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ABSTRACT 

This paper estimates the productivity gains from agglomeration economies for a sample of the largest 

metropolitan areas in the United States using measures of urban agglomeration based on employment 

density and employment accessibility. The latter is a more accurate measure of economic proximity 

and allows testing for the spatial decay of agglomeration effects with increasing travel time. We find 

that the productivity gains from urban agglomeration are consistent between measures, with elasticity 

values between 0.07 and 0.10. The large majority of the productivity gains occur within the first 20 

minutes, and do not appear to exhibit significant nonlinearities. 
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1. INTRODUCTION 

The existence of urban agglomeration externalities implies that the allocation of resources to cities 

delivers greater productivity gains than non-urban areas. This has policy implications, particularly the 

rationale for investing in major infrastructure. The design of agglomeration-based policies requires 

knowledge about the magnitude and the spatial decay of the productivity benefits from urban 

agglomeration across different regions. In spite of abundant research on the size of productivity gains 

from spatial agglomeration, there has been insufficient research on the spatial decay pattern of 

agglomeration effects and the presence of nonlinearities. This study helps towards finding an answer to 
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some of the key remaining questions in the literature, namely: How far and wide do the productivity 

effects of spatial agglomeration spread and how quickly do they attenuate over space? Are there 

significant discontinuities in these effects within the urban hierarchy? 

Previous studies have investigated how agglomeration economies attenuate over space by using 

accessibility type measures such as market potential, economic mass, and effective density. These 

measures can be described as a distance weighted sum of opportunities (e.g. employment, population) 

between pairs of locations and have been used to incorporate the notion of distance decay into the 

measurement of agglomeration economies. They improve on the more conventional measures based on 

population and employment densities by providing a better representation of spatial proximity. 

However, the majority of these studies measure accessibility in terms of physical distance and hence 

cannot account for the role of (changes in) transport networks on improved connectivity and the 

subsequent positive effect on productivity. To our knowledge, Lall et al. (2004), Rice et al. (2006), 

Graham (2007), Holl (2012) and Le Néchet et al. (2012) are the only studies using accessibility type 

measures based on travel times derived from actual road networks. These studies, however, generally 

assume a constant rate of decline in agglomeration effects with increased distance/travel time. Only a 

few studies allow for varying rates of decay with increased distance and overall they suggest a steep 

decay of agglomeration effects, although they can extend as far as the boundaries of labour markets 

(e.g. Rice et al., 2006, Rosenthal and Strange, 2008, Di Addario and Patacchini, 2008). 

Another limitation of the literature is the generalised adoption of a linear relationship between 

urban agglomeration and productivity, and hence the assumption that the productivity effects of 

agglomeration increase in a proportional way across the urban hierarchy. Some studies have allowed 

for variable returns to urban agglomeration by using a quadratic function (e.g. Kawashima, 1975, 

Moomaw, 1983, Carlino and Voith, 1992, Graham, 2007), but only very few have relaxed the 

assumption of a linear parametric fit. Exceptions include Graham and Dender (2011) and Le Néchet et 

al. (2012) who used semiparametric techniques on firm level data for the UK and France, respectively, 
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and found evidence suggestive of  nonlinearities in the relationship between productivity and urban 

agglomeration. 

This paper addresses the limitations above by examining the productivity gains from urban 

agglomeration for the 50 largest metropolitan statistical areas (MSA) in the United States using a 

transport-based measure of agglomeration (i.e. employment accessibility by automobile) to investigate 

the spatial decay of the productivity-agglomeration effects and semiparametric techniques to test for 

nonlinearities in agglomeration effects across the urban hierarchy.1 To our knowledge this is the first 

attempt to estimate productivity-agglomeration effects for the United States using a transport-based 

measure of agglomeration and semiparametric techniques. 

The findings for the effect of urban agglomeration on labour productivity are very similar 

regardless of whether we use employment density or employment accessibility to measure 

agglomeration. This suggests that, in the context of our study, metropolitan density seems to have a 

stronger role than road network speed in the realisation of urbanisation externalities. The preferred 

estimates indicate an elasticity value between 0.07-0.10, suggesting that a 10% increase in urban 

agglomeration is associated with a 0.7%-1% increase in labour productivity. The results further 

indicate that the productivity effects of urban agglomeration can extend up to 60 minutes driving time, 

although the large majority occur within the first 20 minutes and hence are spatially very localised. The 

semiparametric analysis does not reveal any significant ‘threshold effects’ within our sample of large 

and very large metropolitan areas, therefore indicating that a linear parametric fit seems to be a 

reasonable assumption. 

The remainder of the paper is organised as follows. Section 2 presents the empirical 

methodology and the main estimation issues, while Section 3 describes the data and variables used in 

the analysis. Section 4 presents and discusses the main results, and Section 5 draws together the main 

conclusions.  
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2. EMPIRICAL METHODOLOGY 

Under the standard assumption that input factors are paid the value of their marginal products, local 

input factors will have higher prices in more productive areas. In this context, wage rates should reflect, 

even if partially, labour productivity. Wage models can be used to investigate spatial variation in labour 

productivity. The literature offers several explanations for the differences in labour productivity across 

space. Under spatial equilibrium real wages should be equal across space, however this is rarely 

observed in the real world. Spatial inequalities in labour productivity and wages can result from 

exogenous and endogenous factors. These include differences in human capital (e.g. Rauch, 1993, 

Glaeser and Mare, 2001, Moretti, 2004b); differences in the cost of living and in the availability and 

quality of local amenities (e.g. Roback, 1982, Glaeser and Gottlieb, 2009); and agglomeration 

externalities (e.g. Fujita and Thisse, 2002). To measure the effect of urban agglomeration on labour 

productivity we therefore need to specify wage models that control for other determinants of labour 

productivity. This is illustrated in the general wage model 

 

(1)     ),,,,,( itititititit μHKEUfw λ=  

 

where the subscripts i and t denote the MSA and year respectively. wit is the average real wage, Uit 

represents urban agglomeration, Eit measures educational attainment, Kit denotes the Krugman index of 

relative industrial specialisation, and Hit is a proxy for local cost of living. To account for unobserved 

shocks that are common to all areas but vary across time we include year specific effects λt. To account 

for additional MSA specific unobserved heterogeneity (e.g. valuable natural resources) we also include 

metropolitan area effects μi.   

