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Abstract 

Applying surface texture to piston liners may provide an effective means of 

controlling friction and hence improving engine efficiency. However, little is 

understood about the mechanisms by which pockets affect friction, primarily because 

of a lack of reliable experimental measurements.  To address this, the influence of 

surface texture on film thickness and friction force was measured simultaneously in a 

convergent-divergent bearing, under conditions that closely replicate an automotive 

piston ring-liner conjunction. Film thicknesses were measured using a modified 

version of the ultra-thin film optical interferometry approach, enabling film 

thicknesses <50 nanometres to be measured under transient, mixed lubrication 

conditions. This involved using the out-of-contact curvature of the specimens in place 

of a spacer layer and analysing multiple interference fringes to avoid fringe 

ambiguity. Tests were performed on both a textured sample (with features oriented 

normal to the direction of sliding) and a non-textured reference sample, while angular 

velocity, applied normal load and lubricant temperature were controlled in order to 

study the effect of varying lubrication regime (as typically occurs in service). Results 

showed that the presence of surface pockets consistently enhances fluid film thickness 

in the mixed lubrication regime by approximately 20 nm.  Although this is only a 

modest increase, the effect on friction is pronounced (up to 41% under these 

conditions), due to the strong dependence of friction on film thickness in the mixed 

regime. Conversely, in the full film regime, texture caused a reduction in film 

thickness and hence increased friction force, compared with the non-textured 

reference.  Both textured and non-textured friction values show nearly identical 

dependence on film thickness, (showing that, under these conditions, texture-induced 

friction reduction results entirely from the change in film thickness). These results are 

important in providing film thickness data to validate piston-ring lubrication models 

and also in helping to understand the effect of surface roughness on texture 

performance.   

Keywords: Surface texture, Surface patterning, Piston rings, Optical interferometry, Thin film 

lubrication. 
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1. Background 

 

1.1 Surface Texture 

It has long been known that surface texturing can improve tribological performance in 

a wide range of applications. Examples from nature include fish that use surface texturing to 

reduce hydrodynamic drag and plant leaves that use the “lotus leaf” effect to achieve self-

cleaning [1–3]. These natural occurrences have inspired many attempts to artificially texture 

the surfaces of components in engineering applications. 

Various beneficial effects of surface texture on tribological performance have been 

proposed in the academic literature. These include i) sliding fiction force reduction [4–15] 

due to increased load support, ii) wear reduction under dry and boundary lubricating 

conditions due to “debris trapping” [9,16–20] and iii) starvation prevention  due to the 

provision of secondary lubricant reservoirs [9,16,21–24]. In addition, a recent study by 

Greiner et al. [25] suggested  that surface texture can reduce static friction by a factor of two, 

provided an optimum dimple diameter is selected. Because of these potential advantages, 

surface texture is currently being applied to various components in modern IC (internal 

combustion) engines [26]; Gehring GmbH being the first company to offer LST 

commercially.  

Typically, surface features are typically created in engineering applications through 

laser texturing (also known as LT, LST, or laser honing). However, due to the high 

manufacturing costs and speed limitations of LST, alternative texturing methods for 

tribological surfaces are becoming increasingly prevalent. A recent study by Costa and 

Hutchings [27] investigates and classifies existing texturing techniques and explores a variety 

of innovative methods which may be employed in the future. 

Research into the friction reducing effects of surface texture started with the 

introduction of the concept of “micro-irregularities” by Hamilton and Allen in 1966 [28,29]. 

They pointed out that by adding “asperities and depressions” to one face of a parallel rotary-

shaft face seal, the load support capabilities of the seal could be improved. Various 

subsequent analytical and experimental studies into the effect and performance of textured 

bearings have been carried out, with an increasing frequency in the last decade. The majority 

of these studies investigated the effects of patterned surfaces in hydrodynamic, full film 

conditions [30–35], whilst a few tested the effects of geometric patterns on 

elastohydrodynamic lubrication [36,37] or boundary and/or mixed lubrication [20,38–41]. 

From these studies, it seems increasingly clear that texture is most effective in the mixed and 

boundary regime, where it can lead to friction reductions of more than 50% (for example see 

[4]) – a finding that has important implications for reducing fuel consumption in automotive 

contact, such as the piston-liner conjunction. However, the mechanisms through which laser 

textured patterns prove beneficial remains unclear.  This is in part due to the fact that the vast 

majority of research focused on sliding friction force, with few oil film thickness 

measurements being attempted  

Only a limited number of texture studies have used test rigs to simultaneously 

measure friction and oil film thickness response. Of particular significance is the work carried 
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out by Costa and Hutchings [30] who developed a reciprocating test rig to investigate friction 

force and lubricant film thickness in a full-film hydrodynamic contact. In this case, they 

employed a capacitance technique to study the effect of geometrical characteristics of laser 

surface texture on oil film thickness. They also investigated various textured patterns and 

concluded that chevron patterns where the most effective in increasing the hydrodynamic 

lubricant film thickness, while grooves parallel to the direction of sliding proved least 

effective. Apart from that study, simultaneous measurement of film thickness and frictional 

response of textured interfaces in boundary and mixed lubrication regimes has so far largely 

escaped attention, possibly due to the difficulty in measuring film thickness in a sliding 

contact under such thin film conditions. 

