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ABSTRACT 

Pneumonia and ventilator associated pneumonia (VAP) are a frequent cause for admission to 

Intensive Care and complication of ventilation respectively. VAP occurs in 10-40% of patients 

requiring mechanical ventilation and is associated with increased mortality, morbidity and 

healthcare costs. Diagnosis can be difficult due to poor predictive value of clinical features and low 

specificity of radiological changes. Bronchoscopic techniques are often invasive, may not be suitable 

for all patients and are not without complications. New tests are required to improve the diagnosis 

of these conditions allowing early, appropriate antibiotic treatment. 

In this study several techniques were used to explore the value of profiling of a range of biofluids 

obtained from ventilated patients as an aid to diagnosis of pneumonia. Patients were recruited from 

Intensive Care with either a diagnosis of pneumonia or brain injury. Those with brain injuries were 

tracked to identify patients who developed VAP. Serum, urine and exhaled breath condensate (EBC) 

were collected from all patients.  

Metabonomics, an approach that identifies changes in metabolic profiles associated with disease, 

was applied using proton nuclear magnetic resonance spectroscopy to both blood and urine and 

with mass spectrometry (MS) to exhaled breath condensate. Following from the metabonomic work 

a panel of inflammatory mediators, including cytokines and eicosanoids were measured in serum 

using MS and flow cytometry to explore the inflammatory changes in these patients. 

Overall metabolic and inflammatory profiling of serum showed potential as an adjunct to clinical 

diagnosis especially when combined with clinical data. Analysis of urine and EBC proved more 

challenging due the number of drug metabolites and low concentration of metabolites they 

respectively contained. In summary this study has added to the field by demonstrating the potential 

for profiling techniques of serum from critically ill patients to assist in the diagnosis of both 

pneumonia and VAP. 
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8,9-EET - 8,9-Epoxyeicosatrienoic acid 

8-iso-PGF2alpha - 8-Iso-Prostaglandin F2α 

9(S)-HODE - (9S)-Hydroxyoctadecadienoic Acid 

AA - Arachidonic Acid 

ADMA - Asymetric Dimethyl Arginine 
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ALI - Acute Lung Injury  

ANOVA - Analysis of Variance  

APACHE II - Acute Physiology and Chronic Health Evaluation II  

ARDS - Acute Respiratory Distress Syndrome  

AUROC  - Area Under the Receiver Operating Characteristic Curve  

BAL - Broncheoalveolar Lavage 

BALF - Broncheoalveolar Lavage Fluid 

BI - Brain Injury  

BSA - N,O-Bis(trimethylsilyl)Acetamide 

CAP - Community Acquired Pneumonia  

CFU - Colony Forming Units 

COPD - Chronic Obstructive Pulmonary Disease 

COSY - Correlation Spectroscopy 

CPIS - Clinical Pulmonary Infection Score  

CPMG - Carr-Purcell-Meiboom-Gill  

CRP - C-Reactive Protein  

CVA - Cerebrovascular Accident  

D2O - Deuterium Oxide 

DGLA - Dihomo-γ-Linolenic Acid 

DHA - Docosahexaenoic Acid 

EBC - Exhaled Breath Condensate   

EPA - Eicosapentaenoic Acid 

FID - Free Induction Decay 

FS - Forward Scatter 

GC-MS - Gas Chromatography - Mass Spectrometry 

G-CSF - Granulocyte Colony-Stimulating Factor 

HDL - High Density Lipoprotein 

HME - Heat and Moisture Exchanger 

ICAM-1 - Intercellular Adhesion Molecule 1 

ICU - Intensive Care Unit  

IFNα - Interferon Alpha 

IFN γ - Interferon Gamma 

IL-10 - Interleukin 10 
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IL12p70 - Interleukin 12 p70 Subunit 

IL-13 - Interleukin 13 

IL-17A - Interleukin 17A 

IL-1β - Interleukin 1ß 

IL-1α - Interleukin 1α 

IL-4 - Interleukin 4 

IL-6 - Interleukin 6   

IL-8 - Interleukin 8 

IP-10 - Interferon Gamma-Induced Protein 10 

IS - Internal Standards 

LA - Linolaeic Acid 

LAP - Latency-Associated Protein 

LC-MS - Liquid Chromatography – Mass Spectrometry 

LC-MS/MS - Liquid Chromatography Tandem Mass Spectrometry 

LDL - Low Density Lipoprotein 

LTB4 - Leukotriene B4 

LTC4 - Leukotriene C4 

LTD4 - Leukotriene D4 

LTE4 - Leukotriene E4 

MAP - Mean Arterial Pressure  

MCP-1 - Monocyte Chemotactic Protein 1 

MFI - Mean Fluorescence Intensity 

MIP1α - Macrophage Inflammatory Protein 1 α 

MIP1 β - Macrophage Inflammatory Protein 1ß 

MS - Mass Spectrometry  

MV - Mechanical Ventilation 

NMR - Nuclear Magnetic Resonance Spectroscopy  

NOESY - Nuclear Overhauser Effect Spectroscopy  

OPLS-DA - Orthogonal Partial Least Squared Discriminant Analysis 

PBS - Phosphate Buffered Saline 

PCA - Principle Component Analysis  

PE - Phycoerythrin 

PGD2 - Prostaglandin D2 
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PGE2 - Prostaglandin E2 

PGF2α - Prostaglandin F2α 

PLS - Partial Least Squares 

PLS-DA - Partial Least Squared Discriminant Analysis 

ppm - Parts Per Million  

PSB - Protected Specimen Brushings 

ROC - Receiver Operating Characteristic  

SAH - Subarachnoid Haemorrhage  

SOFA - Sequential Organ Failure Assessment Score 

SPE - Solid Phase Extraction 

SS - Side Scatter 

STOCSY - Statistical Total Correlation Spectroscopy 

sTREM-1 - Soluble Triggering Receptor Expressed on Myeloid Cells 

TA - Tracheal Aspirate 

Tetranor-PGDM - Tetranor Prostaglandin D Metabolite 

Tetranor-PGEM - Tetranor Prostaglandin E Metabolite 

Tetranor-PGFM - Tetranor Prostaglandin F Metabolite 

TNFα - Tumour Necrosis Factor Alpha 

TOCSY - Total Correlation Spectroscopy 

TSP - 3-(Trimethyl-Silyl) Propionic Acid 

TXB2 - Thromboxane B2 

UPLC-MS/MS - Ultra Performance Liquid Chromatography Tandem Mass Spectrometry 

VAP - Ventilator Associated Pneumonia 

VIP - Variable Importance for the Projection 

VLDL - Very Low Density Lipoprotein 
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1. LITERATURE REVIEW 

1.1 Pneumonia  

1.1.1 Incidence  

Pneumonia is a common cause of admission to both hospital and the Intensive Care Unit (ICU). 

Pneumonia is defined as community acquired (CAP), in those patients without prior hospital contact, 

hospital acquired (HAP), in those hospitalised for at least 48-72h or aspiration pneumonia, following 

the aspiration of oro-gastric contents, for example in the context of impaired consciousness. 

Pneumonia is the commonest cause of death across all age groups from an infective cause and is the 

sixth leading cause of death in the USA and in the late 1990’s had an incidence of 1.3-3.9% 

depending on age group and geographical location (1). In 2012 pneumonia was the sixth leading 

cause of death in men, causing 4.6% of deaths, and the fourth leading cause in women, causing 5.8% 

of deaths, in the United Kingdom and in both groups was the leading cause of death associated with 

infection (2). Within the emergency department pneumonia is the leading cause of admission in 

patients presenting with sepsis (3) and every year in the UK 0.5%-1% of adults have CAP of which 22-

42% are admitted to hospital (4). 

1.1.2 Pathogenesis 

The common organisms causing CAP are dependent on the source of the patients in question, table 

1.1.  Pneumococcus is the most common organism causing CAP and its incidence increases with age 

(5). Certain organisms are more common in defined populations, for example S. Aureus may be more 

common in nursing home residents (5).  

The role of aspiration of oro-gastric contents in the development of pneumonia is controversial (6, 7) 

and may be a common cause of pneumonia in those over 80 years of age. Large aspirates of gastric 

contents lead to a chemical pneumonitis which may lead to the development of acute respiratory 
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distress syndrome (ARDS), however, many episodes of aspiration go unnoticed. The most classical 

syndrome associated with aspiration is an anaerobic pleuropneumonia, which is associated with a 

cough producing purulent secretions and a cavitating pneumonia, however, this is rarely seen and 

more commonly  aspiration pneumonia now refers to an acute lung infection developing after the 

aspiration of a large volume of oropharyngeal or upper gastrointestinal contents depositing a large 

bacterial load into the lungs (7). However, the diagnosis of aspiration in the community may be 

unclear where the events preceding the features of a respiratory tract infection are uncertain. 

Although aspiration pneumonia is classically associated with anaerobic organisms, over time the 

predominance of anaerobes seems to have diminished and aerobes and gram negative organisms 

seem to be more common. In those patients who aspirate whilst in hospital the organisms causing 

pneumonia appear similar to those causing other cases of hospital acquired infection with an 

abundance of S. Aureus (7). 

 

Table 1.1 Most Common causes of community acquired pneumonia from the 2007 American Thoracic 

Society Consensus Guidelines (5). Organisms listed in decreasing order of frequency. 

 
Patient Type Aetiology 
Outpatient Streptococcus pneumonia 

Mycoplasma pneumoniae 
Haemophilus influenzae 

Chlamydophila pneumoniae 
Respiratory viruses 

Inpatient (non-ICU) Streptococcus pneumonia 
Mycoplasma pneumoniae 

Chlamydophila pneumoniae 
Haemophilus influenzae 

Legionella species 
Aspiration 

Respiratory viruses 
Inpatient (ICU) Streptococcus pneumonia 

Staphylococcus Aureus 
Legionella species 

Gram-negative bacilli 
Haemophilus influenza 
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1.1.3 Outcome 

Admission to hospital in the UK with CAP is associated with a mean length of stay of 30 days with a 

median stay of 7 days (8). CAP is associated with a mortality of around 5-14% (4) which rises to 16.1-

19.3% in those admitted depending on the route of admission to hospital (9). 1.2-10% of patients 

admitted to hospital will be managed in ICU and in this group mortality may reach 30% (4). Similarly 

an episode of hospital acquired pneumonia increases the length of stay by about 8 days and has a 

mortality of 30-70% (4). 

Not only is pneumonia associated with a significant mortality, a recent study found that an 

admission with pneumonia was estimated to cost a median of €3,899 in the Netherlands with 

nursing care in ICU accounting for the second largest portion of spending (10). Cost to the UK from 

pneumonia in 1995/6 was estimated at £480 million with the majority of the cost being accounted 

for by inpatient care with each inpatient episode costing £1700-£5100 (8).  

1.1.4 Diagnosis 

1.1.4.1 Clinical Features 

Although often perceived as a straight forward diagnosis there is no gold standard by which to make 

the diagnosis. The clinical features of CAP have been stated to be non-specific (11) and have limited 

value in making a diagnosis. There is limited evidence in the literature to quantify their usefulness. 

The use of clinical diagnostic criteria in a paediatric population to predict radiologically confirmed 

pneumonia had a sensitivity of 0.45, specificity of 0.66 and positive and negative predictive values of 

0.25 and 0.82 respectively (12) with similar patterns being reproduced in other groups of children 

(13). In adults abnormal vital signs have a high degree of sensitivity (14) but lack specificity for 

pneumonia. With advancing age the presence of symptoms with pneumonia becomes less common  

(15) and some features, such as respiratory rate, may be sensitive but not specific (16) limiting their 
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usefulness in older patients.  Decision aids have been evaluated in adult patients that use clinical 

features to determine the likelihood of radiological findings, on chest radiographs, consistent with 

pneumonia (17). In one study clinicians’ judgement was found to have sensitivity of  0.74, a 

specificity of 0.84, a positive predictive value of 0.27 and a negative predictive value of 0.97 for 

radiological diagnosis in a primary care setting (18) and in a large study performed in general 

practice across Europe clinical diagnosis of pneumonia had a sensitivity of 0.29, a specificity of 0.99, 

positive predictive value of 0.57 and a negative predictive value of 0.96 (19). However, clinical 

features did not perform similarly in all patient groups such as the elderly and nursing home 

residents (20) and the initial Emergency Department  diagnoses of pneumonia often turned out to 

be incorrect after further investigations (21).  

1.1.4.2 Biomarkers 

Biomarkers have been used in an attempt to improve the recognition of pneumonia, the most 

studied being C-reactive protein (CRP) and procalcitonin (PCT). In studies of CRP with and without 

clinical features of pneumonia sensitivity varied between 0.36-1.0 and specificity 0.52-0.96 for 

detecting radiographic pneumonia depending on the cut off of CRP used (22-24). If an infiltrate was 

present on the radiograph then these values changed to sensitivity 0.36-0.89 and specificity 0.17-

0.91 (24). In another primary care study a CRP >20mg/l had a sensitivity of 0.73, specificity of 0.65, 

positive predictive value of 0.24 and negative predictive value of 0.94 to diagnose pneumonia in 

patients already suspected of having lower respiratory tract infections (25). Studies of PCT to 

diagnose pneumonia in primary care have shown sensitivities of 0.17-0.90, specificities of 0.59-1.0, 

positive predictive values of 0.24-1.0 and negative predictive values of 0.89-0.94 in the absence of 

radiology depending on the cut off levels used. If an infiltrate was already present on the CXR then 

these values changed to sensitivity 0.43-0.90 and specificity 0.39-0.87. In comparison blood cultures 

only had a sensitivity of 0.11 (24, 25). 



29 

 

 

 

 

1.1.4.3 Radiology 

Many of these studies used radiological findings as confirmation of pneumonia, however, depending 

on the frequency of bacterial infection infiltrates on chest radiograph have been found to have a 

positive predictive value of only 0.46-0.85 (26) and lack sensitivity, with around 21% of radiographs 

being negative initially (27).   

1.2 Ventilator Associated Pneumonia 

Ventilator associated pneumonia (VAP) is defined as pneumonia occurring at least 48-72h after 

endotracheal intubation (28). It is associated with inflammation of the lung parenchyma secondary 

to infectious agents not present at the time of initiation of mechanical ventilation (MV)(29). VAP is a 

common nosocomial infection and causes a significant mortality and morbidity. 

1.2.1 Pathology 

The act of invasive ventilation, either as part of anaesthesia for surgery or for respiratory support, 

circumvents many of a patient’s natural mechanisms of protecting the lungs from colonisation and 

infection. The endotracheal tube bypasses the vocal cords and the normal methods of gas 

humidification (30). Sedation leaves patients unable to cough and clear secretions and severe illness 

causes modulation in the immune system which can leave patients susceptible to infection.  

Pneumonia occurs when these barriers to infection are overcome and the normally sterile lungs 

become colonised with and inflamed secondary to pathogenic organisms. 

VAP is thought to be predominantly caused by micro-aspiration of contaminated oropharyngeal fluid 

into the lungs. Contamination of mucosal surfaces and secretions with pathogenic bacteria is 

common in critical illness and increases with severity of disease (31). Secretions may pool above the 
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endotracheal cuff and can then be transmitted into the lung. The endotracheal tube can also serve 

as a reservoir of micro-organisms with a biofilm forming within hours of intubation (32). Much less 

commonly pneumonia may be caused by haematogenous spread of micro-organisms from a site 

distant to the lungs, from contiguous spread of disease or by inhalation of an infective aerosol. 

1.2.2 Epidemiology 

MV increases the risk of pneumonia by 3-7 times (33, 34). However, the reported incidence of VAP is 

variable depending on the ICU, patient population, diagnostic method and rates of antibiotic use. 

VAP rates may vary between 6% and up to nearly 40% in different groups, table 1.2. 

Table 1.2. Reported frequencies of VAP in different ICU populations. 

Study Type of study ICU Frequency (%) Rate/1000 
Ventilator Days 

Langer, 1987 (35) Prospective Mixed 38.2 - 
Fagon, 1989 (36) Prospective Mixed 9 - 
Torres, 1990 (37) Prospective Mixed 24 - 
Baker, 1996 (38) Prospective Trauma 5.8  
Long, 1996 (39) Retrospective Medical - 11.5 
Long, 1996 (39) Retrospective Neurological - 19.4 
Sirvent, 1997 (40) Prospective Neurological 37  
Cook, 1998 (41) Prospective Mixed 17.5 14.8 
Leal-Noval, 2000 (42) Prospective Cardiothoracic 6.5 - 
Rello, 2002 (43) Retrospective Mixed 9.3 - 
Bouza, 2003 (44) Prospective Cardiothoracic 7.9 34.5 
Rosenthal, 2003 (45) Prospective Mixed - 51 
Lizan-Garcia, 2006 (46) Prospective Surgical 17.7 21 
Joseph, 2009 (47) Prospective Mixed 18 22.9 
 

Incidence of VAP may also be influenced by concomitant disease, with VAP rates increasing in 

patients suffering from ARDS to 37 -60% (48-50).  

1.2.3 Risk Factors 

Although duration of mechanical ventilation is one of the most significant risk factors for 

development of VAP (37, 44, 51) evidence suggests that after ten days of ventilation the incidence of 
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VAP decreases (33). Numerous other factors, table 1.3 have also been implicated as risk factors for 

VAP as outlined below.  

Table 1.3. Risk Factors for VAP (29, 37, 41, 42, 44, 52-56) 

Patient Factors Intervention Factors 
Impaired airway reflexes Sedative agents 
High APACHE II score Cardiopulmonary resuscitation 
Large volume gastric aspiration Enteral nutrition 
Chronic Obstructive Pulmonary Disease Nasogatric tube 
Postoperative cardiac failure Transfusion of blood products 
Central nervous system dysfunction Aerosolized therapy 
Trauma Surgery 
Burns Re-intubation 
 Stress ulcer prophylaxis 

Supine positioning 
Patient transfer 
Neuromuscular blocking agents 

 

1.2.3.1 Surgery 

Patients who have undergone surgery appear to be at higher risk for pneumonia than equivalent 

medical patients (51). Within surgery some patients may be more at risk than others. Cardiothoracic 

(57) and both burns and trauma (41, 53) patients have been independently found to have higher 

rates of VAP.  

1.2.3.2 Stress Ulcer Prophylaxis and Positioning 

Alkalising gastric fluid has been shown to lead to gastric contamination with potentially pathogenic 

micro-organisms (58). A meta-analysis looking at H2 antagonists found an increase in VAP (59) and a 

randomised controlled trial comparing feeding in the supine versus semi-recumbent position 

confirmed a significantly increased rate of VAP in those fed in the supine position (60). 
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1.2.3.3 Intubation 

The presence of the endotracheal tube may act as a reservoir for pathogenic organisms and 

circumvent natural defence mechanisms. The need for re-intubation has been found to be an 

independent risk factor for VAP in a number of studies (37, 42, 61). Similarly transfer of patients out 

of the ICU, for example to the radiology department or to the operating theatre,  has been 

associated with increased VAP rates (54), however, this may be a surrogate for patients who are 

sicker and require more intervention. 

The role of tracheostomy in preventing VAP is unclear. Although both a randomised trial (62) and 

subsequent meta-analysis (63) found trends towards reduction in the rate of VAP neither proved 

statistically significant. 

1.2.3.4 Antibiotics 

The role of antibiotics in preventing VAP is unclear. A number of studies have found that prior 

administration of antibiotics to be an independent risk factor (42, 55) but in others antimicrobial 

agents have been found to have a protective effect (40, 52). In one study the previous use of 

antimicrobials proved to be a risk factor for mortality (64). 

1.2.4 Aetiological Agents 

The European Prevalence of Infection in Intensive Care Study found that on a single day nearly a 

third of ICU-acquired pneumonia was caused by Staphylococcus Aureus, closely followed by 

Pseudomonal species (65). Other organisms such as E.Coli, Acinetobacter, Enterococci and yeasts 

were much less common. Haemophilus Influenza has been found to cause VAP at around 10 days 

post onset of MV, commonly in those who have not received prior antimicrobial agents but is 

associated with a lower mortality than other causes (66). 



33 

 

 

 

Infection with resistant organisms is a significant problem. Vanhems et al found that risk factors for 

pneumonia  caused by resistant organisms were a medical diagnosis, transfer from another ward, 

the presence of a colonised central venous line and longer length of hospital stay (67). Patients with 

VAP caused by Methicillin Resistant Staphylococcus Aureus (MRSA) are likely to have been ventilated 

for longer, have received prior antibiotics and corticosteroids and are more likely to suffer from 

chronic obstructive pulmonary disease (COPD) than those with the sensitive strain (68). MRSA is also 

more likely to be associated with bacteraemia, septic shock and has a higher mortality than that 

caused by sensitive staphylococci (68). Patients with head trauma, neurosurgery, ARDS and large 

volume pulmonary aspirate are predisposed to infection with Acinetobacter species (69).  

1.2.5 Mortality, Morbidity and Health Care Costs 

Estimates of mortality associated with VAP have ranged from 34-70% (42, 44, 45, 56). However, due 

to differences in diagnostic criteria, heterogeneity of patient populations and associated pathology it 

has been difficult to determine to what extent VAP is the cause of death. Pneumonia is associated 

with significant increases in hospital and ICU stay. Hospital stay can be increased by 10-20 days for 

patients with VAP (51). 