The log-linearised wage models are estimated using the two separate measures of urban 

agglomeration (Uit): employment density (Uit=Dit) and employment accessibility (Uit=Ait). The term εit 
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in equation (2) is the residual error, which is assumed to be normally distributed while allowing for 

heteroskedasticity and spatial clustering on MSA. 

 

(2)  ititititititit εμHKE)(U)(w +++++++= λγδσβα )λn(λnλn                                 

 

To investigate the spatial decay of urban agglomeration effects we separate the measure of employment 

accessibility into a series of contiguous travel time bands k, as shown in equation (3).  

  

(3)   ititititit
k

k
itkit εμHKE)(A)(w +++++++= ∑ λγδσβα )λn(λnλn           

 

Finally, to examine the presence of nonlinearities in the productivity effects of urban agglomeration 

across MSA, we use a semiparametric partially linear model (e.g. Ruppert et al., 2003, Wood, 2006), 

where urban agglomeration enters the equation nonlinearly according to a smooth function f estimated 

using penalized spline regression techniques and the other terms are defined as in the equations above. 

This is illustrated in equation (4). 

 

(4)  ititititititit εμHKEUf)(w +++++++= λγδσα )λn()(λn       

                          

There are important identification issues that need to be considered in the estimation of the models 

above, namely possible endogeneity of urban agglomeration due to omitted variable bias or unobserved 

heterogeneity, and reverse causality between urban agglomeration, human capital and labour 

productivity. Individual unobserved heterogeneity is generally addressed through the use of random-

effects (RE) and the fixed-effects (FE) estimators. The RE estimator assumes that unobserved 
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heterogeneity is not correlated with the observed covariates, which if false leads to inconsistent and 

biased parameter estimates. On the other hand, although the FE estimator allows for correlation 

between unobserved heterogeneity and the model covariates, it can result in a great loss of efficiency in 

the presence of highly persistent data, as is typically the case of spatial agglomeration. A more flexible 

approach is the correlated random-effects (CRE) estimator, which includes the mean of the covariates 

and allows testing the assumption of no correlation between unobserved heterogeneity and model 

covariates (Mundlak, 1978, Chamberlain, 1982). In the case of reverse causality, the concern is that 

more productive metropolitan areas may attract workers with higher education, thus further increasing 

urban agglomeration and educational attainment. The remedial strategy adopted in the literature is to 

use instrumental variable (IV) estimators. The most common instruments used in the agglomeration 

literature include long-lagged values of urban agglomeration (Ciccone and Hall, 1996, Rice et al., 

2006, Combes et al., 2010) and geological and geographical instruments (Ciccone, 2002, Rosenthal and 

Strange, 2008, Glaeser and Gottlieb, 2009, Combes et al., 2010). Given the changes in MSA 

boundaries over time, it is difficult to construct an instrument for urban agglomeration based on deep 

time lags. Alternatively, we follow an approach similar to that of Fingleton (2003, 2006) and use a five-

group method which ranks the endogenous variable into one of five quintiles according to its size and 

then defines the instrument as the rank order (i.e. quintiles). The rationale is that there is strong 

association between the rankings of urban agglomeration and urban agglomeration size, but there is no 

relation between the relative rankings and labour productivity other than through the value of urban 

agglomeration. To instrument human capital, we follow Moretti (2004a) who used a deep time lag for 

the presence of colleges and universities as created in the nineteenth century by The Land Grant 

Movement.  
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3. DATA 

The dataset consists of a balanced panel of the 50 largest MSAs in the United States with a population 

of at least 1 million. The time horizon of the study is limited by data availability for employment 

accessibility, which is available for 1990, 1995, 2001, and 2009. The data sources and variables used in 

the study are described in the following paragraphs. 

 

Labour productivity 

To represent labour productivity, we use data for average MSA wage per job, available from the 

Regional Economic Information System (REIS) of the Bureau of Economic Analysis (BEA). To 

calculate real average wage per job (w) we use the GDP deflator with base year for 1990.  

 

Urban agglomeration: employment density vs. employment accessibility 

We consider two measures of urban agglomeration: employment density and employment accessibility. 

The former has been extensively used in the empirical literature and although it is generally preferred 

to simple measures of total population and employment, its main limitation is that it assumes a uniform 

distribution of people across space and it does not account for the role of the transport network on 

actual spatial proximity, which our measure of employment accessibility does. Employment 

accessibility is defined in equation (5) as the number of jobs a representative traveller can reach within 

a certain travel time threshold.  