 

1.2 Film thickness measuring for textured contacts 

Here, we briefly review techniques used to measure film thickness in textured 

contacts under different lubrication regimes. 

 Optical interferometry has been employed as a tool to measure lubricant film 

thickness since the 1960s [42]. In 1996, Cann et al. developed the Spacer 

Layer Imaging Method (SLIM) [43], which, combined with high-performance 

video cameras, allowed automatic colorimetric imaging of interference images 

and film thickness mapping of mixed and boundary lubricated contacts below 

150 nm. In 2001, Spikes and Cann employed SLIM to study asperity film 

formation for the first time in detail [44]. In that study, film thickness maps 

were obtained for ball specimens with transverse and longitudinal ridges as 

well as for arrays of small bumps. The optical interferometry technique was 

later applied to oil film thickness mapping of microtextured bearing surfaces, 

typically using ball-on-disc tribometers. Mourier et al. [37] analysed the 

effects on lubricant film thickness of isolated micro-cavities passing through 

an elasto-hydrodynamic (EHD) point contact. This showed that, under pure 

rolling conditions, there are no significant changes in film thickness as the 

dimple passes through contact. However, under rolling-sliding conditions,  

two different effects of the micro-cavity passing through contact were 

observed: i) deep cavities (7 µm) tend to decrease the oil layer locally as the 

pocket enters the contact, while ii) shallow dimples (1.3 µm) exhibit the 

opposite effect, increasing the lubricant film thickness when the bearing 

operates under EHD regime.  

In a similar study employing pocketed steel balls on glass discs, Krupka and 

Hartl [45] also analysed the effect of texture depth on thin EHD lubrication 

films. Optical interferograms and cross-section profiles of the film thickness 

were plotted for various textured surfaces with micro-dents depths varying 

between 560 nm and 1900 nm. Similar to Mourier’s observations, the authors 

concluded that deep micro-dents lead to a reduction in oil film thickness 

downstream the leading edge. Furthermore, a slightly reduced pocket depth 

again led to a reduction in measured friction. The same group also used a thin 

film colorimetric interferometry technique to observe the behaviour of shallow 
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micro-dents under mixed lubrication conditions [24]. Here, results showed a 

significant local increase in oil film thickness as shallow micro-dents (depths 

between 200 and 300 nm) passed through mixed lubricated contacts. 

Another study involving oil film thickness measurement by optical 

interferometry worth mentioning is the work by Kaneta et al. [46]. They built a 

reciprocating test apparatus which enabled simultaneous measurements of 

friction force and lubricant film thickness in a line contact. Although the main 

purpose of the study was to observe the influence of cross sectional shape and 

stroke length of the rubber seal upon friction force and film thickness, a 

surface defect in the shape of a dent was also investigated. In this case, a local 

increase in film thickness was observed downstream from the dent. 

These studies show that optical interferometry is a powerful technique to 

measure film thickness under mixed and boundary conditions.  However, 

under the reciprocating conditions present in an automotive piston-liner type 

contact, the reliance on a semi-reflective coating on that transparent specimen 

is problematic due to issues of wear. 

 Laser Induced Fluorescence (LIF) is a technique commonly used to 

determine lubricant film thickness in a tribological contact. Based on the 

photo-excitation of a fluorescent dye, this technique proves difficult to use in 

conjunction with textured surfaces, as additional light from the deeper pockets 

distorts film thickness measurements. However, LIF has proved reliable when 

measuring oil film thicknesses in non-textured lubricated contacts (e.g. 

[47,48]), and imaging the cavitation pattern encountered at the outlet of 

tribological contacts [4].  LIF has been applied to automotive contacts by 

Dearlove and Cheng [49] who simultaneously measured mid-stroke lubricant 

film thickness and friction force in a single piston ring-floating liner non-

textured assembly. Although the frictional behaviour was found consistent 

with Stribeck diagrams while running in both hydrodynamic and mixed 

regimes, the authors reported difficulties in calibrating the LIF signal. 

 Ultrasonic Sensing has been developed over the last decade as a tool to 

measure film thickness in tribological contacts (e.g.[50,51]) and has recently 

been applied in IC engine cylinder liner applications by mounting elements to 

the cylinder wall [52,53].  Although this approach has the advantage of being 

non-invasive (it can be used on actual components without requiring a 

transparent window), it has disadvantages in terms of spatial resolution (which 

is typically larger than piston-liner contact area) and minimum measurable 

film thickness of around 50 nm (despite showing potential to distinguish 

asperity and liquid stiffness under mixed lubrication conditions [54]). 

