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Abstract 

Core promoters are minimal regions sufficient to direct accurate initiation of transcription and are 

crucial for regulation of gene expression. They are highly diverse in terms of associated core 

promoter motifs, underlying sequence composition and patterns of transcription initiation. 

Distinctive features of promoters are also seen at the chromatin level, including nucleosome 

positioning patterns and presence of specific histone modifications. Recent advances in 

identifying and characterizing promoters using next-generation sequencing-based technologies 

have provided the basis for their classification into functional groups and have shed light on their 

modes of regulation, with important implications for transcriptional regulation in development. 

This review discusses the methodology and the results of genome-wide studies that provided 

insight into the diversity of RNA polymerase II promoter architectures in vertebrates and other 

Metazoa, and the association of these architectures with distinct modes of regulation in 

embryonic development and differentiation. 
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1. Transcriptional machinery and RNAPII core promoters 

Protein-coding genes and several classes of noncoding RNA (ncRNA) genes are transcribed by 

RNA polymerase II (RNAPII), a large multi-subunit enzyme that uses DNA as a template to 

produce complementary RNA molecule [1]. RNAPII initiates transcription at individual 

nucleotides at the beginning of the gene called transcription start sites (TSS). The region 

surrounding TSS is known as core promoter and it is defined as a minimal region that is sufficient 

to direct the accurate initiation of transcription. Core promoter typically extends ~40 bp upstream 

and downstream of the TSS, and it is a place of the assembly of the transcriptional machinery [2]. 

This process requires general transcription factors (GTF), which recognize and bind core 

promoter elements and recruit RNAPII.  There are six general transcription factors: TFIIA, 

TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, which assemble to core promoter in a stepwise 

manner and form a pre-initiation complex (PIC) [1]. TFIID plays a central role in recognising and 

binding specific core promoter elements and creates an environment that facilitates transcription 

initiation [3].  

Various core promoter elements have been identified in eukaryotic promoters and include a 

TATA-box, an Initiator (Inr), a Downstream Promoter Element (DPE), a Downstream Core 

Element (DCE), a TFIIB-Recognition Element (BRE), and a Motif Ten Element (MTE) [4] (Fig. 

1). However, none of these elements are universal, since they are found only in a fraction of core 

promoters in various combinations and there are many promoters that lack any of those elements 

[5]. In addition, some core promoter elements are associated with specific biological functions, for 

instance the TCT motif, which is found exclusively in promoters of genes that encode the 

components of the translational machinery [6]. 

Many core promoters in vertebrates overlap with CpG islands (CGI), which are genomic regions 

characterised by elevated C+G content and frequency of the CG dinucleotides compared to the 

bulk genome [7,8]. The current estimation is that ~70% of human promoters are associated with 

a CGI [9], with similar percentage observed for mouse and chicken [10]. The proportion of CpG 



promoters seems substantially lower in amphibians and fish [10]. However, this is likely due to the 

fact that the definition of the CpG island relies on arbitrary thresholds set upon C+G content, 

observed over expected ratio of CpG dinucleotide counts and region length [11], which have been 

optimised for mammalian genomes and do not perform well for genomes with very different 

nucleotide composition. Nevertheless, association with CpG islands distinguishes two main 

classes of vertebrate promoters, high-CpG promoters and low-CpG promoters [9,12], which are 

additionally characterised by distinct promoter features and functions of associated genes [12]. 

The complexity of the core promoter is further seen in the relation among specificity of 

expression, transcription initiation patterns, motif composition and the organization of the 

chromatin structure in the promoter region, as discussed further below. All this suggests that core 

promoters are not passive elements that serve only to direct the proper placement of the RNA 

polymerase II transcriptional machinery. They receive and integrate various regulatory inputs and 

convert them into precise rate of transcription initiation. Core promoter elements can determine 

the responsiveness of the promoter to transcriptional regulation by cis-regulatory elements and 

trans-acting factors in multicellular organisms [13,14], and are major determinants of gene 

expression level in yeast [15], making them central, active components of transcriptional 

regulation. 

 

2. Single-nucleotide transcription initiation data is central to 

studying promoter architecture 

Mapping promoters genome-wide is the first step in deciphering the mechanisms of 

transcriptional regulation and different approaches have been used to detect promoters along the 

genome experimentally. Various features of active promoters such as the presence of the PIC, 

promoter-associated histone marks and accessible and open chromatin have been used to localise 

promoters [16]. These approaches can only identify loci that serve as promoters, but cannot map 

precise transcription start sites or quantify the level of transcription from the detected promoters. 

Since transcriptionally active promoters produce transcripts, an alternative approach is to use the 

expression data to derive positions of the promoters. However, majority of the transcriptomic 

data maps transcribed portions of the genome but does not precisely reflect gene boundaries. For 

instance, typical expressed sequence tag represents only a random short subsequence of the full 

cDNA. Furthermore, RNA-seq, which is the most common technique for quantitative 



transcriptome profiling, produces uneven coverage of sequenced tags along the transcript, often 

not covering the 5’ end [17]. In order to precisely map promoters, 5’ end complete cDNAs are 

essential. First genome-wide sequencing and annotation of full-length cDNAs was done for 

mouse by the FANTOM Consortium [18] and used to determine exact TSSs and characterise 

adjacent putative promoter regions. Similarly, full-length human cDNAs were used to annotate 

and functionally analyse human promoters  [19,20]. More recently, several techniques that 

sequence short tags from the 5’ end of cDNAs have been developed including 5’ serial analysis of 

gene expression (5’ SAGE) [21], oligo-capping [22] and cap analysis of gene expression (CAGE) 

[23], which when combined with high-throughput sequencing achieve higher coverage producing 

more reliable and quantitative mapping of 5’ ends. These techniques allow genome-wide precise 

TSS mapping at single nucleotide resolution and provide the means for analysing promoter-

associated features at high resolution. 