 

 (5)      t
tn,

tk, D 
V

 = A 








tC
k

π     

                

where,  

• Dt = metropolitan area employment density at year t 
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• k = time band (in minutes) 

• Vn,t = average network speed in km/h at year t 

• Ct = average circuity at year t 

 

Because we do not have microdata on speeds by link going back to 1990 (this is only widely available, 

for a fee, in recent years with the advent of GPS), average metropolitan speeds estimated from a variety 

of data by the Texas A&M Transportation Institute (TTI) in their Urban Mobility Report are used, 

comprising a weighted average of arterial and freeway speeds. Similarly, micro level employment (at 

the block level) is not available consistently before the Census LEHD datasets became available in 

2003, so urban employment density is used. The average circuity is the ratio of the shortest path 

network distance to the Euclidean distance and has been computed in a separate study (Levinson and 

El-Geneidy, 2009). For more details about the calculation of employment accessibility see Levinson 

(2012).  

The representative traveller experiences uniform metropolitan average employment density, 

metropolitan average network speed, and circuities that vary by trip length. All variables change with 

year.  The maximum distance (or time) travelled is constrained so that once the representative traveller  

reaches a band where he passes all metropolitan jobs, the  accessibility is capped (i.e. the region does 

not go on infinitely, only so long as all jobs at average density are available).  

The distribution of employment across the travel time bands between 10 and 90 minutes 

indicates that 15% of employment is accessible within the first 10 minutes, and this value increases to 

54% for 20 minutes, 83% for 30 minutes, 94% for 40 minutes, 98% for 50 minutes and 99% for 60 

minutes. As a result, on average, the full majority of employment is accessible within one hour travel 

time. Unfortunately, our measure of employment accessibility is solely based on the road transport 

network and hence does not account for the role of public transport, which is likely to be important in 
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the largest urban areas.2 The average mode share for work trips in the US for 2013 is 76.4% drive alone 

and 9.4% carpool, compared with 73.2% and 13.4% in 1990. It is lower in the largest metro areas, but 

even there automobile dominates (e.g. 59% for metropolitan New York, 73.6% for San Francisco) 

(McKenzie, 2015). 

 

Economic structure 

To account for differences in the economic structure of metropolitan areas that might also affect their 

wage composition we use a measure of relative economic specialisation based on the Krugman 

Specialisation Index (K) (Krugman, 1991).  

 

(6)      ∑
=

−
O

1o
it  = K oioi ss    

             

where ois  is the local employment share in industry o and ois  is the average employment share in 

industry o for the group of metropolitan areas. Industry employment data are obtained from the BEA 

REIS database for 14 different industries. The index values range between K=0 (no specialisation) and 

K=2*(I-1)/I (maximum specialisation). The higher the index the more the economic structure of the 

local economy deviates from that of the reference group (i.e. sample average) and the more it is 

considered to be specialised. 

 

Human capital 

Human capital (E) is measured by the percentage of population aged 25 years and over holding a 

bachelor’s degree or higher. Data for educational attainment were obtained from the decennial Census 

(for 1990 and 2000) and from the American Community Survey (ACS) for 2009. Using 2000 data for 

2001, we had data for 1990, 2001 and 2009. Unfortunately, data were not available for 1995 as the 
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ACS was conducted for the first time in 1996 in four counties only. To avoid losing one fourth of the 

observations we interpolated the 1995 educational data using a compound annual growth rate between 

1990 and 2000.  

 

Cost of living and local amenities 

Wages are generally higher in larger urban areas, even after correcting for differences in housing costs. 

Spatial variation in real wages can reflect differences in the availability and quality of urban amenities. 

To account for differences in the cost of living we use the Federal Housing Finance Agency (FHFA) 

house price index (H) for each MSA. We adjust the original index to be centred on the mean value of 

the index for our sample of metropolitan areas and to have 1990 as the baseline year. Lower real wages 

might be more acceptable where climate is pleasurable while areas with hostile climate might have to 

offer higher real wages to attract people (Glaeser et al., 2001). To account for this we use controls for 

the climate region a given MSA belongs based on the nine climate regions identified by the National 

Climatic Data Center (Karl and Koss, 1984). 

Table 1 provides basic descriptive statistics for the variables, while Figure 1 shows scatter plots 

for the relationship between metropolitan area average wage and the measures of urban agglomeration 

(i.e. employment density and employment accessibility) and human capital. There is a strong positive 

correlation between average wages and employment density (0.60) and educational attainment (0.74), 

and a relatively less strong correlation for employment accessibility, especially within 20 minutes 

travel time (0.15). The latter might result from greater congestion effects in the core urban areas of 

metropolitan areas. The correlation between average wages and employment accessibility is very 

similar across the travel time bands for 30, 60, and 90 minutes - 0.45, 0.54, and 0.55 respectively. This 

is expected because the number of jobs accessible within 30 and 60 minutes travel time corresponds to 

approximately 83% and 99% of the MSA employment accessible within 90 minutes, respectively.  
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TABLE 1: Descriptive statistics of variables 

Variable Min Mean Median CV Max SDB/SDW 
Real average wage  (w) 20,268 27,918 26,995 0.20 53,182 1.15 
Emp. accessibility, 10 min (A10) 48,012 126,331 117,833 0.38 275,360 1.19 
Emp. accessibility, 20 min (A20) 192,046 478,833 456,453 0.33 1,101,442 1.19 
Emp. accessibility, 30 min (A30) 371,128 834,306 792,804 0.43 2,333,749 1.83 
Emp. accessibility, 40 min (A40) 371,128 1,069,420 884,454 0.71 3,377,059 3.08 
Emp. accessibility, 50 min (A50) 371,128 1,205,735 884,454 1.02 5,276,655 4.27 
Emp. accessibility, 60 min (A60) 371,128 1,293,838 884,454 1.33 7,598,383 5.17 
Emp. accessibility, 90 min (A90) 371,128 1,342,600 884,454 1.55 8,550,473 7.33 
Employment density (D) 16 138 114 0.91 560 6.99 
Krugman specialisation index (K) 0.07 0.18 0.16 0.47 0.45 5.53 
Educational attainment  (E) 14 27 26 0.23 47 1.54 
House price index (H) 0.80 1.45 1.28 0.39 3.19 0.40 
Notes: CV: coefficient of variation (i.e. ratio of standard deviation to the mean). SDB/SDW: ratio of between-
MSA standard deviation over within-MSA standard deviation. Wages are expressed in real USD; employment 
accessibility is expressed in number of people; employment density is expressed in terms of people per square 
kilometre; Krugman’s index of relative specialisation ranges between 0 (no specialisation) and 2 (maximum 
specialisation); Educational attainment consists of the percentage of population with bachelor's or higher degree; 
the cost of living index is based on the MSA house price index with 1990 as the reference year. 
 