Nosocomial pneumonia is recognised as one of the most costly hospital acquired infections (70, 71). 

Development of VAP significantly increases the cost of medical care by 1.5 (38) to 3 times (56) 

compared to patients who do not develop this complication.  

1.2.6 Diagnosis 

1.2.6.1 Clinical Features  

Fagon and co-workers found that using clinical features, such as temperature, oxygenation, 

radiology, laboratory results and change in endotracheal secretions, clinicians only correctly 

diagnosed VAP 62% of the time (72). Leukocytosis, fever and quality of respiratory secretions have 
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all performed poorly when compared to histological specimens with sensitivities ranging from 46-

77% and specificities of 42-58% (73). 

 A study examining post mortem specimens of lung tissue of patients with ARDS found a 29% 

misdiagnosis rate for pneumonia based on clinical parameters. Although fever, leucocytosis and 

growth of pathogens from sputum were more common in patients with pneumonia they were still 

present in 70-80% of those without. Response to antimicrobial therapy was misleading with more 

patients without pneumonia appearing to respond (74). 

1.2.6.2 Radiology 

Presence of infiltrates on the chest radiograph have a sensitivity of 92% but a specificity of only 33% 

(73) when compared to biopsy confirmed VAP. However, the presence of radiological infiltrates plus 

two of: leucocytosis, fever or purulent secretions had a sensitivity of 69% and a specificity of 75% 

(73). Comparison of specific radiographic findings with post mortem confirmation of VAP found that 

the presence of an air bronchogram had the best overall performance with a sensitivity of 83% and 

specificity of 58% (75) but alveolar infiltrates were the most sensitive finding (88%) and fissure 

abutment was the most specific (96%). However, no radiological finding had a positive predictive 

value of more than 68% for VAP. 

1.2.6.3 Microbiology  

A microbiological diagnosis of pneumonia is important in confirming clinical suspicion and in guiding 

antibiotic therapy. Specimens can be collected using a variety of techniques from tracheal aspirate 

(TA), bronchoalveolar lavage (BAL), protected specimen brushings (PSB) and mini-bronchoscopy. 

These methods have been found to have differing efficacies in the diagnosis of VAP. 

A comparison of various microbiological sampling techniques against pathological specimens gave 

TA, protected bronchoalveolar lavage, BAL and PSB  sensitivities of 69, 39, 77 and 62% respectively 
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and specificities of 92, 100, 58, 75% (73).  Using post mortem histology as a gold standard Marquette 

et al found that TA, PSB and BAL had sensitivities of 56, 58 and 47% and associated specificities of 

86, 89 and 100%. Use of staining to detect intracellular organisms from BAL samples was also 

associated with 100% specificity but a poor sensitivity of only 37% (76). 

TA is often felt to have poor specificity for the diagnosis of VAP due to a tendency to detect airway 

colonisation. However, in a study comparing PSB, BAL and TA, quantitative culture of TA with a cut 

off between 105 and 106 Colony Forming Units (CFU)/ml had a sensitivity and specificity of around 

70% (77, 78). However, BAL and PSB had greater specificities of 87 and 93%. TA was also found to 

have a better negative predictive value than PSB (72 vs 34%, p<0.05) (78). 

A randomised pilot study comparing BAL combined with PSB to TA to guide antibiotic decision 

making found no statistical difference in mortality or morbidity between the two methods. However, 

there was a trend towards higher mortality in the group undergoing invasive sampling (79). In 

another, non-randomised, trial invasive pulmonary investigation with BAL appeared to reduce 

mortality compared to a control group and the results of this investigation were found to 

significantly influence physician decision making (80). A meta-analysis of four randomised controlled 

trials found no overall difference in mortality between invasive and non-invasive diagnostic 

approaches but that invasive investigation consistently led to more frequent changes in antibiotic 

prescribing (81). 

All sampling techniques pose technical challenges. If samples are not collected and handled correctly 

the diagnostic yield may be reduced. It is therefore important that for microbiological investigations 

to remain valid, stringent sampling methods must be adhered to (82). 

1.2.6.4 Scoring Systems 

Pugin et al developed a Clinical Pulmonary Infection Score (CPIS) for the diagnosis of VAP based on 

six clinical parameters, table 1.4, which gave a score from 0-12 (83). They found that a score of 
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greater than six correlated with a bacterial index of greater than five on both guided and blind BAL. 

A randomized study Singh et al used the CPIS score to guide antibiotic prescribing. They found a 

significant reduction in antibiotic prescribing without increase in mortality or length of ICU stay (84). 

Table 1.4. Clinical Pulmonary Infection Score (83) 

Clinical Feature Score 
Temperature (oC) 
36.5-38.4 
38.5-38.9 
≥39 ≤36 

 
0 
1 
2 

White Cell Count (mm-3) 
4,000-11,000 
>11,000,  <4,000 
Band forms >500 

 
0 
1 
+1 

Radiology 
No infiltrate 
Diffuse (Patchy) Infiltrate 
Localised Infiltrate 

 
0 
1 
2 

Oxygenation (mmHg) 
PaO2/FiO2 > 240 or ARDS 
PaO2/FiO2 ≤240 

 
0 
2 

Secretions 
<14 of total secretions in 24h 
≥14 of total secretions 
Plus purulent secretions 

 
0 
1 
+1 

Microbiology 
Pathogenic bacteria cultured ≤ 1+ or no growth 
Pathogenic bacteria cultured ≥ 1+ 
Gram stain ≥ +1 with same pathogenic organism 

 
0 
1 
+1 

 

The use of the CPIS score as a diagnostic tool has been debated. Fartoukh et al found that a modified 

CPIS score at baseline was only slightly better at predicting VAP than a strong clinical suspicion but 

that it could be improved with the addition of the gram stain result from either protected telescopic 

catheter or BAL sampling (85). The CPIS score was originally developed in medical ICU patients and 

concern has been raised that it may not be applicable in other patient groups. In some instances, for 

example in burn and trauma patients, the area under the receiver operating curve for the CPIS score 

has been less than 0.5 (86).  
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1.2.6.5 Biomarkers 

Various biomarkers have been suggested to aid in the diagnosis of VAP including total bile acids, 

soluble triggering receptor expressed on myeloid cells (sTREM-1), C-reactive protein (CRP), 

procalcitonin (PCT), elastin fibres and endotoxin in BAL fluid. Of these, sTREM-1, CRP and PCT are 

probably best studied. sTREM-1 is a glycoprotein expressed on phagocytic cells which is up-regulated 

in bacterial infection. An initial study found sTREM-1 measured in BAL samples had a sensitivity of 

96% and a specificity of 90% for pneumonia. However, in subsequent studies it has performed less 

well than a CPIS<6 (87) and has been non-discriminative for VAP (88), possibly being influenced by 

prior antibiotic use.  It has proved possible to measure sTREM-1 in exhaled breath condensate, 

although at lower concentrations than in BAL fluid, presenting a non-invasive means of 

measurement (89). However, in this study BAL levels still performed poorly as a diagnostic tool. 

CRP, a protein manufactured in the liver that is elevated with inflammation, and PCT, a pro-hormone 

secreted into the serum from the C-cells of the thyroid in health and from other neuroendocrine 

tissues during inflammation, have both been measured in serum and BAL fluid as an aid to VAP 

diagnosis (90). In one study serum PCT performed better than CRP in separating VAP from non-VAP 

with a sensitivity of 100% (91). However, both CRP (92)and PCT are elevated in infection from any 

cause in the ICU limiting their specificity. 

 A randomised controlled trial using PCT to guide antibiotic therapy in lower respiratory tract 

infections found a reduction in antibiotic prescribing without an increase in adverse events (93) 

indicating a role in treatment decisions. However, as a diagnostic tool for VAP PCT is limited as it 

becomes elevated in a range of bacterial infections as well as non-bacterial inflammatory conditions 

(94).  

It is therefore apparent that pneumonia is a major healthcare problem and that better diagnostic 

methods are required to better manage patients. 
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1.3 Metabonomics 

Metabonomics is “the quantitative measurement over time of the metabolic responses of an 

individual or population to drug treatment or other intervention” such as a disease process (95). 

Spectroscopic techniques including nuclear magnetic resonance (NMR) spectroscopy and mass 

spectrometry (MS) have been used to determine the global metabolic profiles of numerous types of 

biological samples. Blood and urine are the most commonly analysed but any biological specimens 

such as tissue, cerebrospinal fluid or exhaled breath condensate (EBC) can be used (96-99). These 

methods have been used to evaluate numerous clinically significant conditions including trauma 

patients (100, 101), detection of acute kidney injury and monitoring of dialysis (102-104), diagnosis 

of subarachnoid haemorrhage (105), and acute lung injury (106).  

Metabonomic analysis is carried out using two broad analytical platforms, nuclear magnetic 

resonance spectroscopy and mass spectrometery. These two techniques each have their own 

strengths and weaknesses and together give complementary information. Data can be acquired that 

either provides global information collecting as much non-targeted metabolic information as 

possible, which is useful for initial biomarker discovery when there are no pre-conceived ideas 

regarding candidate markers, or can be targeted to obtain detailed information on a specific class of 

metabolites or metabolic processes. 

1.3.1  1H Nuclear Magnetic Resonance Spectroscopy 

NMR spectroscopy uses the magnetic properties of certain nuclei that possess spin, for example 1H 

and 13C. NMR spectrometers use superconductors to generate strong magnetic field, figure 1.1. A 

spinning charge placed in such a magnetic field produces two spin states – one up, aligned with the 

magnetic field, and one down, aligned against the magnetic field (107). The energy difference 

between the two spin states is proportional to the magnetic moment of the nuclei which is 







ratio of peaks is given for each of the multiplets, these follow the rules of Pascal’
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In order to improve fragment separation mass spectrometry is often coupled to chromatographic 

techniques. Such techniques include gas chromatography-mass spectrometry (GC-MS), where a gas 

chromatogram is used to separate molecules in gaseous phase before they are fed into the ion 

source allowing ionisation and further separation. Liquid chromatography-mass spectrometry (LC-

MS) and high performance liquid chromatography-mass spectrometry (HPLC-MS) similarly separates 

molecules in a sample in a liquid mobile phase using a liquid chromatogram using a combination of 

organic solvents prior to ionisation.  

MS based platforms generally have the advantage of greater sensitivity compared to NMR, however, 

some substances such as sugars and amino acids are difficult to analyse with this method due to 

their polarity and lack of volatility (111). MS requires reasonably extensive sample preparation and, 

with long chromatographic times, can take longer to process than NMR. Also because of the need to 

vaporise and ionise the sample MS is a more destructive analytical technique than NMR. 

1.3.3 Data Analysis 

Analytical techniques used in metabonomics generate data sets that are unlike those produced in 

many other scientific areas. Whereas there would often be many more subjects than variables, 

metabonomics generally produces thousands of variables, several of which may correlate, and many 

may not be normally distributed. These features pose problems for regular statistical methods so 

analysis is generally performed using multivariate statistics. Many techniques exist within 

multivariate statistics but broadly speaking those used in chemometrics can be split into 

unsupervised tests, where no class information is given to the model. These are good at finding 

natural clustering within the data sets and at identifying outliers. Supervised tests, on the other 

hand, look for variation between predefined groups or classes and are able to build predictive 

models. 
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1.3.3.1 Principal Component Analysis 

Principal Component Analysis (PCA) is the predominant method of unsupervised multivariate 

analysis used in metabonomics. It is generally concerned with elucidating the covariance structure of 

the data set by representing the data along new axes based on the direction of the maximum 

variation, so called principal components. Mathematically this is done by splitting the data into a set 

of eigenvectors, essentially directions of variation, and for each eigenvector an associated 

eigenvalue describes the magnitude of this variation. The first principal component is the 

eigenvector associated with the greatest eigenvalue and the second principal component will be that 

with the second largest value that is orthogonal to the first, figure 1.7. This method of analysis allows 

data reduction. Although an eigenvector exists for each variable in a data set some of these will 

contain very little variation and eigenvectors with low eigenvalues, which contain little information, 

are discarded. The data can then be re-displayed using the principal components as a new set of 

axes, giving a PCA scores plot, figure 1.7. 

An approximation to the Student’s t-test called the Hotelling’s ellipse can be projected onto the PCA 

scores plot. This gives an indication of a 95% confidence interval within which 95% of observations 

should fall. Data points lying outside of this ellipse can be considered as strong outliers and can be 

examined in more detail. 

1.3.3.2 Supervised Analysis 

Supervised multivariate analysis is aimed at finding the variation in the data matrix that explains a 

predefined classification.  One of the underlying methods of supervised analysis is partial least 

squares analysis (PLS). PLS determines the underlying relationship between two data matrices, X 

which contains the sample data and a second data matrix Y, containing dependent information, 

using a latent variable approach finding the fewest variables that account for the differences in the Y  
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matrix. Overall the goal is to predict Y from X. Where the Y data matrix contains classification data 

the process is called Partial Least Squared Discriminant Analysis (PLS-DA). Extensions of PLS and PLS- 

DA occur with both orthogonal partial least squared (OPLS) and orthogonal partial least squared 

discriminant analysis (OPLS-DA). These two techniques work in a similar fashion to their PLS 

counterparts. However, in these methods the variation in the X matrix is divided into that which 

explains data in the Y matrix and that which is orthogonal to it and does not explain the Y data. The 

data can be represented as one component that explains the between group variation and one 

orthogonal to it that explains within group variation.  Although these extensions do not improve the 

predictively of the models they aid analysis by improving both visualisation and diagnostics of the 

models. 

In order to assess the predictive capacity of a model cross validation can be carried out. A number of 

methods exist to do this but a commonly utilized approach is to leave out every nth row in the data 

matrix and build a model based on the remaining data. The remaining data can then be predicted by 

the model and the results compared to the expected outcome. This process can then be repeated 

until all of the data has been left out once. After cross validation it is possible to derive two 

descriptive metrics for the models. The first is known as the R2Y which explains the amount of 

variation between the classification groups that is explained by the model. This value ranges from 0 

to 1.0 with values approaching 1.0 explaining almost all of the variation in the model and lower 

values suggesting that much of the variation in the data is irrelevant or noise. The second value is 

the Q2Y which describes the fraction of variation in the dependent variable, Y matrix, by the model. 

Again this can range from 0 to 1.0 and the higher the value the more predictive the model. The 

expected values of both R2Y and Q2Y are dependent on the type of data being analysed but in 

general should ideally be no more than 0.2 apart (112). For biological models a Q2Y of 0.4 would 

equate to a reasonable model. However, the ideal way to test a model is to challenge it with a 

complete new set of data from a validation cohort of samples that have not been used to generate 
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the model in the first instance. From this set of data model statistics such as sensitivity, specificity 

and predictive values can be obtained. 

In order to determine the variables that are important in separating two groups based on 

multivariate analysis the loading of each variable can be examined. The loading describes the 

correlation that a component has with the original variable, variables that are strongly correlated 

with the component have a loading close to 1.0 where as those that have an opposite effect have 

values closer to -1.0. Variables with loadings close to zero have no influence on the model. 

1.3.3.3 Pre-processing 

Prior to multivariate analysis data sets need to undergo several pre-processing steps. Mean centring 

is performed to ensure that the first component genuinely represents the direction of maximum 

variation as opposed to the mean vector. This is done by subtracting the mean from each variable 

and gives each variable a mean of zero. Multivariate analysis is very sensitive to scale. Variables that 

have a large magnitude tend to be associated with a large variance and would have a greater effect 

on the models than variables that are smaller with lower variance. Similarly if variables are 

measured in different units, for example heart rate in beats per minute and partial pressure of 

oxygen (PaO2) in kPa, then the models would look very different to the same data analysed using a 

different measurement scale, for example where the PaO2 is measured in mmHg. To alleviate these 

problems the data is often scaled so that each variable has the same unit variance.  

1.4 Metabonomics of Sepsis and Pneumonia 

A range of work has been carried out attempting to utilize metabonomic techniques to explore both 

sepsis and specific infections using cells, animals and human subjects with both NMR and MS, 

allowing over 500 metabolites and pathways to be implicated in infection. Work has been done 

using cell lines and culture media (113-119) allowing bacterial (114, 116, 117, 120) and Candida 
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species (119) to be identified with NMR. Specifically investigating cell lines infected with Chlamydia 

Pneumonia using several MS platforms found changes in amino acid and cholesterol synthesis (113) 

to be important in detecting the organism. 

Several animal models have been used in an attempt to further understand the metabonomics of 

infection. Mice (115, 121-126), rats (127-132), horses (133) and primates (134) have all been used as 

models of various infections allowing biofluids including blood (121, 130), broncheoalveolar fluid 

(BALF) (128) and lymph (132) to be analysed as well as tissue including lung (124, 128), liver (124, 

125), kidney (126) and spleen (124, 126). Infections as diffuse as cerebral malaria (126), peritonitis 

(128, 131) (127, 129), E.coli sepsis (134) and Gram positive and Gram negative infection (121) have 

been investigated. Metabolites including amino acids, those involved in energy and carbohydrate 

metabolism, fatty acids and those associated with mitochondrial dysfunction have all been identified 

in these animal models of infection. 

A range of infections have also been explored in human subjects. The majority of work in humans 

involves clinical samples from subjects with a number of infections, however, humans have also 

been used to explore metabolic changes over time of a lipopolysaccharide induced sepsis model 

(135) which found alterations in fatty acid, amino acid and protein metabolism over a 24 hour 

period. A great deal of work has been done to look at urinary tract infection using NMR of urine 

samples (136-140) for a range of organisms including E.coli (137, 139) and Gram positive and 

negative infections (138) with an attempt to identify specific causative bacteria (139).  

Several other specific infections have been studied including leprosy (141), cerebrospinal fluid 

analysis to distinguish various forms of meningitis and ventriculitis (142) and generic sepsis in both 

adults (143-146) and children (147, 148). 
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1.4.1 Pneumonia 

A small amount of work has been carried out investigating pneumonia using metabonomics. Animal 

studies have found elevated lipoproteins, triglycerides, unsaturated and polyunsaturated fatty acids, 

ω-3 fatty acids, lactate and 3-hydroxybutyrate and reduced glucose levels in the plasma of rats 

infected with Klebsiella Pneumoniae compared to controls (149). Mice with pneumonia caused by 

Staphylococcus Aureus or Streptococcus Pneumoniae can be separated from control animals based 

on urine metabolic profiling (150). Viral pneumonia caused by Influenza A has been studied using MS 

finding several metabolites that were altered in infected animals, including the amino acids, valine, 

ornithine, and taurine and the eicosanoids PGF2a and 20-ethyl-PGE2 (123). A specific form of 

pneumonia, tuberculosis, has been examined using a murine model taking serum and tissue samples 

to successfully categorise infected and non-infected animals (124).  

Work in humans has focused on community acquired pneumonia and tuberculosis. Studies in 

tuberculosis have found a combination of both classification metabolites and those associated with 

treatment (151, 152). A few studies exist examining more typical forms of pneumonia.  A study using 

MS of plasma from children with pneumonia from Gambia found elevated uric acid, hypoxanthine, 

glutamic acid and L-tryptophan but reduced adenosine diphosphate levels. In this study, clustering 

based on sex was noted in the pneumonia group that was not seen in the controls suggesting 

potential differences in inflammatory responses between boys and girls (153). A study looking 

specifically at patients with Streptococcus Pneumoniae pneumonia found numerous urinary 

metabolites to separate cases from controls including citrate, succinate, 1-methylnicotinamide, 

several amino acids, glucose, lactate, acetone, carnitine, acetylcarnitine, hypoxanthine and acetate 

(154). This study also aimed to address several potential confounding factors associated with this 

type of investigation by comparing cases to several control groups such as those with other types of 
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lung disease, those with other types of pneumonia and those with other acute illnesses. In most 

cases multivariate statistical models provided reasonable prediction accuracy.  

1.4.2 Critical Care 

Work within critical care has focussed on the outcomes of patients with community acquired 

pneumonia (CAP) and sepsis (155). MS analysis of plasma found higher levels of bile acids, steroid 

hormone metabolites, markers of oxidative stress and nucleic acid metabolites in non-survivors, 

however, the statistical models based on these differences had only modest sensitivity with an area 

under the receiver operating curve (AUROC) of 0.67.  

A common differential for VAP is acute lung injury (ALI) or ARDS and differentiation can be difficult. 

A metabonomic study of sepsis induced ALI and ARDS (106), in 13 patients with ALI or ARDS 

compared to 6 healthy controls, found differences in plasma levels of glutathione, adenosine, 

phosphatidylserine and sphingomyelin between case and controls and in another study using LC-MS 

of BALF several lipid metabolites increased and a component of surfactant decreased in BALF of 

those with ARDS (156). Other work in ICU patients has looked at predisposition to sepsis following 

trauma using NMR of plasma samples from 21 patients and identified valine, citrate, aspartate, 

allantoin and hydroxybutyrate as associated with the future development of sepsis (157).  Looking at 

septic shock in adults on ICU glycerophospholipids and acetylcarnitines were elevated in 33 patients 

with sepsis when compared to 30 other patients with SIRS (146). Further exploration of sepsis on ICU 

used NMR techniques to predict mortality (145) in 37 intensive care patients compared to 20 

controls and looked at sepsis in 137 children from different age groups admitted to critical care 

(148). In an attempt to explore ICU mortality (158) in adult ICU patients plasma samples were 

analysed with MS finding 31 metabolites associated with mortality most of which were elevated in 

those who died. These covered a range of metabolites including lipids, carbohydrates and amino 
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acids. Only six metabolites were greater in those who survived and these were all involved in the 

lipid synthesis pathway.  