 

In conclusion, very few studies of reciprocating micro-textured bearings employ film 

thickness measurements, mainly due to the difficulty in performing such measurements under 

mixed and boundary conditions.  As a result, there remain uncertainties regarding the 

mechanisms by which surface pockets affect friction.  Optical interferometry is an effective 
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technique for measuring film thickness under boundary conditions; however its reliance on a 

semi-reflective coating usually limits its application to rolling conditions in order to preserve 

the coating.  In order to overcome this limitation and study the effect of surface texture on 

film thickness in a piston-liner type contact, this study uses a modified version of the standard 

optical interferometry technique and a test rig specifically designed to replicate the contact 

conditions in a piston-liner conjunction. 

 

2. Description of the reciprocating apparatus 

This study uses a custom built reciprocating test apparatus that enables simultaneous 

measurement of friction, film thickness and cavitation behaviour of textured and non-textured 

surfaces. Designed with the main purpose of closely replicating an IC engine’s tribological 

contact between the piston ring and cylinder liner, the main structural features of this test 

apparatus are shown in Fig. 1 (the reciprocating pad is labelled A and the stationary ring 

specimen is labelled B). 

 

 

Figure 1 – Original layout of the reciprocating test rig 
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The reciprocating motion of the fused silica pad along two linear bearings is ensured 

by an electric motor which drives an adjustable stroke mechanism. The latter allows the 

piston-liner motion to be accurately controlled in order to replicate automotive conditions. 

The stroke length selected for this study is 28.6 mm. Two centrifugal governors ensure the 

continuous and smooth sliding movement of the silica plate is maintained at both ends of the 

stroke. Due to the governor inertia, the reciprocating motion of the silica plate holder is 

forced to continue after each of the dead centres is reached. The reciprocating velocity and 

angular position of the contact is measured by means of a rotary position encoder, fixed to the 

bottom of the cam mechanisms’ shaft. 

Friction force is captured using a high sensitivity load cell, connected by a rod to an 

adjustable mechanism that holds the lower specimen. The holding mechanism ensures near 

perfect alignment of the curved steel pad against the counterpart fused silica pad that 

represents the cylinder liner. The operating normal load can be varied between 10 N and 120 

N using multiple dead weights connected to the silica pad specimen holder. 

Two nozzles attached to the oil bath provide a supply of lubricant to both sides of the 

contact region. A sufficient quantity of fully formulated SAE 40 oil thus reaches the contact, 

preventing inlet starvation. Preliminary tests demonstrated that oil temperature is the most 

important operating parameter due to its effect on lubricant viscosity. As even a slight 

variation in temperature can radically alter measured friction values, a precise oil supply 

system was designed. This involved an immersion circulator, to regulate lubricant 

temperature within a range of +10°C to +150°C and with a stability of 0.2°C, and a gear 

pump and peristaltic pump to convey the lubricant to and from the contact. This precise 

temperature control allows textured and non-textured bearing configurations to be assessed 

under boundary, mixed and full film lubrication regimes. 

Film thickness and frictional response for individual textured and non-textured 

specimens are measured at every location along the stroke of the silica pad using a 9 bit 

triggering system with a precision equal to 0.7 degrees of crankshaft revolution. 

 

 

3. Determination of film thickness using a multiple wavelength, out of contact, ultrathin-

film interferometry approach 

 

A key requirement in this study is the measurement of oil film thickness in addition to 

friction force, in both the full film and the mixed lubrication regimes. To achieve this, a 

variation of the optical ultrathin-film interferometry technique was devised allowing sub 50 

nm film thickness to be monitored, without using a silicon spacer layer.  Optical 

interferometry was chosen, due to its ability to accurately quantify nanometre scale film 

thicknesses. This technique typically involves reflecting light off the top and bottom of an oil 

film and calculating its thickness based on the wavelength, at which constructive or 

destructive interference occurs, and the fringe order (i.e. the number of complete wavelengths 

between the two rays).   
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The method to achieve this is outlined schematically in Figure 2 and involves 

positioning an optical microscope above the stationary ring specimen and focussing through 

the transparent reciprocating pad.  The lower surface of the pad specimen is coated with a 

570 nm semi-reflective chromium coating so that light from the microscope undergoes a 

division of amplitude when it is incident on the oil film.  A spectrometer slit captures the 

interfered reflected beam and disperses it by wavelength before being recorded by a high 

speed video camera.  In Figure 2, an example output image from the spectrometer is shown in 

the top left corner, where wavelength is on the horizontal axis and distance along the contact 

is on the  vertical axis. Here, lighter and darker regions represent constructive and destructive 

interference respectively.  This image is then processed in Matlab to remove erroneous 

spectral variations (that arise from the optical system), before being averaged over its central 

region to give the variation in intensity versus wavelength, shown in the bottom left of the 

Figure.  The peaks in this graph result from constructive interference of light at specific 

wavelengths. The following text explains the modifications to the standard ultra-thin film 

interferometry technique that are necessary for the type of contact being studied.  