 
FUGURE 1: The relationship between real average wages, urban agglomeration and educational 

attainment.  
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4. RESULTS AND DISCUSSION 

This section presents and discusses the main findings. The results obtained from the IV and non-IV 

models using RE, FE, and CRE estimators are presented in tables 2 to 4 respectively. Table 2 shows the 

models in which urban agglomeration is measured by employment density, while Table 3 reports the 

results for the models based on employment accessibility. Table 4 and Figure 2 refer to the models 

testing the spatial decay of the productivity gains from urban agglomeration across a set of successive 

travel time bands. The last part of the section discusses the analysis of nonlinearities in the relation 

between productivity and urban agglomeration (Figure 3).  

 

Productivity gains from urban agglomeration 

We first discuss the results in Table 2. Overall the models have good explanatory power with generally 

high coefficients of determination (R2). The first four columns of the table refer to the non-IV models, 

while the last four columns refer to the IV models.3 The discussion focuses on the preferred models 

selected using appropriate tests for model comparison.4 The elasticity of wage with respect to 

employment density obtained from the preferred model CRE (2), which includes correlated random-

effects for employment density, educational attainment and housing costs index, is 0.072; this indicates 

that increasing employment density by 10% increases wages, all else equal, by 0.72%. Correcting for 

reverse causality appears to have a minor impact on the effect of urban agglomeration, which increases 

from 0.072 to 0.099 (CRE-IV (2)).  

The models in Table 3 are based on the 60 minutes travel time band accounting for the large 

majority of metropolitan employment. The results obtained from the preferred model CRE (2), which 

includes correlated random-effects for employment density, educational attainment and relative 

industrial specialisation, are in line with those obtained in Table 2 for employment density.5 Raising 

employment accessibility by 10% is associated with an increase in wages of 0.96%. Similarly, 
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correcting for reverse causality does not seem to change the elasticity estimate for employment 

accessibility, which is equal to 0.095 (CRE-IV (2)).  

The findings reported above for the effect of urban agglomeration on average labour 

productivity are consistent between the two measures used and suggest that incorporating information 

on network speeds does not seem to affect much the results, which seem to be mainly driven by density 

effects. This may be partly due to the fact that employment accessibility is based on average 

metropolitan speeds, which do not vary as much as density. Our preferred estimates indicate an 

elasticity value between 0.07-0.10. Corroborating other studies (e.g. Ciccone and Hall, 1996, Ciccone, 

2002), we find that correcting for reverse causality does not affect much the magnitude of the 

estimates.  

Overall, the magnitudes of the urban agglomeration elasticity estimates appear to be slightly 

higher than those obtained in previous studies using aggregate regional level data for the United States; 

however, these differences are considered reasonable because our analysis is focused on the 50 largest 

metropolitan areas for which we expect to observe stronger returns to urban agglomeration. Ciccone 

and Hall (1996), using data for 1988, found that doubling county employment density increased 

productivity by about 6%. More recent evidence for the United States based on metropolitan area data 

suggests that the urban agglomeration elasticity ranges between 5-8%. Glaeser et al. (2001) and Glaeser 

and Resseger (2010) found that doubling metropolitan area population leads to an increase in average 

labour productivity of about 5% for 1980 and 8% in 1990 and 2001.  

 



TABLE 2: Results of the wage models using employment density 

Model RE FE CRE (1) CRE (2) RE-IV FE-IV CRE-IV (1) CRE-IV (2) 
constant 8.9950*** 10.0361*** 8.6019*** 8.5865*** 9.1973*** 10.9582*** 8.5751*** 8.4855*** 
ln(D) 0.1139*** 0.0302 0.0302 0.0336 0.1453*** 0.0258 0.0579 0.0990*** 
ln(E) 0.1373*** -0.0541 -0.0541 -0.0441 0.0253 -0.3350* -0.2908 -0.2476** 
K 0.1509 -0.1828 -0.1828 0.0763 0.1803 -0.2831 -0.2615 -0.2372 
H 0.0998*** 0.1137*** 0.1137*** 0.1126*** 0.0989*** 0.1192*** 0.1151*** 0.1066*** 
mean of ln(D)   0.0760* 0.0716*   0.0483  
mean of  ln(E)   0.3580*** 0.3610***   0.5946*** 0.5421*** 
mean of  K   0.4150    0.4938* 0.4665* 
mean of  H   -0.1201* -0.1189   -0.1214  
Observations 200 200 200 200 200 200 200 200 
Hausman test (p-value) 19.17 (0.0039)   10.30 (0.2445)   
First stage Partial/Shea R2         
   - ln(E) (1)     0.85/0.80 0.34/0.12 0.28/0.06 0.27/0.26 
   - ln(D) (1)     0.84/0.79 0.27/0.10 0.15/0.03 0.80/0.79 
Underidentification test(2)     50.087*** 11.631*** 4.816** 9.183*** 
Weak identification test(3)     284.97 5.968 2.476 7.203 
Weak-instrument-robust 
inference(4)     81.73*** 14.20*** 2.38 24.042*** 

