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Abstract

We develop an elastodynamic theory to predict the diffuse scattered field of

elastic waves by randomly rough surfaces, for the first time, with the aid of the

Kirchhoff approximation (KA). Analytical expressions are derived incorporating

surface statistics, to represent the expectation of the angular distribution of the

diffuse intensity for different modes. The analytical solutions are successfully

verified with numerical Monte Carlo simulations, and also validated by compar-

ison with experiments. We then apply the theory to quantitatively investigate

the effects of the roughness and the shear-to-compressional wave speed ratio on

the mode conversion and the scattering intensity, from low to high roughness

within the valid region of KA. Both the direct and the mode converted intensi-

ties are significantly affected by the roughness, which leads to distinct scattering

patterns for different wave modes. The mode conversion effect is very strong

around the specular angle and it is found to increase as the surface appears

to be more rough. In addition, the 3D roughness induced coupling between

the out-of-plane shear horizontal (SH) mode and the in-plane modes is studied.

The intensity of the SH mode is shown to be very sensitive to the out-of-plane

correlation length, being influenced more by this than by the RMS value of the

roughness. However, it is found that the depolarization pattern for the diffuse

field is independent of the actual value of the roughness.
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1. Introduction

Elastic wave scattering from a surface is significantly affected by its rough-

ness (Ogilvy, 1991). How the surface roughness changes the expected scattering

intensity, and its angular distribution, is a fundamental problem which has

remained open. The applications vary from boundary scattering of phonons5

for thermal transport relevant for terahertz elastic phonon devices (Sun and

Pipe, 2012; Maznev, 2015), ultrasound detection/imaging (Ogilvy and Culver-

well, 1991; Zhang et al., 2012) for Non-Destructive Evaluation (NDE), to seismic

wave exploration at infrasonic frequencies (Robertsson et al., 2006). All of these

problems share similar wave scattering theory mathematically (e.g. 2nd-order10

elastic wave equation) although with different scales of the wavelength.

Figure 1 shows a schematic of the scattering problem, for the two-dimensional

and three-dimensional cases. These show a plane wave incident at an arbitrary

angle at a rough surface. The resulting scattered waves are composed of contri-

butions from different points along the surface, which interfere constructively or

destructively, producing reflections and mode conversions over a range of angles.

The unit incident and the scattering vectors in 2D are denoted as:

k̂in = (sin θi,− cos θi)

k̂sc = (sin θs, cos θs)
(1)

and in 3D as:

k̂in = (− sin θiz cos θix,− sin θiz sin θix,− cos θiz)

k̂sc = (sin θsz cos θsx, sin θsz sin θsx, cos θsz)
(2)

where the angles θi, θs are the incident and scattered angles respectively, and

are shown in Figure 1.
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We are interested in predicting the scattering that occurs at a rough surface

of a defect, such as a crack, for applications in NDE. Specific geometries of

cracks are rarely known, but it is often the case that the expected statistics

of the roughness can be obtained, such that an answer by way of a statistical

expectation of the scattering is useful to justify an expected sensitivity of a

proposed inspection. This is typically seen as the pursuit of a basis to say

that the scattering amplitude will exceed a certain threshold in any given case.

Early works with this in mind, led by Ogilvy (1986), investigated the coherent

scattering intensity at the specular angle via a decay factor gαβ defined through:

Ic = Ifs exp(−gαβ), α, β = p, s (3)

where p, s denotes compressional and shear components respectively with the15

first letter corresponding to the incident wave-type and the second to that being

measured. In (3) Ifs is the response from a flat surface with the same dimen-

sion. In 2D the decay factor gαβ = (kα + kβ)2 cos θ2
i σ

2, where kα/β represents

the wavenumber for incident/scattered waves. Equation (3) is a single expres-

sion for the reduction of the coherent intensity due to the increase of the surface20

RMS value σ. The coherent intensity is the intensity that would be found by

averaging the scattered signals from a large number of realizations of the rough-

ness of the given statistical description; this is used widely in justification for

inspections of safety-critical components in industry (Pettit et al., 2015). How-

ever, it is also known that this approach is very conservative for high roughness25

and non-specular angles (Ogilvy, 1991, 1986; Sun and Pipe, 2012), since the

diffuse field, which is often the dominant part, is not included in the equation.

In practice it would be highly desirable to obtain a value of the scattering that

includes the contribution of the diffuse field, because in a single realization in

a real setup (e.g. a single NDE measurement) it is not just the coherent inten-30

sity that is measured but rather some addition of coherent and diffuse parts;

this is better described as the expected value of the scattering intensity (Pettit

et al., 2015). Only a rough estimation of the elastodynamic diffuse intensity is
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Figure 1: Sketch of a plane wave scattered from a rough surface. (a) 2D. (b) 3D.

currently given in the literature (Ogilvy, 1991, 1986), due to lack of knowledge,

for the full calculation.35

More recently, sophisticated numerical techniques have been adopted to

study elastic waves scattered from randomly rough surfaces (Roberts, 2012;

Jarvis and Cegla, 2012; Zhang et al., 2011; Shi et al., 2015; Pettit et al., 2015)

with different applications in NDE. In (Pettit et al., 2015), the diffuse field has40

been calculated by FE simulations using the Monte Carlo approach. Their work

delivered a numerical solution for the expected coherent and diffuse back-scatter

at normal incidence, from which it was possible to propose a very significant

erosion of the conservatism in the present inspection procedures. However, as

is well known, the numerical methods are computationally expensive, and it is45

not straightforward to find the connection between the surface statistics and

the scattering field from purely numerical results. Analytical methods provide

alternative ways to obtain simple mathematical expressions for a rapid calcu-

lation of the intensity. More importantly they enable a direct incorporation of

the statistical parameters of the surface into the formulae, so that the intrinsic50
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relation between the roughness and the diffuse intensity can additionally be re-

vealed.

For example, the perturbation approach (Harper and Labianca, 1975; Thor-

sos and Jackson, 1989) and the Kirchhoff approximation (KA) (Eckart, 1953;55

Thorsos, 1988, 1990) have been extensively applied to study acoustic wave scat-

tering. However, very few theoretical studies can be found for the diffuse elastic

wave scattering from randomly rough surfaces. One of the most recent works

involves the perturbation analysis of elastic phonon scattering from a rough

surface in a solid medium (Maznev, 2015). However, it is known that the per-60

turbation approach is only valid for weakly rough surfaces, for instance σ < λ/10

(σ being the RMS height for the roughness and λ a wavelength of the incident

field) if only considering the first-order approximation (Thorsos and Jackson,

1989). In the field of NDE and seismology, the RMS value for cases of interest

typically has a much larger range approximately from λ/20 upto λ/3 (Ogilvy,65

1986; Zhang et al., 2012; Makinde et al., 2005) where the perturbation method

might not be reliable.

By contrast, KA can handle scattering from surfaces with roughness up to

σ = λ/3 according to recent studies (Zhang et al., 2011; Shi et al., 2015). At70

such high roughness the scattering pattern is completely different from that with

a weakly rough surface: At high roughness the diffuse field is dominant and the

scattering energy is more isotropically distributed over the angular range. Such

a theory using the Kirchhoff approximation is found for acoustic waves (Thorsos

and Jackson, 1989; Beckmann and Spizzichino, 1987), by applying Beckmann’s75

slope approximation derived from integration by parts. But for decades the

counterpart analytical expression has not been found for elastic waves, with the

stumbling block being the mode coupling at the rough boundary as mentioned

by Ogilvy (1991). The local reflection coefficient/amplitude varies with respect

to the surface gradient for elastic waves, so that one requires the two-point80

height-gradient average that is not generally known (Ogilvy, 1986). The elasto-
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dynamic setting fundamentally differs from that of acoustic waves mainly due

to the mode conversion and the polarization, which are unique for elastic waves,

that are also heavily influenced by the roughness of the surface.

