fluid rearrangement was

completed and the draining time respectively.
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Figure 14: The capillary number Ca as a function of time and the pressure difference between

the meniscus in the draining pore body and the menisci in the two neighbouring throats (along

lines L2, L3) for the event shown in Fig. 13. For comparison reasons, the maximum pressure

gradient generated is ∼ 7 × 10−6 (l.u.), while the inlet-outlet maximum pressure gradient is

∼ 4.5×10−6(l.u.). The time-scale of high interfacial velocity (t2) coincides with the time-scale

of high local pressure gradients.

forces are capillary and inertial forces, while viscous forces are the resisting

ones; hence, for times t > t1, Oh should be controlling the dynamics of these

events. Moreover, since the total draining time is much larger than t1, then

effectively Oh controls the time-scale of draining the pore-bodies. This explains

the experimental observation [6] that, for a given system of fluids, the pores drain

on the same time-scale regardless of the externally imposed capillary number,

since there is no flow rate dependency in Oh. This is verified in Fig. 11(c)

where we show results from simulations with two different injection flow rates

Qh ∼ 10−1, Ql ∼ 10−2.400

We can also understand the above by considering the following. The drainage

process can be divided into two flow regimes: a) when the interface moves in the

pore throats and b) when the interface moves from a throat (narrow restriction)

to a wider pore body. During the first flow regime, which can be reversible

and controlled by the injection flow rate, energy is stored in the menisci and

the fluid columns of the non-wetting phase in the pore throats due to the work

done by the external forces. This energy is then released during the Haines jump
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event (second flow regime), converted into kinetic energy and surface energy and

dissipated. Therefore, for a given geometry and fluids, approximately the same

amount of energy will be stored in the menisci and then released, irrespective410

of the externally imposed flow rate, leading to the same draining times.

As demonstrated earlier in section 3, the Ohnesorge number also affects the

early dynamics of capillary filling and the scaling of the penetrating length of

the wetting fluid as a function of time. This will in turn affect here the rate at

which non-wetting fluid is provided for the drainage event from the imbibition

events occurring in surrounding throats and consequently the dynamics of the

Haines jumps event. Therefore, an important remark regarding the modeling

of these rapid pore-scale events, is that if a suitable choice of parameters is

not made to match the relevant dimensionless parameters, such as Oh, or the

time-scales for Haines jumps and imbibition dynamics, then the dynamics of420

imbibition in the neighboring throats that control the initial stages of the jump

and the fluid rearrangement will not be correctly resolved.

4.1.1. The role of viscous and capillary forces

Next we investigate Haines jumps events in simplified two-dimensional ge-

ometries and examine the impact of viscous and capillary forces, quantified

through the Ohnesorge number, on the onset of the phenomenon. In each sim-

ulation the viscosity ratio is set to rn = ηw/ηnw = 1, while we vary the Oh

by varying mainly the viscosity of the fluids and the surface tension. For all

simulations θeq = 60◦. As a characteristic lengthscale we use the throat diame-

ter dt, since this controls the capillary entry pressure. The role of the viscosity430

contrast will be examined in future work.

Fig. 15 shows the results from simulations for varying Oh. Run(a) corre-

sponds to a simulation with ηw = 1.67 × 10−3 and γ = 1.17 × 10−2 leading to

Oh = 4.45× 10−3 (Ca ∼ 5 × 10−4, Re ∼ 2.2 × 101). A Haines jump event is

clearly observed as the pore-body drains. Note that initially the two throats

are completely filled with the non-wetting fluid and then the meniscus retracts

in the upper throat. Increasing the viscosity to ηw = 1.67× 10−1 in run(b) and
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Figure 15: Simulations with varying Ohnesorge number. Pore drainage events are labeled

with white arrows, meniscus recession is labeled with dotted yellow arrows and the flow

direction is labeled with the yellow arrows. Haines jump events are observed in (a) and (c).

(a) Oh = 4.45 × 10−3 (Ca ∼ 5×10−4, Re ∼ 2.2×101). (b) Oh = 4.45 × 10−1 (Ca ∼ 2×10−3,

Re ∼ 9 × 10−3). (c) Oh = 3.15 × 10−1 (Ca ∼ 2 × 10−3, Re ∼ 2 × 10−2).
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the wetting phase, while reservoirs with the non-wetting phase are attached to the inlet and

outlet of the sample.

keeping all other parameters fixed leads to Oh = 4.45× 10−1 (Ca ∼ 2 × 10−3,

Re ∼ 9×10−3). This increases the viscous resistance of the wetting fluid, hence

suppressing any rapid movement of the interface and eventually the onset of a440

Haines jump event. Finally in run(c) we keep all parameters as in run(b) and

increase surface tension to γ = 2.34× 10−2 (Oh = 3.15× 10−1, Ca ∼ 2× 10−3,

Re ∼ 2 × 10−2). This in turn increases the driving capillary forces and leads

to recurrence of the phenomenon. An alternative way of considering the Haines

jumps events is that during drainage elastic potential energy is stored in the

fluid-fluid interface up to a given threshold, which is then released resulting

in irreversible fluid rearrangement, and dissipated in the system. Here, in-

creasing the viscosity in (b) results in increased viscous dissipation rate, which

suppresses rapid interfacial motion. Finally, increasing the surface tension in

run(c) increases the elastic energy initially contained in the liquid-liquid menisci450

which is then converted into kinetic energy and finally dissipated.

4.2. Haines jumps in rock samples

We further proceed to run direct simulations of two-phase flow on micro-

CT images of a Bentheimer rock sample with a spatial resolution of 5.1 µm.

A sequence of snapshots from simulations during drainage is shown in Fig. 17.