R2 - overall 0.8218 0.4365 0.8481 0.8443 0.7884 0.1529 0.8444 0.8384 
R2 - within 0.9355 0.9410 0.9410 0.9403 0.9356 0.9315 0.9331 0.9329 
R2 - between 0.7299 0.0170 0.7696 0.7632 0.6639 0.3097 0.7696 0.7586 
Year control variables Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: ***, **, * indicate significance at 1%, 5%, and 10%, respectively. Standard errors are cluster-robust. Clustering is on metropolitan areas. 
Dependent variable: log of MSA real average wage rate. The models also include control variables for climate regions, but for the FE models these 
variables drop due to multicollinearity with the metropolitan area fixed-effects. 
(1) Underidentification test (Kleibergen-Paap rk LM statistic). 
(2) Weak identification test (Kleibergen-Paap rk Wald F statistic). Stock-Yogo weak identification test critical values are available from Stock-
Yogo (2005). 
(3) Weak-instrument-robust inference (Stock-Wright LM S statistic). 
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TABLE 3: Results of the wage models using employment accessibility 

Model RE FE CRE (1) CRE (2) RE-IV FE-IV CRE-IV (1) CRE-IV (2) 
constant 8.3152*** 10.2467*** 7.6229*** 7.5497*** 8.2277*** 10.1331*** 7.5939*** 7.5263*** 
ln(AE,60) 0.0804*** -0.0013 -0.0013 -0.0007 0.1154*** 0.0652 0.0688 0.0953*** 
ln(E) 0.1620*** -0.0720 -0.0720 -0.0710 0.0320 -0.3196*** -0.3148*** -0.2979** 
K 0.2209 -0.1948 -0.1948 -0.1936 0.2948** -0.2740 -0.2718 -0.2615 
H 0.1040*** 0.1173*** 0.1173*** 0.1151*** 0.1039*** 0.1147*** 0.1143*** 0.1091*** 
mean of ln(AE,60)   0.0954*** 0.0958***   0.0253  
mean of  ln(E)   0.4033*** 0.3870***   0.6462*** 0.6147*** 
mean of  K   0.5403* 0.5408*   0.6173** 0.6091** 
mean of  H   -0.0771    -0.0740  
Observations 200 200 200 200 200 200 200 200 
Hausman test  39.60 (0.0000)   17.28 (0.0273)   
First stage Partial/Shea R2         
   - ln(E) (1)     0.85/0.80 0.32/0.31 0.27/0.12 0.27/0.27 
   - ln(AE,60) (1)     0.86/0.81 0.34/0.33 0.04/0.02 0.51/0.51 
Underidentification test(2)     49.185*** 45.886*** 2.953* 10.454*** 
Weak identification test(3)     346.837 31.292 1.379 7.979 
Weak-instrument-robust 
inference(4)     80.99*** 15.60*** 9.47*** 42.04*** 

R2 - overall 0.8137 0.3054 0.8509 0.8485 0.7732 0.2385 0.8449 0.8416 
R2 - within 0.9302 0.9408 0.9408 0.9407 0.9284 0.9277 0.9278 0.9249 
R2 - between 0.7353 0.2181 0.7750 0.7706 0.6454 0.0516 0.7750 0.7713 
Year control variables Yes Yes Yes Yes Yes Yes Yes Yes 

Notes: ***, **, * indicate significance at 1%, 5%, and 10%, respectively. Standard errors are cluster-robust. Clustering is on metropolitan areas. 
Dependent variable: log of MSA real average wage rate. The models also include control variables for climate regions, but for the FE models these 
variables drop due to multicollinearity with the metropolitan area fixed-effects. 
(1) Underidentification test (Kleibergen-Paap rk LM statistic) 
(2) Weak identification test (Kleibergen-Paap rk Wald F statistic). Stock-Yogo weak identification test critical values are available from Stock-
Yogo (2005). 
(3) Weak-instrument-robust inference (Stock-Wright LM S statistic). 
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Table 4 presents the results for the spatial decay models using a series of consecutive travel time 

bands between 20 and 90 minutes. The CRE model is selected as the preferred because it 

provides consistent and more efficient parameter estimates than the FE model.6 The results 

suggest that the spatial scope of the productivity effects of agglomeration can extend up to 60 

minutes driving time, although the bulk of the effects occur within the first 20 minutes. The 

magnitude of the effect reduces dramatically for the following travel time bands and tends to be 

statistically insignificant (with the exception of travel time band between 40-60 minutes). This 

pattern of a steep spatial decay is illustrated in Figure 2, and supports the view of very localised 

benefits from spatial agglomeration while at the same time reaching as far as, but not necessarily 

in a continuous way, the boundaries of labour market areas.  