 

Figure 2 – Schematic diagram of the interferometry set-up 

 

The piston-liner contact frequently operates in the mixed and boundary regimes with 

film thickness less than 100 nm. Using interferometry, it is not possible to measure such thin 

films directly, since values in this range do not provide a sufficiently large path difference 
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between the light rays to cause interference.  To ensure that the optical gap between the 

sliding surfaces is greater than ½ the wavelength of light, and hence cause interference 

fringes, a “spacer layer” is typically applied to the contacting surface of the transparent 

specimen.  The invisible spacer layer increases the measured film thickness by virtue of 

having a refractive index close to that of the test lubricant and its thickness, determined prior 

to testing, is subtracted from each test measurement.  In this work, however, a silica spacer 

layer had to be avoided since it would alter the topography of the pocketed surface of the 

transparent specimen.  Furthermore, due to the sliding nature of the contact, operating under 

mixed lubrication conditions, any surface coatings present would be removed rapidly due to 

wear.  Therefore, a modification was devised, in which the effect of the spacer layer was 

reproduced by using the out-of-contact curvature of the ring specimen – i.e., as shown in Fig. 

3, the measurement location was chosen outside the contact area so that each measurement 

was a composite of the lubricant film thickness and the 400 to 700 nm gap caused by the 

curvature of the ring specimen.   The required curvature of the ring specimen was achieved 

by machine grinding a slope on to each end of the pin specimen prior to testing.  

A challenge to overcome here is that, whereas a spacer layer’s approximate thickness 

is known a priori, the out-of-contact gap is not known and therefore the fringe order is not 

available to be used in the film thickness calculation.  To overcome this problem, a second 

modification was made, whereby the film thickness was calculated based on the difference in 

wavelength between adjacent interference fringes.  The equation to enable this calculation is 

obtained as follows.    

Constructive interference occurs when the light beam, reflecting off the lower surface 

of the oil film, has travelled an integer number of wavelength further than the beam reflected 

of the upper surface according to 

  
       

         
         (1) 

where h is the spatial thickness of the oil film, n is its refractive index, λN is the 

wavelength associated with the N
th

 order fringe, θ is the angle of incidence of the oil and ϕ is 

any phase change that occurs on reflection. 

If white light containing a broad range of wavelengths is used, then, for the same film 

thickness, h, Equation (1) will be satisfied for several different values of N.  For example, 

some smaller wavelength, λN+1, will result in the N
th

+1 interference fringe according to 

  
           

         
        (2) 

If Equations (1) and (2) are equated and rearranged, an expression for h is obtained in 

which the fringe order and the phase change are absent 

  
       

             
        (3) 
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This relationship is useful since it enables the film thickness to be calculated from the 

wavelengths of any two adjacent interference fringes without requiring knowledge of the 

phase difference or fringe order (hence overcoming the issue of “wavelength ambiguity” that 

is sometimes discussed (e.g. see [55]).  All that is needed in practice to obtain film thickness 

values with this approach is an intensity-wavelength image from the spectrometer that shows 

more than one interference peak.  Usually, this condition is satisfied when large film 

thicknesses are measured (since they allow many wavelengths to interfere). The out-of-

contact measurement method, described above, produces sufficiently large thickness (i.e. 

hundreds of nm) and makes this possible.  

It should be noted that Equation (3) can also be used to calculate film thickness based 

on two adjacent destructive interference fringes. 

 

 

Figure 3 – Principle of ultrathin film interferometry with “natural” spacer layer 

 

In order to measure film thickness in this way, knowledge was required of the out of 

contact gap at each angular position along the stroke (since it varied slightly due to 

imperfections in the fused silica specimen and differences in alignment between the 

contacting surfaces).  To achieve this, successive images were recorded prior to each test, 

under quasi static conditions (i.e. reciprocating at a speed of 0.1 Hz) and with the relevant 

normal load applied. A frame rate of 200 Hz was used here, resulting in 6 film thickness 

measurements for every singular angular position of the crankshaft’s revolution. In this way, 

interference images were captured throughout four consecutive strokes (two crank 
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revolutions) and were subsequently processed automatically using a custom Matlab code.  

This processing consisted of: 

a) Averaging the two recorded strokes. 

b) Calibrating out erroneous spectral intensity variations (that typically from the light 

source) by dividing each measured spectrum by one which had been obtained 

when no optical interference fringes were present (i.e. applying the same 

technique as that used by PCS instruments EHL ULTRA rigs), 

c) Identifying the wavelengths that corresponded to adjacent interference peaks using 

standard Matlab peak detecting functions. 

d) Applying Equation (3) to give film thickness.  

The resulting variation in gap height with angular position was then stored to be used 

in the subsequent test (this is analogous to the spacer layer thickness being recorded in 

conventional thin film interferometry).  Each test involved increasing the speed to the 

required value, acquiring images at the same out of contact location, and processing with the 

same Matlab code (described above) to give the film thickness variation along the stroke.  

Then, to obtain the in contact film thickness, the quasi static film thickness was subtracted 

from each test measurement at the correct angular position.  This was possible, since the 

angular position at which each image was acquired was recorded, alongside film thickness, 

thanks to the trigger system and the rotary encoder. 