To date no work has been published using metabonomic methods to specifically focus on VAP or 

looking at methods for differentiating patients with pneumonia from similar critically unwell patients 

without pneumonia. Current work has often used healthy volunteers as controls for pneumonia 

cases. This approach has several disadvantages as healthy volunteers may be expected to be 

metabolically quite different from pneumonia patients compared to similar severely ill patients. 

1.5 Oxylipins and Cytokines 

Oxylipins are a family of molecules formed from the oxidation of fatty acids and the most well 

known of these are the eicosanoids, signalling molecules formed from the oxidation of 20-carbon 

fatty acids. Eicosanoids play an important role in mediating both inflammation and immunity and are 

predominantly derived from three fatty acids, arachidonic acid (AA), eicosapentanoic acid (EPA) and 

linoleic acid (LA). The derived eicosanoids can be subclassified, for example, prostaglandin analogs, 

thromboxanes, lipoxins and leukotrienes, figure 1.8. The effects of these mediators are varied and 

depend on the organ involved and the balance of mediators released but can have effects including 

vasodilation and vasoconstriction, bronchodilation and bronchoconstriction and release of other 

inflammatory mediators. 

Cytokines are another broad range of small signalling proteins produced by a variety of cell types. 

They encompass interleukins (IL), interferons, tumour necrosis factor alpha (TNFα), colony 

stimulating factors and chemokines and are related to several of the adhesion molecules such as 

intracellular adhesion molecule 1 (ICAM-1). These mediators are generally produced from 

inflammatory cell lines including lymphocytes, monocytes, mast cells and natural killer cells and are  
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implicated in a range of pathology from infection and inflammation to malignancy. The interactions 

of cytokines and eicosanoids are complex and are interdependent and can have similar actions. 

Eicosanoids such as the leukotrienes, especially leukotriene B4 (LTB4), are thought to be important 

in protecting the lungs from infection with actions including chemoattraction and leukocyte 

activation. LTB4 may increase IL-6 levels (159) and has been associated with pulmonary 

complications following trauma (160).  Streptococcus Pneumonia has been shown to be capable of 

inducing COX-2 expression, an enzyme crucial to eicosanoid production, within lung tissue in models 

of lung infection (161). Eicosanoids not only act as pro-inflammatory mediators but, substances such 

as the lipoxins, have been implicated in the resolution of pulmonary inflammation. Lipoxin A4 can be 

generated in response to lung injury and has been found in the BALF of patients with pneumonia 

(162) and may inhibit LTB4 mediated chemoattraction. 

Cytokines are also known to play an important role in the pathology of pneumonia with circulating 

levels of pro-inflammatory cytokines, such as TNFα, interleukin-1 (IL-1), interleukin-6 (IL-6), 

interleukin-8 (IL-8), interleukin-12 (IL-12), and interferon gamma (IFNγ) having been found to be 

elevated in patients with pneumonia. A study looking at pneumonia (163) found higher levels of IL-6 

and interleukin-10 (IL-10) in non-survivors compared to survivors and higher IL-6, IL-10 and TNFα 

levels in those pneumonia patients with severe sepsis compared to those without. The inflammatory 

response to CAP may not be the same throughout life and may alter with age, for example, IL-8 has 

shown a trend to be elevated at admission in older patients with CAP compared to those younger 

than 50yrs (164). In children IL-6, IL-8 and IL-10 levels were found to be higher, not only in septic 

patients compared to controls, but also in those septic patients who went on to develop nosocomial 

infections (165). Specific micro-organisms have also shown similar patterns of cytokine response 

(166) with Interleukin 4 (IL-4), IL-6 and IL-10 being higher in mycoplasma pneumonia than in 
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controls. Many of these mediators are produced locally, for example, IL-8, LTB4, C4, D4, and E4 have 

been found at higher concentrations in the BALF of pneumonia patients compared to controls (167).  

The diagnostic potential of cytokines or eicosanoids in pneumonia has been examined in a few 

studies and a smaller body of work exists applying a panel approach to measuring an array of 

inflammatory mediators. For example, one study aimed to diagnose tuberculosis using a multiplex 

cytokine assay measuring cytokines produced from stimulated peripheral blood mononuclear cells 

with  IFNγ, interferon gamma inducible protein-10 (IP-10), monokine induced by interferon gamma 

(MIG), TNFα and IL-2 showing the most significant differences between patients with active 

pulmonary tuberculosis and healthy controls (168). In another study ARDS cases were separated into 

different phenotypic groups based on IL-6 and IL-8 levels combined with other biological and clinical 

data (169). No work exists combining a large profile of cytokines and eicosanoids into one model in 

an attempt to diagnose either pneumonia in patients admitted to critical care or VAP in those 

already ventilated on the ICU. 

1.6 Breath Analysis 

Formalised breath analysis is used widely in law enforcement and in some diagnostic clinical tests 

such as for Helicobacter pylori. Volatile organic compounds (VOCs) in breath give signatures that are 

familiar to us as odours associated with several diseases from the ketones associated with diabetic 

complications to the recognizable hepatic fetor.  

Online metabolic profiling of exhaled breath using selected ion flow tube mass spectrometry (SIFT-

MS) and gas chromatography mass spectrometry (GC-MS) (170-172) can be performed. Metabolites 

such as acetone, ammonia and methane have been quantified (173, 174) in healthy volunteers and 

the repeatability of the SIFT-MS technique has been demonstrated (175). Exhaled nitric oxide (NO) 
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has shown potential for detecting airway inflammation in asthma, COPD (176) and pneumonia (177) 

and carbon monoxide levels in breath have been found to increase in patients with sepsis (178).  

Headspace gas analysis from a range of cultures has shown potential to detect of a range of micro-

organisms (179-181) including cultures of BALF from patients with pneumonia (182). For example, 

Pseudomonas has been identified from cultures taken from patients with cystic fibrosis (183, 184) 

and breath from these patients has been analysed in an attempt to determine Pseudomonas 

colonisation status (185-187). Analysis of exhaled breath may therefore allow detection of specific 

causative organisms in pneumonia by differentiating metabolic profiles. Although some of the above 

work shows promise for breath analysis to be used to explore pneumonia no studies exist examining 

metabolic profiling of exhaled gaseous breath with regard to this disease. Specifically no work has 

been done regarding VAP.  

It is possible to condense and collect the water vapour contained in breath, known as exhaled breath 

condensate (EBC). EBC is 99% evaporated water but also contains droplets of fluid from the airway 

linings allowing non-volatile compounds to be measured. EBC contains a number of substances 

including interleukins (188), leukotrienes (189) and sTREM (89). Hydrogen peroxide is one of the 

most studied substances from EBC and is elevated in many inflammatory condition including ARDS 

(190), asthma (191) and may correlate with treatment response in patients with cystic fibrosis (192). 

Isoprostanes have been noted to be increased  in COPD (193), asthma (194) and ARDS (195) and EBC 

pH appears to decrease with lung inflammation in conditions such as bronchiectasis, COPD and lung 

injury (196, 197). In the field of pneumonia thiobarbituric acid and hydrogen peroxide have been 

seen to increase in CAP (198, 199). 

1.6.1 Metabonomics of Breath Condensate – 1H-NMR Spectroscopy 

Small scale studies with EBC have used NMR analysis to distinguish stable from unstable patients 

with cystic fibrosis (200), asthmatics from healthy controls (201-203), to investigate smoking related 
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diseases (204) and examine the potential of salivary and disinfectant contamination, from reusable 

collection equipment, of EBC (205). Studies have made attempts at metabolite assignment (99, 200, 

204, 205) identifying 26 compounds between them. As yet there is no experience of collecting EBC 

from ventilated patients for the purpose of metabolite analysis. As with the gaseous phase of breath 

the optimal methods for sample collection, processing and analysis are not known.  

1.6.2 Metabonomics of Breath Condensate –Mass Spectrometry 

With its greater sensitivity MS potentially has advantages over NMR spectroscopy for the analysis of 

EBC given the very low concentrations of metabolites within the fluid. Most work has focussed on 

specific markers or panels of markers with little work ustilising MS as a profiling tool (206, 207). 

Many specific substances within EBC have been explored including  glucose (208), urea (209, 210), 

volatile organic compounds (211, 212), aldehydes (213-216),  isoprostanes (195, 217-226), markers 

of oxidative stress (218), cystinyl leukotrienes (218, 227, 228), leukotrienes (189, 227, 229-233), 

eicosanoids (234-239), 12-HETE (240), lysophosphatidic acid (241), asymmetric dimethylarginine 

(ADMA) (242, 243), adenosine (209), phenylalanine (209), lysine (244), tyrosine (245), 

hydroxyproline (245), proline (245),  purines (246-249), metallic elements (250), 3-nitrotyrosine 

(245, 251-254), and proteins (255) using a number of MS methods including LC-MS (206-208, 218), 

Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) (217, 241, 255), GC-MS (211) and 

Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) (227, 243). 

The majority of work using MS has, again, focussed on relatively stable diseases in community 

patients including healthy subjects (215, 238, 256), asthma (189, 206, 218, 227, 232, 234-236, 239, 

242, 248), COPD (216, 247, 250, 255), pulmonary fibrosis (223, 224, 241), cystic fibrosis (208, 209), 

pulmonary hypertension (211), brochopulmonary dysplasia (207), pneumoconiosis (229), silicosis 

(221), asbestosis (226), Churg Strauss (240) and seasonal rhinitis(233). ARDS (195) has been studied 

in critically unwell patients. Almost all studies have been performed in spontaneously ventilating 
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patients with only two in those requiring mechanical ventilation (195, 210) one of which (210) did 

not investigate particular disease state and only looked at urea measurement. No studies have been 

carried out profiling EBC in patients with pneumonia either with or without the need for mechanical 

ventilation.  EBC analysis is appealing for the diagnosis of pneumonia in ventilated patients as it is a 

non-invasive, easily obtained biofluid that directly samples from the site of pathology. 

1.7 Hypothesis and Aims 

1.7.1 Hypothesis 

The application of metabolic and inflammatory profiling to biofluids including serum, urine and 

breath condensate obtained from patients ventilated on the Intensive Care Unit will aid the 

diagnosis of pneumonia and ventilator associated pneumonia. 

1.7.2 Aims 

The following aims will be addressed: 

x Can metabolic profiles of serum and urine be used to aid diagnosis of patients with 

pneumonia and VAP? 

x To investigate the potential of using 1H-NMR and MS as methods for analysing EBC collected 

from ventilated patients. 

x Can metabolic profiling of EBC aid in the diagnosis of pneumonia and VAP? 

x Can comparing metabolic profiles of breath condensate, serum and urine give an insight into 

local and global metabolic changes? 

x Can a panel approach to the measurement of eicosanoids aid the diagnosis of both 

pneumonia and VAP?  

x Can a panel approach to the measurement of cytokines aid the diagnosis of both pneumonia 

and VAP?  
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x Can combining eicosanoid and cytokine profiles into an ‘inflammatory profile’ improve the 

diagnostic potential of this approach? 

x Can multivariate methods applied to routinely collected clinical data produce discriminant 

models to differentiate those with and without pneumonia? 

x Can combining clinical data with profiling data from biofluids improve diagnostic potential of 

these approaches? 
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Section II – Methodology 
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2. PROTOCOLS AND METHODS 

2.1 Patient Recruitment. 

All patients were recruited in line with the independent research ethics committee approval (REC 

10/H0709/77). Adult patients (age >16yrs) were screened at both Charing Cross and St Mary’s 

Hospitals, Imperial College Healthcare NHS Trust. Patients were eligible for recruitment if they 

fulfilled the following criteria: 

1. Patients requiring intubation and ventilation who were expected to be ventilated for >48 

hours 

2. Patients who could be recruited within 48 hours of intubation 

3. Patients fulfilling 2/4 of the criteria of the systemic inflammatory response syndrome (SIRS) 

as follows: 

(1) Fever (>380 C) or hypothermia (< 360 C),  

(2) Tachycardia (heart rate > 90 beats per minute), 

(3) Tachypnoea (respiratory rate > 20 breaths per minute or PaCO2 < 4.3 kPa) or need 

for mechanical ventilation, 

(4) Abnormal leukocyte count (> 12,000 cells/mm3, < 4000 cells/mm3, or > 10% 

immature [band] forms). 

Patients were excluded if the following criteria were met: 

1. Refusal of assent from the patients next of kin 

2. Pre-existent immunosuppression, either congenital or acquired 

3. Use of granulocyte colony stimulating factor 



63 

 

 

 

Three groups of patients were recruited. The predominant group was a cohort of patients with 

isolated neurological pathology or brain injury (BI), such conditions included subarachnoid 

haemorrhage (SAH), isolated head injury, cerebrovascular accidents (CVA), isolated brain tumours 

and status epilepticus. Patients with disseminated pathology that may have effect on their lungs 

such as polytrauma or disseminated malignancy with cerebral metastasis were not recruited into 

this group. A second group of patients admitted with a primary diagnosis of pneumonia were 

recruited to act as a positive control group. Finally a, small, third group of patients was enrolled with 

a range of conditions who’s samples could be used for method development. 

2.1.1 Consent 

As, by definition, patients recruited to the study were undergoing invasive ventilation it was not 

possible to obtain direct patient consent. Instead informed assent was obtained from the patient’s 

personal consultee or where no such person existed a professional consultee caring for the patient 

but not directly involved in the study. All patients were followed up once mechanical ventilation had 

ceased and where patients regained capacity retrospective consent was obtained for involvement in 

the study. 

2.1.2 Sample collection 

The first set of biofluid samples, exhaled breath condensate, serum and urine, were obtained from 

recruited patients as soon as possible after personal consultee assent had been obtained. 

Subsequent samples were collected on alternate days until either four sets of samples had been 

obtained over the course of the first week or the patient no longer required Intensive Care.  

 2.1.2.1 Serum 

All blood was drawn from indwelling vascular access. Where a patent arterial catheter was in place 

this source was used for sample collection, if no arterial access was available blood was drawn from 
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the central venous catheter. 5ml of blood was aspirated from the line to clear the saline flush prior 

to sample collection. Serum samples were collected into 10ml, red-topped Vacutainer® (New Jersey, 

USA) tubes containing a silicone clot activator. 10ml of blood were drawn into the tube from the 

indwelling catheter and placed directly on ice. Samples were left to clot for 30 minutes on ice in 

order to limit metabolic activity within the sample during clotting. Samples were then centrifuged at 

1600g at room temperature for 10 minutes prior to being divided into 100-500µl aliquots. Aliquots 

were then kept frozen at -80°C before analysis. A clotting time of 30minutes was used to balance the 

time needed to allow the samples to clot adequately whilst minimising the time between sample 

collection and aliquots being frozen (110, 257). 

After analysing the first samples it became apparent that in some aliquots clotting had continued 

during the freezing process leaving insufficient sample volume to run the required experiments. In 

order to improve the volume of serum obtained in samples collected latterly, a second red-topped 

Vacutainer was collected simultaneously. Whilst the first was processed as described above, the 

second was centrifuged for a further 5 minutes to improve clot and serum separation. This then 

provided two groups of paired samples, those centrifuged for 10 and those for 15 minutes. Where 

possible 10 minute samples were used for all analysis, however, where insufficient sample was 

obtained a 15 minute sample was substituted. Where possible a direct comparison of 10 to 15 

minute samples was made where paired samples existed. 

 2.1.2.2 Urine 

All urine samples were collected from indwelling urinary catheters. The catheter was clamped for 

20-30min prior to sample collection to ensure a fresh sample was obtained. 5ml of urine was then 

aspirated from the side port of the catheter before being placed into a 10ml red-topped Vacutainer® 

(New Jersey, USA) tube. Immediately after collection collected samples were centrifuged at 1900g, 

at room temperature for ten minutes before being divided into aliquots of 600-700µl. All aliquots 
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were immediately frozen at -80°C, the time between a samples collection and its placement in the 

freezer was kept to a minimum. 

 2.1.2.3 Exhaled Breath Condensate 

Exhaled breath condensate (EBC) was collected using the commercially available RTube™ 

(Respiratory Research, USA) device. This device consisted of a single use polypropylene tube with a 

one-way silicone rubber valve, figure 2.1. For sample collection the disposable tube was covered 

with a re-useable aluminium tube which is otherwise kept at -80oC this acted as a condenser. The 

time between removing the condenser from the freezer and connecting the collection equipment to 

the ventilator circuit was kept to a minimum. To allow the aluminium tube to be handled a 

polyester/cotton insulator was used. The device is predominantly intended for sample collection 

from spontaneously breathing subjects and comes fitted with a mouth piece and one way inspiratory 

valve combined as a plastic T-piece. In order to fit the device into the ventilator circuit the mouth 

piece was removed and the plastic T-piece inverted and placed on in the top of the RTube™, figure 

2.1. The rearranged equipment could then be placed into the expiratory limb of the ventilator 

circuit. In order to prevent excessive expiratory pressure a small v-shaped nick was made in the 

silicone valve using sterile scissors. The presence of the silicone valve ensured that only expiratory 

breath was being condensed.  

EBC samples were collected by placing the collection equipment in the expiratory limb of the 

ventilator circuit for 15 minutes. One to two minutes prior to collection the heat and moisture 

exchange (HME) filter was removed. This ensured sufficient moisture content of the exhaled breath 

passing through the RTube™ to allow an adequate amount of condensate to be collected. During 

EBC collection patients underwent full monitoring of saturations, respiratory rate, end-tidal CO2, 

heart rate and blood pressure as well as the respiratory parameters being delivered by the 



2.1 a. Components of the RTube™ device b. The RTube™ c
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ventilator. This ensured the safety of sample collection and allowed collection to be terminated in 

case of patient instability. Prior to sample collection the ventilator settings were set by the physician 

responsible for the patient’s care and these were unchanged during collection. A record was kept of 

all settings at the time of collection. 

After 15 minutes of collection time the EBC was divided into aliquots by pushing the silicone valve up 

to the top of the collection tube using a solid aluminium plunger. Samples were divided into aliquots 

of 500µl and frozen immediately at -80°C. 

 2.1.3 Clinical Data Collection 

A comprehensive set of clinical data was recorded for each day of a patients ICU stay. Data included 

all physiological variables, laboratory test results, radiology results, arterial blood gas results, 

microbiology results and administered drugs, fluid and feed, table 2.1. Data were collected at 

8:00am every morning and covered the preceding 24h period. For all variables the minimum and 

maximum values were recorded for the 24h period. 

2.1.4 Patient Follow Up 

Whilst on ICU patients were followed up daily and following step down to the ward patients were 

followed up until discharge or death with significant events during their stay recorded. 

2.2 Diagnosis of Pneumonia 

2.2.1 Brain Injury Patients Developing Ventilator Associated Pneumonia 

Patients from the brain injury group were followed up daily and a diagnosis of ventilator associated 

pneumonia was made based on Clinical Pulmonary Infection Scoring (CPIS) (83), table 2.2. In contrast   
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 Table 2.1 Clinical data collected for all enrolled patients 

Bedside Variables Laboratory Variables Drugs 
Ventilator Settings Laboratory Results  
Ventilator mode White Blood Cell Count (x10^9/L) All drugs administered over the 

preceding 24h with timings and doses 
Peak end expiratory pressure (PEEP) (cmH2O) Haemoglobin (g/dl)  

FiO2 Platelet Count (x10^9/L)  All fluids given over the preceding 24h 
with timings and volumes 

Respiratory rate set (breaths/min) Haematocrit (%)  

Respiratory rate measured (breaths/min) Prothrombin Time (s) Type and volume of feed administered 
with timing 

Set tidal volume (ml) Activated Partial Thromboplastin Time (s)  
Expiratory tidal volume (ml) Fibringogen (g/L) Blood products given with timing 
Pressure support (cmH2O) Sodium (mmol/L)   

Pressure control (cmH2O) Potassium (mmol/L)   

Expriatory minute volume (L) Creatinine (µmol/L)   
Peak airway pressure (cmH2O) Urea (mmol/L)   
Inspiratory:Expiratory ratio Chloride (mmol/L)  
 Magnesium (mmol/L)   
Physiological Parameters C-Reactive Protein (mg/l)   
Heart rate (beats/min) Alanine Transaminase (IU/L)  
Systolic blood pressure (mmHg) Alkaline Phosphatase (IU/L)  
Mean arterial pressure (mmHg) Bilirubin (µmol/L)   
Diastolic blood pressure (mmHg) Albumin (g/L)  
Oxygen saturations (%) with associated FiO2 Corrected Calcium (mmol/L)   
Glasgow Coma Scale Phosphate (mmol/L)  
Temperature (°C)   
Central Venous Pressure (CVP)(cmH2O) Microbiology Results  
Hourly urine output (ml/h) Culture results from tracheal aspirates  
Total urine output over 24 hours (ml) Culture results from blood cultures  
Total fluid input over 24 hours (ml) Other microbiology specimens sent  
Total oral input over 24 hours (ml)   
Amount of tracheal secretions over 24h Radiology Results  

Colour of tracheal secretions over 24h Chest radiograph reports  
 Computed Tomography (CT) reports  
Blood Gas Parameters   
PaO2:FiO2 ratio (kPa)   
PaCO2 (kPa)   
pH   
Bicarbonate (mmol/L)   
Base excess   
Lactate (mmol/L)   
Glucose (mmol/L)   
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to the original published score this study gave a score of 0 to a temperature of 36.0-38.4 compared 

to 36.5-38.4 as published. This change was made as it was unclear what score temperatures of 36-

36.5 should be given. 