In a report describing commuting patterns in the United States, McKenzie and Rapino 

(2011) show that the average one-way travel time to work  was about 22 minutes in 1990 and 25 

minutes in 2000, and remained at 25 minutes in 2009. This commuting pattern is in line with 

stronger urban agglomeration effects within 20 and 30 minutes of travel time, as found in our 

analysis. In addition, similar findings of a steep spatial decay of urban agglomeration effects 

were also obtained from wage models based on driving time accessibility measures for Great 

Britain (Rice et al., 2006) and physical distance accessibility measures for the US (Rosenthal and 

Strange, 2008), Italy (Di Addario and Patacchini, 2008), and the UK (Melo and Graham, 2009).  
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TABLE 4: Results of the wage models testing the spatial decay of urban agglomeration  

Model RE FE CRE 
constant 8.6951*** 10.3749*** 7.5708*** 
ln(AE,20) 0.0530*** -0.0106 -0.0106 
ln(AE,20-30) 0.0011 0.0003 0.0003 
ln(AE,30-40) 0.0021** -0.0017 -0.0017 
ln(AE,40-60) 0.0039** 0.0001 0.0001 
ln(AE,60-90) 0.0023* -0.0002 -0.0002 
ln(E) 0.1628*** -0.0727 -0.0727 
K 0.2017 -0.2162 -0.2162 
H 0.1040*** 0.1214*** 0.1214*** 
mean of  ln(AE,20)   0.1091** 
mean of  ln(AE,20-30)   0.0047 
mean of  ln(AE,30-40)   0.0031 
mean of ln(AE,40-60)   0.0085** 
mean of ln(AE,60-90)   -0.0007 
mean of  ln(E)   0.4035*** 
mean of  K   0.5316* 
mean of  H   -0.0881 
Observations 200 200 200 
Hausman test 54.15***  
R2 - overall 0.7933 0.2622 0.8570 
R2 - within 0.9286 0.9417 0.9417 
R2 - between 0.7175 0.3518 0.7855 
Year control variables Yes Yes Yes 
Notes: ***, **, * indicate significance at 1%, 5%, and 10%, respectively. Standard errors are cluster-
robust. Clustering is on metropolitan areas. Dependent variable: log of MSA real average wage rate. The 
models also include control variables for climate regions, but for the FE models these variables drop due 
to multicollinearity with the metropolitan area fixed-effects. 
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FIGURE 2: Spatial decay of urban agglomeration effects based on employment 

accessibility. 

 

Finally, we consider the results obtained from the semiparametric analysis. This approach does 

not make any assumptions on the functional form of the relationship between productivity and 

urban agglomeration, and allows the shape of the curve to be drawn as much as possible from the 

data. This provides a good way of investigating if there are “size” thresholds above which the 

benefits from additional agglomeration become disproportionally greater or smaller. 

The sample used consists of the 50 largest metropolitan areas, and hence contains 

considerably less variation than a full sample of large, medium, and small metropolitan areas. As 

a result, the findings should be considered in the context of large and very large urban areas. 

Nonetheless, there is still more than an order of magnitude (about 20-fold) variation in the size of 

the metropolitan areas in the sample. Taking the year 2009 as reference, the latest year in our 

dataset, we observe that 60% of the sample consists of metropolitan areas with a population 

between 1-2.5 million, 22% of the sample consists of areas with a population between 2.5-5 
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million, 14% of the sample consists of areas with a population between 5-9 million, and only 4% 

of the sample consists of metropolitan areas with a population of 10 million or more.  

Figure 3 illustrates the nonparametric fit of the metropolitan area average real wage and 

urban agglomeration, where urban agglomeration is measured by employment density (top 

panel) and employment accessibility (bottom panel).7 The vertical axis shows the value of the 

nonparametric fit of the dependent variable and the horizontal axis shows the values of urban 

agglomeration. The shaded area corresponds to the interval determined by the two standard error 

lines above and below the estimate of the smooth curve. The shape of the curves does not reveal 

significant nonlinear effects, and indeed we cannot reject the test with null hypothesis that the 

nonparametric fit can be approximated by a parametric linear fit.8 This indicates that it is overall 

reasonable to assume a linear relation between spatial agglomeration and productivity for urban 

areas with and above 1 million people, and that there are no significant ‘threshold effects’ across 

urban areas of these sizes. It also suggests that there is no “wider economic benefits” or 

“agglomeration economies” rationale for allocating disproportionally more public investment to 

the top larger metropolitan areas compared to other large and very large metropolitan areas. 

The main difference between the two curves is the downward sloping trend for the 

metropolitan areas with the highest employment density, although this effect appears to be 

statistically insignificant. One partial explanation for this difference might be the inability to 

disentangle congestion from high densities. It has been shown elsewhere (Levinson, 2012) that 

there is often a trade-off between high densities and lower mobility resulting from increased 

travel times and congestion. However, accessibility levels may vary between high density urban 

areas as a result of differences in the spatial organisation (e.g. urban form) and the planning and 

quality of transport systems. This implies that transport-based measures of urban agglomeration 
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such as our measure of employment accessibility may be better able to disentangle, even if only 

partially, the effect of increased congestion from that of increased density. 

 

 

 
FIGURE 3: Nonparametric fit of the relation between metropolitan area wages (vertical 

axis) and urban agglomeration (horizontal axis): employment density (top) and 

employment accessibility (bottom). 
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Human capital, economic structure, and cost of living 

As expected, educational attainment helps explain spatial differences in average wages across 

metropolitan areas. The effect is consistent across the models reported in tables 2 to 4 and 

suggests that increasing educational attainment by 10% is associated with an increase in wages 

between 3%-4%. As for economic structure, our analysis based on the Krugman index of relative 

specialisation could not identify any conclusive effect for its relationship with average 

metropolitan area wage. Future analysis on this topic could attempt to combine this indicator 

with a measure of the type of industrial specialisation as a way to further explore issues relating 

to industry mix. However, for the purpose of our analysis we were mainly interested in 

separating the effects of urban clustering from those of industrial clustering. The models also 

show that an increase of 1 point in the house price index is associated with a less than 

proportional increase in average wage. 