Precise, 1bp resolution mapping of transcription start sites has proven to be central to studying 

the details of promoter architectures and for their classification. Even though most of the strong 

promoter motifs and their respective locations were estimated from relatively modest amounts of 

pre-genome data, CAGE has provided evidence that the distance between TSS and the motifs 

such as TATA box or DPE is much more constrained than thought previously [24,25] – indeed, 

promoters with single well defined TSS are usually characterised by a fixed spacing from a motif 

that defines them. In addition, even weaker motifs such as nucleosome positioning sequence and 

general GC composition have been shown to line up precisely with most commonly used TSS 

position in promoters with broader initiation pattern [26,27], revealing hitherto unknown global 

features of this type of promoter. 

 

3. Methodologies for precise transcription start site identification 

3.1. Cap Analysis of Gene Expression (CAGE) 

CAGE is a high-throughput method for transcriptome analysis [23] that takes advantage of the 7-

methylguanosine cap structure found at 5’ ends of RNAPII transcripts to map precise 

transcription start sites (Fig. 2). The protocol includes biotinylation of the cap structure, reverse 

transcription, and treatment of the RNA/DNA heteroduplex with RNase I to ensure that only 5’-

complete cDNAs stay associated with the biotin tag and are pulled down by streptavidin-coated 

beads. A linker sequence containing recognition site for type III restriction endonuclease is ligated 



to the 5' end of the captured cDNA and a corresponding restriction enzyme is used to cleave off 

a short fragment (typically 27 bp) from the 5' end [28]. The resulting fragments are then amplified 

and sequenced using massive parallel high-throughput sequencing technology, which results in a 

large number of short sequenced tags that can be mapped back to the reference genome to infer 

the exact position of the TSSs used to initiate transcription of captured RNAs. Number of CAGE 

tags supporting each CAGE-detected TSS (CTSS) gives the information on the relative frequency 

of its usage and can be used as a measure of expression from that specific TSS [29]. Thus, CAGE 

provides information on two aspects of the capped transcriptome: 1) genome-wide single base-

pair resolution map of transcription start sites, and 2) relative levels of transcripts initiated at each 

CTSS. This information can be used for various analyses, from 5' end centred expression profiling 

[30,31] to studying promoter architecture [12,25]. 

Since the introduction of CAGE, a great effort has been made by the FANTOM consortium to 

map genome-wide TSSs in numerous mouse and human samples [27,32,33]. This has led to the 

discovery of distinct classes of promoters with respect to TSS distribution that correlates with 

both underlying sequence features and gene function [12], and implies distinct modes of their 

regulation (reviewed in [34]). Quantitative nature of CAGE has been used to model expression 

dynamics and to reconstruct the regulatory networks driving the differentiation [30] and 

maintaining identity of numerous human and mouse cell and tissue types [27], by identifying key 

transcription factors binding at promoters. Moreover, CAGE signal has been shown to be 

enriched at enhancers [35] and has been used to construct an atlas of active enhancers over cells 

and tissues across the whole human body [36]. Thus, in addition to providing a valuable resource 

of genome-wide cell type-specific TSSs, which are a more precise alternative to TSS positions 

available in annotation databases, CAGE is also a powerful approach for studying various aspects 

of gene regulation. 

However, not all genomic positions detected by CAGE seem to correspond to genuine RNAPII 

transcription initiation sites, as many CTSSs were found within internal exons with CAGE tags 

spanning exon-exon junctions [12]. A study profiling small RNAs and comparing them to 

distribution of CAGE tags concluded that processed coding and non-coding RNAs are 

metabolized into short RNAs that likely bear cap-like structures at their 5’ ends and are captured 

by CAGE tags [37]. The function of these short and CAGE-sensitive RNAs mapping to internal 

exons and introns remains elusive. However, these RNA species arise only from a discrete subset 

of genes and their abundance often does not correlate with the expression of the host gene, 

arguing against them being merely degradation intermediates [37,38]. 



3.2. Mapping TSSs of nascent transcripts 

One limitation of the CAGE protocol is that it works on total mature RNA or a specific fraction 

thereof (such as polyA RNA transcripts, or RNA isolated from specific cellular compartments). In 

practice, this means that the CAGE TSS signal does not reflect the state of TSS usage at the time 

of RNA isolation, but rather the 5’ ends of transcripts that have accumulated in an undefined time 

window prior to the isolation. This enriches the signal for the TSS of long-lived transcripts. It also 

introduces delay and decreases temporal resolution in time-course experiments. To overcome 

these limitations, novel approaches for detecting nascent transcripts (GRO-seq) have been 

coupled with techniques for capturing the 5’ cap structure, and have been recently used to map 

TSSs of nascent transcripts at single base-pair resolution [39]. By mapping both stable and 

unstable RNAs, the GRO-cap approach has revealed the precise architecture of pervasive 

divergent transcription initiation in human genome, as well as its underlying sequence and 

chromatin features [39]. 

 

4. Chromatin structure, modifications and epigenetic data aid in 

genome-wide analysis of promoter architectures 

4.1. Nucleosome positioning at promoters 

Genetic information is encoded in DNA in a linear fashion. However, to enable efficient storage, 

organisation and control of large amount of DNA within the nucleus, the linear DNA molecules 

are coupled with histone and other non-histone proteins into a macromolecular complex known 

as chromatin. Histone octamers bound by approximately 147 bp of DNA form nucleosomes, 

which are arranged as a linear array along the DNA polymer creating a “beads on a string” 

structure. The packaging of DNA creates both a problem and an opportunity, since wrapping of 

DNA around histones potentially obstructs access to the genetic code. However, the ubiquity of 

nucleosomes at all regions of chromosomal DNA can be exploited to direct the enzymes that 

read, replicate and repair DNA to the appropriate entry sites. 