 In summary, the optical interferometry technique was selected and modified for this 

research for two main reasons: i) it is now believed that texture is most effective under mixed 

lubrication conditions ([4,8,10,12]) where film thicknesses are in the order of nanometres and 

hence this technique is most effective, ii) the use of conventional LIF techniques was not 

possible for such textured surfaces, as measurements are distorted by additional light 

escaping from inside the pocket which is nearly an order of magnitude deeper than the 

contact film thickness.  It should be noted that this newly developed technique measures the 

average separation of the rough surfaces compared to the stationary case where these is no 

load support from the oil. It does not prove two dimensional maps of the film thickness. 

 

4. Experimental procedure and test specimens 

 

Real-time measurements of frictional force were acquired simultaneously with film 

thickness using a LabView programme. Fully formulated SAE 40 oil was supplied to the 

reciprocating contact, and its temperature and consequently viscosity were controlled 

accurately. Table 1 shows the lubricant properties for three distinct temperatures, selected in 

order to place the reciprocating bearing in various lubrication regimes. In one set of tests the 

speed was varied between 1 Hz and 3 Hz for a constant load of 10 N, while in a second set, 

progressive loads (10 N, 30 N and 50 N) were applied for a constant speed of 3 Hz. In 

addition to the repeated out-of-contact-film thickness calibration described in Section 3, 

isometric load cell calibrations were performed before and after each test sequence (for more 

details of the friction test procedure see [4]). 
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Oil Temperature 

[ºC] 

Oil properties 

Dynamic viscosity, η 

[mPa
.
s] 

Kinematic viscosity, ν 

[mm
2
/s] 

Density, ρ [g/cm
3
] 

15 273.628 314.913 0.8689 

45 61.727 72.603 0.8502 

80 18.847 22.753 0.8283 

 

Table 1 – Properties of the fully engine formulated lubricant at the desired temperatures selected for this study 

 

 

 

A 10×10×2 mm rectangular steel pad (AISI 52100) was manufactured and fully 

hardened at 850 HV to closely replicate the IC engine piston ring. A minimum stock of 0.15 

mm was subsequently removed by grinding the pad on all sides. One surface of the 2 mm 

width side was ground at a 40 mm radius, in the sliding direction to produce a convex form. 

Both friction and film thickness relied upon a high quality of finish and this was achieved (as 

depicted in Figure 4), by polishing with a synthetic short nap cloth and a 0.25 µm 

monocrystalline water based diamond spray. 

 

 

 
Figure 4 – Three dimensional surface topography of the cylindrical steel specimen as obtained by the Veeco 

Wyko NT9100 optical profiler 

 

 

Due to its higher elasticity compared to normal glass (elastic modulus of 72.7 GPa), 

a HPFS Standard Grade fused silica material was selected for the flat counterpart specimen. 

An ultrafast laser emitting 10 picosecond optical pulses was used to texture the surface of the 
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125×15×5 mm rectangular fused silica specimen. The following performance parameters 

were selected for the laser texturing process: 10 kHz frequency, 355 nm wavelength, 5 micro 

joules power. The three-dimensional optical profile of the textured sample is shown in Figure 

5, as recorded by a Veeco Wyko NT9100 optical profiler. The dimensions of the pockets 

were 7.5 µm in depth; 80 µm in width; 500 µm separation (gap between two lines of pockets 

in the direction of travel).   

 

This pocket shape was selected based on previous experimental work carried out by 

the authors, which showed that transverse grooves normal to the direction of sliding exhibit 

the lowest friction force under mixed and boundary lubrication regimes when compared with 

other textured patterns such as chevron, crosshatch and grooves inclined or parallel to the 

direction of sliding [4].  

                                 
Figure 5 – Two dimensional surface plot of the laser surface textured fused silica specimen  

 

 

Before starting the simultaneous film thickness-friction force test sequence, 

measurement repeatability and stability over time were assessed for each of the two 

parameters. Figure 6 demonstrates the repeatability over time for both friction force and film 

thickness tests for three non-consecutive measurements, performed on different days. These 

were performed with the non-textured specimen for one combination of test conditions (crank 

angular velocity: 3 Hz, normal load: 30 N, oil temperature: 15°C).  It can be seen from Fig 6 

that the variation in measured film thickness is not identical for every stroke, with strokes two 

and four showing lower values than one and three.  This erroneous variation is due to a slight 

rolling rotation of the pad.  Measures, such as using high tolerance linear bearings and the 
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self-aligning mechanism, were put in place to reduce this effect but it was not possible to 

remove it entirely. 

 

In order to check the validity of these measurements, film thickness was calculated 

for the relevant test conditions at the midpoint along stroke (this position was chosen so as to 

negate transient variations due to squeeze film effects).  Specifically, Dowson and Toyoda’s 

central film thickness equation for a line contact [56] was used and the result is shown in the 

figure.  It is clear that the calculation matches the measurement very well and thus provides 

some validation for this new interferometry approach.  