85

We proceed to overcome these obstacles and derive theoretical formulae to

represent the elastic wave diffuse intensity with the KA for different modes. We

consider an incident compressional (P) wave scattering into compressional and

mode-converted shear (S) waves, and include three dimensional considerations.

The formulae, presented for both 2D and 3D representations, are valid for ar-90

bitrary choices of the angle of the incident wave and the roughness, within the

range of validity of KA. For brevity, the cases of incident shear wave are not

presented, but follow a similar derivation. The theory we develop here enables

us to perform a theoretical investigation of the effect of roughness on the mode

conversion.95

This article is organized as follows: Section II introduces the statistical pro-

file of rough surfaces. Section III describes the derivation of the theoretical

formulae and the high frequency asymptotic solution, including the slope ap-

proximations for different wave modes and the statistical treatment of the en-100

semble averaging. The developed theory is verified by numerical Monte Carlo

simulations in Section IV, and experiments are performed to further validate

the theory in Section V. Section VI presents a systematic physical analysis for

the effect of the roughnesses and elasticity on the mode conversion and the scat-

tering intensity. The term elasticity is used here to indicate the degree to which105

the problem is an elastic one rather than an acoustic one, and this is expressed

as the shear-to-compressional wave speed ratio; when this ratio is zero, we have

an acoustic problem, when it is high we have a problem for which there will be

strong expressions of the behavior that we identify as characteristic of elastic

wave scattering, such as mode conversions. The out-of-plane depolarization in-110

duced by the 3D roughness is also investigated for the first time. Concluding

remarks are made in Section VII.
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Figure 2: 3D isotropic Gaussian rough surface profiles. (a) σ = 0.26mm, λ0 = 0.77mm. (b)

σ = 0.51mm, λ0 = 0.77mm. (c) σ = 0.26mm, λ0 = 0.39mm.

2. Rough surface

The surface is defined as ‘rough’ in the sense that the surface height data

is described by some statistical model. For instance, the probability density

function (pdf) of the height for a Gaussian surface is expressed as:

p(h) =
1

σ
√

2π
exp

(
− h2

2σ2

)
(4)

The mean value is always assumed to be zero, and the RMS height σ according

to definition is:

σ =
√
< h2 > =

√√√√ 1

N

N∑
i=1

h2
i . (5)

where <> denotes the ensemble averaging. The RMS value determines the

height scale of the surface. In addition, a correlation function W (R) is needed

for the lateral variation of the height, and it is often assumed to be Gaussian:

W (R) =
< h(r)h(r + R) >

σ2
= exp

[
−
(
x2

λ2
x

+
y2

λ2
y

)]
. (6)

where λx and λy are called the correlation lengths in the x- and y- directions,

as distances over which the correlation function falls by 1/e. It is also known
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that for a surface whose height pdf is a Gaussian, the distribution of the surface

gradient pg is also Gaussian (Ogilvy, 1988):

pg

(
∂h

∂x

)
=

1

σg
√

2π
exp

[
−

(∂h∂x )2

2σ2
g

]
, 2D surface

pg

(
∂h

∂x
,
∂h

∂y

)
=

1

σgxσgy 2π
exp

[
−

(∂h∂x )2

2σ2
gx

−
(∂h∂y )2

2σ2
gy

]
, 3D surface

(7)

where σgx and σgy are the mean surface gradient in the x- and y- directions,115

which are equal to σ
√

2/λx and σ
√

2/λy, respectively.

Figure 2 shows three Gaussian surface profiles with different roughness,

which are generated using the spectral method (Thorsos, 1988). In this ar-

ticle the Gaussian surface with a Gaussian correlation function is applied, since120

historically it was the most commonly used model (Thorsos, 1988; Zhang et al.,

2011; Eckart, 1953; Ogilvy, 1989). However, the developed elastodynamic theory

in the later section, is not restricted to a particular form of the surface statistics.

3. Elastodynamic Kirchhoff theory for the diffuse field125

3.1. Kirchhoff assumption

The elastic wave Kirchhoff assumption is illustrated in Fig. (3)(a), where a

plane P wave is assumed to be incident on the rough surface. The KA assumes

that the motion of one surface point is the same as if it were part of an infinite

tangential plane illuminated by the incident wave (Ogilvy, 1991). The total

displacement at this point is approximated as a summation of the incident P

wave and the reflected P/S waves:

up = d0 + rppdp + rpsds. (8)

Here up represents the boundary displacement with an incident P wave, rpp and

rps are local reflection coefficients of P and mode converted S waves respectively,
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Figure 3: Sketch of the elastodynamic Kirchhoff approximation and the ‘specular points’. (a)

Tangential plane assumption. (b) ‘Specular points’ for P-P and P-S modes.

and d0, dp and ds are the displacement polarization vectors for the incident P

and reflected P/S waves.130

According to Snell’s law:

αp = α0,
sinαs
sinα0

=
cs
cp

= γ (9)

where γ is the ratio of shear-to-compressional wave speed, and α0, αp and αs

are local incidence/reflection angles with respect to the normal of the tangential

plane. The local reflection coefficients are given by:

rpp =
γ2 sin 2α0 sin 2αs − cos2 2αs
γ2 sin 2α0 sin 2αs + cos2 2αs

rps =
2γ sin 2α0 cos 2αs

γ2 sin 2α0 sin 2αs + cos2 2αs

(10)

3.2. Slope approximations for different wave modes

The elastodynamic Helmholtz integral formula to calculate the scattered

displacement, with a stress-free boundary condition (Achenbach, 2003), is:

usck (R) =

∫
S

Σij;k(|R− r|)ui(r)nj(r)dS(r) (11)

9



where Σij;k is the stress Green’s tensor, ui is the ith component of the boundary

displacement at r, nj is the jth component of the unit normal vector surface

pointing towards the observation point at R. With a far field approximation

that |R − r| ≈ R − R̂ · r, in 3D Eq. (11) can be simplified and converted into

the integral along the mean plane of the surface:

usc(R) = −ikβ
exp(ikβr)

4πr

∫
Sm

Uαβ exp(ikβφαβ)dSm, α, β = p, s (12)

where φαβ = Aαβx + Bαβy + Cαβh(x, y), and

Aαβ = −kα
kβ

sin θiz cos θix − sin θsz cos θsx

Bαβ = −kα
kβ

sin θiz sin θix − sin θsz sin θsx

Cαβ = −
(
kα
kβ

cos θiz + cos θsz

) (13)

The term Uαβ represents the decomposed boundary displacement for differ-

ent incident/scattering wave modes and is expressed as:

Uαp(r, k̂sc) =
[
(uα ·N)

(
1− 2γ2

)
+ 2γ2(uα · k̂sc)(N · k̂sc)

]
k̂sc

Uαs(r, k̂sc) = (N · k̂sc)uα + (uα · k̂sc)N − 2(uα · k̂sc)(N · k̂sc)k̂sc
(14)

where N is the unnormalized vector, which equals (−∂h/∂x,−∂h/∂y, 1). The135

boundary displacement uα is obtained using the KA from Eq. (8), which de-

pends on the incident wave mode α. We shall assume an incident P wave, and

note that the methodology can be equivalently applied to an incident S wave. In

the case of the shear wave, one needs to revise Eq. (8) − (10) according to the

representations of a plane S wave reflected from the tangential plane (Ogilvy,140

1991).