Nucleosome positioning was most extensively studied in the compact yeast genome, and the first 

genome-wide mapping of nucleosome positions at high resolution showed that the nucleosomes 

at most genes are generally organized in the same way [40]. Around the beginning of a gene there 

is a nucleosome free region (NFR) flanked by two well-positioned nucleosomes (the –1 and +1 



nucleosomes), which is followed by an array of nucleosomes that package the gene body. The 

first, +1 nucleosome, displays the tightest positioning and is subject to various histone protein 

variants and modifications, implicating its involvement in regulation of gene transcription. Further 

downstream nucleosomes exhibit lower levels of phasing. This basic pattern was later shown to 

be present in metazoan genomes as well [41,42]. 

In contrast, the vast majority of nucleosomes throughout the rest of the genome seem to be 

positioned with expected periodicity and form arrays of phased nucleosomes around barriers 

imposed by DNA binding proteins or minority of well-positioned nucleosomes [43]. Despite the 

controversy around the degree to which primary sequence determines nucleosome positioning in 

vivo [44-46], it is clear that nucleosomes have certain sequence preference for their positioning. 

The region occupied by the centre of the nucleosome both in vivo and in vitro was shown to exhibit 

a significant increase in G/C usage, whereas A/T usage increases towards the nucleosome 

flanking regions [43]. Elements with such nucleotide composition were proposed to act as 

“container” sites able to produce a strongly positioned nucleosome [43], which then serves as a 

barrier for phasing of adjacent nucleosomes. On the other hand, a finer-scale 10 bp periodicity in 

A/T and G/C containing dinucleotides was found along the nucleosome-bound DNA and was 

proposed to contribute to precise positioning and/or rotational setting of DNA on nucleosomes 

[44,47]. 

How the nucleosome positioning pattern found around gene promoters is established and 

whether it requires active transcription by RNAPII machinery is still debated. There is evidence 

for both transcription-independent DNA sequence-driven [48], and transcriptional activity-aided 

nucleosome organisation [43], suggesting that there might not be a single mechanism responsible 

for nucleosome positioning at all promoters, but might be dependent on the type of the promoter 

itself. 

4.2. DNA methylation and epigenetic features of CpG island promoters 

In the scope of gene regulation, the term epigenetics refers to functionally relevant changes to the 

genome that influence gene expression without altering the underlying DNA sequence (genetic 

information). These can be chemical modifications to either DNA or histone proteins, which 

mediate both heritable changes in gene activity and long-term alterations in the transcriptional 

potential that are not necessarily heritable. 

The best-studied epigenetic modification acting directly on DNA is methylation of cytosine, 

which in vertebrates occurs mainly in the CpG dinucleotide context. DNA methylation is 



essential for normal development and is involved in several key processes including X-

chromosome inactivation, genomic imprinting and suppression of repetitive elements [49]. De 

novo methylation occurs mainly during embryonic development, but it can also happen in adult 

cells due to aging or carcinogenesis. Majority of CpG dinucleotides in vertebrate genomes are 

methylated, except those located within CGIs. A small proportion of CGIs become methylated 

during development causing permanent silencing of associated promoters and ensuring lineage-

specific expression of developmental regulatory genes [50]. There are several mechanisms by 

which CpG methylation mediates gene silencing: 1) methylated cytosines can alter binding sites 

for transcriptional activators and exclude them from binding [51], 2) mCpG can serve as a marker 

for methyl-cytosine binding domain proteins, which recruit co-repressor protein complexes that 

induce chromatin compaction [52] and 3) methylation directly increases affinity of certain 

sequences for histone octamer, thus increasing nucleosome occupancy and stability at promoters 

[53]. 

4.3. Promoters are marked by specific histone modifications 

Unlike DNA, histones are subject to hundreds of covalent modifications, including acetylation, 

methylation, phosphorylation, and ubiquitination. These occur primarily at specific positions 

within the amino-terminal histone “tails”, which emanate from the nucleosome core. Among 

various modifications, lysine acetylation and methylation are the most studied and best 

understood. Lysine acetylation almost always correlates with chromatin accessibility and 

transcriptional activity, and histone H3 lysine 27 acetylation (H3K27ac) was shown to mark active 

promoters and distal regulatory elements [54,55]. Tri-methylation of histone H3 lysine 4 

(H3K4me3) and H3 lysine 36 (H3K36me3) are both associated with transcribed chromatin; 

however, H3K4me3 marks promoter regions, whereas H3K36me3 is found along the body of 

transcribed genes [41,56]. Unlike promoters, which are tri-methylated at H3 lysine 4, enhancers 

were shown to be mono-methylated [57]. Although these histone modifications in general 

correlate with transcriptional activity, it has been recently shown that transcription can occur in 

the absence of these canonical marks of active chromatin in Drosophila and worm [58]. In contrast 

to these active marks, tri-methylation of H3 lysine 9 (H3K9me3), H3 lysine 27 (H3K27me3) and 

H4 lysine 20 (H4K20me3) generally correlate with repression. H3K9me3 and H4K20me3 are 

marks of constitutive heterochromatin, a tightly packed repressive form of chromatin at repetitive 

portions of chromosomes [56]. Broad domains of H3K27me3 mark loci of transcriptionally silent 

developmental regulator genes in embryonic stem cells (ESC) [59]. The same loci were shown to 

contain punctuated H3K4me3 marks localised at promoters even though they were not 



transcribed [59,60], suggesting that these “bivalent” domains silence developmental genes in ESCs 

while keeping them poised for activation. 

Even from the very limited set of modifications described above, it is evident that the possibilities 

of marking genomic loci with various histone modifications and their combinations are 

enormous. It was proposed that specific combinations of modifications at given locus form a so 

called “histone code”, which is read by other proteins to bring about distinct downstream events 

[61]. High-resolution mapping of numerous histone modifications in multiple cell types 

contributed to detection of most common combinations and associated functional genomic 

elements [62-64] and allowed segmentation of the genome into distinct domains based on the 

levels of various modifications [62,63,65]. Although specific histone modification combinations 

generally reflect the identity of the underlying DNA element, recent study has shown that actual 

levels of modification do not necessarily reflect the predicted regulatory activity [66]. 