Table 2.2. Clinical Pulmonary Infection Score (CPIS) modified from Pugin et al, 1991 (83) 

Clinical Feature Score 
Temperature (oC) 
36.0-38.4 
38.5-38.9 
≥39 ≤36 

 
0 
1 
2 

White Cell Count (mm-3) 
4,000-11,000 
>11,000,  <4,000 
Band forms >500 

 
0 
1 
+1 

Radiology 
No infiltrate 
Diffuse (Patchy) Infiltrate 
Localised Infiltrate 

 
0 
1 
2 

Oxygenation (mmHg) 
PaO2/FiO2 > 240 or ARDS 
PaO2/FiO2 ≤240 

 
0 
2 

Secretions 
<14 of total secretions in 24h 
≥14 of total secretions 
Plus purulent secretions 

 
0 
1 
+1 

Microbiology 
Pathogenic bacteria cultured ≤ 1+ or no growth 
Pathogenic bacteria cultured ≥ 1+ 
Gram stain ≥ +1 with same pathogenic organism 

 
0 
1 
+1 

 

Scores were calculated on a daily basis using clinical data from the preceding 24h. For variables that 

were not recorded on a daily basis such as radiology reports and microbiology data it was assumed 

that the last documented score remained true until there was documented change, for example new 

radiological findings or a newly positive or negative culture result. The CPIS gives a score ranging 

from 0-12 with a score ≥7 being taken to signify VAP. However, in our institution band form 

measurement and gram staining of tracheal secretions are not routinely performed limiting the 

score to 0-10, leaving patients with scores of five and six borderline for the diagnosis of VAP. To 



70 

 

 

 

account for this all scores ≥7 after 48h of ventilation were taken as confirmed diagnoses of VAP and 

those <5 as definite controls, figure 2.2. Borderline cases with scores of five or six were assessed by 

an independent clinician and classified as cases or controls. Patients with high scores within the first 

48h of ventilation, where there was also clinical suspicion were treated as cases of primary 

pneumonia and not VAP. Patients with a CPIS <5 at the time of the first sample collection were 

considered free of infection and used as the control group, figure 2.2. Where any conflict existed 

between the CPIS score and the clinical judgement the clinical records were reviewed and a decision 

made regarding clinical grouping. Where this did not clarify the situation cases were passed to an 

independent assessor.  

2.2.2 Pneumonia 

Patients admitted for ventilation with a primary diagnosis of pneumonia were initially identified 

based on the clinical judgement of the physician with responsibility for their care. This was based on 

features from the history, clinical examination findings, laboratory tests and radiological 

investigations.  However, as there is a recognised degree of intra-observer variability when making 

this diagnosis more objective criteria were required. The CPIS score was calculated for all patients 

felt to have pneumonia on admission to ICU and only those patients scoring ≥6 within 48h of the 

timing of the first sample of stay were taken as confirmed diagnoses. A lower CPIS target was 

accepted in this group due to difficulties obtaining certain clinical parameters, such as 

microbiological specimens when patients initially present to hospital compared to the ease of 

acquisition from an already intubated and ventilated patient. In order to be classified as a case of 

pneumonia there had to be both a clinical suspicion at the time of admission and a high enough 

CPIS, figure 2.3. Where any conflict existed between the CPIS score and the clinical judgement the 

clinical records were reviewed and a decision made regarding clinical grouping. Where this did not 

clarify the situation cases were passed to an independent assessor for classification. 
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2.3 Specific Processing 

Details of specific experimental assays used for each experiment are given in the relevant chapters. 

Nuclear Magnetic Resonance Spectroscopy for global metabolic profiling of serum and urine, 

chapter 3, targeted measurement of oxylipins using mass spectrometry and cytokine measurement 

using flow cytometry, chapter 4,  and global metabolic profiling of breath condensate using mass 

spectrometry, chapter 5. 

2.4 Statistical Analysis  

Statistical analysis was performed using a combination of multivariate and univariate techniques. 

Routine data handling was performed in Excel 2010 (Microsoft, USA). Univariate statistical analysis 

was used to compare individual analytes and characteristics of included patients using SPSS version 

22 (IBM, UK) and Excel 2010 (Microsoft, USA).  The Student’s t-test was used to compare continuous 

variables between groups of patients and Fisher’s exact test to compare categorical variables. 

Normality of metabolite distributions was determined using Kolmogorov-Smirnov and Shapiro-Wilk 

tests of normality. Non-normally distributed analytes were compared using the Mann-Whitney U 

test. To control for the false discovery rate and limit the number of type I errors the Benjamini-

Hochberg procedure was used when multiple univariate comparisons were made.  A p-value of 0.05 

or less was taken to represent statistical significance.  

For much of the data there were far more variables than there were observations, making 

multivariate analysis an ideal way to evaluate the data. All multivariate analysis was performed using 

the SIMCA statistical package (Umetrics, Sweden).  Initial exploration of data sets was performed 

with principal component analysis (PCA). PCA is an unsupervised method of multivariate analysis, 

meaning that during analysis the model has no prior knowledge of the observation classifications of 

interest and instead finds the largest directions of natural variation. It employs orthogonal 
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transformation of a data set of observations and correlated variables into a matrix of uncorrelated 

variables. The transformation is performed in such a way that the first set of variables, or 

component, demonstrates the largest variation from within the data and all subsequent  

components demonstrate the next greatest direction of variation in an orthogonal direction to the 

previous component. PCA was performed first on the data to look for natural separation of groups of 

observations that would either explain groups of clinical interest or detect clustering not overtly 

apparent in the data that may have affected further analysis. Data from PCA analysis were displayed 

on scores plots which plot two components of interest against each other. Data points on the scores 

plots were artificially coloured to represent groups of clinical interest, although these data were not 

used in construction of the models. PCA was also used to detect significant outliers. On the scores 

plots the Hotelling’s ellipse represents a 5% confidence interval, a multivariate equivalent of 

Student’s t-test, and observations lying outside of this were considered strong outliers which 

warranted further investigation to look for explanations for why an individual was an outlier. The 

amount of the total population variance explained by a PCA model is explained by the R2X value of 

the model, this is expressed as a decimal with a model with an R2X of 1.0 explaining all of the 

variance within a data set. The predictive value of the model is expressed as the Q2X, again 

expressed as a decimal with values approaching 1.0 demonstrating the best prediction. In the case of 

PCA, the Q2X value does not inform about class but only reflects the overall variance in the total 

dataset. 

Supervised multivariate analysis using orthogonal partial least squared discriminant analysis (OPLS-

DA) was used to generate models to optimally separate predefined groups. OPLS-DA is another form 

of multivariate analysis similar to PCA. However, in this analysis the model attempts to find variation 

in the original data set, X, that explains the clinical classifications represented in a second matrix, Y. 

OPLS-DA differs from partial least squared analysis discriminant analysis (PLS-DA) in that the data in 

the X-matrix is separated into that which predicts the Y data and that which is unpredictive or 
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orthogonal to it, improving visualization of metabolites associated with clinical parameters. OPLS-DA 

models were cross validated using seven fold cross-validation using a “leave-one-out” methodology. 

This method uses every 7th observation as a validation set that is predicted by the model, the 

predicted values can then be compared to the actual classes. This is repeated until every observation 

has been left out once and once only. The cross validation allowed a value, Q2Y, to be generated that 

estimated the predictive capacity of the model with a value of 1.0 representing a completely 

predictive model for sample class. The degree of variation in the original data set explained by the 

model is again given by R2X with a value of 1.0 implying that all the variation is explained, on the 

other hand the amount of variation between the groups being compared explained by the model is 

given by R2Y. To assess the reliability of the OPLS-DA models a cross-validated analysis of variance 

was used (CV-ANOVA) which analyses whether the model has significantly smaller cross validated 

predictive residuals than just the variation around the global average, as would be expected if the 

model was generate by chance. This test tests the hypothesis that the residuals of the model are 

those that would be obtained by chance, if no relationship existed, and acts as a test of significance 

of the Q2Y (112). 

The number of components in the OPLS-DA models were limited to being no more than half the 

number of samples in the smallest group used in the model and components were no longer added 

when they failed to improve the Q2Y by 0.05 or more. Data from the OPLS-DA models were again 

displayed on scores plots with the first component plotted against the orthogonal component, data 

were displayed before and after cross-validation.  

The ideal way to assess the predictive models is to challenge them with a new data set that has not 

been used to build the original model. Where there were sufficient samples from the patients 

categorised by the independent assessor these were used as a small test set, of around ten patients, 

to assess the predictive capacity of the models. When this was possible the unseen data were put 
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into the model and the classifications based on the model were compared with those from the 

assessor. Based on the number of agreements and disagreements the sensitivity, specificity, positive 

and negative predictive values of the models could be calculated. 

In order to test whether the models were performing better than chance. Permutation testing was 

performed on a similar PLS-DA model to the OPLS-DA model in question. The Y variables were then 

randomly generated 20 times, in order to scramble the true class information, and a new PLS-DA 

model constructed for each permutation. The Q2Y and R2X could then be compared with those 

generated from the random models.  

To identify analytes that were important in separating clinical groups a number of methods were 

employed.  Firstly, when the number of analytes were relatively small the loadings plots for the 

model could be examined directly. The loadings plot plots the weight for each variable against axes 

representing the components of the relevant model. As such it looks similar to the scores plot but 

instead of each data point representing an observation they represent the analytes. The scores plots 

and loadings plots could be directly compared and the analytes at the extremes of each axis could be 

seen to be causing most of the separation in the equivalent direction on the scores plot.  

Analytes were also assessed using the ‘s-plot’. The s-plot  is used to visualize both the covariance and 

the correlation between the variables and the predictive score. Thus the most discriminant analytes 

will be associated with both a high correlation and covariance and will be at the extremes of the ‘S’. 

Data that underwent univariate scaling did not produce the typical ‘S’ as the correlation and 

covariance showed a linear relationship. Similar to the s-plot, spectral data from NMR data were 

displayed on an s-line plot, or regression coefficient plot. Here the variables are plotted against the 

loading for that variable, giving the overall appearance of the original spectrum. However, instead of 

all of the spectral peaks pointing in the upward direction as seen in the original NMR data, the peaks 

are directed either upward or downward depending on the clinical group the metabolite 
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predominates in. The strength of the metabolite’s importance in separating the two groups is given 

by colouring each peak based on the absolute correlation variable for that variable based on the 

clinical classification. 

Where several analytes appeared to cause separation of a model the Variable Importance for the 

Projection (VIP) was used to help define those variable most important in the model. VIP is a 

parameter which summarizes the importance of the variables, it is a weighted sum of squares of the 

OPLS-DA weights, taking into account the amount of explained Y-variance in each dimension. 

Variables with large VIP, larger than 1, were considered the most important for explaining the 

classification (112). 

To aid the identification of metabolites in NMR data Statistical Total Correlation Spectroscpy 

(STOCSY) was used to correlate peaks of interest with other peaks in the spectrum using an in-house 

MatLab 2013 (MathWorks, Massachusetts, USA) script. This process correlates a selected peak with 

all other peaks in the spectrum. Peaks with the highest correlation are likely to be part of the same 

metabolite where as those with an intermediate correlation co-efficient are likely to be associated 

with the index peak but not within the same metabolite, for example as part of the same metabolic 

pathway. 
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2.5 Patient Details. 

Sixty-three patients were recruited in total, figure 2.4. Of these one had to be excluded as the 

patient withheld retrospective consent. Of the remaining 62 patients nine had diagnoses other than 

brain injuries or pneumonia leaving a potential 36 brain injured and 17 pneumonia patients. 

Following the classifications described earlier four of the brain injured patients had pneumonia at 

the time the first sample was collected as did eleven of the pneumonia group, leaving 15 patients 

classified as having pneumonia at the time the first samples were collected. Classification of the 

brain injured patients found 21 had no suggestion of pneumonia when the first sample was taken, of 

which ten never developed signs of pneumonia. From this group of 21 patients the control group 

was drawn. Six of the brain injured patients developed pneumonia based on CPIS during their stay, 

five of these developed pneumonia after 48h of ventilation so were defined as VAP. One of the brain 

injured patients did not have samples taken at the first time point and was excluded from further 

analysis.  

Seventeen brain injured patients were borderline for either a diagnosis on pneumonia at admission 

or for the development of VAP. Similarly six of the potential cases of pneumonia failed to be 

classified using the defined algorithm. These 22 patients were submitted to an independent assessor 

for further classification. When this was completed, seven patients were classified as having 

pneumonia at admission, two of whom had associated brain injuries, six of the brain injured patients 

were classified as not having pneumonia when the first sample was taken and 3 were felt to develop 

VAP. One patient was excluded from further analysis as they had initially been classified as not 

having pneumonia at admission but were submitted as a potential VAP but were felt to have had 

pneumonia at recruitment by the independent assessor. Due to this conflict they were excluded 

from further analysis.  
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Four of the recruited patients only had breath condensate collected as they had been co-enrolled 

into an interventional trial that precluded further urine or serum sample collection. 

Initial statistical models were made based on the classifications based on the described algorithms. 

The patients independently classified were used to further explore the data and test the ability of 

the models to categorize patients. 

The majority of the brain injured patients had suffered either a subarachnoid haemorrhage, or a 

haemorrhagic cerebrovascular accident, table 2.3. Of those patients initially classified as having 

pneumonia at enrolment, the majority were felt to have been at risk of aspiration, five had 

associated brain injuries and one had a pneumonia in the context of endocarditis, table 2.4. 

Table 2.3 Causes of brain injury in the recruited patients. 

Cause of Brain Injury n 
Status Epilepticus 4 
Thrombotic CVA 6 
Haemorrhagic CVA 10 
Subarachnoid  haemorrhage 12 
Loss of consciousness  1 
Subdural Haematoma 2 
Motor Neurone Disease 1 

 

Table 2.4 Causes of pneumonia in those with pneumonia at enrolment 

Cause of Pneumonia n 
Community  Acquired 2 
Aspiration 8 
Endocarditis 1 
Empyema 2 
Hospital Acquired 2 
  
Associated with brain injury 5 
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The demographic details of the patients between the two groups based on the initial classification, 

table 2.5, were similar. The features that differentiated the groups were those that implied 

pulmonary infection. These included CPIS, C-reactive protein, FiO2:PaO2 ratio and the use of 

antibiotics. The organisms causing pneumonia in those admitted with pneumonia and those 

developing VAP can be seen in table 2.6. 
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Table 2.5. Clinical features of included patients based on initial classification. Continuous variables 

are given as mean and standard deviation and categorical variables as number and percentage. p-

values presented in bold text relate to parameters that were significant at the p<0.05 level. P-values 

given in demographic tables are not corrected for multiple comparisons. 

 Pneumonia (P) Brain Injury (BI) p-value 
(BI vs P) 

VAP p-value 
(BI vs VAP) 

n 15 21 - 5 - 
Age (Mean +/- SD) 54.7±16.8 52.3±14.9 0.65 50.8±17.2 0.87 
Sex, Number of males (%)  10 (67) 12 (57) 0.73 3 (60) 1.00 
Ethnicity, number  White 
European (%) 

11 (73) 15 (71) 1.00 4 (80) 1.00 

Outcome, Number alive (%) 10 (67) 16 (76) 0.71 3 (60) 0.59 
APACHE II Score (Mean +/- 
SD) 

19.7±5.8 17.0±6.0 0.18 17.8±9.4 0.86 

SOFA Score (Mean +/- SD) 10.5±3.1 8.9±2.6 0.12 8.6±3.1 0.87 
CPIS (Mean +/- SD) 5.9±1.1 2.1±1.4 <0.001 7.0±1.6 <0.01 
Lowest WCC (109/L) (Mean 
+/- SD) 

15.6±7.2 10.0±3.8 0.01 10.5±3.2 0.76 

Highest WCC (109/L) (Mean 
+/- SD) 

16.1±7.0 11.2±3.9 0.03 10.5±3.2 0.70 

Lowest CRP (mg/L) (Mean 
+/- SD) 

180.4±104.1 49.4±54.2 <0.001 116.7±28.2 <0.01 

Highest CRP (mg/L)(Mean +/- 
SD) 

196.3±95.8 62.0±52.5 <0.001 116.7±28.2 <0.01 

Lowest Temperature (°C) 
(Mean +/- SD) 

35.9±0.8 36.0±0.7 0.58 36.0±1.6 0.95 

High Temperature (°C) 
(Mean +/- SD) 

37.6±0.9 37.6±0.7 0.77 38.0±1.3 0.45 

Lowest FiO2 (Mean +/- SD) 0.43±0.14 0.40±0.22 0.54 0.36±0.07 0.51 
Lowest PaO2:FiO2 (Mean +/- 
SD) 

24.4±9.2 41.8±15.5 <0.001 18.6±8.5 <0.001 

Lowest MAP (mmHg) (Mean 
+/- SD) 

70.7±10.2 74.0±11.3 0.36 71.0±12.4 0.64 

Use of noradrenaline, N (%) 11 (73) 13 (62) 0.72 1 (20) 0.15 
Use of antibiotics N (%) 15 (100) 10 (48) <0.001 5 (100) 0.05 
Enteral nutrition, N (%) 13 (87) 15 (71) 0.42 5 (100) 0.30 
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Table 2.6. Organisms causing pneumonia in those admitted with pneumonia and those developing 

VAP from the group of patients based on original classification. Organisms grown from sputum 

sampling. (*based on urine antigen testing.) 

Admission 
Pneumonia 

VAP 

Organism n Organism n 
Morexella 1 S Aureus 3 
Enterobacter 1 Klebsiella 1 
Pseudomonas 2 Serratia 1 
E. Coli 1   
Pneumococcus 2   
  Morganella 1   
Legionella* 1   
Haemophlus 1   
Mixed growth 1   
Nil 5   
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Section III – Clinical Studies 
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3. 1H-NMR ANALYSIS OF SERUM AND URINE 

 

3.1 Summary 

1H-NMR spectroscopy has been used to analyse biofluids from patients with a range of conditions in 

order to employ a metabonomic approach to further understand the underlying pathology. Limited 

work has been done using this technique in either samples obtained from critically unwell patients 

or those with pneumonia. In this chapter 1H-NMR spectroscopy was employed to analyse both 

serum and urine samples collected from patients admitted to intensive care with and without 

pneumonia. Analysis of serum samples demonstrated potential to differentiate these groups with 

performance being better for patients admitted with pneumonia than for those who developed VAP. 

Interesting metabolic differences were observed between the groups with lipids, amino acids and 

glycoproteins appearing to be important in separating the groups perhaps representing changes in 

energy metabolism. Analysis of urine was more challenging with metabolites being much more 

difficult to identify perhaps relating to the fact that intensive care patients receive a large number of 

drugs many of which are excreted intact or in part in the urine. Many of the peaks seen in the urine 

samples probably represented drugs and their metabolites limiting the ability to pursue the aim of 

this study which was to identify changes in innate metabolism. Overall serum seemed a much more 

robust biofluid to analyse when applying metabonomic methods to critical care patients and more 

specifically was a better method by which to identify those patients with pneumonia. 

3.2 Background 

Little work has been done characterising pneumonia using metabonomic techniques. Elevated levels 

of lipoproteins, triglycerides, unsaturated and polyunsaturated fatty acids, ω-3 fatty acids, lactate 

and 3-D-hydroxybutyrate and reduced glucose levels have been found in the plasma of rats infected 

with Klebsiella Pneumoniae compared to controls (149) and differentiation of mice with pneumonia 
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caused by Staphlococcus Aureus or Streptococcus Pneumonia from control animals has been 

observed via urine metabolic profiling  (150). Similarly work using Chlamydia Pneumoniae  infected 

cell lines (113) identified a number of metabolic pathways that were altered by including those 

involved in carbohydrate and lipid metabolism along with altered concentration of several amino 

acids. 