By examining Eq. (8)∼(10) and Eq. (14), it is immediately noticed that

Uαβ is a function involving the incidence/scattering angles and surface slopes,

which also rely on the positions of the surface points. It is critical to remove the

surface slopes from the integration Eq. (12), to enable the analytical manipu-145

lation of the ensemble averaging < usck ū
sc
k >. Beckmann’s integration by parts,

as used for acoustic waves (Ogilvy, 1991), cannot be applied for elastic waves

10



due to the complicated form of Uαβ , and this has halted previous attempts to

derive the ensemble averaging.

150

Instead by noticing that Uαβ is a slowly varying function of position, we

apply a stationary phase approach to Eq. (12) to approximate Uαβ . The first

order derivatives of the phase term φαβ with respect to x and y are both set

to be zero to locate the stationary points, and the following expressions are

obtained:
∂h

∂x
= −Aαβ

Cαβ
,

∂h

∂y
= −Bαβ

Cαβ
(15)

Physically Eq. (15) indicates that the slope across the whole surface is ap-

proximated as a constant for given incidence/scattering angles and the ratio of

the shear-to-compressional wave speed. The approximated slope corresponds to

those surface points where the scattering direction is locally viewed to be the

same as the specular direction to the incidence angle with respect to the local155

normal vector n. These points are the ‘specular points′ originated from the op-

tical Kirchhoff theory (Kodis, 1966), and these elastodynamic ‘specular points′

are depicted in Fig. (3)(b) for both P-P and P-S modes. The P-P ‘specular

points′ are located where the scattering direction coincides with the P wave

polarization vector ( k̂sc = dp ), while the P-S ‘specular points′ are those where160

the scattering direction is perpendicular to the S wave polarization vector ( k̂sc

⊥ ds ). The principal contribution to the integral Eq. (12) is hence made at

these ’specular points’ corresponding to the stationary points.

By substituting the slope approximation terms in Eq. (15) into Eq. (8) −

(10), the expression of the decomposed Uαβ at the ‘specular points′ in Eq. (14)

is obtained. For comparison with the acoustic and electromagnetic cases (Beck-

mann and Spizzichino, 1987), we assume that Fαβ= 1/2Uαβ . By eliminating

the dependence of surface gradient, Fαβ can now be removed from the Kirchhoff

integral, and Eq. (12) is simplified to:

usc(R) = −ikβ
exp(ikβr)

4πr
2Fαβ

∫
S

exp(ikβφαβ)dS (16)
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where Fαβ is called the elastodynamic angular factor hereinafter, only depend-165

ing on the incidence/scattering angles and the modes. Note that Fαβ is a vector

containing three components due to the polarization of the displacement. Now

only terms related with the surface height h are left inside the Kirchhoff in-

tegral, and hence the ensemble averaging < usck ū
sc
k > can now be performed

analytically.170

3.3. Ensemble averaging

The mathematical derivation of the ensemble averaging for elastic waves

follows the acoustic case (Ogilvy, 1991). For simplicity we define the scattering

intensity as the modulus of the displacement:

< Ii >=< usci ū
sc
i >, i = x, y, z

< I >=
∑
x,y,z

< Ii >,
(17)

The expected scattering intensity in 3D is:

< Ii,αβ >=
k2
β

(4πr)2
4F 2

i,αβ

∫
S

∫
S
eikβ [Aαβ(x0−x1)+Bαβ(y0−y1)]

< eikβCαβ(h0−h1) > dx0dx1dy0dy1 (18)

By assuming that ∆x = x0 − x1 and ∆y = y0 − y1, Eq. (18) is simplified via a

change of variables:

< Ii,αβ >=
k2
β

(4πr)2
4F 2

i,αβLxLy

∫ ∞
−∞

∫ ∞
−∞

eikβ(Aαβ∆x+Bαβ∆y)

χ2(kβCαβ ,−kβCαβ ,∆x,∆y)d∆xd∆y (19)

where χ2(kβCαβ ,−kβCαβ ,∆x,∆y) = < exp[ikβCαβ(h0 − h1)] >, which we call

the two-dimensional characteristic function. For a surface following a Gaussian

distribution, χ2 has an analytical form:

χ2(kβCαβ ,−kβCαβ ,∆x,∆y) = exp(−gαβ [1−W (∆x,∆y)]) (20)

12



in which gαβ = k2
βC

2
αβσ

2. There is no requirement for a specific form of the

correlation function W (∆x,∆y), except that physically it needs to satisfy the

following criteria: (i) W(0,0) = 1; and (ii) W(∆x → ∞ or ∆y → ∞) = 0. Eq.

(20) is expanded as a Taylor series and substituted into Eq. (19) to obtain the

following expression:

< Ii,αβ >=
k2
βF

2
i,αβe

−gαβ

4π2r2
LxLyΣ∞n=0

gnαβ
n!

∫ ∞
−∞

∫ ∞
−∞

eikβ(Aαβ∆x+Bαβ∆y)Wn(∆x,∆y)d∆xd∆y (21)

Substituting the Gaussian correlation function Eq. (6) into Eq. (21) yields a

separation of the total intensity into its coherent and diffuse components:

< Ii,αβ >= Ici,αβ + Idi,αβ

Ici,αβ = Ifsi e−gαβ , coherent

Idi,αβ =
k2
βF

2
i,αβλxλye

−gαβ

4πr2
LxLyΣ∞n=1

gnαβ
n!n

exp

[
−
k2
β(A2

αβλ
2
x +B2

αβλ
2
y))

4n

]
diffuse

(22)

In 2D the coherent intensity has the same form as that in 3D, but the diffuse

intensity needs to be revised as:

< Idi,αβ >=
kβF

2
i,αβλx

√
πe−gαβ

2πr
LxΣ∞n=1

gnαβ
n!
√
n

exp

[
−
kβA

2
αβλ

2
x

4n

]
(23)

By examining Eq. (22) and Eq. (23), the mode coupling for the diffuse field is

embedded in the angular factor Fi,αβ , the decay factor gαβ , and the exponential

term inside the finite summation.175

3.4. Asymptotic solutions

The diffuse field is dominant when the roughness or the frequency is high. By

passing the Kirchhoff integral to the high frequency limit that kβCαβ(h0−h1) ≈

kβCαβ(∂h∂x∆x+ ∂h
∂y∆y) when kβ →∞, the diffuse field can be approximated as:

13



< Ii,αβ > =
k2
βF

2
i,αβ

4π2r2
LxLy

∫ ∞
−∞

∫ ∞
−∞

< eikβ [(Aαβ+Cαβ
∂h
∂x )∆x+(Bαβ+Cαβ

∂h
∂y )∆y] > d∆xd∆y

=
k2
βF

2
i,αβ

4π2r2
LxLy ×

(2π)2

k2
βC

2
αβ

< δ

(
∂h

∂x
+
Aαβ
Cαβ

,
∂h

∂y
+
Bαβ
Cαβ

)
>

=
F 2
i,αβ

r2C2
αβ

LxLy

∫ ∞
−∞

∫ ∞
−∞

pg(γx, γy)dγxdγyδ

(
γx +

Aαβ
Cαβ

, γy +
Bαβ
Cαβ

)
=

F 2
i,αβ

r2C2
αβ

LxLy × pg
(
∂h

∂x
= −Aαβ

Cαβ
,
∂h

∂y
= −Bαβ

Cαβ

)
(24)