 

5. Architecture and functional specialisation of Metazoan 

promoters 

5.1. Core promoter elements and TSS selection 

The “textbook” model of an RNAPII promoter has an A/T-rich DNA sequence (the TATA-

box) approximately 30 bp upstream of the TSS, which in turn overlaps an initiator sequence (Inr) 

(Fig. 1). Assembly of a PIC at such promoters is initiated by TFIID binding to the TATA-box, 

Inr sequence and/or other sites [2]. TFIID is a multi-protein complex comprising the TATA-box 

binding protein (TBP) and more than 10 distinct TBP-associated factors (TAFs) [1]. TBP is a 

crucial component that recognises and binds the TATA-box motif [67], initiating subsequent PIC 

assembly and RNAPII recruitment. Once the PIC has assembled, the region around the TSS 

melts to provide a template strand for RNAPII, which occurs 25–30 bp downstream of the 

TATA-box in all eukaryotic model organisms studied so far, except in budding yeast, where this 

distance can vary [68]. Where present, the TATA-box seems to be the sole determinant of the 

TSS position, and initiation will occur at the distance set by the TATA-box regardless of the 

sequence around the site of initiation. 

Although the TATA-box is a well-known core promoter motif it is present only in the minority 

(<15%) of mammalian promoters [12,69]. A more abundant, yet also not universal, metazoan 



core promoter element is the initiator (Inr), which directly overlaps the TSS [70]. The consensus 

sequences of Drosophila and vertebrate Inr differ to some extent (Fig. 1), however in both cases 

they are bound by the homologous TAFs within the TFIID complex, which include TAF1 and 

TAF2 [2]. The common characteristic of the Inr element is the pyrimidine (C or T) / purine (A or 

G) motif (i.e. YR) positioned -1/+1 bp relative to the TSS, so that the purine is the first 

transcribed nucleotide [2,12]. Inr element often occurs in combination with either TATA-box 

[71], or with another core promoter element located downstream of the TSS, the downstream 

promoter element (DPE) [72]. They act synergistically to increase the efficiency of transcription 

by providing additional recognition sites for TFIID components and allowing cooperative TFIID 

binding. 

The DPE was discovered in the analysis of TATA-less promoters in Drosophila [72] and was 

suggested to be conserved in humans [73]. This element acts in conjunction with the Inr, and the 

core sequence of the DPE is located at precisely +28 to +32 bp relative to the +1 nucleotide in 

the Inr motif [74]. This strict requirement for Inr–DPE spacing is essential for cooperative 

binding of TFIID, thus DPE and Inr function together as a single core promoter unit. 

Transcription initiation from DPE-containing promoters is dependent on TAFs, specifically 

TAF6 and TAF9, which were shown to bind DPE [1]. 

The TFIIB recognition element (BRE) is the only well-characterized core promoter motif bound 

by a factor other than TFIID. It was initially identified as a sequence immediately upstream of a 

subset of TATA-box elements [75]; however, an additional TFIIB recognition site, the 

downstream BRE, was found immediately downstream of the TATA box [76]. Several studies 

have shown that TFIIB plays a central role in transcription start site selection in both yeast and 

human [77]. Multiple mutations in TFIIB were found to cause a shift in the TSS selection, 

suggesting its role in precise positioning of RNAPII catalytic site at some core promoters [78]. 

BRE elements often occur in conjunction with the TATA-box and the observed spacing between 

TATA-box and TSS is a result of interaction between TBP, TFIIB and RNAPII, where TFIIB 

plays a central role in determining the spacing. 

Despite the prevalence of CpG island-associated promoters, the precise mechanisms of their core 

promoter function are not well understood. One common feature of CGIs is the presence of 

multiple binding sites for transcription factor Sp1 [79]. Sp1 contributes to the maintenance of the 

hypomethylated state of CGIs and may work in concert with the general transcription machinery 

to support nucleation of the PIC [79]. TSSs are often located 40–80 bp downstream of the Sp1 

sites, which suggests that Sp1 may direct the basal machinery to form PIC within a loosely defined 



downstream window [80]. One possibility is that TFIID subunits that are capable of core 

promoter recognition then interact with the sequences within that window that are most 

compatible with their DNA recognition motifs, such as Inr element, to specify the exact TSS. 

Initial studies suggested that the basal transcription machinery is largely invariant across different 

cell types and conditions. However, an increasing number of tissue-specific isoforms of TAFs as 

well as additional members of the TBP protein family such as TBP-related factors (TRFs) have 

been identified in Metazoa and found to form distinct TFIID-related complexes that can function 

at distinct core promoters [81,82]. Interestingly, many of these factors are involved in germ cell 

development [83]. The variability in basal transcription machinery composition might require 

different mechanisms for core promoter recognition leading to distinct patterns of TSS selection. 

5.2. Nucleosome positioning and epigenetic features of promoter architectures 

Distinct chromatin structure and histone modifications have been associated with active 

promoters. Both in yeast and Metazoa, the region immediately upstream of the TSS is marked as 

DNase I hypersensitive site, suggesting that it is a region of open chromatin depleted of 

nucleosomes [84]. This nucleosome-free region makes core promoter elements more accessible 

and facilitates PIC assembly and RNAPII recruitment. The accessibility of the promoter was 

shown to correlate with mRNA abundance [84].  

The NFR is flanked by two nucleosomes, the first upstream or -1 nucleosome and the first 

downstream or +1 nucleosome, whose positioning can be more or less precise depending on the 

type of the promoter [34,85]. How the transcription initiation machinery contends with the +1 

nucleosome seems to be different across different types of promoters. Precise mapping of PIC 

components in yeast showed that TFIID–TAF complex engages and is positioned by the +1 

nucleosome at TATA-less promoters, whereas TATA-box containing promoters are largely 

depleted of TAFs and mediate PIC positioning through TBP and TFIIB interactions with the 

DNA [68]. Thus, in TATA-box promoters the +1 nucleosome can often overlap the TSS. 