Work in human subjects has predominantly focused on community acquired pneumonia. A small 

study using MS analysis of plasma and urine from Gambian children, using eleven cases of 

pneumonia and eleven controls, found elevated uric acid, hypoxanthine, glutamic acid and L-

tryptophan but reduced adenosine diphosphate levels within plasma samples. In this study 

clustering based on sex was noted in the pneumonia group that was not seen in the controls 

suggesting differences in inflammatory responses between boys and girls (153). Another study 

looking at metabolic profiling of urine compared 47 patients with Streptococcus Pneumoniae 

pneumonia to 47 matched controls and found numerous urinary metabolites to separate the groups 

including citrate, succinate, 1-methylnicotinamide, several amino acids, glucose, lactate, acetone, 

carnitine, acetylcarnitine, hypoxanthine and acetate (154). This study attempted to address several 

potential confounding factors associated with this type of investigation by comparing cases to 

several control groups such as those with other types of lung disease, those with other types of 

pneumonia and those with other acute illnesses. In most cases multivariate statistical models 

provided reasonable prediction accuracy. This study also attempted to look at the metabolic 

trajectory of patients with pneumonia by taking serial urine samples and looking at the change in 

metabolic profiles over time. Work has not been restricted to bacterial infection, a study using UPLC-

MS analysis of serum (258) compared samples taken during acute infection with Influenza A with 

those taken after recovery and found a number of biomarkers associated with viral infection many 

of which were inflammatory molecules such as prostaglandins and leukotrienes as well as a number 

of amino acids. 
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Within critical care work has focussed on outcomes of patients with community acquired pneumonia 

(CAP) and sepsis (155). MS analysis of plasma, from 15 patients who died matched to the same 

number of survivors, found higher levels of bile acids, steroid hormone metabolites, markers of 

oxidative stress and nucleic acid metabolites in non-survivors, however, the statistical models based 

on these differences had only modest sensitivity with an area under the receiver operating curve 

(AUROC) of 0.67 which is less than that expected from the APACHE II scoring. From these studies 

only one (154) has attempted to look at the changes in metabolic trajectories over time. 

It is often difficult to distinguish VAP from acute lung injury (ALI) or acute respiratory distress 

syndrome (ARDS). A metabonomic study of sepsis induced ALI and ARDS (106) found differences in 

plasma levels of glutathione, adenosine, phosphatidylserine and sphingomyelin compared to healthy 

controls. 

To date no work has been done using metabonomic methods specifically focusing on VAP or looking 

at methods for differentiating patients with pneumonia from similar critically unwell patients 

without pneumonia. Healthy volunteers have often been used as controls for pneumonia cases in 

the literature. This approach has several disadvantages as healthy controls may be expected to be 

metabolically much further away from pneumonia patients than similar severely ill patients. In this 

study an attempt was made to overcome this problem by using a control group consisting of patients 

similarly ventilated on ICU without pneumonia or infection. 

3.3 Aims 

The overall aim of this study was to use metabonomic techniques to attempt to improve the 

diagnosis of pneumonia in patients requiring ventilation, specifically those going on to develop VAP.  

The following questions were addressed: 
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1. Can metabolic profiles of serum and urine be used to aid diagnosis in patients 

with pneumonia and VAP? 

2. Can comparing metabolic profiles of serum and urine give an insight into local and 

global metabolic changes? 

3.4 Protocols 

3.4.1 Patient Recruitment and Sample Collection 

Patients were recruited and serum samples taken as described in chapter 2. Patients were defined as 

either having pneumonia or a brain injury as described earlier. All patients were followed up over 

time and those brain injured patients developing VAP were defined based on CPIS scoring, for a 

breakdown of the CPIS score used see chapter 2. Patients with borderline scores were assessed and 

classified as VAP or no VAP by an independent assessor. 

3.4.2 Sample Processing 

All samples were transported between sites on ice if preparation was to be done immediately or on 

dry ice and placed directly into a -80°C freezer if preparation was to be carried out at a later date. 

Samples were allowed to thaw at room temperature before further preparation. 

 3.4.2.1 Serum 

A volume of 300 PL of serum was mixed with 300 PL of H2O:D2O buffer containing 1.5 M of KH2PO4, 

TSP and NaN3 at pH 7.4. Samples were vortexed and centrifuged at 12000 g for five minutes to 

remove solid material. 550 PL of the supernatant was placed into 5 mm NMR tubes and immediately 

loaded onto a refrigerated SampleJet robot (Bruker Corporation, Germany) and kept at 5°C until 

measurement. All measurements were carried out within 24h of sample preparation. 
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 3.4.2.2 Urine 

A volume of 540 PL of urine where mixed with 60 PL of D2O buffer containing 1.5 M of KH2PO4, TSP 

and NaN3 at pH 7.4. Samples were vortexed and centrifuged at 12000g for five minutes to remove 

solid material. 550 PL of the supernatant was placed into 5 mm NMR tubes and immediately loaded 

onto a refrigerated SampleJet robot (Bruker Corporation, Germany) and kept at 5°C until 

measurement. All measurements were carried out within 24h of sample preparation. 

3.4.3 1H-NMR 1D Experimental Data Acquisition 

All 1H-NMR experiments were performed using a Bruker Avance III 600 spectrometer working at 14.1 

T equipped with a BBO probe.  

3.4.3.1 Serum 

1H-NMR spectra of serum samples were collected at a constant temperature of 310K using the 

relaxation edited Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. This allows low molecular 

weight species to be detected by eliminating signals from proteins. A total of 32 free induction 

decays (FID) were acquired for each experiment in 96 K data points using a 20 ppm spectral width 

centred at 4.75 ppm. The relaxation delay was set at 4 s and a water pre-saturation pulse was 

applied during this period to cancel the water signal. The receiver gain was kept constant at a value 

of 90.5. All experimental acquisition was automated and samples were held in the spectrometer for   

five minutes before data acquisition to allow temperature equilibration. For each sample a standard 

1D pulse sequence using the first part of a Nuclear Overhauser Effect pulse sequence to achieve 

presaturation of the water peak (110), and J-resolved 2D experiments were also performed using the 

same parameters as above.  

To aid metabolite identification further 2D experiments were carried out on selected samples. 

Correlation Spectroscopy (COSY), to demonstrate proton spins that are directly coupled to 
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each other, and Total Correlation Spectroscopy (TOCSY), to demonstrate coupled protons within 

6 bonds in a molecule, experiments were performed. For COSY experiments a 12 ppm spectral 

width was used with a relaxation delay set at 1.2s during which a water pre-saturation pulse was 

applied to cancel the water signal. For TOCSY experiments a 12 ppm spectral width was used with a 

relaxation delay set at 2.0s during which a water pre-saturation pulse was applied to cancel the 

water signal. 

 3.4.3.2 Urine 

A standard one-dimensional experiment using the first increment of the NOESY pulse sequence to 

achieve pre-saturation of the water resonance (110) and a 2D J-resolved  experiment were run for all 

samples in automation at a constant temperature of 300 K. 32 FIDs were accumulated for each 

experiment in 64 K data points using a 20 ppm spectral width centred at 4.75ppm. The relaxation 

delay was set at 4s and a water pre-saturation pulse was applied during this period to cancel the 

water signal. The receiver gain was kept constant at a value of 90.5. All experimental acquisition was 

automated and samples were held in the spectrometer for five minutes before data acquisition to 

allow temperature equilibration. 

3.4.4 Pre-Processing 

The FID values were multiplied by an exponential function equivalent to a 0.3Hz line broadening 

factor before Fourier transformation. The resulting spectra were subject to automated phasing, to 

ensure all spectral peaks were directed upwards, and baseline correction, to ensure the baseline of 

all spectra was set to 0, using TopSpin 3.2 (Bruker Corporation, Germany). Where necessary manual 

correction to the pre-processing was performed using TopSpin 3.2 (Bruker Corporation, Germany).  

Spectra were imported into MatLab 2013 (MathWorks, Massachusetts, USA) using in-house scripts 

for all pre-processing steps. Spectra from serum samples were calibrated to the α-glucose signal at 
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5.23ppm and the spectra from urine samples to TSP at 0ppm. For all spectra the region from 0.1-

10ppm, to exclude the peak due to TSP, was divided into approximately 40,000, serum, or 34,000, 

urine, data points. The water signal region (4.5-4.85ppm, serum and 4.72-4.84ppm, urine) for all 

spectra and the signals due to urea in urine spectra (5.65-6.0ppm) were removed prior to further 

processing. All samples underwent probabilistic quotient (median fold) normalisation (259), which is 

typically used for pre-processing of human urine samples. Urine spectra also underwent a further 

step of automated peak alignment using an in-house statistical algorithm to improve alignment of 

peaks from one spectrum to another.   

3.4.5 Statistical Analysis 

Prior to multivariate analysis all spectral data were scaled to unit variance. By standardising the 

variance of variables this attempts to take into account the potential influence on multivariate 

models of analytes with naturally higher concentrations that tend to be associated with higher 

variance and allows variables with generally lower values to be given similar weight within the 

model. Multivariate statistics were used to analyse the data. Initial exploration with principal 

component analysis (PCA) was performed to look for natural clustering and to detect outliers before 

supervised multivariate analysis using orthogonal partial least squared discriminant analysis (OPLS-

DA) was used to generate models to optimally separate predefined groups. OPLS-DA models were 

cross validated using seven fold cross-validation using a “leave-one-out” methodology. Important 

metabolites in each model were identified by examining the loadings associated with each model 

and the most important metabolites were selected by picking those associated with the highest 

correlation coefficients for each model. All multivariate analysis was performed using the SIMCA 

13.0 statistical package (Umetrics, Sweden). Further discussion of multivariate techniques can be 

found in chapter 2. 
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3.4.5 Metabolite Identification 

Metabolites recognised as being important in the multivariate models were identified using a 

combination of techniques. Initially Statistical Total Correlation Spectroscopy (STOCSY) using an in-

house script MatLab 2013 (MathWorks, Massachusetts, USA) was used to look for peak correlation 

within the acquired spectra. Further metabolite structure could be confirmed using a combination of 

2D experiments, J-Res, COSY and TOCSY, performed on selected samples. Metabolites were then 

found in the SBASE data base using AMIX 3.9.11 software (Bruker BioSpin) or in published literature.  

3.5 Results 

3.5.1 Patients 

Thirty three patients, that fulfilled the criteria defined in chapter 2, had either adequate serum or 

urine samples or both for 1H-NMR analysis. Of those with serum samples, 12 had pneumonia on 

admission and 21 had brain injuries with no suggestion of pneumonia when the first serum sample 

was taken. Of those with urine samples 13 had pneumonia and 20 brain injuries when the first 

samples were taken. The discrepancy in the number of cases and controls between the serum and 

urine reflects differences in the samples available from the patients recruited. Five brain injured 

patients went on to develop VAP based on CPIS scoring. As previously described in chapter 2, 

patients with borderline CPIS scores were reviewed by an independent clinical assessor and 

classified as non-infected, pneumonia or VAP based on clinical course. Based on this assessment a 

further five brain injured patients were classified as not having pneumonia on admission, four 

patients were defined as pneumonia and two as VAP. All initial comparisons were made with the 

original grouping of patients based on CPIS. Clinical features of these patients can be seen in table 

3.1.  
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Table 3.1. Clinical features of included patients with a) serum and b) urine for NMR analysis. 
Continuous variables are given as mean and standard deviation and categorical variables as number 
and percentage. P-values presented in bold text relate to parameters that were significant at the 
p<0.05 level. The clinical parameters compared were taken from the 24h prior to 8:00 am on the day 
of sampling, for the pneumonia and brain injured patients this was time point 0 and for cases of VAP 
this was the 24h prior to the sample taken soonest after the onset of VAP. 

a. 

 Pneumonia (P) Brain Injury (BI) p-value 
(BI vs P) 

VAP p-value 
(BI vs VAP) 

N 12 21 - 5 - 
Age (Mean +/- SD) 53.5±17.2 52.3±14.9 0.84 50.8±17.2 0.87 
Sex, Number of males (%)  9 (75) 12 (57.1) 0.46 3 (60.0) 1.00 
Ethnicity, number  White 
European (%) 

8 (66.7) 15 (71.4) 1.00 4 (80.0) 1.00 

Outcome, Number alive (%) 7 (58.3) 16 (76.2) 0.43 3 (60.0) 0.59 
APACHIE II Score (Mean +/- SD) 19.8±6.5 17.0±6.0 0.22 17.8±9.4 0.86 
SOFA Score (Mean +/- SD) 10.1±3.3 8.9±2.6 0.29 8.6±3.1 0.87 
CPIS (Mean +/- SD) 5.8±1.1 2.14±1.4 <0.001 7±1.6 <0.01 
Lowest WCC (109/L) (Mean +/- 
SD) 

15.8±7.9 10.0±3.8 0.03 10.5±3.2 0.76 

Highest WCC (109/L) (Mean +/- 
SD) 

16.4±7.6 11.2±3.9 0.04 10.5±3.2 0.70 

Lowest CRP (mg/L) (Mean +/- SD) 154.5±94.0 49.4±54.2 <0.01 116.7±28.2 <0.01 
Highest CRP (mg/L)(Mean +/- SD) 174.4±87.9 62.0±52.5 <0.01 116.7±28.2 <0.01 
Lowest Temperature (°C) (Mean 
+/- SD) 

35.7±0.8 36.0±0.7 0.30 36.0±1.6 0.95 

High Temperature (°C) (Mean +/- 
SD) 

37.7±1.0 37.6±0.7 0.67 38.0±1.3 0.45 

Lowest FiO2 (Mean +/- SD) 0.45±0.2 0.39±0.2 0.42 0.36±0.1 0.51 
Lowest PaO2:FiO2 (Mean +/- SD) 24.9±9.5 41.8±15.5 <0.001 18.6±8.5 <0.001 
Lowest MAP (mmHg) (Mean +/- 
SD) 

72.7±10.2 74.0±11.3 0.72 71.0±12.4 0.64 

Use of noradrenaline, N (%) 8 (66.7) 13 (61.9) 1.00 1(20.0) 0.15 
Use of antibiotics N (%) 12 (100) 10 (47.6) <0.01 5 (100) 0.05 
Enteral nutrition, N (%) 11 (91.7) 15 (71.4) 0.22 5 (100) 0.298 
Time to sampling from start of 
ventilation (h) (Mean +/- SD) 

44.3±10.1 40.1±16.9 0.37 143.4±44.9 <0.01 

Time of day of sample, Number 
taken in the morning (%) 

8( 66.7) 13 (61.9) 1.00 5 (100) 0.28 
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b. 

 Pneumonia (P) Brain Injury (BI) p-value 
(BI vs P) 

VAP p-value 
(BI vs VAP) 

N 13 20 - 5 - 
Age (Mean +/- SD) 53.5±16.5 53.6±13.9 0.98 50.8±17.2 0.75 
Sex, Number of males (%)  9 (69.2) 11 (55) 0.49 3 (60.0) 1.00 
Ethnicity, number White 
European (%) 

9 (69.2) 15 (75) 1.0 4 (80.0) 1.00 

Outcome, Number alive (%) 8 (61.5) 15 (75) 0.46 3 (60.0) 0.60 
APACHIE II Score (Mean +/- SD) 19.6±6.3 16.9±6.1 0.22 17.8±9.4 0.84 
SOFA Score (Mean +/- SD) 10.2±3.2 8.8±2.7 0.20 8.6±3.1 0.92 
CPIS (Mean +/- SD) 5.8±1.0 2.2±1.4 <0.001 7.0±1.6 <0.01 
Lowest WCC (109/L) (Mean +/- 
SD) 

15.8±7.5 9.8±3.8 0.02 10.5±3.2 0.65 

Highest WCC (109/L) (Mean +/- 
SD) 

16.4±7.3 11.0±3.9 0.03 10.5±3.2 0.78 

Lowest CRP (mg/L) (Mean +/- SD) 165.7±98.7 48.6±55.5 <0.01 116.7±28.2 <0.01 
Highest CRP (mg/L)(Mean +/- SD) 184.1±91.3 61.8±53.8 <0.001 116.7±28.2 <0.01 
Lowest Temperature (°C) (Mean 
+/- SD) 

35.8±0.8 36.0±0.7 0.46 36.0±1.6 0.95 

High Temperature (°C) (Mean +/- 
SD) 

37.7±1.0 37.6±0.7 0.70 38.0±1.3 0.47 

Lowest FiO2 (Mean +/- SD) 0.44±0.1 0.40±0.2 0.57 0.36±0.1 0.42 
Lowest PaO2:FiO2 (Mean +/- SD) 24.0±9.7 41.4±15.7 <0.001 18.6±8.5 <0.001 
Lowest MAP (mmHg) (Mean +/- 
SD) 

71.7±10.4 74.0±11.6 0.56 71±12.4 0.64 

Use of noradrenaline, N (%) 9 (69.2) 12 (60) 0.72 1 (20.0) 0.16 
Use of antibiotics N (%) 13 (100) 9 (45) <0.01 5 (100) 0.05 
Enteral nutrition, N (%) 12 (92.3) 14 (70) 0.2 5 (100) 0.29 
Time to sampling from start of 
ventilation (h) (Mean +/- SD) 

43.5±11.4 40.8±17.3 0.59 144.6±45.4 <0.001 

Time of day of sample, Number 
taken in the morning (%) 

5 (39) 9 (45) 1.00 5 (100) 0.046 
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Patients were similar across the groups with respect to their demographic details. Features that 

identified the pneumonia and VAP groups from those with brain injuries included markers of 

infection such as CRP, white cell count, use of antibiotics and the higher oxygen requirement as 

would be expected in patients with pulmonary infection. 

3.5.2 Serum 

3.5.2.1 10 Minutes vs 15 Minutes of Centrifugation 

Whilst processing the first batch of serum samples collected from this critically ill population it 

became apparent that some of the stored aliquots contained substantial amounts of clot when 

thawed providing insufficient serum for NMR analysis.  In order to prevent further loss of data from 

the 30th patient recruited serum samples were collected in duplicate, one centrifuged for the 

standard 10 minutes and a second sample collected simultaneously that was centrifuged for an extra 

5 minutes to try to provide a greater volume of supernatant that could be used if the 10 minute 

sample proved inadequate. 

In order to ensure that there were no systematic differences between those samples that were 

centrifuged for 15 minutes compared to those that had the original 10 minutes a PCA was 

constructed for all patients who had paired samples spun for both lengths of time, figure 3.1. This 

demonstrated that there was no natural clustering of samples from the two groups with samples 

from the same patient and time point generally lying close together. It was not possible to construct 

an OPLS-DA model to differentiate the two groups as the Q2Y remained negative (R2Y 0.62 Q2Y -0.77). 

The results of this analysis suggested that the use of aliquots centrifuged for 15 minutes alongside 

those that were centrifuged for 10 minutes would be possible when a 10 minute duration provided 

insufficient serum for analysis for a given patient. 
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Figure 3.1 PCA scores plot comparing serum samples centrifuges for 10mnutes vs 15 minutes prior to 

freezing, paired samples only  (R2X 0.48, Q2X  0.32). Green circles – 10 minutes in the centrifuge, blue 

squares – 15 minutes in the centrifuge, red rings indicate examples of paired samples. It is not 

possible to form an OPLS-DA model to separate the two groups (R2Y 0.62, Q2Y -0.77).      
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3.5.2.2 Brain Injury vs Pneumonia 

The 21 patients who had no evidence of pneumonia based on CPIS when the first serum sample was 

taken were compared to the 12 patients who had pneumonia at the time of sampling. Initial PCA 

showed that there were two patients from the brain injured group who were outliers as defined as 

lying outside of the Hotelling’s ellipse (multivariate approximation to the 95% confidence interval 

derived for the Students’ t test), figure 3.2. Of these two patients one was a more extreme outlier 

than the other which sat near the ellipse. When the raw spectra of these two samples were 

examined there were no technical differences that could be seen leading to them being outliers. The 

predominant differences between these samples and the others were that the furthest outlier, at 

the extreme left of the plot, demonstrated high levels of the ketone bodies, 3-hydroxybutyric acid 

and acetoacetic acid, that were not seen in the other patients, figure 3.3. These findings fit clinically 

with the presentation of this patient who had been drinking heavily before attending hospital after a 

fall and head injury and in whom it took some time to establish feeding. When all of the samples 

from this patient were examined over time the levels of ketone bodies could be seen to fall as 

feeding was established. The second outlying spectrum was associated with some broad signals in 

the 5.75-5.38 ppm region that are yet to be identified as well as pronounced glucose and mannitol 

peaks. This patient was given mannitol prior to enrolment for control of intracranial pressure. As 

there were no gross technical reasons for these samples to be outliers they have been kept in all 

further analysis.     

If the third and fourth components of this model were examined some separation between the two 

groups (pneumonia vs brain injury) could be seen along the third component although there 

remained a large degree of overlap, as is expected with human populations subject to a high degree 

of genetic and environmental diversity. 
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Figure 3.2 PCA scores plot comparing samples taken from patients with brain injuries, blue circles, and patients with pneumonia, red squares, at the start of 

ventilation (R2X 0.31 Q2X 0.05). The ellipse represents Hotelling’s T2 at p=0.05 a) first and second components showing no natural separation between the 

two groups in either component, two of the brain injured patients are outliers as demonstrated by lying outside the Hotelling’s ellipse, numbered, b) some 

separation can be seen between the groups when the second and third components are examined, the majority of the separation is along component 3, y-

axis.  

1
. 