In 2D, a similar equation is found to be:

< Ii,αβ >=
F 2
i,αβ

rCαβ
Lx × pg

(
∂h

∂x
= −Aαβ

Cαβ

)
(25)

where pg is the distribution for the surface slopes shown in Eq. (7). In the high

frequency limit the scattering intensity is proportional to the angular factor,

and the pdf of the surface slopes, only at the ‘specular points′. Contributions

from ‘non-specular points′ vanish rapidly due to fast oscillation of the phase,180

and hence have almost no effects on the Kirchhoff integral. The total intensity

is equivalent to the dominant diffuse intensity. In contrast, when the roughness

is small a low frequency approximation is obtained from Eq. (22) in 3D or Eq.

(23) in 2D by only keeping the first few terms. The number of terms for the

convergence depends on both the RMS and the correlation length. Generally it185

is found that keeping the first four terms is sufficient for the convergence when

σ ≤ λp/8. Note that the high frequency asymptotic solution does not require

any restriction on the pdf of the height or the height gradient.

4. Monte Carlo verification

Monte Carlo simulations are run using Gaussian surfaces from low to high190

roughness to assess the accuracy of the developed elastodynamic theory. For

each realization of the surface profile, the Kirchhoff integral in Eq. (12) is per-

formed numerically without the slope approximation, and a sample mean of the

total intensity is obtained from 500 realizations of surfaces for each roughness.
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A more rigorous way is to apply the purely numerical method implemented in195

Shi et al. (2015) instead of the Kirchhoff model as a benchmark. However, the

validity of the Kirchhoff approximation has been carefully evaluated by com-

parison with the numerical method in both 2D and 3D (Zhang et al., 2011;

Shi et al., 2015) . Hence for the roughness values considered in this article

(σ ≤ λp/3, λx ≥ λp/2), the choice of either methods would lead to the same200

conclusion since the KA is within its range of validity. The bulk medium is cho-

sen to be Aluminium with Young’s modulus of 70GPa, density of 2700kg/m3

and Poisson’s ratio of 0.33. The S-to-P wave speed ratio γ is therefore approx-

imately 0.5 with cp = 6198m/s, and cs = 3122m/s. The incident wave on the

surface is assumed to be a 4MHz monochromatic plane P wave, and the corre-205

sponding wavelengths for P and S modes are 1.54mm and 0.77mm.

4.1. Simulation using 2D surfaces

In 2D the length of the surface is 6mm (≈ 4λp) and the roughness param-

eters are σ = λp/10 to λp/3, and λx = λp/2. A modest incidence angle θi of210

30o is assumed when the mode conversion is strong. Figure 4 shows the com-

parison of the expected scattering pattern for different modes predicted from

the analytical Kirchhoff formulae and the benchmark Monte Carlo simulations.

The high frequency asymptotic solution calculated from Eq. (25), and the low

frequency approximation from Eq. (22) and (23) with the first four terms are215

both plotted as well. The quantities for comparison are < Iz,pp > for the P-P

mode and < Ix,ps > for the P-S mode, defined in Eq. (17) as the z- and x-

components of the scattering intensity. The values of the intensities have been

normalized by the normal pulse echo response for the P-P mode from a flat

surface with the same dimension. As can be seen, the theoretical results show220

excellent agreement with the numerical results from Monte Carlo simulations,

and the agreement is found from low (σ = λp/10) to high roughness (σ = λp/3).

In addition, the low and high frequency asymptotic solutions are both very ac-

curate as well.
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Figure 4: 2D scattering patterns obtained from the elastodynamic theory, Monte Carlo sim-

ulations and high/low frequency solutions, with an oblique incidence angle of 30o. (a) P-P

mode, σ = λp/10, λx = λp/2. (b) P-P mode, σ = λp/3, λx = λp/2. (c) P-S mode, σ = λp/10,

λx = λp/2. (d) P-S mode, σ = λp/3, λx = λp/2.

It is noticeable that in Fig. 4(a), there is a sharp peak at the specular di-

rection (θs = 30o) for the P-P mode, contributed from the dominant coherent

components. As the roughness increases to σ = λp/3, a clear peak is observed

around the backward angle instead (θs = -30o) in Fig. 4(b). Note that the

backscattering peak is not as concentrated as the specular peak shown in Fig.230

4(a) because it is formed by the dominant diffuse field, whose energy is more

widely distributed. Furthermore, as noticed in Fig. 4(d), at high roughness
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the scattered S waves show a dipole-like pattern, with the peak located around

the specular angle and the valley at the backward angle. A detailed physical

analysis regarding the mode conversion is provided in the last section of this235

article.

4.2. Simulation using 3D surfaces

The elastodynamic theory is also evaluated on 3D Gaussian surfaces with

the same bulk medium as the 2D cases. The surface has a dimension of 6×6240

mm2 (≈4λp×λp), with σ = λp/10 to λp/4, and λx = λy = λp/2. The incident

P wave is within the x-z plane with an angle of 30o (θix = 180o, θiz = 30o). By

changing θsx from 0o to 360o and θsz from 0o to 60o, the entire 3D scattering

pattern can be obtained.

245

Figure. 5 and 6 show the comparison of the scattering patterns between the

elastodynamic theory (first row), and the sample mean from the Monte Carlo

simulations (second row) for different wave modes, from low to high roughness.

The scattering patterns are plotted as a function of the unit scattering vectors

k̂sx and k̂sy defined in Eq. (2). It is equivalent to an angular projection of the250

scattering field into the x-y plane viewed from the z direction. The pixels repre-

sent the value of the scattering intensity, which are again normalized by that of

a normal pulse echo response from a flat 3D surface with the same dimension.

Three intensities are shown here, with < Iz,p−p >,< Ix,p−sv > and < Iy,p−sh >

plotted for P-P, P-SV and P-SH mode, respectively. Good agreement between255

the theory and the Monte Carlo simulations is found for all modes from low to

high roughness.

The coherent peaks can be found around the specular directions for both

P-P and P-SV modes in Fig. 5(a) and (b). When the roughness increases, a260

more widely spread peak around the backward angle is seen for the P-P mode

in Fig. 6(a), due to the diffuse field and the mode conversion similar with the

17
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Figure 5: 3D scattering patterns obtained from the elastodynamic theory and the Monte Carlo

simulations for cases of low roughness, when σ = λp/10 and λx = λy = λp/2, with a modest

incidence angle (θiz = 30o, θix = 180o). (a) P-P mode. (b) P-SV mode. (c) P-SH mode.

(Plots in the first row represent the ensemble average from the theory; Plots in the second

row represent the sample average from Monte Carlo simulations)

2D plots shown in Fig. 4(b). Furthermore, the scattering pattern for the SH

mode is symmetric about the plane of the incidence wave for both low and high

roughness as noticed in Fig. 5(c) and Fig. 6(c), which is mainly due to the265

isotropic nature of the surface.