Similarly, it was shown that at many promoters in Drosophila the +1 nucleosome resides >50 bp 

downstream of the TSS, where it engages with the paused RNAPII [42], further suggesting active 

role of the +1 nucleosome in transcriptional machinery positioning and RNAPII pausing. 

Another important feature of nucleosomes flanking the TSS is the presence of specific histone 

variants. The H2A.Z variant was shown to be associated with promoters in both yeast and 

metazoa [41,42]; however, in yeast both -1 and +1 nucleosomes incorporate H2A.Z , whereas in 

Drosophila this variant is found exclusively in the +1 and additional downstream nucleosomes [42]. 



Histone variant H3.3 was also found to be enriched at promoters, where it was present almost 

exclusively together with H2A.Z. These H3.3/H2A.Z double variant–containing nucleosomes 

mark promoters and other regulatory regions and are surprisingly found within NFRs [86] which 

should by definition be devoid of nucleosomes. However, it seems that they are very unstable and 

thus not detected under the conditions normally used in nucleosome preparations [86]. This 

instability might facilitate the access of transcription factors to promoters and other regulatory 

sites in vivo. 

Promoter-associated nucleosomes are also subject to various histone modifications that were 

shown to correlate with promoter activity [41,56,62,63]. The best-studied modifications associated 

with active promoters are H3K4me3 and H3K27ac, where H3K27ac level seems to be positively 

correlated with the level of expression, whereas H3K4me3 can be present on promoters that are 

not actively transcribing, but are poised for activation [59,62,63]. It was shown that basal 

transcription factor TFIID directly binds to the H3K4me3 mark via specific domain of TAF3 

[87], which suggests that H3K4me3 might play an important role in defining core promoter. 

TAF3-mediated binding of TFIID to H3K4me3-marked nucleosomes could serve either to 

anchor TFIID to already activated promoters or to recruit TFIID during promoter activation. 

Interestingly, TAF3-H3K4me3 interaction seems to be more important for activation of TATA-

less promoters, implying the importance of this mechanism for activation of promoters lacking 

canonical core promoter DNA elements [87]. However, it has been recently shown that 

transcription can occur in the absence of H3K4me3 and H3K27ac in Drosophila and worm [58], 

and this seems to be a distinctive feature of temporally regulated developmental genes, separating 

them from ubiquitously transcribed genes, which in contrast show high levels of these histone 

modifications. 

Because many PIC components, including TFIID, have nucleosome-binding subunits, positioned 

nucleosomes might define the location of the TSS by positioning the PIC. The conventional view 

is that most genes contain a predominant TSS, the location of which is defined by core promoter 

elements [88]. However, many promoters lack any of the known core promoter elements and the 

question remains how the transcription machinery establishes the location of the TSS at those 

promoters. A model has been proposed in which TFIID complex binds to methylated (and 

acetylated) nucleosomes and recruits TBP to promoters [89]. TBP in turn binds TFIIB and places 

it immediately downstream towards the TSS. Since TFIIB was shown to dictate TSS selection 

[77], this model would explain how TSS positioning could be directed in part by TFIID bound to 

nucleosomes. 



5.3. Promoter classes and modes of regulation 

Early studies on individual promoters that led to the discovery of various core promoter elements 

already suggested substantial promoter heterogeneity. Some combinations of core promoter 

elements were observed more often than others, defining different structural and functional types 

of promoters. For instance, the TATA-box and DPE are rarely found together, but each of them 

is often associated with an Inr element [5,72,74]. Furthermore, the TATA-box containing and the 

DPE containing promoters appear to be functionally different, responding to distinct distal 

regulatory elements [90]. 

Genome-wide mapping of promoters and promoter-associated features allowed comprehensive 

analysis of promoter structure and function and their classification based on underlying sequence, 

chromatin, transcription initiation and expression specificity characteristics. The underlying 

sequence composition analysis revealed that mammalian promoters segregate naturally into two 

classes by CpG dinucleotide content: high-CpG and low-CpG promoters [9]. The former class is 

characterised by the overlap with CpG islands, thus they are also referred to as CGI-associated 

promoters. High resolution mapping of TSSs by CAGE distinguished two major classes of 

promoters based on the TSS distribution [12]. “Sharp” or “focused” promoters have a single well-

defined TSS and are often associated with a TATA-box precisely positioned ~30 bp upstream of 

the TSS [12,24]. These classical “textbook” promoters represent only a minority of mammalian 

promoters and are commonly associated with tissue-specific genes and high conservation across 

species. Many TFs show distinct spatial biases with respect to TSS location and seem to be 

important contributors to the accurate prediction of single-peak TSSs [91]. The majority of 

mammalian promoters, however, comprise a second class of “broad” or “dispersed” promoters, 

characterised by multiple equally used TSSs distributed across a broader region [12], challenging 

the traditional definition of a gene and its precisely defined TSS. This class is strongly associated 

with CpG islands and ubiquitously expressed genes, however promoters of key developmental 

regulators were also found to belong to this class [92]. 

High resolution TSS mapping by PET [22] and CAGE [25] in Drosophila revealed analogous 

transcription initiation patterns, separating promoters into “sharp” and “broad” class. Unlike 

mammalian genome, the fly genome does not contain CpG islands; however, the two promoter 

classes were shown to be associated with distinct core promoter elements. The positionally 

restricted canonical core promoter elements, including TATA-box, Inr, DPE and MTE, were 

specifically enriched in sharp promoters [22,93]. When comparing across other Drosophila 

genomes, elements in broad promoters had lower levels of conservation than those in sharp 



promoters [93]. Furthermore, the distinct promoter classes in fly were associated with the same 

functional categories of genes and showed similar expression specificity patterns as in mammals 

[12,22,93], suggesting functional conservation of the observed promoter classes across Metazoa. 