 

 
 

Figure 6 – Stable friction force over time for the smooth specimen; repeatability between three different tests. 

 

 

 

 

5. Results and discussion 

 

The graphs shown in this section clarify the relationship between friction response 

and stroke angle, as well as oil film thickness and stroke angle, both as a function of applied 

normal load and sliding speed. The section is divided up according to the test temperature, 

since the lubricant temperature (and hence its viscosity) controls the lambda value and 

therefore the lubrication regime under which the contact is operating.  For each lubrication 

computed mid-stroke film thickness: 685 nm 
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regime, two series of tests were performed. First, the angular velocity was varied while 

keeping normal applied load constant and second, the applied load was varied while keeping 

the crank angular velocity constant. 

For each test, a comparison between the textured and non-textured specimens is 

presented. Both friction force and film thickness curves display cyclic fluctuations, as the 

sliding speed varies along the stroke length.  

 

5.1 Results from full film regime – nominal lambda for non-textured specimen varying 

between 3.6 and 7.9  

Results from the full film lubrication regime are shown in Fig. 7 and Fig. 8. Here, 

simultaneous friction force and film thickness test data are plotted for a constant oil 

temperature of 15°C (oil viscosity of 273.6 mPa·s) while varying the crank angular velocity 

(Fig. 7) and normal applied load (Fig. 8). These tests show the friction force increasing 

towards the middle of the stroke in an approximately sinusoidal fashion.  This occurs because 

under such conditions, friction arises due to the shearing of oil layers inside the contact, and 

is approximately proportional to the varying sliding velocity.  This has been noted previously 

by the current authors in [4], and is in good agreement with observations by Costa and 

Hutchings [30].  Also in agreement with hydrodynamic/elastohydrodynamic theory, it can be 

observed that both friction and film thickness increase with reciprocating frequency and 

hence entrainment speed.  
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Figure 7 – Simultaneous measured friction force and film thickness comparisons between textured and non-

textured samples under full film lubrication regime (test conditions: crank angular velocity: 1, 2 and 3 Hz, 

normal load: 10 N, oil temperature: 15°C) 

 

From Fig. 7 (and also 8) it can clearly be observed that the presence of surface 

texture in the full film regime results in higher friction compared with the non-textured case. 

These friction results support the conclusions from previous study, conducted by the current 

authors [4] where it was shown that in the full film lubrication regime the surface texture is 

detrimental, no matter which of the tested pocket geometries or patterns are used.  

Furthermore, the film thickness measurements in Fig. 7 and Fig. 8 show that this friction 

increase is caused by an increase in shear rate. The current friction plots are also in agreement 

with those obtained by Kovalchenko et al. [8], Pettersson and Jacobson [20] and Costa and 

Hutchings [30], in that the presence of surface texture does not significantly reduce friction 

force when a bearing is fully lubricated. 
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Figure 8 – Simultaneous friction force and film thickness comparisons between textured and non-textured 

samples under the full film lubrication regime (test conditions: crank angular velocity: 3 Hz, normal load: 10, 

30 and 50 N, oil temperature: 15°C) 

 

Fig. 8 shows how friction force and film thickness vary with applied normal load, 

when the angular speed is held constant at 3 Hz.  Although friction is seen to increase with 

applied load, the coefficient of friction reduces again according to hydrodynamic theory (i.e. 

µ α u/h and h α w
-0.5

, therefore µ α w
-0.5

).  This is confirmed by a simple analysis of the data 

in Fig. 8, which shows that the coefficient of friction at mid-stroke is approximately 

proportional to the load raised to the power 0.5.  

Similar to Fig. 7, Fig. 8 again shows that surface texture has a detrimental effect on 

film thickness in the full film regime.  

The detrimental effect of texture features being present at the reversal point, and 

protruding outside the contact area, is demonstrated by Figs. 7 and 8. Here, pockets act to 

collapse the squeeze film, thus causing a pronounced friction spike as the contact enters into 

mixed/boundary regime. 

 

Fig. 8 also shows that, although for the textured specimen the friction spike after 

reversal is significantly higher than that of the smooth specimen, the friction force  falls 

rapidly to the same level as, or even below, the non-textured value as the contact accelerates 

(test condition: 30 N and 50 N). However, towards the middle of the stroke, the friction 

response of the textured specimen increases above the non-textured value. 
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A final detail to be noted from Fig. 7 is 

the variation of film thickness at the end of the 

stroke. As the reciprocating speed increases, the 

minimum film thickness at reversal increases 

accordingly (Fig. 7, dotted line). This 

demonstrates that, at high reciprocating speeds, 

an appreciable lubricant film remains at the 

reversal point and there is insufficient time for it 

to be squeezed out of the contact area before the 

acceleration of the pad in the subsequent stroke 

begins to build the film thickness. This squeeze 

film behaviour at reversal can be seen clearly in 

Fig. 9, which is a zoomed-in plot of Fig. 7 (test 

condition 1 Hz – 10 N),   for the non-textured 

specimen over the first 30° of stroke angle. Here, 

the minimum film thickness is reached at 8° of 

crankshaft revolution after the reversal point.  