18



-0.8 -0.4 0 0.4 0.8

-0.8

-0.4

0

0.4

0.8
 

 

1

2

3

4

5

6

x 10
-3

-0.8 -0.4 0 0.4 0.8

-0.8

-0.4

0

0.4

0.8
 

 0

1

2

3

4

5

6
x 10

-3

(a) (b) 

(c) P-P P-SV P-SH 

x 

z 
y 

x 

z 
y 

x 

z 
y 

<Iz > 

<Ix> 
<Iy> 

Specular 

Specular 

ksx  ˆ 

ksy  
ˆ 

ksx  ˆ 

ksy  
ˆ 

-0.8 -0.4 0 0.4 0.8

-0.8

-0.4

0

0.4

0.8
 

 0

2

4

6

8

x 10
-3

-0.8 -0.4 0 0.4 0.8

-0.8

-0.4

0

0.4

0.8
 

 0

1

2

3

4

5
x 10

-3

-0.8 -0.4 0 0.4 0.8

-0.8

-0.4

0

0.4

0.8
 

 0

2

4

6

8

x 10
-3

-0.8 -0.4 0 0.4 0.8

-0.8

-0.4

0

0.4

0.8
 

 0

1

2

3

4

5
x 10

-3

ksx  ˆ 

ksy  
ˆ 

ksx  ˆ 

ksy  
ˆ 

ksx  ˆ 

ksy  
ˆ 

ksy  
ˆ 

ksx  ˆ 

(c) 

Figure 6: 3D scattering pattern obtained from the elastic theory and the Monte Carlo sim-

ulations for cases of high roughness, when σ = λp/4 and λx = λy = λp/2, with a modest

incidence angle (θiz = 30o, θix = 180o). (a) P-P mode. (b) P-SV mode. (c) P-SH mode.

(Plots in the first row represent the ensemble average from the theory; Plots in the second

row represent the sample average from Monte Carlo simulations)

5. Experimental validation

To yet further validate the elastodynamic theory an experiment with two

ultrasonic phased arrays is performed, which is illustrated in Fig. 7(a). A rough270

surface is manufactured on the bottom of an Aluminum block (260×80×60mm3),

and it is corrugated so that the height remains invariant in the y- direction
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Figure 7: Experimental setup. (a) Illustration of the experimental methodology. (b) Picture

of the sample (Length: 260mm; Width: 80mm; Height: 60mm).

shown in Fig. 7(b). The surface is made by a CNC (computer numerical con-

trol) milling machine using a drilling cutter, and follows a profile generated by

a Gaussian distribution of heights. Two 2D linear phased arrays both with 32275

elements are placed tightly together on the top flat surface of the sample, and

the parameters of the phased array are given in Table 1. In practice, elements

numbered from 7 to 14 of array A are fired to produce the P wave with an

incidence angle of 30o using a time delay law to steer a columnated beam in the

chosen direction; in total all the 64 elements are used for receiving the scattered280

waves, corresponding to different angles. The input signal is assumed to be a

five-cycle tone burst with a centre frequency of 2MHz, and hence the P wave-

length is 3.1mm. The RMS and the correlation length of the corrugated surface

are 0.75mm (λp/4) and 1.54mm (λp/2) respectively. Note that the minimum

dimension of the drilling cutter is 2mm, which might somewhat reduce the ac-285

curacy of the manufactured shapes of some ’peaks’ and ’valleys’ of the surface.

However, this would not affect the main conclusion which will be shown later.

To acquire multiple realizations of the illuminated surfaces, the phased ar-

rays are moved, or scanned across the top flat surface with a spatial interval290
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Number of elements per array 32

Element width 20mm

Inter elements pitch 1.6mm

Inter elements space 0.25mm

Centre frequency 2MHz

Bandwidth (-6dB) 1.3MHz

Table 1: Parameters of the ultrasonic phased array

Rough surface 

Source line 

Receiving line 

Illuminated section 

Scattered waves Absorbing region 

Figure 8: Snapshot of animation in the FE simulation showing the waves scattered from the

sample corrugated rough surface.

of 8mm. In this manner, scattering from 16 different surfaces with the same

statistics are obtained, and the displacements (uz) are recorded in each scan.

By transferring the received signals into the frequency domain and extracting

the amplitude at the centre frequency, the scattering amplitude and hence the

intensity is obtained for each realization/scan. The expected value of the scat-295

tering intensity is approximated by an arithmetic average from all scans.

5.1. Numerical simulation of the experiment

The experiment is first numerically simulated using a finite element (FE)

model with Abaqus (Dassault Systemes Simulia Corp., Providence, RI). The300
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purpose of the numerical simulation is to test the feasibility of the experimen-

tal methodology and gain more confidence before conducting the real experi-

ment. The simulation is performed in 2D as the surface height is invariant in

the y- direction. Figure 8 shows the animation for waves scattered from the

sample surface for one scan. The FE model has a dimension of 259×66mm2
305

(≈ 168λp × 43λp), including the absorbing region with a thickness of 4.5mm

(≈ 3λp) (Rajagopal et al., 2012). According to the geometry of the sample and

the parameters of the phase arrays, the lengths of the source line and the receiv-

ing line are 12.75mm (≈ 8λp) and 113mm (≈ 73λp), respectively. The scanning

with phased arrays is simulated by selecting different nodes representing the310

source and the receiving line. After running multiple FE simulations, the scat-

tered P waves are simply separated from the S waves from the received time

traces using a time window. As seen in Fig. 7(a), the propagation distances

r of the scattered waves from the illuminated surface to array elements vary,

corresponding to different spatial decay factors 1/
√
r in 2D. To account for this315

spatial attenuation, the obtained scattering intensity at each angle needs to be

normalized by a factor of cos θs.

The sample averaged scattering intensity from 16 scans using the FE simu-

lation is plotted in Fig. 9, in comparison with that predicted from the elasto-320

dynamic theory; the FE results have a reassuring match with the shape of the

theoretical curve. A peak is seen when the scattering angle is around -20o due

to the dominant diffuse field at such a high roughness. The variations of the FE

raw data are caused by the limited number of realizations used for averaging in

the simulation. Running more FE simulations would reduce the variations and325

in the end converge. However, a best fit of the simulated FE raw data from 16

scans using a polynomial up to the 3rd-order gives a smooth curve, which shows

very good agreement with the theoretical curve.
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Figure 9: Comparison of the scattering pattern between the theory and the simulation, for a

P wave with an angle of 30o incident on a corrugated surface with the RMS of 0.75mm (λp/4)
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Figure 10: Experiment and the results. (a) Picture of the experiment with two phased arrays.

(b) Comparison of the scattering pattern between the theory and the experiment, for a P

wave with an angle of 30o incident on a corrugated surface with the RMS of 0.75mm (λp/4)

and the correlation length of 1.54mm (λp/2).
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5.2. Experimental results330

After the numerical simulation, the experiment using two phased arrays

(Imasonic, Besancon, France) is performed, shown in Fig. 10(a), in the same

scanning manner as the FE simulation. Apart from the spatial attenuation fac-

tor cos θs to account for different propagation distances from the illuminated

surface to array elements, in a real experiment the measured scattering inten-335

sity at each angle needs to be further scaled by a directivity factor (Drinkwater

and Wilcox, 2006). The averaged scattering pattern, denoted as the experiment

raw data, from multiple scans, is shown in Fig. 10(b) along with the theoretical

curve. As can be seen the experimental raw data follows the shape of the theo-

retical solution, although large variations are seen. A best fit using a 3rd-order340

polynomial is applied on the measured data to compensate for the limited num-

ber of scans, and a very good match can now be found between the theory and

the experiment.