Interestingly, the distinct promoter classes were recently shown to respond to regulation by 

different sets of distal-acting enhancers, separating the housekeeping and developmental 

transcriptional programs in Drosophila [14] and emphasizing the importance of core promoters in 

transcriptional regulation during development. 

Genome-wide analyses of various promoter-associated features provided further insight into 

structural and functional differences between CGI and non-CGI promoters in mammals. In 

pluripotent ES cells, vast majority of CGI promoters are associated with H3K4me3 enrichment 

[56], suggesting that they are targets of trithorax-group proteins, which catalyse the deposition of 

this mark. These promoters have a potential to drive transcription, unless they are actively 

repressed by Polycomb group proteins (PcG), which deposits repressive H3K27me3 mark and 

creates bivalent domains at key developmental genes and poises them for activation [59]. The 

ones that are not repressed tend to be ubiquitously expressed. In contrast, CpG-poor promoters 

seem to be inactive by default, independent of repression by PcG proteins, and may instead be 

selectively activated by cell-type- or tissue-specific factors [56]. This is further corroborated by the 

observation that CpG promoters are associated with RNAPII across multiple cell types, whereas 

non-CpG promoters acquire active chromatin marks and RNAPII binding in a tissue-dependent 

way [94]. The two promoter classes also differ in the nucleosome occupancy and the requirement 

for nucleosome remodelling complexes for their activation upon various external stimuli [95]. 

Taken together, this strongly suggests that CpG and non-CpG promoters in mammals are subject 

to distinct modes of regulation. 

Unlike CGI and non-CGI promoter classification, which is vertebrate-specific, the corresponding 

sharp and broad promoter classes defined based on transcription initiation patterns are conserved 

across Metazoa [12,22,93]. These promoter classes are significantly differentiated by nucleosome 

organization and chromatin structure in both fly and mammals. Broad promoters display closer 

association with well-positioned nucleosomes and activating histone marks downstream of the 

TSS and have a more clearly defined NFR upstream, while sharp promoters have a less organized 

nucleosome structure and higher RNAPII presence [85]. 

Based on the configuration of promoter signals, TSS patterns, nucleosome positions and their 

epigenetic marks, and function of the associated gene, a unifying classification of Metazoan 

promoters into three main classes was proposed [34] (Fig. 3). Type I promoters are most often 



used for genes that are specifically expressed in terminally differentiated peripheral tissues of an 

adult. They are characterised by a sharp transcription initiation pattern and are often associated 

with a TATA-box or other core promoter elements positionally restricted to the well-defined TSS 

in both mammals and fly. In mammals they are characterised by low CpG content and tend to 

have key regulatory inputs close to their promoters [96]. On chromatin level, Type I promoters 

are characterised by less-ordered nucleosomes [85], which can often cover the TSS; with 

H3K4me3 generally present downstream of the TSS when they are active and no RNAPII 

binding when they are not active [94]. However, a recent study suggests that these promoters 

might be active in the absence of canonically active histone modifications and proposes that for 

such promoters regulation by transcription factors has a more important regulatory role than 

chromatin marks [58]. Type II promoters are associated with ubiquitously active “housekeeping” 

genes and have broad promoter architecture with multiple TSSs spread across a wide region. In 

mammals, they tend to have a single CpG island covering the transcription initiation region, 

whereas in Drosophila they are associated with a distinct set of weaker core promoter elements 

[97]. The TSSs are located within a NFR and are flanked by two well-positioned nucleosomes that 

harbour active histone marks in all cell and tissue types, which seems to be associated with the 

stable production of RNA [58]. Type III promoters are characteristic of genes with expression 

that is developmentally regulated and coordinated across multiple cells. They share several 

characteristics with type II promoters, including a broad transcription initiation pattern and a 

well-defined NFR with positioned flanking nucleosomes, but also exhibit systematic differences 

that set them apart from the ubiquitously expressed class. The width of their transcription start 

region tends to be even broader than in Type II promoters [25]. Although their association with 

CpG islands in mammals is similar to type II promoters, developmental genes have longer or 

multiple CpG islands that often extend into the gene body [92]. The most prominent differences 

between type III and type II promoters are observed at the chromatin level. Developmental genes 

have a number of features that are associated with repression by PcG proteins, including wide 

distribution of PcG protein binding and both H3K27me3 and H3K4me3 marks, which create 

bivalent domains in ESCs [59]. Type III promoters are responsive to long-range regulation and 

can receive and integrate regulatory input from distal enhancers. They are often surrounded by 

arrays of highly conserved non-coding elements (HCNEs) that act as enhancers ensuring precise 

spatial and temporal expression of those key developmental regulators [92]. 

Studies in Drosophila and mammals have suggested that protein-coding genes with ubiquitous high 

expression whose protein products are components of translation machinery (ribosomal proteins, 

translation elongation and initiation factors) might have a separate, fourth architecture, 



characterised by a pyrimidine-rich TCT initiator. This initiator motif is common to this functional 

category of genes in both Drosophila and mammalian genomes. It is characterised by a “sharp” 

transcription initiation pattern and, in Drosophila, it does not seem to contain a TATA box or any 

other known fixed-spacing motifs [6]. It has recently been reported that the PIC at this type of 

promoters lacks TBP, whose place is taken by the structurally related TRF2 [82]. Mammalian TCT 

promoters occasionally contain a canonical TATA box, but at present it cannot be excluded that 

this is due too multiple overlapping promoter architectures that are used independently (see 

below). 

5.4. Promoter usage dynamics across cell types and developmental stages 

The traditional view of a gene with its precisely defined and fixed TSS has been first challenged by 

the findings that many genes can be transcribed from multiple promoters (alternative promoters) 

producing functionally diverse transcripts [98,99]. Differential utilization of alternative promoters 

plays a critical role in regulating gene expression in a spatial, temporal or lineage-specific manner. 