 

5. CONCLUSIONS 

This paper contributes to ongoing research on the productivity gains from urban agglomeration 

by empirically examining the spatial decay and nonlinearity of these effects using a new 

transport-based measure of urban agglomeration and semiparametric techniques. To the best of 

our knowledge this paper provides the first attempt to test for potential nonlinearities in the 

productivity gains from urban agglomeration for the United States using semiparametric 

techniques. 

The findings suggest that the productivity-agglomeration effects obtained for our sample 

of MSA are generally consistent between the two measures of urban agglomeration used – 

employment density and road transport-based employment accessibility. This suggests that, in 
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the context of our study, metropolitan areas’ densities seem to have a stronger role than road 

network speeds in the realisation of urban agglomeration externalities. The second main finding 

is that the large majority of the productivity-agglomeration effects occur within the first 20 

minutes, which is in agreement with previous evidence on very localised benefits, while 

remaining significant but small at wider distances encompassing the boundaries of labour 

markets. Furthermore, the analysis suggests that the returns to additional spatial agglomeration 

for our sample of large and very large metropolitan areas appear to be constant; however, this 

result should not be generalised to the more heterogeneous population of metropolitan areas in 

the United States, for which there may be significant ‘threshold effects’.  

Some policy implications can be drawn from our findings. Evidence of a localised nature 

of spatial agglomeration effects suggests that within metropolitan areas immediate access (within 

20 minutes) to jobs is very important for productivity, which in turn highlights the importance of 

investing in efficient transport networks. In addition, the lack of evidence in favour of 

nonlinearities in the relationship between productivity and urban agglomeration suggests there is 

no economic argument for allocating disproportionally more public money, to improve density 

and (road) transport accessibility, to the larger regions in our sample of metropolitan areas with 1 

million people or more. 

 

REFERENCES 

CARLINO, G. A. & VOITH, R. 1992. Accounting for Differences in Aggregate State 

Productivity. Regional Science and Urban Economics, 22, 597-617. 

CHAMBERLAIN, G. 1982. Multivariate Regression Models for Panel Data. Journal of 

Econometrics, 1, 5-46. 

CHATMAN, D. G. & NOLAND, R. B. 2014. Transit Service, Physical Agglomeration and 

Productivity in US Metropolitan Areas. Urban Studies, 51, 917-937. 



 

23 
 

CICCONE, A. 2002. Agglomeration Effects in Europe. European Economic Review, 46, 213-

227. 

CICCONE, A. & HALL, R. E. 1996. Productivity and the Density of Economic Activity 

American Economic Review, 86, 54-70. 

COMBES, P.-P., DURANTON, G., GOBILLON, L. & ROUX, S. 2010. Estimating 

Agglomeration Economies with History, Geology, and Worker Effects. In: GLAESER, E. 

L. (ed.) Agglomeration Economics. Chicago, IL: University of Chicago Press. 

DI ADDARIO, S. & PATACCHINI, E. 2008. Wages and the City. Evidence from Italy. Labour 

Economics, 15, 1040-1061. 

FINGLETON, B. 2003. Increasing Returns: Evidence from Local Wage Rates in Great Britain. 

Oxford Economic Papers, 55, 716-739. 

FINGLETON, B. 2006. The New Economic Geography versus Urban Economics: An 

Evaluation Using Local Wage Rates in Great Britain. Oxford Econonomic Papers, 58, 

501-530. 

FUJITA, M. M. & THISSE, J.-F. 2002. Economics of Agglomeration-Cities, Industrial Location 

and Regional Growth, Cambridge, Cambridge University. 

GLAESER, E. L. & GOTTLIEB, J. D. 2009. The Wealth of Cities: Agglomeration Economies 

and Spatial Equilibrium in the United States. Journal of Economic Literature, 47, 983-

1028. 

GLAESER, E. L., KOLKO, J. & SAIZ, A. 2001. Consumer City. Journal of Economic 

Geography, 1, 27-50. 

GLAESER, E. L. & MARE, D. C. 2001. Cities and Skills. Journal of Labor Economics, 19, 316-

342. 

GLAESER, E. L. & RESSEGER, M. G. 2010. The Complementarity between Cities and Skills. 

Journal of Regional Science, 50, 221-244. 

GRAHAM, D. J. 2007. Variable Returns to Urbanization and the Effect of Road Traffic 

Congestion. Journal of Urban Economics, 62, 103-120. 

GRAHAM, D. J. & DENDER, K. V. 2011. Estimating the Agglomeration Benefits of Transport 

Investments: Some Tests for Stability. Transportation, 38, 409-426. 

HOLL, A. 2012. Market Potential and Firm-Level Productivity in Spain. Journal of Economic 

Geography, 12, 1191-1215. 



 

24 
 

KARL, T. R. & KOSS, W. J. 1984. Regional and National Monthly, Seasonal, and Annual 

Temperature Weighted by Area, 1895-1983. Historical Climatology Series 4-3. Asheville, 

NC: National Climatic Data Center. 

KAWASHIMA, T. 1975. Urban Agglomeration Economies in Manufacturing Industries. Papers 

in Regional Science, 34, 157-175. 

KRUGMAN, P. 1991. Geography and Trade, London, MIT Press. 

LALL, S. V., SHALIZI, Z. & DEICHMANN, U. 2004. Agglomeration Economies and 

Productivity in Indian Industry. Journal of Development Economics, 73, 643-673. 

LE NÉCHET, F., MELO, P. C. & GRAHAM, D. J. 2012. The Role of Transport Induced 

Agglomeration Effects on Firm Productivity in Mega-City Regions: Evidence for Bassin 

Parisien. Transportation Research Record: Journal of the Transportation Research 

Board, 2307, 21-30. 