Note that the theoretical formulae are derived from the assumption of an345

ideal plane wave scattering in the far field. To avoid the difference caused by

a finite beam in the simulation and the experiment, the scattering intensity

is normalized by the peak of the fitted data. A more rigorous comparison

would need to incorporate the beam model into Eq. (22) and (23) to revise

the theoretical formulae to represent the expected intensity, but this is not350

pursued here. However, the agreement of the shape of the patterns is clearly

demonstrated in Fig. 9 and 10(b) between the experiment, FE simulation and

the theory.

6. Physical discussion on the mode conversion

To gain a thorough understanding of the mode conversion of elastic waves355

influenced by the surface roughness, in this section the developed theory is

utilized to analyze the effect of roughness on the elastic wave scattering intensity,

with focus on the scattering into P and mode converted S waves. In addition, the
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Figure 11: Scattering intensity for the P-P mode with an oblique incidence angle of 30o. (a)

Scattering patterns when σ = λp/3. (b) Backward-to-specular intensity ratio for the P-P

mode as a function of σ. (The dashed lines denote the high frequency asymptotic solutions.)

appearance of the SH mode and its depolarization caused by the 3D roughness

are also investigated.360

6.1. P-P mode

The P-P scattering patterns of < Ipp > with different S-to-P wave speed ra-

tio γ when σ = λp/3 are shown in Fig. 11(a), along with the acoustic intensity

when no mode conversion occurs. The intensity plotted here is the summation

of its components in both x- and z- directions. The backscattering intensity365

is much larger than the specular intensity at such a high roughness, when the

diffuse field is dominant. The elastic and the acoustic intensities coincide at

the backscattering angle, and start to diverge as the scattering angle is away

from the backward direction due to the mode conversion. The specular intensity

is decaying quickly as γ increases, which results in a clearer peak around the370

backward angle for the elastic wave. The peak would become more pronounced

if plotting only the z- directional scattering intensity < Iz,pp > as shown in

Fig. 4(b), which is the actual quantity that is measured in a real inspection.
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In contrast, the acoustic intensity has no peak since it is almost isotropically

distributed. Hence the appearance of the backscattering peak is caused by both375

the diffuse field and the elasticity, which includes the mode conversion and the

displacement polarization.

In Fig. 11(b) the backward-to-specular intensity ratio for the P-P mode

is shown as a function of the RMS value. The dashed line denotes the high

frequency asymptotic solutions from Eq. (25). Apparently the ratio is increasing

quickly as the surface appears to be more rough, and it is also relatively larger

when the S-to-P wave speed ratio increases. By setting θs = −θi or θs = θi in

Eq. (25), the 2D backward/specular intensity and the relative ratio with a high

roughness is expressed as:

< Ipp(θs = −θi) >=
Lx

2
√

2π cos3 θir
· 1

σg
exp

[
− tan2 θi

2σ2
g

]
, Backward intensity

< Ipp(θs = θi) >=
LxF

2
pp(θs = θi)

2
√

2π cos θir
· 1

σg
, Specular intensity

< Ipp(θs = −θi) >
< Ipp(θs = θi) >

=
exp[− tan2 θi

2σ2
g

]

cos2 θiF 2
pp(θs = θi)

(26)

Recall that the RMS gradient σg =
√

2σ/λ0, and in the high frequency limit

the intensity should be only related to the surface gradient as shown in Eq.380

(25). Clearly the backward intensity is a function only of roughness, showing

the same value for any S-to-P wave speed ratio, including the extreme acous-

tic case. This is not surprising since for any stress-free flaw in an isotropic

elastic solid the Kirchhoff approximation for the pulse-echo far-field scattering

amplitude is identical to the Kirchhoff approximation for the scalar scattering385

amplitude of a void in a fluid (Schmerr and Song, 2007). Hence the specific

observation of the lines meeting at the backward angle in Fig. 11(a) can be

generalized to other values of roughness. However, the specular intensity does

not only rely on the roughness σg, but also on the mode conversion through

Fpp(θi = θs), as part of the incident P waves are converted to S waves. Note390

that for the P-P mode the effects from the mode conversion and the roughness
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are decoupled. Specifically, the mode conversion is only included in the angular

factor Fpp(θs = θi), and the effect of the roughness is shown in σg. Furthermore,

From Eq. (26) it is easy to find that the backward-to-specular intensity ratio

increases as the roughness increases, as shown in Fig. 11(b).395

It might be interesting to calculate the roughness value when the backward

and the specular intensity is equivalent, marked as the intersection points in

Fig. 11(b). To estimate the corresponding σ, the full solution Eq. (22) is used

and we let the backward and the specular intensity be equal, by keeping the400

first four terms. The resulting equation has only one unknown variable σ, which

is then solved numerically. For example, in this way the RMS value σ when γ

= 0.5 is calculated approximately as 0.17λp.

6.2. P-S mode

To further illustrate the effects of the roughness and the elasticity on mode405

converted S waves, Fig. 12(a) shows the dipole-like scattering patterns for the P-

S mode with different S-to-P wave speed ratio when σ = λp/3; at the backward

direction the S wave intensity vanishes as expected, and it reaches a peak around

the specular angle, indicating a strong mode conversion effect. It needs to be

mentioned that in (Shi et al., 2015) the valid region of the Kirchhoff approxi-410

mation was established only for the P-P mode. Hence for the roughness shown

here (σ = λp/3 = λs/1.5), we cannot be as confident about the accuracy of the

scattering intensity for the P-S mode as for the P-P mode, since the scattered S

wave shows a shorter wavelength. However, the trend of the scattering pattern

for the P-S mode should remain the same as the roughness is not extremely high.415

In Fig. 12(b) the coherent and the diffuse intensity in the specular direc-

tion (θs = 30o) are plotted separately for both P-P and P-S modes. Again the

dashed lines represent the low frequency approximation by keeping the first four

terms in Eq. (23) and the high frequency asymptotic solution, which connect420

well around σ = λp/8 to give the intensity covering the entire frequency range.
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Figure 12: Mode converted S waves with an oblique incidence angle of 30o. (a) Scattering

patterns for the P-S mode when σ = λp/3. (b) Coherent and diffuse intensities for P-P and

P-S modes in the specular direction. (c) Specular S-to-P intensity ratio as a function of σ.

(The dashed lines represent the solutions from low and high frequency approximations)

Apparently the diffuse intensity for the mode converted S waves is much larger

than for the P waves, which implies a significant energy leakage from the inci-

dent P to scattered S waves.