This is when the rate of film reduction due to the 

lubricant being squeezed out from the contact is 

outweighed by the increasing thickness due to 

hydrodynamic entrainment. The film thickness in 

Fig. 9(a) was used to calculate the strain rate 

(u/h), which is shown in Fig. 9(b), alongside the 

measured friction force.  As expected, the 

maximum friction coincides with the maximum 

strain rate (since, under hydrodynamic conditions, 

friction is proportional to u/h).  

A final remark relating to squeeze film 

effects is that the film thickness peaks are not 

symmetrical about the maximum value.  In fact, it 

can be seen that the film thickness during 

deceleration is greater than during acceleration.   

 

 

This is because, during deceleration, squeeze effects prevent the film falling to its steady-state 

value, while, during acceleration, the converse effect prevents the film thickness reaching its 

steady-state value (the behaviour has been observed previously by Costa and Hutchings [30] 

and predicted recently by Medina et al [57]). 

 

5.2 Results from mixed regime – nominal lambda for non-textured specimen varying 

between 1.3 and 2.8  

Figure 9 –Oil film thickness (a) and 

corresponding friction force (b) captured for 

the non-textured specimen (test condition: 

crank angular velocity: 1 Hz, normal load: 10 

N, oil temperature: 15°C) 
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When the lubricant temperature is increased to 45°C (oil viscosity: 61.73 mPa·s), the 

bearing contact under investigation passed from the full film lubrication regime towards the 

mixed regime (as the lambda value reduced). As shown previously in [4], friction values 

obtained around the centre of the stroke are not affected by squeeze effects and may therefore 

be plotted onto a master Stribeck curve. When this is done for both smooth and textured 

specimens, it can be seen that the latter has the effect of shifting the Stribeck curve towards 

the left, and this was previously attributed to an increased oil film thickness in the mixed 

regime [4]. This hypothesis has been confirmed in the current study by the simultaneous 

measurement of friction force and oil film thickness for the test conditions corresponding to 

the transition from full film to mixed lubrication (Fig. 10 and Fig. 11).  

 

Figure 10 – Simultaneous friction force and film thickness measurements, comparing textured and non-textured 

samples and showing the transition from mixed to full film lubrication (test conditions: crank angular velocity: 

1, 2 and 3 Hz, normal load: 10 N, oil temperature: 45°C) 

As depicted in Fig. 10, the friction force for the non-textured specimen reduces with 

increasing reciprocating speed as a result of the contact moving from the mixed to the full 

film regime.  The textured specimen on the other hand is less affected by the variation in 

reciprocating speed and as a result, there is a cross over between the friction results for the 

two specimens – at both 1 and 2 Hz the textured specimen out performs the non-textured, 

while at 3 Hz, the reverse is true.  This is because at 1 and 2 Hz, the contact is operating in 

the mixed regime, where texture is known to be effective, while at 3 Hz the contact is 
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operating in the full fill regime, where texture is detrimental.  The corresponding film 

thickness results are in complete agreement with the friction results, in that the higher friction 

between textured and non-textured is invariably accompanied by a lower film thickness – i.e. 

in the mixed regime, texture increases film thickness and hence reduces asperity contact and, 

in turn, friction; while in the full film regime, texture reduces film thickness and hence 

increases shear rate and, in turn, friction.  

 

 

Figure 11 – Simultaneous friction force and film thickness measurements, comparing textured and non-

textured samples and showing the transition from full film to mixed lubrication (test conditions: crank 

angular velocity: 3 Hz, normal load: 10, 30 and 50 N, oil temperature: 45°C).  Red asterisks denote 

film thickness, calculated according to[56,58] 

Fig. 11 shows the effect of applied load for the oil at 45°C.  Here, the transition from 

full film to mixed lubrication can again be seen, however, unlike Fig. 10, the beneficial 

effects of texture in the mixed regime are markedly less pronounced.  The behaviour is 

tentatively attributed to the sliding speed effecting, not only the lubrication regime, but also 

the frequency with which the pockets are entrained in to the contact.  As will be explored in 

future work, the pocket entrainment frequency is believed by the authors to being a key 

parameter in controlling the effectiveness of surface texture friction reduction. 
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A large change in film thickness is evident in Figs. 10 and 11 when comparing the 3 

Hz-10 N (λsmooth, mid-stroke = 2.8) test condition to all other test conditions (in both Fig. 10 and 

11).    

This can be attributed to a change in elastohydrodynamic lubrication regime – 

specifically, the bearing is running under rigid-isoviscous lubrication conditions for the 3 Hz-

10 N test and under piezoviscous-elastic conditions for the 30 N and 50 N tests.  This change 

in lubrication regime was verified by applying Johnson’s method [59] to each set of test 

conditions and was further confirmed when the calculated film thicknesses (based on the 

appropriate lubricant regime) agreed closely with the experimental values in Fig. 11 (see red 

asterisks on the figure). 