This can be achieved by use of a distinct combination of core promoter elements in the 

alternative promoters [100,101]. Moreover, studying 5’ ends of individual mRNAs genome-wide 

by CAGE, revealed that the transcription can start at multiple closely spaced TSSs within a single 

promoter [12], further increasing the diversity of produced transcripts. The closely spaced 

individual start sites can be associated with different core promoter elements and their activation 

can be dependent on distinct GTFs [102]. 

The complexity of transcription initiation in eukaryotic genomes is also seen in the bidirectional 

promoter arrangements, which in human genome comprise more than 10% of promoters [103]. 

Bidirectional promoters are associated with broad transcription start regions overlapping a CGI 

and display a mirror sequence composition [104]. The transcription from bidirectional promoters 

can be differentially regulated in the two directions [68], suggesting that the promoter elements 

and features can overlap in the same locus and be differentially interpreted by the RNAPII 

complexes transcribing independently in the opposite directions. Thus, bidirectional promoters 

are a good example of overlapping transcription initiation codes, which are differentially 

interpreted in different regulatory contexts. 

Differential utilisation of promoter types has been observed across various contexts. For instance, 

in Drosophila embryonic development promoters of maternally inherited transcripts showed 

differences in motif composition compared to zygotically active promoters [93]. In addition, many 

genes with maternally inherited transcripts were found to have alternative promoters utilized later 



in the development [93]. High-resolution quantitative mapping of TSSs across multiple human 

and mouse tissue types revealed substantial dynamics even at the level of individual TSSs within 

the same core promoter [105]. TSS selection within many CGI-associated broad promoters varies 

among tissues producing positional or regional bias in promoter usage [105]. This fine-scale 

regulation of transcription initiation events at the single base-pair level is likely related to 

epigenetic transcriptional regulation. 

5.5. Overlapping transcription initiation codes: thousands of 2-in-1 promoters in 

vertebrate genomes 

Mapping of precise TSSs across numerous mouse and human cell types by the FANTOM 

consortium provided evidence that RNA polymerase II has slightly different preference for TSS 

selection in different contexts, manifested as different positional distribution of transcription 

initiation events in “broad” promoters [27,105]. However, no clear rules or “codes” for TSS 

selection were evident from these analyses. By systematically analysing transcription initiation 

patterns and underlying sequence features in early development of zebrafish, a recent study 

revealed that the transcription initiation “code” in transcribing oocyte is different from that in 

somatic cells of the developing embryo, with different sequence elements that guide TSS selection 

at the promoter [26]. Most remarkably, the study showed that thousands of promoters that are 

active in both oocyte and somatic cells – including the “housekeeping” promoters – have both 

sets of promoter determinants, most often intertwined on the same physical stretch of DNA (Fig. 

4). The oocyte-specific TSS selection is motif dependent, and the transcription always starts at a 

fixed distance from a weak TATA-like element (W-box). While sharing main features with 

initiation from a canonical TATA-dependent promoter, the oocyte-dependent promoters can 

have multiple W-boxes, each with its TSS ~30bp downstream of it, resulting in a composite sharp 

promoter architecture that gives an appearance of a broad promoter. On the other hand, the 

somatic TSS selection from the same promoters in the developing embryo is related to the stable 

position of first downstream (+1) nucleosome that determines the “catchment area” within which 

transcription can start at multiple TSSs resulting in a broad promoter architecture. Nonetheless, 

the transcription is still preferably initiated at YR dinucleotides at [-1,+1] positions, corresponding 

to loose vertebrate Initiator consensus sequence [12], and the one at optimal distance from the +1 

nucleosome is used most frequently (i.e. it is the “dominant peak” of a broad promoter). 

Remarkably, the position of the dominant TSS alone is highly predictive of the +1 nucleosome 

position and reveals the presence of a sequence pattern characteristic for nucleosome bound 



DNA downstream of the TSS in both zebrafish [26] and human [27], further corroborating the 

tight relationship between nucleosome positioning and TSS selection in broad promoters. 

Further conclusions about how common are the alternative and overlapping transcription 

initiation “codes” in other cell types or organisms other than vertebrates are currently limited by 

the lack of the precise TSS data. There is evidence for oocyte-specific TSS code in another fish 

species (Haberle and Lenhard, unpublished), as well as a smaller-scale promoter code change 

during spermatogenesis in mouse [106]. In contrast, the global TSS use patterns seem remarkably 

stable across different somatic cell types, although differential TSS selection is evident at 

individual promoters between specific cell types [27]. Also, the purpose of a separate TSS 

selection code in oocyte is unclear at present: it may be used as an efficient way of genome-wide 

change of transcriptional repertoire between the oocyte and somatic cells – the most dramatic of 

such changes in the life cycle of Metazoa [107]. 

The overlapping transcription codes impose an additional layer of complexity to the genome wide 

computational analyses of promoters and their classification. New approaches are needed to 

detect and disentangle potential multiple and independent sets of promoter elements before 

attempting to classify them and understand their structure and function. 

 

6. Diverse promoter architectures enable complex regulatory 

landscapes 

Most of the regulatory content of a metazoan genome lies outside of proximal promoters [108] 

and tends to be contained within enhancers, which seem to be a predominant type of functional 

elements in the non-coding portion of the genome. They are characterised by clusters of binding 

sites for many different TFs and chromatin regulators [109,110]. Transcriptional activation by 

enhancers is temporally and spatially restricted and produces highly specific expression patterns 

during development [111].  

Enhancers do not necessarily act on the closest promoter but can bypass neighbouring genes to 

regulate genes located more distantly along a chromosome, further increasing the complexity of 

the distal regulatory interactions within the genome. Given the nonlinear arrangement of 

developmental genes and their enhancers, a fundamental question is - how is the specificity 

between enhancer and its target promoter achieved? Several models have been proposed to 



describe how enhancers may communicate with their target gene promoter [112]. Currently the 

most plausible model supported by both theoretical [113] and experimental [114,115] 

observations is the “looping” model in which the remote enhancer “loops out” the intervening 

DNA to reach the target promoter. It was shown that the formation of these chromatin loops 

depends on sequence-specific TFs bound to the enhancer and the promoter [115]. It appears that 

the enhancer loops form prior to gene activation and stably associate with paused RNAPII at 

promoters, keeping this loop topology ready for rapid activation of transcription by recruitment 

of additional factors [116]. The formation of chromatin loops brings the enhancer and its target 

promoter into close physical proximity in the nucleus and this feature is utilised by chromatin 

conformation capture experimental approaches [117] to detect long-range interactions genome-

wide [118] and to identify target promoters of specific regulatory elements. However, the 

knowledge about the specificity of promoter-enhancer interactions is still very limited.  