LEVINSON, D. 2012. Network Structure and City Size. PLoS One 7. 

LEVINSON, D. & EL-GENEIDY, A. 2009. The Minimum Circuity Frontier and the Journey to 

Work. Regional Science and Urban Economics 39, 732–738. 

MCKENZIE, B. 2015. Who Drives to Work? Commuting by Automobile in the United States: 

2013, . American Community Survey Reports. US Bureau of the Census. 

MCKENZIE, B. & RAPINO, M. 2011. Commuting in the United States: 2009. American 

Community Survey Reports, ACS-15. Washington, DC.: U.S. Census Bureau. 

MELO, P. C. & GRAHAM, D. J. 2009. Agglomeration Economies and Labour Productivity: 

Evidence from Longitudinal Worker Data for GB’s Travel-to-Work Areas. SERC 

Discussion Paper 31, LSE. 

MOOMAW, R. L. 1983. Is Population Scale a Worthless Surrogate for Business Agglomeration 

Economies? Regional Science and Urban Economics, 13, 525-545. 

MORETTI, E. 2004a. Estimating the Social Return to Higher Education: Evidence From 

Longitudinal and Repeated Cross-Sectional Data. Journal of Econometrics, 121, 175-212. 

MORETTI, E. 2004b. Human Capital Externalities in Cities. In: HENDERSON, J. V. & 

THISSE, J. F. (eds.) Handbook of Regional and Urban Economics. Amsterdam: North-

Holland. 

MUNDLAK, Y. 1978. On the Pooling of Time Series and Cross Section Data. Econometrica, 46, 

69-85. 



 

25 
 

RAUCH, J. E. 1993. Productivity Gains from Geographic Concentration of Human Capital: 

Evidence from the Cities. Journal of Urban Economics, 34, 380-400. 

RICE, P., VENABLES, A. J. & PATACCHINI, E. 2006. Spatial Determinants of Productivity: 

Analysis for the Regions of Great Britain. Regional Science and Urban Economics, 36, 

727-752. 

ROBACK, J. 1982. Wages, Rents, and the Quality of Life. Journal of Political Economy, 90, 

1257-1278. 

ROSENTHAL, S. S. & STRANGE, W. C. 2008. The Attenuation of Human Capital Spillovers. 

Journal of Urban Economics, 64, 373-389. 

RUPPERT, D., WAND, M. P. & CARROLL, R. J. 2003. Semiparametric Regression 

Cambridge, Cambridge University Press. 

WOOD, S. N. 2006. Generalized Additive Models: An Introduction with R, Boca Rantom, 

Chapman & Hall/CRC. 

 

                                                 
1 MSA can be defined as functional economic areas with a strong degree of economic integration and are generally 
centred around a core urban area of at least 50,000 people. 
2 Data for public transport revenue vehicle miles are available from the National Transit Database for urbanised 
areas, but not for metropolitan areas. In a recent study Chatman and Noland (2014) look at the relationship between 
transit services, physical agglomeration and productivity for urbanised areas in the US. Huang and Levinson (2015) 
have measured transit circuity for recent years, and Owen and Levinson (2014) have measured accessibility 
3 The first stage partial R2 and Shea R2 have moderate to high values and tend to be higher for urban agglomeration. 
Moreover, the Kleibergen-Paap rank LM statistic test rejects the null hypothesis of model underidentification, 
indicating that our models are identified. In addition, the Kleibergen-Paap Wald rank F weak identification test 
statistic is generally higher than the Stock and Yogo critical values, suggesting that the instruments are not weak. 
Finally, the Stock-Wright LM S statistic also generally indicates that the instruments are valid.  
4 The Hausman test rejects the null hypothesis of no correlation between MSA specific unobserved heterogeneity 
and the model covariates, suggesting the FE estimator should be preferred over the RE estimator as only the former 
provides consistent estimates. However, the FE estimator can result in great loss of efficiency for variables with 
relatively small time variation, as tends to be the case of education and agglomeration. The CRE estimator allows 
for greater flexibility; it provides consistent but more efficient parameter estimates than the FE estimator. CRE (1) 
model suggests there is correlation for employment density, educational attainment and housing cost index. Hence, 
model CRE (2) allows for correlation between MSA specific unobserved heterogeneity and these covariates. 
Turning to the IV models, model CRE-IV (1) indicates there is correlation for educational attainment and the 
relative industrial specialisation index. Model CRE-IV (2) allows for correlation between these variables and MSA 
specific unobserved heterogeneity. 
5 For both the non-IV and IV models, the Hausman test suggests there is correlation between metropolitan area 
specific unobserved heterogeneity and the observed covariates. Model CRE (1) indicates this is the case for 
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employment accessibility, educational attainment, and relative industrial specialisation. Model CRE (2) allows for 
correlation for these variables and produces an elasticity estimate for employment accessibility equal to 0.096. 
Model CRE-IV (1) suggests there is correlation for educational attainment and relative industrial specialisation, 
which is allowed for in model CRE-IV (2) and produces an elasticity estimate for employment accessibility equal to 
0.095. 
6 The Hausman test rejects the null hypothesis of consistency of the RE model. Issues of little time variability in the 
measures of educational attainment and employment accessibility render most of the coefficients insignificant in the 
FE model. To avoid the loss of efficiency of the FE model, we estimate a CRE model which we select as our 
preferred model. IV models were not estimated because of the many time bands but given the results in tables 2 and 
3 we would not expect to find great differences between the IV and non-IV estimates. 
7 The full set of results can be obtained from the authors upon request. 
8 Similar results were obtained for the IV models, which can be obtained from the authors upon request. 
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