Both fluids have the same viscosity, Ca ∼ 1×10−4 and θeq = 35◦. We consider a

situation which is capillary-inertial controlled by choosing Oh ∼ 10−3. Berg et

al . [5] who investigated Haines jumps experimentally in Berea sandstone using

water (wetting fluid) and n-decane (non-wetting), quantify the importance of
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Figure 17: Sequence of snapshots from LB simulations during drainage of Bentheimer sand-

stone at time intervals of dt = 5 × 104 l.u. (Ca ∼ 1 × 10−4, Oh ∼ 10−3 and θeq = 35◦).

the relevant forces using the ratio of Re/Ca, which is related to Oh as Re/Ca =460

Oh−2, and report experimental values of Re/Ca ∼ 2× 103 (Oh = 2.2× 10−2).

In order to identify whether fluid rearrangement takes place during drain-

ing a pore, indicative of a Haines jump event, we subtract consecutive images

before (Fig. 18(a)) and after (Fig. 18(b)) several pores drain. This is shown

in Fig. 18(c), where regions in blue denote the draining pores and regions in

red reveal the locations where imbibition took place. A more detailed analysis

on Haines jump events at the pore-scale and its consequences for larger scales,

which is today often questioned, will be the subject of future investigation.

With regards to CO2 geological sequestration, numerical modeling must

match the relevant dimensionless parameters and the relative magnitude of time-470

scales in order to ensure that any predictions will be valid and accurate. Here we

give a brief overview of the details involved [66]. The injection depth, which for

saline aquifers is in the range of 800 m - 3 000 m, affects the temperature and the

pressure. In these depths the CO2 exists in a supercritical state. The density of

water may vary from ρwa = 945 to 1230 kgm−3, while the corresponding den-

sity of CO2 varies from ρc = 266 to 733 kgm−3. Correspondingly the dynamic

viscosities for water and CO2 may vary in the range ηwa = 0.195− 1.58mPa · s
and ηc = 0.023 − 0.0611mPa · s respectively. Thus, the ratio for the densities

and viscosities vary in the range ρwa/ρc = 0.22−0.75 and ηwa/ηc = 0.026−0.22

[67]. The interfacial tension for water - CO2 γ ∼ 30 mNm−1. Using a char-480
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Figure 18: Snapshots from LB simulations (a) before and (b) after drainage events of Ben-

theimer sandstone. (c) Subtracting the two images reveals the draining pores (blue) as well

as the locations of imbibition and the rearrangement of the wetting phase (red) in the areas

upstream.

acteristic lengthscale of dt ∼10-100µm and average velocity u ∼ 1µm/s yields

Ca = ηwau/γ ∼ 10−8, Oh = ηwa/
√
ρwaγdt ∼ 3× 10−3 to 9× 10−2 and viscous

time-scale tv = ρwad
2
t/ηwa ∼ 10−5 − 10−1s.

5. Conclusions

The occurrence of Haines jump events is a characteristic feature of multi-

phase flow in porous media, primarily associated with drainage dynamics. These

events are accompanied by an abrupt increase in the fluid velocity, as the in-

terface jumps from a narrow restriction into a wider pore body. This leads to

fluid redistribution in the surrounding area of a draining pore, as a significant

fraction of the non-wetting phase, required to drain the pore-body, is supplied490

by imbibition occurring in the neighboring pore throats.

In this work, we investigated the dynamics of Haines jump events using

free energy Lattice Boltzmann simulations. Since these interfacial jumps are

associated with both drainage and imbibition dynamics, we first turned our
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attention to capillary filling dynamics and the dynamics of a fluid penetrating

a hydrophilic channel. Our investigation covered: a) the limit of large times

for both high and low viscosity ratios rn, b) the limit of small times. Results

demonstrated that the numerical scheme can capture the correct dynamics for

capillary filling as the agreement with theory is excellent. Correct scaling of

length vs time is observed in the limit of large times; l ∼ t0.5 for high viscosity500

ratios, rn = ηw/ηnw, and l ∼ t in the limiting case of rn = 1. In the limit of

small times, and for sufficiently high viscosity ratio, two consecutive regimes can

be obtained preceding the viscous or Lucas-Washburn regime (l ∼ t0.5), namely

a. inertial regime (l ∼ t2) and b. visco-inertial regime (l ∼ t), depending on the

relative size of the total filling time and the viscous time-scale.

Turning our attention to the Haines jumps problem, we verified that these

rapid events are associated with both drainage and imbibition dynamics. High

pressure gradients, generated due to differences in the curvatures of the menisci,

drive this interfacial instability. As the fluid velocity during a Haines jump

event can be much larger than the average velocity, correctly capturing the510

displacement process requires solving the full Navier Stokes equations.

Examining the duration of higher interfacial velocities during a Haines jump

event revealed that this coincides with the end of fluid rearrangement in the

surrounding pore throats. Hence, this is determined by the amount of non-

wetting phase in the neighbouring pore throats and the time-scale over which

high transient pressure gradients can be sustained.

Finally, we identified the Ohnesorge number as an important controlling pa-

rameter for the identification of the type of pore filling dynamics that will occur.

Fluid flow that is capillary-inertial controlled, i.e. characterised by small Ohne-

sorge number, can lead to the occurrence of Haines jump events, while fluid520

flow at larger Ohnesorge numbers lead to fluid flow that is controlled by vis-

cous forces and shows a distinctively different displacement process. Therefore,

careful examination of the relevant parameters, such as the Ohnesorge number,

is necessary in order to ensure that the dynamics of both capillary filling and

Haines jumps will be correctly captured. In this paper, we carefully analysed
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single pore filling events. Our examinations were extended to rock samples with

multiple pores; a more detailed analysis will be reported in a forthcoming pa-

per. We have reason to believe that an accurate description of single pore filling

dynamics may affect the displacement processes at the continuum / Darcy scale.
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