2
. 

a. b. 
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Figure 3.4. OPLS-DA model with one orthogonal component comparing patients admitted with brain injuries, blue circles, to those with pneumonia, red 

squares, at the start of ventilation (R2Y 0.95 Q2Y 0.37 p= 0.01) a) before and b) after cross validation. Before cross validation the groups can be seen to be 

separated with pneumonia samples separated in the positive direction along the first component. After cross validation this separation is less with several 

samples crossing between groups.   

 
  a. b. 
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Supervised models with OPLS-DA (R2Y 0.95 Q2Y 0.37 p= 0.01), figure 3.4, and a PLS-DA (R2Y 1.0 Q2Y 

0.78) could be built to separate the two groups of patients. However, the PLS-DA model required 

four components in order to achieve this level of predictive capacity, reflecting the extreme variation 

in this dataset. After cross validation of the OPLS-DA model several patients could be seen to move 

between the groups. One pneumonia patient was misclassified as a brain injury after cross 

validation. Interestingly although this patient had features of pneumonia on admission with chest x-

ray changes, a high white cell count, pneumococcus isolated from the sputum and an initially high 

oxygen requirements they showed a rapid clinical improvement and were extubated rapidly. Four of 

the 21 brain injured patients were misclassified as pneumonia. Of these one went on to develop VAP 

as defined by CPIS, one did not develop a CPIS high enough to define VAP but was classified as such 

by an independent assessor and two never showed evidence of VAP, although one of them had an 

acinetobacter species isolated from their sputum. 

When the model was validated with the nine patients that had samples taken at the first time point 

who initially had borderline CPIS and were classified by an independent assessor the model had a 

sensitivity of 0.5, specificity of 1.0, positive predictive value of 1.0 and a negative predictive value of 

0.71. The metabolites identified as being important in causing the separation in this model can be 

seen in figure 3.5 and 3.6.  Many of the metabolites that seem to be important in this comparison 

appear to be lipid species along with contribution from the amino acids phenylalanine and alanine 

and also formate. 

  If only those brain injured patients who did not go on to develop VAP were considered as a 

comparison group to those with pneumonia at the time of sampling the OPLS-DA model did not 

improve (R2Y 0.96 Q2Y 0.32 p= 0.11) and if validated with the independently assessed patients there 

were no improvements in the model summary statistics, sensitivity 0.75, specificity 0.6, positive 

predictive value 0.6 and negative predictive value 0.75. Within this model the same metabolites   
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Figure 3.5. OPLS-DA regression coefficient plot coloured according to the correlation between the metabolic NMR data and the class information relating to 

supervised multivariate statistical analyses from figure 3.4. Metabolites dominating in the pneumonia group deflect upwards and in brain injuries 

downwards. The strength of the correlation of metabolites to this model is given by the intensity of the colour of the peak with red representing the 

strongest correlation and dark blue no correlation. Figure 3.6 zooms in on important areas of the spectrum with important metabolites labelled.    
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caused most of the separation as with the previous model taking all brain injured patients with lipid 

species, alanine and formate seeming to be of greatest importance. 

3.5.2.3 Brain Injury vs VAP 

When a three component PCA (R2X 0.34 Q2X 0.04) was constructed to explore the comparison of the 

21 patients with brain injury but no evidence of pneumonia to the samples taken from the five 

patients who developed VAP at the time that the infection developed no clear separation could be 

seen along any components. The same patients whose samples were outliers in the previous PCA 

models remained similarly placed. An OPLS-DA model with one orthogonal component (R2Y 0.94, 

Q2Y 0.07, p=0.8), figure 3.7, had only a very limited ability to separate those with VAP from brain 

injuries at the time point of admission. After cross validation several brain injured patients were 

miss-classified as VAP including the same brain injured patients that were miss-classified as 

Pneumonia in the earlier model comparing brain injuries to pneumonia. The VAP patient that most 

closely approached the brain injury group was the earliest to be diagnosed with VAP out of the five 

patients. The sample used for this patient was taken as the CPIS was rising as the peak CPIS occurred 

on a time point in an interval between the 48hly samples, perhaps missing the peak of the metabolic 

changes associated with VAP. When this model was used to classify the next sample taken from this 

patient it falls well within the VAP group suggesting metabolic changes are developing in the initial 

sample. 

When only brain injured patients who did not go on to develop infection were taken as the control 

group the predictive capacity from cross validation improved to a Q2Y of 0.16 (R2Y 0.98, Q2Y 0.16, 

p=0.70). Similarly, when a larger group of patients was taken that combined the original patients 

classified via CPIS with those classified by an independent clinical assessor the model also marginally 

improved (R2Y 0.94, Q2Y 0.27, p=0.055) when all brain injured patients were taken and to a greater 

degree when only those without infection at the first time point were taken (R2Y 1.0, Q2Y 0.53,  
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Figure 3.7 OPLS-DA model with one orthogonal components comparing serum from patients admitted with brain injuries at the start of ventilation, blue 

circles, to serum from those who developed VAP at the time infection developed, green triangles, (R2Y 0.94, Q2Y 0.07, p= 0.8) a) before and b) after cross 

validation. Before cross validation the groups can be seen to be separated with VAP samples distributed in the positive direction along the first component. 

After cross validation this separation is less with several samples crossing between groups.   

  a.
 

b
.
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p=0.37).  However, the metabolites causing separation between brain injured patients with VAP and 

those at admission were similar between all of the above comparisons, figure 3.8, with lipids, 

glycoproteins and some amino acids such as phenylalanine leading to the separation between 

groups. 

3.5.2.4 Time Course 

As any metabolic changes seen when samples taken from patients with brain injuries at the start of 

ventilation were compared to those when VAP developed could have been related to the length of 

stay on intensive care as opposed to the development of infection further analysis was performed 

on sequential time points from the brain injured patients who did not go on to develop VAP.  When 

OPLS-DA was used to compare the first time point to the fourth time point some, although limited, 

separation was seen when both the original groups based on CPIS (R2Y 0.98, Q2Y 0.11, p=0.82) and 

combined groups including the independently classified patients (R2Y 0.99, Q2Y 0.09, p=0.96) were 

used, although in neither case did the models reach statistical significance, possibly due to the small 

group sizes in these comparisons. Although few of the metabolites had a particularly strong 

correlation in these models, figure 3.9, there was a trend for phenylalanine and acetyl groups from 

glycoproteins to increase over time and glucose, citrate, and glutamine to decrease. When the first 

time point was compared to either time point two or three, the metabolic changes were less marked 

suggesting that the changes seen between time point one and four were gradual over the course of 

the ICU stay and did not happen rapidly, for example after treatment was commenced.   

When the patients admitted with pneumonia were examined over the course of their stay an OPLS-

DA model with only one component (R2Y 0.70, Q2Y 0.10, p=0.44) comparing the first time point to 

the last time point demonstrated that there were strongly correlated changes in lipid signals over 

time with all lipid regions tending to increase with glucose, again, showing a tendency to fall, figure  
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3.10. However, when only paired samples, those patients who had samples from both time point 

one and four, were used the strength of the correlation of the lipid signals diminished although the 

trends remained. Although the correlation was not as strong in this cohort of patients, phenylalanine 

appeared to reduce over time in contrast to the trend seen in the brain injured patients. If the fourth 

time point samples from brain injured patients were compared to the same time points from 

patients with pneumonia an OPLS-DA model (R2Y 0.99, Q2Y 0.20, p=0.81) demonstrated that at this 

time during ICU stay lipids tended to be higher within the pneumonia patients compared to those 

with brain injuries. 

When the fourth time point from brain injured patients who did not develop VAP was compared to 

the time point where VAP developed in the infected patients it was not possible to construct an 

OPLS-DA model that would separate the groups (R2Y 0.93, Q2Y -0.38). However, if the combined 

group of patients, including those classified by an independent assessor, was used a positive Q2 was 

obtained (R2Y 1.0, Q2Y 0.28, p=0.73). In this model, figure 3.11, few metabolites had a co-efficient of 

correlation much above 0.5. Those metabolites that were most strongly correlated with one or other 

disease class were phenylalanine which remained higher in the VAP group and glucose and alanine 

which were higher in those that did not go on to develop VAP. 

Using the original group based on CPIS or the combined group using the independently classified 

patients it was not possible to build an OPLS-DA model that would distinguish the time that VAP 

developed from the first sample taken when these patients were admitted to intensive care with the 

Q2 never being positive (R2Y 0.92, Q2Y -0.10). 
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Figure 3.12 One component PCA analysis comparing urine samples taken from patients with brain injuries, blue circles, and patients with pneumonia, red 

squares, at the start of ventilation (R2X 0.19 Q2X 0.06). The first component is given on the y-axis against the sample number, x-axis. Three outliers can be 

identified, two from the brain injury group and one from the pneumonia group as can be seen with the three points lying below the 2 SD line. No clear class-

related separation can be seen along the first component of the remainder of the samples.  
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3.5.3 Urine 

3.5.3.1 Brain Injury vs Pneumonia 

Initial comparison, with PCA, of the 20 brain injured patients with the 13 pneumonia patients who 

had urine samples taken at the first time point following the onset of ventilation demonstrated three 

outliers, figure 3.12. When these outliers were examined, figure 3.13, no clear technical differences 

could be seen leading to these samples being outliers. Instead there seemed to be differences in 

both the presence of some metabolites and the quantities of others.  As there were no technical 

reasons to omit these patients they were included in further analysis. 

When an OPLS-DA model was made of this data, figure 3.14, (R2Y 0.83, Q2Y 0.37, p=0.009) it had a 

sensitivity of 0.75, specificity of 0.8,  positive predictive value of 0.75 and negative predictive value 

of 0.8 after validation with the independently classified patients,  four with pneumonia and five with 

brain injuries. If only those patients who did not go on to develop VAP were used the model had a 

similar performance (R2Y 0.92, Q2Y 0.45, p=0.08) at cross-validation. In case the outliers identified in 

the PCA were exerting a disproportional effect on the model it was repeated excluding these three 

patients. With this model the general pattern remained the same with similar model statistics (R2Y 

0.97 Q2Y, 0.33, p=0.13).  

The metabolites that caused the majority of the separation, figure 3.15, were more difficult to 

characterise than in the serum models due to marked heterogeneity of the urine samples. Of those 

metabolites identified creatinine excretion appeared higher in the brain injury group. When the 

clinical data was examined, although there was no significant difference between the two groups, 

there is a trend to the serum creatinine to be higher in the pneumonia patients (91.9±71.5 vs 

74.3±22.6 µmol/l, p=0.33) with similar average hourly urine output within the 24h prior to sampling 

(113.3±59.0 vs 130.4±99.9 ml/h, p=0.55). This data may represent a lower creatinine clearance  
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Figure 3.14 OPLS-DA model with one orthogonal components comparing urine from patients admitted with brain injuries at the start of ventilation, blue 

circles, to urine from those with pneumonia, red squares, (R2Y 0.83 Q2Y 0.37 p= 0.009) a. before and b. after cross validation. Before cross validation the 

groups can be seen to be separated with pneumonia samples distributed in the positive direction along the first component, even before cross validation one 

of the brain injury patients can be seen to fall within the pneumonia group. One of the pneumonia samples can be seen to be on outlier along the orthogonal 

component, y-axis. After cross validation this separation is less with several samples crossing between groups, especially with brain injured patients being 

miss-classified as pneumonia. 

   a.
 

b
.
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associated with pneumonia and infection. Also when serum levels of lactate close to the time of 

sampling were compared there was no significant difference between the groups (1.43±0.91 vs 

1.26±0.50 mmol/l, p=0.54). 

3.5.3.2 Brain Injury vs VAP 

PCA of the urine samples taken from the brain injured patients at the point of admission to ICU and 

those taken at the time that VAP developed  (R2X 0.311, Q2X 0.02) demonstrated the same outliers 

as when the brain injured patients were compared to those with pneumonia but with no clear 

separation of the samples into groups. OPLS-DA was also unable to separate the two groups (R2Y 

0.61, Q2Y -0.08) even if a combined patient group was used (R2Y 0.51, Q2Y -0.09). However, if only 

those patients who did not get VAP were used as controls the Q2 of the model improved (R2Y 0.90, 

Q2Y 0.33, p=0.31). When the metabolites causing separation in this model were examined very few 

had strong correlations with either group and those that did appeared to be present in only one or 

two of the samples analysed. This indicated the impact on the model that a few metabolites may 

have if present in large quantities in a few samples. The fact that these metabolites were not 

universally present raised the possibility that they may arise from an exogenous source such as drugs 

that were not universally administered to all patients or that were metabolised differently in 

different patients producing differing metabolic profiles. 

3.5.3.3 Time Course 

When the urine samples collected at the first time point, n=11 from those patients with brain 

injuries who did not develop VAP were compared to those from the fourth time point, n=5, using 

OPLS-DA (R2Y 0.91, Q2Y 0.31, p=0.36), figure 3.16, the metabolites that could be identified that 

seemed to separate the two groups were often related to medication metabolites such as 

paracetamol-glucuronide and mannitol. The metabolic changes observed seemed to be gradual as it  
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was not possible to build predictive models to separate time point one from either time point two or 

three. When the same comparison, of time point one and four, was made for the patients who were 

admitted with pneumonia (R2Y 0.47, Q2Y 0.02, p=0.82) the model had only a minimal predictive 

capacity. However, the metabolites associated with this model had much stronger correlations with 

the groups, figure 3.17. Several metabolites were strongly associated with time point one, however, 

of those that were identifiable several appeared to be drugs or their metabolites. The fact that many 

of the peaks were not clearly identifiable when compared to metabolites contained within the 

database may imply that they were also related to drug metabolism and not naturally occurring 

metabolites. 

When the urine samples taken when brain injured patients developed VAP were compared to 

samples taken at a similar time from those who did not go on to develop infection an OPLS-DA could 

be constructed (R2Y 0.74, Q2Y 0.29, p=0.30), figure 3.18, with a number of strongly associated 

metabolites. If the combined group of patients was used to construct the model the Q2Y rapidly 

diminished (R2Y 0.61, Q2Y 0.04, p=0.78) although the pattern of metabolite changes appeared similar 

warranting further investigation of the potential of these metabolite as classifiers. However, as with 

the previous models the metabolites in question were difficult to identify and some of them 

appeared to be related to drug metabolites. 

Looking only at the brain injured patients who developed VAP during their stay, an OPLS-DA model 

based on the original group was unable to differentiate the time that VAP developed from the initial 

time point after admission (R2Y 0.87, Q2Y -0.12). If, however, the combined group was used the Q2Y 

improved (R2Y 0.55, Q2Y 0.10, p=0.49) although the spectral region most strongly associated with 

this model was that associated with mannitol suggesting that we were not seeing genuine 

differences due to disease but associated treatments. 
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3.5.3.4 Treatment Effect 

As illustrated in the last examples, the fact that many drugs are excreted via the urine risked these 

models showing effects based, not on differences due to pathology, but due to the effects of 

treatments that may be more common in one or more of the groups. 

In an attempt to address this problem a correlation matrix was constructed to correlate the samples 

taken whilst patients were on each documented drug with the urine 1H NMR spectra. This allowed 

peaks that seemed important in discriminant models to be correlated with drug data to try to 

establish if they were potentially related to treatment as opposed to disease.  

Also the rates of drug use in each group were compared. OPLS-DA models were constructed 

comparing samples taken whilst patients were on a given drug with those taken in the absence of 

the drug for drugs where there was a difference of more than 20% in the use of a drug between 

groups of clinical interest. Where discriminant models could be built loadings from these models 

were inspected in an attempt to identify metabolites that were associated with a given drug, figure 

3.19. Since the number of drugs collectively given to these patients exceeded 220 then detailed 

assignment of all drugs and their urinary metabolites was not practical.  

Spectral features that appeared to be commonly connected to particular drugs or that were found 

by database searching, such as mannitol, that appeared important in comparisons that had 

previously been made could then be digitally removed from the spectra and the models 

reconstructed.  

If the OLS-DA model comparing patients with brain injuries and pneumonia was reconstructed with 

the peaks from mannitol and those that were associated with both Tazocin and Meropenem use 

removed the overall Q2Y remained similar (R2Y 0.87, Q2Y 0.33,  p=0.02) to the model produced  
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Figure 3.19. OPLS-DA, with one component, (R2Y 0.63, Q2Y 0.50, p<0.001) comparing metabolic NMR data from urine samples from patients receiving the 

antibiotic tazocin, red bars, with those not on antibiotics, yellow bars. a. Scores plot for the comparison with b. the regression coefficient plot for the OPLS-

DA model with those peaks deflected downwards representing those more abundant in patients receiving tazocin, the colour of the peaks representing the 

strength of the association. c. STOCSY regression co-efficient plot showing the statistical correlation of the peak at 7.48ppm with all other peaks in the 

spectra, across all urine samples. The strength of correlation is given by the colour of the peaks. The most strongly correlated peaks coincide with those 

discriminating patients receiving tazocin in figure 3.19b. 

 
a. 
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earlier. Examining the loading of this model suggested that creatinine excretion remained higher in 

the brain injured group whilst lactate excretion was higher in the pneumonia group.  

3.6 Discussion 

The data in this chapter examine the ability of 1H NMR spectroscopy of serum and urine from 

patients on intensive care to differentiate patients with and without pneumonia.   Previously there 

has been limited work focussing on 1H NMR spectroscopy of biofluids from critically unwell patients. 

Specifically a limited number of studies have explored metabolic profiles of urine (260, 261) with a 

slightly greater number of studies examining blood, either serum or plasma, (100, 101, 145, 148, 

157, 262-264) with one focussing on a paediatric population (148).  

Models based on serum data have a moderate ability to differentiate pneumonia from brain injury at 

the first time point after enrolment. Several of the metabolites seen to be causing separation 

between patients with and without pneumonia appear to be lipid species. This is in keeping with 

animal work done looking at Klebsiella pneumoniae infection (149) where lipids were found to be 

elevated in infected animals’ plasma. Similarly in an animal model of Chlamydia Pneumonia (265) 

alterations in lipid profiles were found to be induced after inoculation of mice with the infecting 

organism, specifically acute and transient reduction in cholesterol levels. More generally lipids play 

an important role in sepsis with fatty acids being elevated in non-survivors (266). Other forms of 

inflammation are also associated with alteration in lipid profiles, experimental administration of 

endotoxin to human subjects has been seen to induce secretory phospholipase A2 and alter high 

density lipoprotein (HDL) composition (267). Within critical care populations alterations in circulating 

lipids have been seen to differentiate chronic from acute liver failure (262) and higher cholesterol 

levels have been associated with survival in heart failure (263). An animal model of ventilator 

associated lung injury found that using MS analysis of serum lipids distinct lipid profiles could be 

found for animals with and without lung injury (268). In a Swiss observational study patients with 
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bacterial CAP had lower total, HDL and low density lipoprotein (LDL) cholesterol and higher 

triglyceride concentrations than those without bacterial CAP (269) and similar changes in cholesterol 

were found in a Turkish study that compared patients with CAP to controls (270) with negative 

correlation being seen between cholesterol levels and the extent of radiographic pneumonia. Within 

this study a similar trend was seen with HDL levels being lower in those with pneumonia than in 

those with brain injuries. Total and HDL cholesterol and apolipoproteins A1 and B were reduced in 

the acute infective process in another observational study (271) with triglyceride levels increasing in 

those with atypical bacterial pneumonia. In children with complicated pneumonia apoliporotein A 

levels have also been seen to fall in acute infection (272). In chronic Chlamydia Pneumonia infection 

(273) triglyceride levels have been seen to rise and HDL cholesterol levels fall in comparison to 

uninfected individuals.  

Of course changes in the lipid profiles may not entirely be related to one of the groups having the 

presence of infection, it may be that alterations to serum lipids may tell us something about those 

patients who have sustained brain injuries. In one small study apopliporotein A4, amongst several 

proteins, was found to be reduced in those patients with subarachnoid haemorrhage who went on 

to develop vasospasm (274) and in another it has been suggested that first degree relatives of 

patients with aneurysmal subarachnoid haemorrhage who have elevated lipoprotein A need further 

follow up due to the increased risk of aneurism formation (275). Across a group of patients with 

cerebrovascular disease of differing aetiologies total and LDL cholesterol were higher than in the 

serum of controls where as HDL cholesterol decreased (276) but in a large observational study 

neither levels of cholesterol nor triglycerides were associated with the risk of aneurysmal 

subarachnoid haemorrhage (277) and in a Japanese case control study both HDL cholesterol and 

triglycerides were found to be lower in patients with subarachnoid haemorrhage (278). No 

significant risk was associated with HDL cholesterol, triglycerides, lipoprotein or apoprotein A1  
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when relatives of patients with subarachnoid haemorrhage were screened for the presence of 

aneurysms (279). 

Lipids may be elevated in the critically ill for a number of reasons. Not only do they provide a readily 

available source of energy but they may also have a role in regulating the immune response, for 

example they may have a protective effect by binding endotoxin (149, 280).  

 I also found that formate appeared elevated in those patients with pneumonia. Although formate 

has not previously been noted as a metabolite associated with pneumonia work it has been seen to 

be reduced in experimental models of sepsis (128, 129). At present it is unclear why there may be 

differences in the levels of formate in our pneumonia patients and in sepsis models, however, it may 

reflect differences in its oxidisation to carbon dioxide in the two groups. Differences may exist 

between animal models and the way in which formate is metabolised in critically unwell human 

subjects. It may also be the case that these animal models of septic shock are not comparable with 

the pneumonia population, many of which had infection and sepsis but not severe sepsis or septic 

shock. 