425

To quantify the mode conversion effect, the Specular S-to-P intensity ratio

is shown in Fig. 12(c) with respect to the RMS value σ. It is seen that the
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mode conversion effect increases when the surface becomes more rough in the

specular angle, and levels off approximately after σ = λp/4. By using Eq. (25),

the high frequency asymptotic solution for the P-S mode scattering intensity in

the specular angle is expressed as:

< Ips(θs = θi) >=
F 2
psLx

(γ + 1)
√

2π cos θirσg
exp

[
−(
γ − 1

γ + 1
)2 tan2 θi

2σ2
g

]
(27)

In Eq. (27), for the P-S mode the effects of the roughness and the mode conver-

sion are no longer decoupled, which is different from the P-P mode case shown

in Eq. (26). The Specular S-to-P intensity ratio can hence be expressed as:

< Ips(θs = θi) >

< Ipp(θs = θi) >
=
F 2
ps

F 2
pp

2

γ + 1
exp

[
−(
γ − 1

γ + 1
)2 tan θ2

i

2σ2
g

]
(28)

When pushing Eq. (28) to the extreme high frequency limit by assuming that

σg →∞, Eq. (28) is simplified to:

< Ips(θs = θi) >

< Ipp(θs = θi) >
=
F 2
ps

F 2
pp

2

γ + 1
(29)

which only depends on the incidence angle and the S-to-P wave speed ratio.

Using Eq. (29), the value of the plateau in the high frequency for the S-to-P

intensity ratio can be predicted. For instance, by substituting γ = 0.50 and

0.65 into Eq. (29), the S-to-P intensity ratio is calculated as 2.91 and 7.93 as

marked in Fig. 12(c), showing very good agreement with the curves.430

In addition, from Fig. 12(b) a noticeable peak is seen at an intermediate

roughness (σ ≈ λp/8) for both diffuse P-P and P-S intensity, and for the P-P

mode it almost coincides with the intersection point when the coherent and

the diffuse intensities are equivalent, as marked by the red cross in the plot.

Small roughness (σ ≤ λp/8) causes the appearance of the diffuse field, which

then starts to be attenuated by increased roughness after σ is larger than some

intermediate value σmed. Hence σmed is some measure of the roughness of the

surface, indicating whether the roughness constructively or destructively affects

the diffuse intensity. According to Eq. (23), the value of σmed is found by letting
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∂Idpp
∂σ = 0 and solving the resulting equation:

∞∑
n=1

(n− g)gn−1

n!
√
n

= 0 (30)

Where g = 4k2
pσ

2 cos2 θi. By keeping the first four terms of Eq. (23), the value

of σ is found as λp/7.5.

To better understand the intermediate RMS value around λp/7.5, the Rayleigh

parameter is quoted here (Ogilvy, 1991):

Ra = kpσ cos θi (31)

It represents the averaged relative phase difference of scattered waves from two435

surface points in the specular direction. The Rayleigh criterion states that if

Ra ≤ π/4, then the surface is ’smooth’, otherwise it is ’rough’. By substituting

θi =30o into Eq. (31), the critical σ is calculated as λp/7, which is almost the

same as the value solved from Eq. (30) corresponding to the peak of the diffuse

intensity. Therefore the critical RMS from the conventional Rayleigh criterion440

agrees with the RMS for the peak point of the diffuse intensity, and also the

intersection point of the coherent and the diffuse intensity.

6.3. 3D roughness induced SH mode and depolarization

For an elastic wave scattered from a smooth surface or a corrugated surface445

infinitely long in the y- direction, the displacement polarization is within the

x-z plane, often called the in-plane motion. If the surface is rough as a function

of both x and y, the in-plane waves are coupled with the shear horizontal (SH)

waves in the x-y plane. The ‘depolarization′ occurs, as the displacement is now

composed of both in-plane and out-of-plane motions induced by the roughness450

in the y-axis.

In this section, a study is performed to analyze the depolarization effect for

the SH mode using the developed formulae. Specifically, the quantity Iy,ps is
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Figure 13: (a) Scattering intensity < Iy,ps > as a function of σ for different correlation lengths

in the y- direction. (b) Sketch of the S wave specular point to illustrate the depolarization of

the SH mode

investigated since it is the main feature of the depolarization. As noticed in Eq.455

(22), the coherent component for Iy,ps is zero if Ly →∞, and hence the depo-

larization is purely contributed from the diffuse field. The scattering patterns of

the SH mode from low to high roughness are shown in Fig. 5(c) and Fig. 6(c),

respectively. The increased roughness causes a considerable shift of two symmet-

ric peaks from θsx = 90o, |θsz| = 25o roughly to θsx = 115o, |θsz| = 50o. Figure.460

13 shows Iy,ps as a function of the RMS value when θsx = 90o, |θsz| = 45o, with

different out-of-plane correlation lengths λy when λx = λp/2. As λy increases

the SH mode intensity decays quickly, and the decay is more prominent when

λy reaches one wavelength. It is because in this manner the surface is becoming

smoother in the y- direction. As can be imagined in the extreme situation when465

λy → ∞, the SH mode intensity would vanish since no depolarization takes

place.
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To quantify how the SH polarization deviates from the SV polarization when

the roughness in the y- direction is imposed, a depolarization factor is defined

here for the scattered S waves, as the ratio between the out-of-plane intensity

and the sum of all the components of intensities:

Q = Iy,ps/Ips (32)

According to Eq. (22), the finite sum of the exponential terms can be cancelled

when dividing Iy,ps by Ips in Eq. (32). Only the angular factors are left and

the depolarization factor for the diffuse intensity in Eq. (32) is simplified to:

Q = F 2
y,ps/F

2
ps (33)

Eq. (33) indicates that the depolarization factor for the diffuse field does not rely

on the roughness, and it is only a function of the incidence/scattering angle and470

the S-to-P wave speed ratio. In fact, according to the slope approximation, the

scattered waves are mainly contributed from the ‘specular points′, especially

for the diffuse field. Hence, the polarization vectors for the scattered waves

physically should be the same as those from ‘specular points′ for the S mode as
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shown in Fig. 13(b). As a result, the 3D depolarization factor determined by475

the polarization vector is also the same as that from the ‘specular points′, and

hence for the diffuse field it is independent of the actual value of the roughness.

Figure 14(a) shows the diffuse wave depolarization factor as a function of

the scattering angles in 3D, with a 30o oblique incident wave within the x-z480

plane. Note that the depolarization factor is only a constant for the diffuse field

with respect to the roughness, when the coherence effects are not included. For

the total field (e.g. coherent intensity + diffuse intensity) the depolarization

factor would be a function of the roughness, which is shown in Fig. 14(b) for

slightly rough surfaces when σ = λp/30. As noticed in Eq. (22), the polariza-485

tion vector of the coherent intensity is the same as that from the flat surface,

which is only limited in the x-z plane if the surface is ideally infinitely long in

the y- direction. However, in reality the surface has finite dimensions so that

the polarization for the coherent intensity relies on the length of the surface in

the y- direction. Therefore the polarization of the total intensity is somewhat490

affected by the coherent field. However, it is noticed that the overall shape of

the depolarization for the total field is very similar to that for the diffuse field.

The similarity is because the coherent contribution is mainly at the specular

angles where the diffuse intensity Iy,ps almost vanishes. According to Eq. (32),

the depolarization in the specular direction would be almost zero, and hence the495

coherent field does not change the main shape of the depolarization pattern.

7. Conclusions and future work

In this article, we present an elastodynamic theory to predict the expected

scattering intensity, especially the diffuse field from randomly rough surfaces,500

for the first time. Slope approximations are applied assuming ’specular points’

for different modes, which enables the analytical manipulation of the ensemble

averaging of the diffuse intensity as well as a high frequency asymptotic solution.
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The theory is verified by comparison with numerical Monte Carlo simulations

and experimental measurements, within the valid region of the Kirchhoff as-505

sumption. In particular, the effects of the roughness on the mode conversion,

and consequently on the scattering intensity, are discussed.