 

5.3 Results from mixed/boundary regime – nominal lambda for non-textured specimen 

varying between 0.9 and 1.2 

Finally, the oil temperature was increased to 80°C (oil viscosity: 18.85 mPa·s) and 

friction force was recorded simultaneously with the oil film thickness response (Fig. 12). 

Angular velocity was kept constant at 3 Hz, while the applied normal load was varied from 

10 N, to 30 N and 50 N. Here, friction reductions of up to 41% were recorded when 

comparing the textured and non-textured specimens. Although oil film thickness 

measurements were difficult under these extreme testing conditions due to vibration, data 

captured during four consecutive strokes were averaged and plotted against stroke angle. It 

can be seen that there is only a slight (~20 nm) difference in film thickness between the 

textured and non-textured specimens.  At first sight, this is surprising, given the large 

difference in friction force between the two.  However, it should be noted that these contacts 

are operating in the mixed lubrication regime, where friction is highly sensitive to film 

thickness changes, due to the steep gradient of the Stribeck curve.  
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Figure 12 – Simultaneous friction force and film thickness measurements, comparing textured and non-textured 

samples in the mixed lubrication regime (test conditions: crank angular velocity: 3 Hz, normal load: 10, 30 and 

50 N, oil temperature: 80°C) 
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5.4 Summary of Results 

 

 

The method described above, of plotting mid-stroke friction force from different 

reciprocating tests onto a single master Stribeck curve, was applied to the data in Figs 8, 11 

and 12.  The result of this is shown in Fig. 13 (for a range of loads and an angular velocity of 

3 Hz), where it can be seen clearly that the effect of texture is to reduce friction in mixed and 

boundary regime.  In addition, at 45 °C the transition between mixed and full film lubrication 

occurs and this further explains the reversal in texture vs. non-textured performance, 

observed in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a better understanding of the influence of texture in the mixed regime, friction 

data recorded for all three test conditions presented in Fig. 12 (oil temperature: 80°C, oil 

viscosity: 18.85 mPa·s) were plotted against film thickness in Fig. 14 (to avoid transient 

squeeze film effects, only data captured between 8° and 90° is plotted). Despite the scatter it 

can be seen that both textured and non-textured friction values show nearly identical 

dependence on film thickness.  This shows that, under the conditions tested, texture-induced 

friction reduction results entirely from the increase in film thickness. 

 

 

 

 

 

 

Textured specimen 

15°C 

45°C 

80°C 

Figure 13 – Stribeck curves showing friction behaviour at the following oil temperatures: 15°C, 14°C and 

80°C. Sliding velocity was kept constant, while load was varied from 10N to 30N and 50N. 
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Figure 14 – Friction force variation vs. oil film thickness for three different loading conditions: 10 N, 30 N and 

50 N (crank angular velocity: 3 Hz, oil temperature: 80°C) 

 

 

6. Conclusions 

This paper contributes to the field of tribology research in two ways. Firstly, it 

demonstrates how a modified version of ultrathin film interferometry can be used to measure 

transient changes in film thickness under sliding, mixed lubrication conditions. The approach 

uses the out-of-contact curvature of the specimens in order to negate the need for a spacer 

layer and analyses multiple interference fringes to remove fringe ambiguity.  This enabled 

film thickness to be measured in a reciprocating line contact, replicating the piston ring-liner 

pairing. The validity of the technique was confirmed by a comparison with standard HL and 

EHL theory; its key benefits include: 

 The ability to study transient film behaviour in detail.  For instance, the 

squeeze effect was seen to preserve the film thickness at reversal so that the 

minimum lubricant thickness occurred after 8° to 10° of angular revolution 

into the subsequent stroke and coincided with the peak in friction force.  

This can be used to test hypotheses regarding optimum ring geometry [60]. 

 

 The production of data to validate transient piston ring modelling, such as 

[57]. 

The second contribution of the paper is its evaluation of the beneficial and 

detrimental effects of laser surface texture by simultaneously measuring friction force and 

lubricant film behaviour in a line contact placed under different lubrication regimes. 
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Considering that an IC engine’s piston transits all three lubrication regimes over one 

power stroke [61], these findings provide information to inform design decisions regarding 

the application of surface texture.  Key conclusions include: 

 Under full film lubrication conditions, the effect of surface texture is to 

reduce film thickness, which causes an increase in lubricant shear rate and 

hence increases friction.  These friction increases are minor (<12%). 

 

 Under mixed and boundary conditions, the effect of surface texture is to 

increase film thickness, causing a reduction in asperity contact and hence 

reduces friction.  Although this film thickness increase is small (~28%), its 

effect on friction is significant (~41% in this study), due to steep gradient of 

the Stribeck curve in this regime. 

It should be noted that the conditions tested in this study closely replicate those in a 

piston-liner contact, with texture applied to the liner surface. Numerous other texture 

configurations and contact conditions are possible (such as texturing that has zero velocity in 

relation to the moving contact), where these conclusions may not be relevant. 
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