The other metabolites that discriminated patients with pneumonia from those with brain injuries 

were amino acids, especially phenylalanine, alanine and glutamine with the latter two being reduced 

in the pneumonia population and phenylalanine being increased. Phenylalanine has also been seen 

to be elevated in critically ill patients with acute compared to chronic liver failure (262) and both 

adults (145, 281) and children (148) with sepsis. Phenylalanine may be elevated in inflammatory 

conditions for a number of reasons. There may be a reduction in the conversion of phenylalanine to 

tyrosine, for example because of an increase in oxidative stress (282) or as a direct result of immune 

activation (283, 284). Alterations in the catabolism of skeletal muscle and the subsequent release of 

amino acids into the serum may also be responsible for differences in phenylalanine concentration 

in different conditions (284). 
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Although alanine has been seen to be increased in an animal model of sepsis (128) levels in adults 

with sepsis have been seen to be reduced as with the pneumonia patients in this study (145, 281) as 

they have in older children with SIRS (148). Similarly glutamine levels have been found to similarly 

reduce in both children (148) and adults (281) with sepsis in a similar fashion to these pneumonia 

patients. These changes may reflect alterations in nutritional status in these conditions or the 

alteration in the release of amino acids from muscle proteins.   

Comparison of this data to the limited amount of work that has been carried out using profiling of 

serum in pneumonia finds a number of differences. Work in Influenza A (258) found mainly 

inflammatory molecules such as prostaglandins and leukotrienes as well as a number of amino acids 

in samples taken prior to recovery. Similarly MS analysis of plasma from children with pneumonia in 

Africa (153) found elevated uric acid, hypoxanthine and glutamic acid levels with decreases in ADP 

and L-tryptophan. Finally data from a group of patients on ICU (155) with sepsis associated with 

community acquired pneumonia showed higher levels of bile acids, metabolites of steroid 

metabolism and those related to oxidative stress in non-survivors. The differences in these studies 

compared to the current data may be for a number of reasons. Some differences may arise from 

alterations in the metabolic response to viral infection compared to bacterial pneumonia, the 

differences between studies looking at single causative agents compared to multiple agents as in this 

work or general differences in study populations such as the differences between comparing 

survivors to non-survivors compared to comparisons of infected with non-infected Individuals. All of 

the above studies used MS based platforms where as we used NMR. Not all metabolites are 

detected by NMR so a future step in the metabonomic assessment of patients in critical care with 

pneumonia would be to apply an MS based profiling methodology to extend the number of 

metabolites detected. 
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Although the models attempting to differentiate patients who developed VAP from those with brain 

injuries were not able to discriminate infected from non-infected patients as well as the models 

exploring patients admitted with pneumonia some of the metabolic changes were similar. 

Phenylalanine and phospholipids were again discriminators in the infected group and some lipid 

species were more dominant in the non-infected group. Within this comparison other metabolites 

that have a closer association with energy metabolism such as lactate and succinate seemed to be 

important.  The differences in metabolic response to pneumonia at admission and to VAP can be 

explained in a number of ways. Firstly patients admitted with pneumonia may have been unwell in 

the community for a variable amount of time prior to admission to the intensive care unit potentially 

resulting in significant differences in their underlying nutritional state when compared to the brain 

injury patients. However, the patients with VAP were all derived from a group of brain injured 

patients who had been on the intensive care unit for roughly similar periods of time prior to 

infection during which time feeding regimens were established. Similarly it is possible that the 

metabolic ‘snapshots’ of the two types of infection occur at different times during the pathological 

process. Those admitted with pneumonia may have been at a later stage in their disease when the 

first sample was taken due to delays caused by recruitment and obtaining consent. These delays 

were not present for the samples taken from patients developing VAP as they had all been recruited 

as brain injured patients prior to the development of infection. Finally it is well known that 

organisms causing VAP are different from those causing pneumonia in the community and it is 

entirely possible that the differences in micro-organisms lead to differences in metabolic response. 

Some interesting differences were seen when the first time point from patients with brain injuries 

was compared to the fourth in those who did not go on to develop VAP. Over time glucose, 

mannitol, creatinine and 3-hydroxybutyrtae levels fell. These changes may represent treatment 

effect such as glycaemic control using intravenous insulin, the use of mannitol to treat raised 

intracranial pressure or its presence within several other drugs such as intravenous paracetamol, the 
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reduction of ketosis by the introduction of feed and the normalisation of renal function with 

adequate hydration. Several amino acids were seen to increase over time including phenylalanine, 

glutamine, lysine, leucine, valine and isoleucine. Such effects may be related to release from skeletal 

muscle or from the constituents of feed. Importantly other than the increase in phenylalanine over 

time the other metabolic changes seen with time were different to those seen in the patients who 

develop VAP suggesting that these changes may be disease related and not a feature of prolonged 

ICU stay. 

Interestingly the metabolic changes seen over time for patients admitted with pneumonia were 

quite different to those seen in brain injured patients. Although there was a similar reduction in 

glucose and mannitol over time there was an increase in several lipid species not seen in the brain 

injured group. This could be explained by the fact that the patients with pneumonia were more likely 

to have undergone a period of reduced oral intake prior to admission and with the establishment of 

feed, lipid levels could be replenished. Another explanation may be differences in the trajectory of 

inflammatory mediators between the two groups. 

Although models could be built using data from urine samples to differentiate pneumonia from brain 

injured patients metabolite identification within urine samples was much more difficult than for 

serum samples which may be reflected in the limited number of studies published using this biofluid 

in similar populations. Spectra obtained from urine were much more heterogeneous than those 

recorded in serum with several metabolites only appearing in a few urine samples where as in serum 

almost all metabolites were consistently present, although in differing concentrations. There are a 

number of possible explanations for the variability of metabolic spectra from urine. Firstly patients 

requiring critical care have a heavy burden of therapeutic drug use that quite easily exceeds 

medication use in other patient populations and animal models of disease studied previously. Within 

our population over 200 types of drug, fluid, blood product and feed were used with patients 
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receiving between five and 34 of these at any time point. Clearly, although some of these drugs will 

have a tendency to be co-administered, the potential number of combinations of drugs is enormous. 

Many of these drugs are either excreted unchanged in the urine or have urinary metabolites. The 

metabolism of these drugs may also be altered by a patient’s clinical condition such as the presence 

of organ dysfunction, especially renal and liver failure, or the presence of other co-administered 

drugs that either interact directly or cause alterations in metabolism, for example by up or down 

regulating hepatic enzymes. As such it is easy to imagine that many of the peaks seen within urine 

spectra actually represent drugs and their metabolites and these may differ from patient to patient 

for any given drug depending on their clinical situation. One of the studies investigating metabolic 

profiles of urine samples obtained from critically unwell patients has also remarked on the presence 

of drug signals in their samples (260). Urine concentration also varies widely between patients, 

especially when there may be a degree of renal impairment. An attempt to address this problem was 

made by normalising the spectra, however, without a substance of known fixed concentration the 

ability to completely account for variation in concentration is impossible. Misrepresentation of the 

concentration of individual metabolites with respect to overall urine concentration may have a 

significant impact on the ability of an individual metabolite to act as a differentiating substance. 

Because of the greater variability of urine samples, for example because of the greater variation in 

urinary pH, natural peak alignment from spectra to spectra was not as good as for serum. This made 

it necessary to implement a further peak alignment step using a mathematical algorithm. However, 

although this step improved overall peak alignment it had the potential to miss-align peaks that 

were in fact from different substances that happened to occur in similar spectral regions reducing 

the ability of these peaks to act as discriminating metabolites. 

For these reasons it was difficult to assess the multivariate models generated from urine data and 

the large number of unidentified metabolites raises the strong possibility that the ability of models 



133 

 

 

 

to discriminate groups was driven, not by genuine disease related metabolic changes, but by 

treatment effects and drug metabolites.  

Much of the previous work exploring the metabonomics of pneumonia has been done using urine 

specimens. However, in this study population none of the same discriminant metabolites were 

found but this may reflect the very different populations under investigation. Metabolic analysis of 

urine in critical care patients poses many challenges that are potentially not a problem in patients in 

the community, for example differences in drug use and presence of organ dysfunction. 

The current work was limited as there are only a small number of patients in each group, especially 

when time courses and VAP were being considered. This may explain why for several of the models 

the p-values are non-significant despite good Q2Y metrics. However, despite the small number of 

subjects the two groups were well matched for most baseline characteristics. These similarities 

limited the influence of confounding features on these models. The only significantly different 

features were those that are considered when making a diagnosis of pneumonia such as 

oxygenation, CRP and CPIS. Interestingly haemodynamic parameters, temperature and white cell 

count were also similar between groups.  

The diagnostic method for pneumonia in this sample was based on the treating consultant’s opinion 

of the underlying disease process refined by the CPIS score. However, in the absence of a gold 

standard by which to make the diagnosis this technique provided a refined group where borderline 

cases should have been excluded perhaps leading to some genuine cases being excluded. 

With the NMR methodology used it is difficult to identify specific lipids and establish which lipid 

species were responsible for group separation making more specific conclusions regarding the role 

of lipids difficult. This could be pursued further with the application of Liquid Chromatography – 

Mass Spectrometry lipidomic analysis. The present data is promising in demonstrating that 
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metabonomic analysis of serum of critically ill patients has the ability to differentiate two clinical 

groups, with and without pneumonia.  

3.7 Conclusion 

1H NMR analysis of serum from critically unwell patients showed an ability to differentiate those 

with pneumonia at admission from those without with a good degree of specificity. These 

techniques may also be beneficial in determining those patients who go on to develop VAP from a 

cohort of patients with brain injuries. The metabolites that differentiated the groups were 

predominantly lipids and amino acids with subtle differences in the metabolic profiles between 

those admitted with pneumonia and those who developed VAP.  

Conclusions that could be drawn from the analysis of urine samples from patients on intensive care 

were much more limited. Although models often appeared to have good predictive capacity the 

heterogeneity of these samples made metabolite identification difficult and raised the concern that 

much of what was seen related to metabolites of the large number of drugs used in critical care and 

not to genuine disease differences. 
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4. SERUM INFLAMMASOME PROFILING 

4.1 Summary 

Both eicosanoids and cytokines have been explored in some detail with regard to their involvement 

in the pathogenesis of a range of inflammatory conditions and sepsis. Limited work has been carried 

out using profiling techniques of either set of mediators alone or in combination to assist in 

diagnosis. This chapter explores profiling ‘the inflammasome’, a panel of eicosanoids measured with 

mass spectrometry and cytokines measured with flow cytometry to distinguish patients admitted for 

ventilation with pneumonia from those with brain injuries and also those patients developing 

ventilator associated pneumonia (VAP) from within those with brain injuries. Both eicosanoid and 

cytokine profiles independently showed some ability to separate pneumonia from brain injury, 

however, this ability was much less when VAP was considered. By combining both cytokine and 

eicosanoid profiles the ability to separate patients with VAP from patients with brain injury could be 

improved indicating the merit of combining metrics from different biological classes. Differentiation 

of VAP was best when equivalent time points post onset of ventilation from patients without VAP 

were considered. Inflammatory mediators identified as causing separation between the groups 

demonstrated biological plausibility based on previous published work. 

4.2 Background 

Eicosanoids, signalling molecules formed from the oxidation of 20-carbon fatty acids, and cytokines, 

a broad range of small signalling proteins produced in a variety of cell types, have both been 

implicated in the pathology of many important diseases ranging from autoimmune conditions such 

as asthma and rheumatoid arthritis to malignancy and sepsis. 

A range of animal studies and clinical observational studies have been performed to investigate the 

role of cytokines in pneumonia. Circulating levels of pro-inflammatory cytokines, such as tumour 
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necrosis factor alpha (TNFα), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-

12 (IL-12), and interferon gamma (IFNγ) have often been found to be elevated in patients with 

community acquired pneumonia (CAP).  For example, a study looking at nearly 2000 patients with 

pneumonia (163) found higher levels of IL-6, IL-10 and TNFα in those CAP patients with severe sepsis 

compared to those without, and higher IL-6 and IL-10 levels in non-survivors compared to survivors. 

In a paediatric population IL-6, IL-8 and IL-10 levels were found to be higher, not only in septic 

patients compared to controls, but also in those septic patients who went on to develop nosocomial 

infections than those who did not (165). Specific micro-organisms, such as mycoplasma, have also 

shown similar patterns of cytokine response (166) with IL-4, IL-6 and IL-10 being higher in 

mycoplasma pneumonia than in controls with levels improving over time. The inflammatory 

response to CAP may not be the same throughout life and may alter with age, for example, IL-8 has 

shown a trend to be elevated at admission in older patients with CAP compared to those younger 

than 50yrs (164).  

A smaller body of work exists looking at the role that fatty acids and their metabolites, eicosanoids, 

have in the pathophysiology of pneumonia. Streptococcus Pneumoniae, a common cause of 

pneumonia, has been shown in models of lung infection to be capable of inducing COX-2 expression 

within lung tissue (161). Specific molecules such as the leukotrienes, especially leukotriene B4 

(LTB4), are thought to be important in protecting the lungs from infection. LTB4 is important in 

chemoattraction and leukocyte activation and may act to increase IL-6 levels (159). Specifically LTB4 

has been associated with pulmonary complications following trauma (160). Other fatty acid 

metabolites, such as the lipoxins, have been implicated in the resolution of pulmonary inflammation. 

Lipoxin A4 can be generated in response to lung injury and has been found in the broncheoalveolar 

lavage (BAL) fluid of patients with several pulmonary diseases including pneumonia (162). One 

proposed mechanism of action of Lipoxin A4 is to inhibit LTB4 mediated chemoattraction. 
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Much of the work looking at these inflammatory molecules has focused on local production within 

the alveoli and lung tissue by looking at BAL fluid and exhaled breath condensate (EBC) levels. For 

example IL-8, LTB4, C4, D4, and E4 have been seen to be at higher concentrations in the BAL fluid of 

pneumonia patients in whom organisms could be detected compared to controls (167). When work 

has been carried out looking at systemic levels of these mediators often only a few mediators are 

measured at a time and usually with a view to looking at mechanistic elements.  

A limited amount of work has been carried out looking at the diagnostic potential of cytokines or 

eicosanoids in pneumonia and a smaller amount of work exists trying to apply a panel approach to 

measuring an array of these inflammatory mediators. One study used a multiplex cytokine assay to 

attempt to diagnose tuberculosis by measuring cytokines produced from stimulated peripheral 

blood mononuclear cells and found IFNγ, interferon gamma inducible protein-10 (IP-10), monokine 

induced by interferon gamma (MIG), TNFα and IL-2 showed the most significant differences between 

active pulmonary tuberculosis patients and healthy controls (168). In another study measurement of 

IL-6 and IL-8 were used in conjunction with other biological and clinical data to attempt to classify  

ARDS cases into groups based on different phenotypes (169).  

In this chapter I outline a strategy for using a panel approach to measuring both metabolites of fatty 

acid metabolism, eicosanoids, cytokines and adhesion molecules to aid the diagnosis of both 

pneumonia and VAP. 

4.3 Aims 

The overall aim of this study was to use profiling techniques on a combination of inflammatory 

mediators including eicosanoids, cytokine and soluble adhesion molecules, here called the 

‘inflammasome’,  to attempt to improve the diagnosis of pneumonia in patients requiring 

ventilation, specifically those going on to develop VAP.  The following questions were addressed: 
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1. Can measuring a panel of eicosanoids improve the diagnosis for both pneumonia and 

VAP in ventilated patients on the Intensive Care Unit? 

2. Can measuring a panel of cytokines improve the diagnosis for both pneumonia and VAP 

in ventilated patients on the Intensive Care Unit? 

3. Can combining these methods improve the diagnostic potential of this approach? 

4.4 Protocols 

4.4.1 Patient Recruitment and Sample Collection 

Patients were recruited and serum samples taken as described in chapter 2. Patients were defined as 

either having pneumonia or a brain injury as described earlier. All patients were followed up over 

time and those brain injured patients developing VAP were identified based on CPIS scoring. For a 

breakdown of the CPIS see chapter 2. Patients with borderline scores were assessed and classified by 

an independent assessor. 

4.4.2 Eicosanoid Measurement 

Serum eicosanoid levels were measured using liquid chromatography coupled to tandem mass 

spectrometric detection (LC-MS/MS) using a targeted method developed internally for the Division 

of Computational and Systems Medicine of Imperial College London in collaboration with Arnaud 

Wolfer. It was designed to quantify 48 eicosanoids by using solid phase extraction of the analytes 

from complex biological matrices such as serum or plasma. The analytes were subsequently eluted in 

a small amount of organic solvent, followed by a chromatographic run optimized to separate all 

metabolites. Following negative electrospray ionization the analytes were selected by m/z, 

underwent collision and the most selective and quantitative product ions were again selected to be 

scanned by the detector.  
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4.4.2.1 Isotopically Labelled Internal Standards (IS) 

Multiple extraction steps introduce variability in analyte recovery post sample preparation, 

with losses of 50% or more depending on metabolite and sample-specific matrix content. In 

order to compensate for variation resulting from the sample preparation steps, seven 

deuterated internal standards (IS), covering each chemical family, were spiked in the serum 

samples prior to extraction. 

Seven deuterated internal standard solutions were combined into a single glass vial to give final 

concentrations of 2ng/µL of each. This stock solution was then further diluted into a working 

solution at a concentration of 300pg/µL with the addition of methanol and water reaching a final 

solvent ratio of 1:1. All standards were stored at -80°C prior to use. 

4.4.2.1 Standard Mixtures 

48 commercial solutions were used to generate standard solutions. 20µL of each eicosanoid was 

added to a single vial and the total volume adjusted to a final volume of 1ml with the addition of 

methanol to give a final concentration of 2ng/µL for each.  

Serial dilutions of this standard mixture were then prepared using a 1:1 water to methanol ratio  to 

give a thirteen point standard curve ranging from 1-10000pg/µL for free fatty acids and 0.1-

1000pg/µL for eicosanoids. A zero sample was also prepared containing only internal standards. 

100µL of each concentration on the calibration curve was added to a separate well on a new 

collection plate and 20µL of labelled internal standard was added to each. Blank samples were also 

prepared comprised of 120µL water/methanol with no internal standards. Once prepared the plate 

containing the calibration curve was stored at 4°C in the Sample Manager of the mass spectrometer. 
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4.4.2.3 Sample Preparation 

Serum specimens were transported on ice prior to analysis and allowed to thaw at room 

temperature. Prior to preparation samples were randomised and prepared in this new order and 

blinded to any clinical information.  

Samples were prepared in a 350µL 96-well collection plate (Waters, Manchester, UK), the 

preparation plate. 100µL of sample was placed in the relevant well and 20µL of IS at 300pg/µL were 

added to each well. The total volume in each well was made up to 150µL with the addition of 30µL 

of 2% formic acid solution in water to break small molecule-protein binding by acidification of the 

sample. The plate was then capped and gently mixed. 

4.4.2.4 Solid Phase Extraction 

Solid phase extraction was carried out using an Oasis Max Solid Phase Extraction (SPE) µElution plate 

(Waters, Manchester, UK). The plate was conditioned by addition of 200µL Methanol to each well. 

The wells were then dried with the use of a vacuum at 3”Hg until dryness was achieved. Liquid was 

collected into a 3ml 96-well ‘waste plate’ (Waters, Manchester, UK). 200µL of high purity, mass 

spectrometry grade, water was then added to equilibrate the sorbent and the wells were again dried 

by application of a vacuum at 5”Hg. 

The samples were then loaded into the SPE plate, limiting the time between sorbent equilibration 

and sample loading to preserve the sorbent quality. 50µL of 1:1 water to methanol solution were 

added to each well of the preparation plate which was capped and mixed before being transferred 

into the SPE plate. The vacuum was applied to the SPE plate at 3”Hg being increased to 5”Hg as 

needed until the wells of the SPE plate were empty, ensuring sufficient time for contact between the 

sample and the sorbent allowing retention of the analytes. 
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The plate was washed with 200µL of 2% ammonium hydroxide to break the hydrogen bonds 

between the eicosanoids and proteins. 5”Hg vacuum was then applied until the wells were dry. 

A further wash with 200µL 1:1 water to acetonitrile solution was applied to each well, to break 

hydrophobic bonding between proteins and the sorbent, and the plate was dried by applying a 

vacuum of 5”Hg. 

The ‘waste plate’ was then removed from the SPE device and replaced with a 350µL 96-well 

collection plate (Waters, Manchester, UK). The analytes were eluted by the addition of 25µL of 

methanol and 2% formic acid. The vacuum was applied at 3”Hg followed by 10-15”Hg for one 

minute. This step was repeated a further three times leaving approximately 100µL in the collection 

plate. 

The collection plate was removed from the SPE device and capped. The elution fraction was allowed 

to evaporate over approximately 2h by the application of a vacuum at 15”Hg. Once the extract was 

dry they were reconstituted with 100µL of 1:1 water to methanol solution. Following reconstitution 

plates were stored at 4°C in the Sample Manager of the mass spectrometer. 

4.4.2.5 Ultra Performance Liquid Chromatography (UPLC) and Mass Spectrometry 

Chromatographic analysis was performed using an Acquity UPLC system (Waters, Manchester, UK). 