It is found that a considerable proportion of the incident P waves convert

to scattering S waves, and this is very strong around the specular angle. The510

mode conversion effect increases as the surface appears to be more rough, which

results in unique scattering patterns for different modes. For instance, a re-

markable peak around the backward angle is seen for the P-P mode for surfaces

with a high roughness, and the P-S mode shows a dipole-like scattering pattern.

515

In addition, the 3D roughness-induced out-of plane SH mode and the depo-

larization is quantitatively analyzed. The amplitude of the out-of-plane intensity

is found to depend on the roughness, and in particular it is very sensitive to the

out-of-plane correlation length. In contrast, the depolarization factor remains a

constant with respect to the roughness for the diffuse field.520

The new capability to calculate the expected intensity, comprising both co-

herent and diffuse components, offers significant potential for applications in

the authors’ specialist field, NDE. Current thresholds for expected scattering

intensities from rough defects are based on solely the coherent scattered field,525

and are thus rather conservative, and limited to the specular reflection direc-

tion. The additional intensity of the diffuse field, now quantifiable by this new

approach, can increase the expected intensity substantially, thus eroding the

conservatism while remaining safe. Furthermore, in some directions, such as

the back-scatter direction, the intensity that can now be expected reliably, is530

dramatically higher, possibly enabling new choices of transducer placement and

paths of insonification. In this article only the mean intensity is shown, and in

a practical situation the standard deviation of the intensity is also important,

as it offers the knowledge of confidence for the inspection of a single surface.
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The standard deviation can be calculated using the Monte Carlo simulations,535

such as the results shown by Pettit et al. (2015). Alternatively one may seek to

derive analytical expressions for the second moment (variance) of the intensity.

References

Achenbach, J.D., 2003. Reciprocity in elastodynamics. Cambridge University540

Express, Cambridge, UK.

Beckmann, P., Spizzichino, A., 1987. The scattering of electromagnetic waves

from rough surfaces. Artech House, INC., London, UK.

Drinkwater, B.W., Wilcox, P.D., 2006. Ultrasonic arrays for non-destructive

evaluation: A review. NDT & E Int. 39, 525–541.545

Eckart, C., 1953. The scattering of sound from the sea surface. J. Acoust. Soc.

Am. 25, 566–570.

Harper, E.Y., Labianca, F.M., 1975. Perturbation theory for scattering of sound

from a point source by a moving rough surface in the presence of refraction.

J. Acoust. Soc. Am. 57, 1044–1051.550

Jarvis, A.J.C., Cegla, F.B., 2012. Application of the distributed point source

method to rough surface scattering and ultrasonic wall thickness measure-

ment. J. Acoust. Soc. Am. 132, 1325–1335.

Kodis, R.D., 1966. A note on the theory of scattering from an irregular surface.

IEEE Trans. Antennas. Propag. 14, 77–82.555

Makinde, W., Cristini, N.F., d. Bazelaire, E., 2005. Numerical modelling of

interface scattering of seismic wavefield from a random rough interface in an

acoustic medium: comparison between 2D and 3D cases. Geophys. Prospect.

53, 373–397.

35



Maznev, A.A., 2015. Boundary scattering of phonons: Specularity of randomly560

rough surface in the small-perturbation limit. Phys. Rev. B: Condens. Matter

91, 1–9.

Ogilvy, J.A., 1986. Theoretical comparison of ultrasonic signal amplitudes from

smooth and rough defects. NDT & E Int. 19, 371–385.

Ogilvy, J.A., 1988. Computer simulation of acoustic wave scattering from rough565

surfaces. J. Phys. D: Appl. Phys. 21, 260–277.

Ogilvy, J.A., 1989. Model for the ultrasonic inspection of rough defects. Ultra-

sonics 27, 69–79.

Ogilvy, J.A., 1991. Theory of Wave Scattering from Random Rough Surfaces.

Adam Hilger Ltd., Bristol, UK.570

Ogilvy, J.A., Culverwell, I.D., 1991. Elastic model for simulating ultrasonic

inspection of smooth and rough defects. Ultrasonics 29, 490–496.

Pettit, J., Walker, A.E., Lowe, M.J.S., 2015. Improved detection of rough defects

for ultrasonic nondestructive evaluation inspections based on finite element

modeling of elastic wave scattering. IEEE Trans. Ultrason. Ferroelectr. Freq.575

Control. 62, 1797–1808.

Rajagopal, P., Drozdz, M., Skelton, E.A., Lowe, M.J.S., Craster, R.V., 2012.

On the use of absorbing layers to simulate the propagation of elastic waves in

unbounded isotropic media using commercially available finite element pack-

ages. NDT & E Int. 51, 30–40.580

Roberts, R.A., 2012. The effect of crack morphology on ultrasonic response.

In D.O. Thompson, D.E. Chimenti, eds., Review of Progress in Quantitative

NDE, vol. 1430 of AIP Conference Proceedings. American Institute of Physics,

Denver, CO, 150–157.

Robertsson, J.O.A., Laws, R., Chapman, C., Vilotte, J.P., Delavaud, E., 2006.585

Modelling of scattering of seismic waves from a corrugated rough sea surface:

a comparison of three methods. Geophys. J. Int. 167, 70–76.

36



Schmerr, L.W., Song, S.J., 2007. Ultrasonic Nondestructive Evaluation Systems:

Models and Measurements. Springer, New York, USA.

Shi, F., Choi, W., Skelton, E.A., Lowe, M.J.S., Craster, R.V., 2015. The validity590

of Kirchhoff theory for scattering of elastic waves from rough surfaces. Proc.

R. Soc. A 471, 1–19.

Sun, H., Pipe, K.P., 2012. Perturbation analysis of acoustic wave scattering at

rough solid-solid interface. J. Appl. Phys. 111, 1–6.

Thorsos, E.I., 1988. The validity of the Kirchhoff approximation for rough595

surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am.

83, 78–92.

Thorsos, E.I., 1990. Acoustic scattering from a ‘Pierson-Moskowitz’ sea surface.

J. Acoust. Soc. Am. 88, 335–349.

Thorsos, E.I., Jackson, D.R., 1989. The validity of the perturbation approxi-600

mation for rough surface scattering using a Gaussian roughness spectrum. J.

Acoust. Soc. Am. 86, 261–277.

Zhang, J., Drinkwater, B.W., Wilcox, P.D., 2011. Longitudinal wave scatter-

ing from rough crack-like defects. IEEE Trans. Ultrason. Ferroelectr. Freq.

Control. 58, 2171–2180.605

Zhang, J., Drinkwater, B.W., Wilcox, P.D., 2012. Effect of roughness on imag-

ing and sizing rough crack-like defects using ultrasonic arrays. IEEE Trans.

Ultrason. Ferroelectr. Freq. Control. 59, 939–948.

37


	Introduction
	Rough surface
	Elastodynamic Kirchhoff theory for the diffuse field
	Kirchhoff assumption
	Slope approximations for different wave modes
	Ensemble averaging
	Asymptotic solutions

	Monte Carlo verification
	Simulation using 2D surfaces
	Simulation using 3D surfaces

	Experimental validation
	Numerical simulation of the experiment
	Experimental results

	Physical discussion on the mode conversion
	P-P mode
	P-S mode
	3D roughness induced SH mode and depolarization

	Conclusions and future work