There is growing evidence that the features of the target promoter determine its responsiveness to 

distal regulatory elements within accessible chromosomal domain. For instance, it was shown that 

the presence of specific core promoter elements in Drosophila makes promoters responsive to 

distinct enhancers [119]. A recent functional study of enhancer activity genome-wide revealed 

specificity of enhancers towards either housekeeping or developmental core promoters that differ 

in their core promoter elements, separating two major transcriptional programs in Drosophila [14]. 

Furthermore, tightly regulated key developmental genes contained within large syntenic blocks in 

vertebrates [120] were shown to differ in various sequence, chromatin and transcriptional 

promoter features from neighbouring bystander genes, which likely specifies them as a target of 

regulation by surrounding HCNEs [92] (Fig. 5). These observations highlight the important 

functional role of the core promoter as an active participant in the long-range gene regulation. 

 

7. Open questions and perspectives 

This review gives an overview of the growing evidence that specific core promoter architectures 

play a central role in determining how a gene is regulated during development and differentiation. 

The architecture will determine whether the gene will be responsive to long-range regulatory 

inputs, where the majority of regulatory input is located with respect to the TSS [121], whether its 

transcriptional output will be stable or occur in bursts [122],  and which epigenetic modifications 

will be present when the promoter is active or repressed. Architectural differences between 

promoters of different functional categories of genes appear to be ancient (for evidence of 



different promoter types in yeast see e.g. [123] and [124]), and separate well constitutively active 

from regulated/inducible genes. Developmental promoters likely evolved from one of the 

ancestral classes by acquiring ability to integrate a large number of regulatory inputs in a manner 

easily malleable by selection forces. On the other hand, it is still not known how widespread is the 

utilisation of different transcription initiation codes discovered between oocyte and somatic cells 

that overlap on thousands of, mostly ubiquitously active, vertebrate promoters [26]. It will be 

interesting to find at what point in the evolution of Metazoa, or earlier, has this feature been 

acquired and what role it plays in distinguishing the global properties of transcription and its 

regulation between somatic cells and the germline. 

Classification of promoter architectures and the characterisation of functionally equivalent 

architectures in distantly related species still remains to be done. Wider availability of the CAGE 

protocol and comparative promoterome analysis should enable the discovery of a finite number 

of promoter classes and serve as a starting point for their functional and mechanistic 

characterisation. 
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Figure Legends 

Figure 1. Summary of most prevalent core promoter elements positionally constrained with 

respect to transcription start site (TSS; marked as +1 position). The location of elements relative 

to the TSS is shown as coloured boxes, where the colour indicates whether the element is 

Drosophila-specific (red), vertebrate-specific (blue) or common (purple). Associated sequence logos 

are based on motifs from [125] and [6] for Drosophila and motifs from the JASPAR database for 

vertebrates. The initiator motif (Inr) differs between Drosophila and vertebrates and both sequence 

logos are shown. Most promoters only have one or a few of these elements, and some elements 

are mostly found in certain species. BRE, TFIIB recognition element; DCE, downstream core 

element; DPE, downstream promoter element; Inr, initiator; MTE, motif ten element; TATA, 

TATA-box element; TCT, TCT initiator. IMPORTANT: hardly any real promoter contains all or 

even most of the above elements – on the contrary, different elements are associated with 



different promoter architectures and their co-occurrence in individual promoters are strongly 

underrepresented compared to chance. 

Figure 2. Schematic overview of Cap Analysis of Gene Expression (CAGE) method for 

identifying promoters at high resolution (redrawn based on [28]). By mapping exact 5’ ends of 

complete cDNAs CAGE provides genome-wide single base-pair resolution map of transcription 

start sites and relative levels of transcripts initiated at each individual TSS. 

Figure 3. Main classes of promoters as described in [34]. Metazoan promoters can broadly be 

divided into three groups based on their transcription initiation patterns (red), localisation of 

context-specific regulatory input (blue), sequence signals (gray) and nucleosome configuration 

around TSS (pink). Other less frequent promoter types associated with specific functional groups 

of genes have been described, such as TCT initiator containing promoters of translational 

machinery genes [6] (bottom). 

Figure 4. Overlapping promoter “codes”. Two independent promoter codes (shown in red and 

blue) overlap on thousands of promoters and guide differential TSS selection in the zebrafish 

oocyte and the somatic cells of the developing embryo [26]. The transcriptional machinery in the 

oocyte reads the “blue” code that consists of multiple A/T rich W-box motifs positioned ~30bp 

upstream of respective TSSs, resulting in composite sharp promoter architecture (top). In the 

embryo the “red” code is read instead, which restricts the TSS selection to a “catchment” area by 

the precisely positioned first downstream (+1) nucleosome aligned with a nucleosome positioning 

signal in the sequence. The transcriptional machinery initiates most frequently at the loose 

initiator motif (YR dinucleotide) at the optimal ~50bp position upstream of the +1 nucleosome 

(bottom).  

Figure 5. The role of the core promoter type in long-range gene regulation. Tightly regulated key 

developmental genes (shown in red) contained within large syntenic blocks receive regulatory 

input from distal-acting enhancers. Promoters of these genes differ in various sequence, 

chromatin and transcriptional features from neighbouring bystander genes (shown in blue), which 

likely specifies them as a target of regulation by surrounding enhancers [92]. 
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