Prepared samples and standards were injected onto a HSS T3 UPLC column (100 mm × 1 mm, 1.8 

μm) (Waters, Manchester, UK) at 40 °C with a flow rate of 140 μL/min. The mobile phase A consisted 

of water and 0.1% formic acid and mobile phase B acetonitrile and 0.1% formic acid. The injection 

volume was 5 μL. 

After separation by UPLC, mass spectrometry was performed using a Xevo TQ-S triple quadrupole 

mass spectrometer (Waters, Manchester, UK). In negative ion mode, MS parameters were as 

follows: capillary voltage was set at 2.5 kV, cone voltage was set between 10-40 V depending on the 
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analyte being measured, source temperature 150°C, desolvation temperature 500 °C, desolvation 

gas flow 900 L/h and cone gas flow 150 L/h. All data were collected using MassLynx software 

(Waters, Manchester, UK)  

4.4.2.6 Data Pre-processing 

The same data preprocessing was applied to each 96-well plate and its corresponding calibration 

curves. Peaks were determined and peak area integrated using TargetLynx software (Waters, 

Manchester, UK). All peaks were inspected manually and corrected where necessary. The IS 

response factors were calculated and the analyte peaks were corrected for variation in extraction 

yields depending on the eicosanoid class. For each standard the concentration-response equation 

was established by least-square linear regression of the calibration curve. The calibration curves 

were constructed using the following rules:  

x The response of the lowest concentration point (LLOQ) must be at least 5 times the 

response of the equivalent noise area.  

x The measured concentration of standard must be 85-115% of the nominal value or 80-120% 

if at the lower limit of quantification. 

x At least six standard points should meet these criteria and define the range of linearity 

between the lowest and upper limits of quantification.  

 Finally, sample concentrations were back-calculated from the constructed calibrations curves for 

each analyte. 

4.4.3 Cytokine Measurement 

A panel of 20 human inflammatory cytokines and soluble adhesion molecules were measured using 

the commercially available 20plex FlowCytomix™ kit (eBioscience, San Diego, USA). The kit allowed 
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20 cytokines to be measured using flow cytometry by utilising two bead populations of differing sizes 

(population A 5µm, population B 4µm.) Each population of beads had several sub-populations (size A 

– 11 subpopulations, size B – 9 subpopulations) each with a dedicated cytokine specific antibody and 

a different intensity of an internal fluorescent dye that excited in the far red (700nm) with an Argon 

laser. This allowed the 20 cytokines to be identified based on bead size and intrinsic fluorescence 

intensity, using a single fluorescence channel. All chemicals used were provided with the kits 

(eBioscience, San Diego, USA). 

4.4.3.1 Assay Buffer 

A 1x concentration of assay buffer was prepared from the 10x concentration of assay buffer 

provided with the kits consisting of phosphate buffered saline (PBS) containing 10% N,O-

bis(trimethylsilyl)acetamide (BSA) by the addition of distilled water.  

4.4.3.2 Sample Preparation 

Serum samples were randomised prior to cytokine measurement to limit any batch effect that may 

confound the experimental design. Samples were transported on ice and allowed to thaw at room 

temperature prior to cytokine measurement. The time between samples being removed from the -

80°C freezer and thawing was kept to a minimum and was approximately 30 minutes. All samples 

were run in duplicate. 

4.4.3.3 Standard Curves 

A lyophilized standard mixture of cytokines was included in the kit for preparing a standard curve for 

each cytokine. The standards were spun down for a few seconds in a microcentrifuge before being 

reconstituted in 1x assay buffer to give the concentrations detailed in table 4.1. 
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Table 4.1. Concentrations of cytokine standards on reconstitution per bead population. 

 

 

 

 

 

 

 

A series of seven declining concentrations of these standards were prepared using serial dilution. 

50µL of the reconstituted standard was added to 100µL of assay buffer and mixed. 50µL of this 

mixture was then added to a further 100µL assay buffer and this process was repeated until there 

were seven solutions of diminishing concentration.  

4.4.3.4 Fluorescent Beads 

 For each 96 well plate the provided bead mixture was vortexed for five seconds and mixed by 

repeated pipetting prior to transferring 1500µL into two Eppendorf tubes. These were centrifuged at 

3000g for 5 minutes. The excess liquid was removed and the beads reconstituted to a total volume 

of 3000µL with the reagent dilution buffer provided in the kit. The resulting solution was vortexed 

for five seconds prior to use.  

 

 

Bead size A Bead size B 
Standard  Concentration upon 

reconstitution  
Standard  Concentration upon 

reconstitution  
G-CSF  25000 pg/ml  E-Selectin  3000 ng/ml  
ICAM-1  4000 ng/ml  IFN α  20000 pg/ml  
IFN γ  20000 pg/ml  IL-1α  1000 pg/ml  
IL-6  20000 pg/ml  IL-1ß  20000 pg/ml  
IL-8  10000 pg/ml  IL-4  20000 pg/ml  
IL-10  20000 pg/ml  IL-13  20000 pg/ml  
IL12p70  20000 pg/ml  IL-17A  10000 pg/ml  
LAP  1500 ng/ml  IP-10  12500 pg/ml  
MCP-1  30000 pg/ml  TNF α  20000 pg/ml  
MIP1 α  10000 pg/ml    
MIP1ß  3000 pg/ml    
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4.4.3.5 Preparation of Plates 

Beads for flow cytometry were prepared in a 96-well filter plate prior to transfer to flow cytometry 

tubes. The wells of the plate were pre-wetted with the addition of 50µL of assay buffer to each well. 

The buffer was removed using a vacuum manifold until no fluid remained in the wells. 25µL of 

standard mixtures one to seven were added to the first and second columns, figure 4.1, and 25µL of 

assay buffer was added to the final well of each column as a blank. 25µL of sample were added to 

the remaining wells, each sample being run in duplicate. 25µL of bead mixture was then added to 

each well, including the blanks, followed by 25µL of biotin-conjugate antibody mixture. The biotin 

conjugated mixture contained specific antibodies that bound to the cytokines bound to the beads. 

The plate was then covered with adhesive film and incubated at room temperature for 2h on a plate 

shaker at 250rpm. The plate was protected from light with aluminium foil. 

Figure 4.1. Schematic diagram illustrating the layout of the 96-well plate for sample preparation for 

flow cytometry. (1A-G first set of standard concentrations, 2A-G, second set of standard 

concentrations, H1, H2 blanks, A3 set up beads, green numbered wells represent samples and their 

duplicates in yellow). 

 

 

 

 

After incubation the adhesive film was removed and the wells emptied using the vacuum manifold. 

The wells were washed by the addition of 100µL of assay buffer to each and emptied with the 

vacuum manifold. This step was performed twice.  
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100µL assay buffer and 50µL of streptavidin-PE solution were added to each well before covering 

and incubation at room temperature for one hour on a plate shaker at 250rpm. The plate was 

protected from light with aluminium foil. This incubation step allowed the streptavidin to bind to the 

biotin added in the previous step providing a fluorescent signal to allow cytokine quantification. 

After incubation the wells were emptied on the vacuum manifold and the wells washed twice with 

100µL of assay buffer as before.  

Finally 200µL of assay buffer were added to each well and mixed by repeated aspiration with a 

micropipette. This volume was transferred to tubes ready for measurement on the flow cytometer 

and the volume made up to 500µL with the addition of 300µL assay buffer. The tubes were covered 

in aluminium foil to protect them from light and kept at 4°C overnight prior to data acquisition. 

  4.4.3.6 Flow Cytometry 

Data were acquired on a CyAn flow cytometer (Beckman Coulter, Brea, USA). The forward scatter 

(FS) and side scatter (SS) were adjusted to allow the two bead populations to be discriminated on 

size, figure 4.2. Two gated regions were then created based on the two populations of beads. For 

each region fluorescence was detected at 595nm for Phycoerythrin (PE) emission (x-axis) to quantify 

cytokine concentrations and 700nm (y-axis) to separated cytokine specific bead populations. Voltage 

of the PE emission was adjusted to ensure that the beads with the highest standard cytokine 

concentrations touched the right side of the plot. Voltage of the far red emission was adjusted to 

give clear separation of the individual cytokines. 

The total number of events counted was defined so that there would be approximately 300 gated 

events per analyte.  After cytometer set up samples were run in sequential order and the generated 

files saved. 
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Figure 4.2. Representative plots from the flow cytometer demonstrating how the cytokines were 

identified and quantified.  a) differentiation of the two bead populations  based on size measured 

with forward scatter (FS, x-axis) and side scatter (SS, y-axis): each dot represents an individual bead, 

Beads marked A 5µm diameter, B 4µm diameter. b, c) Fluorescence channels for the two populations 

of cells, b) population A and c) population B. Far red emission (FL 8 Log) is shown on the y-axis and 

discriminates individual cytokines based on fluorescence intensity. PE emission (FL 2 Log), on the x-

axis, measures cytokine concentration with higher intensity representing higher concentration. 
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4.4.3.7 Data Pre-processing  

Data files were exported into FlowCytomix Pro™ software (eBioscience, San Diego, USA) for initial 

analysis. The software generated standard curves based on the average of the two sets of standard 

cytokine concentrations run on each plate. For each curve the software provided an estimate of the 

goodness of fit to the data points. Points were only removed from the curves on the rare occasions 

when there was clearly an outlier, with a point lying above or below the next point higher or lower 

on the curve. This was only required in a few instances.  

Cytokine concentrations were calculated by comparing the mean fluorescence intensity (MFI) of 

each sample corrected for the MFI of the blank sample to the standard curve. 

All duplicates were examined and where clear discrepancy existed in cytokine concentrations 

between a sample and its duplicate the sample was re-analysed. Similarly samples that saturated the 

concentration curves were rerun using a ten-fold dilution and concentrations calculated from this 

result. Where the calculated concentration failed to exceed the concentration curve, the average 

was taken from the repeated value and the upper limit of quantification from the standard curve.  

Further statistical analysis was carried out using the mean of the cytokine concentrations calculated 

for each sample and its duplicate. Where a sample was re-run the average was taken of the rerun 

pair when these provided concentrations that were consistent.   

4.4.3 Statistical Analysis 

Routine data handling was performed in Excel (Microsoft, USA). Prior to multivariate analysis all 

mediator concentrations were scaled to unit variance. Standardising the variance of variables 

attempts to take into account the potentially enhanced influence on multivariate models of analytes 

with naturally higher concentrations that tend to be associated with higher variance and allows 

variables with generally lower values to be given similar weight within the model. Multivariate 
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statistics were used to analyse the data. Initial exploration with principal component analysis (PCA) 

was performed to look for natural clustering and to detect outliers before supervised multivariate 

analysis using orthogonal partial least squared discriminant analysis (OPLS-DA) was used to generate 

models to optimally separate predefined groups. OPLS-DA models were cross validated using seven 

fold cross-validation using a “leave-one-out” methodology. Permutation testing was used to 

evaluate equivalent partial least squared discriminant analysis PLS-DA models. Important 

metabolites in each model were identified by examining the loadings associated with each model 

and the most important metabolites were selected by picking those that had a Variable Importance 

for the Projection (VIP) of greater than 1.0 (112). All multivariate analysis was performed using the 

SIMCA statistical package (Umetrics, Sweden). Further discussion of multivariate techniques can be 

found in chapter 2. 

Univariate statistical analysis was used to compare individual mediators and characteristics of 

included patients using SPSS (IBM, UK) and Excel (Microsoft, USA).  Student’s T-test was used to 

compare continuous variables between groups of patients and Fisher’s exact test to compare 

categorical variables. Normality of metabolite distributions was determined using Kolmogorov-

Smirnov and Shapiro-Wilk tests of normality. Non-normally distributed metabolites were compared 

using the Mann-Whitney U test and concentrations are given as median and interquartile range. To 

account for multiple comparisons the Benjamini-Hochberg procedure was used to control the false 

discovery rate.  A p-value of 0.05 or less was taken to represent statistical significance.  

4.5 Results 

4.5.1 Patients 

Thirty four patients, that fulfilled the criteria defined in chapter 2, had eicosanoids and cytokines 

measured in their serum. Of these 13 had pneumonia on admission and 21 had brain injuries with no 
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suggestion of pneumonia when the first serum samples were taken. Five brain injured patients went 

on to develop VAP based on CPIS scoring. Clinical features of these patients can be seen in table 4.2. 

As previously described in chapter 2, patients with borderline CPIS scores were reviewed by an 

independent clinical assessor and classified as non-infected, pneumonia or VAP based on clinical 

course. Based on this assessment a further six brain injured patients were classified as not having 

pneumonia on admission, five were defined as pneumonia and three as VAP. All initial comparisons 

were made with the original grouping of patients based on CPIS. 

Patients were similar across the groups with respect to their demographic details. Features that 

identified the pneumonia and VAP groups from those with brain injuries included markers of 

infection such as CRP, use of antibiotics and the higher oxygen requirement as would be expected in 

patients with pulmonary infection. 
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Table 4.2. Clinical features of included patients. Continuous variables are given as mean and 

standard deviation and categorical variables as number and percentage. P-values presented in bold 

text relate to parameters that were significant at the p<0.05 level. The clinical parameters compared 

were taken from the 24h prior to 8:00 am on the day of sampling, for the pneumonia and brain 

injured patients this was time point 0 and for cases of VAP this was the 24h prior to the sample taken 

soonest after the onset of VAP. 

 Pneumonia (P) Brain Injury (BI) p-value 
(BI vs P) 

VAP p-value 
(BI vs VAP) 

N 13 21 - 5 - 
Age (Mean +/- SD) 53.5±16.5 52.3±14.9 0.84 50.8±17.2 0.87 
Sex, Number of males (%)  9 (69.2) 12 (57.1) 0.72 3.0 (60.0) 1.00 
Ethnicity, number  White 
European (%) 

9 (69.2) 15 (71.4) 1.00 4.0 (80.0) 1.00 

Outcome, Number alive (%) 8 (61.5) 16 (76.2) 0.45 3.0 (60.0) 0.59 
APACHIE II Score (Mean +/- SD) 19.6±6.3 17.0±6.0 0.23 17.8±9.4 0.86 
SOFA Score (Mean +/- SD) 10.2±3.2 8.9±2.6 0.23 8.6±3.1 0.87 
CPIS (Mean +/- SD) 5.8±1.0 2.1±1.4 <0.001 7.0±1.58 <0.01 
Lowest WCC (109/L) (Mean +/- 
SD) 

15.8±7.5 10.0±3.8 0.02 10.5±3.2 0.76 

Highest WCC (109/L) (Mean +/- 
SD) 

16.4±7.3 11.2±3.9 0.03 10.5±3.2 0.70 

Lowest CRP (mg/L) (Mean +/- SD) 165.7±98.7 49.4±54.2 <0.01 116.7±28.2 <0.01 
Highest CRP (mg/L)(Mean +/- SD) 184.1±913 62.0±52.5 <0.001 116.7±28.2 <0.01 
Lowest Temperature (°C) (Mean 
+/- SD) 

35.8±0.83 36.0±0.68 0.45 36.0±1.6 0.95 

High Temperature (°C) (Mean +/- 
SD) 

37.7±0.96 37.6±0.68 0.65 38.0±1.3 0.45 

Lowest FiO2 (Mean +/- SD) 0.4±0.15 0.4±0.22 0.47 0.4±0.1 0.51 
Lowest PaO2:FiO2 (Mean +/- SD) 24.0±9.7 41.8±15.5 <0.001 18.6±8.5 <0.001 
Lowest MAP (mmHg) (Mean +/- 
SD) 

71.7±10.4 74.0±11.3 0.54 71.0±12.4 0.65 

Use of noradrenaline, N (%) 9 (69.2) 13 (61.9) 0.73 1.0 (20.0) 0.15 
Use of antibiotics N (%) 13 (100) 10 (47.6) <0.01 5.0 (100) 0.05 
Enteral nutrition, N (%) 12 (92.3) 15 (71.4) 0.21 5.0 (100) 0.3 
Time to sampling from start of 
ventilation (h) (Mean +/- SD) 

42.7±11.5 40.1±16.9 0.61 143.4±44.9 <0.01 

Time of day of sample, Number 
taken in the morning (%) 

8 (61.5) 13 (61.9) 1.0 5.0 (100) 0.28 
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4.5.2 Eicosanoids 

 Of the 48 eicosanoids measured there were 17 where levels were below the lower limit of 

quantification in all samples, table 4.3. These were omitted from any further analysis. This left 31 

quantifiable eicosanoids.  

Table 4.3. The 31 quantified eicosanoids and the 17 that were unquantifiable. 

Measured Eicosanoids Unquantifiable Eicosanoids  
C18:2 (LA) tetranor-PGEM 
C20:3 (DGLA) tetranor-PGFM 
C20:4 (AA) 15(S)-HEPE 
C20:5 (EPA) 5,6-EET 
C22:6 (DHA) 8,9-EET 
9(S)-HODE 11,12-EET 
13(S)-HODE 14,15-EET 
tetranor-PGDM 5-oxo-ETE 
12(S)-HEPE LTD4 
5(S)-HETE LTE4 
8(S)-HETE PGD2 
11(R)-HETE PGF2alpha 
12(R)-HETE 8-iso-PGF2alpha 
15(S)-HETE 15dPGJ2 
16(R)-HETE 11-dehydro TXB2 
5,6-DHET Resolvin D1 
8,9-DHET Resolvin D2 
11,12-DHET  
14,15-DHET  
12-oxo-ETE  
14-HDoHE  
17(S)-HDoHE  
10(S),17(S)-DiHDoHE  
LTB4  
12-oxo-LTB4  
LTC4  
PGE2  
Lipoxin A4  
Lipoxin B4  
6-keto-PGF1alpha  
TXB2  
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4.5.2.1 Evaluation of Batch Effect 

All eicosanoid measurements were carried out over a period of two days in two runs. PCA was used 

to evaluate the presence of any batch effect, figure 4.3. Most of the samples from both batches 

clustered together in the PCA scores plot, although the outliers appear to all arise from the first 

batch. On closer examination many of these appear to be due to patient factors as samples taken 

from the same patient appear together on the plot, regardless of the day of analysis.   Although it is 

possible to construct an OPLS-DA model (R2Y 0.50, Q2Y 0.37, p<0.001) to separate samples based on 

batch, there is a great deal of overlap of the two groups even before cross-validation has been 

applied, suggesting that batch effect, although present, was very small. The eicosanoids most 

susceptible to batch effect were 17(S)-HDoHE, 11,12-DHET, 12(S)-HEPE, 16(R)-HETE, 10(S),17(S)-

DiHDoHE, 14-HDoHE, Lipoxin A4, 15(S)-HETE, TXB2, 14,15-DHET, 5,6-DHET, LA, 12-oxo-LTB4, 12(R)-

HETE, 8(S)-HETE, and AA. In an attempt to establish the degree of effect that batch had on the 

overall variation within the samples the R2X of the model was examined. Whereas the R2Y metric 

quantifies the amount of variation explained by the model between the classification groups the R2X 

quantifies the total amount of variation explained by the model across all samples. In this case 

although the OPLS-DA model was able to explain roughly 50% of the variation between the two 

batches (R2Y 0.5) and was moderately predictive (Q2Y 0.37) the total amount of variation across all 

samples explained was small at only 16% (R2X 0.16) implying that the batch effect had only a small 

effect on the overall variation between samples. In order to examine batch more closely the clinical 

comparisons described below were also re-examined to assess for batch effect. 

4.5.2.2 Brain Injury vs. Pneumonia 

Initial comparison using PCA of the 13 patients with pneumonia at the start of invasive ventilation 

with the 21 brain injured patients who demonstrated no evidence of pneumonia when ventilation  
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Figure 4.3 a. Three component PCA scores plot (R2X 0.49 Q2Y 0.25), showing components 1 and 2. Samples are coloured according to batch, run 1 - 

blue squares, run 2 - green circles, samples marked with the same symbols arise from the same patient at different time points The inability of this 

unsupervised model to find natural separation between the two batches implies minimal batch effect and that most of the variation between 

samples is due to factors other than batch. b. OPLS-DA model (R2Y 0.50, Q2Y 0.37, p<0.001 ) with one component and one orthogonal component, 

shown prior to cross-validation, comparing samples from run 1, blue squares, to those from run 2, green circles. Samples to the far left and right of 

the plot show the greatest difference when variation based on batch effect is actively explored, the overlapping samples in the middle demonstrate 

least difference c. Loading plot for the OPLS-DA model demonstrating the eicosanoids causing the most separation in the OPLS-DA model. 

Eicosanoids distributed at the extremes of the x-axis are responsible for most variation in the first component, x-axis, of the OPLS-DA model and 

those at the extremes of the y-axis are responsible for most variation in the orthogonal component.  
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was commenced showed no innate ability to separate these groups based on the presence or 

absence of pneumonia, figure 4.4. However, there appeared to be some distinct groupings or 

clusters within the data distribution. The group of four brain injured patients in the upper right 

quadrant of the plot had a dominance of almost all fatty acids and their subsequent eicosanoid 

metabolites whereas the bulk of the patients on the left showed a dominance of 6-keto-PGF1alpha, 

LTC4, 12-oxo-LTB4 and Lipoxin B4.  The three patients in the lower right quadrant differentiated 

from the main cluster by the presence of higher levels of TXB2, 11(R)-HETE, 12(R)-HETE, 8(S)-HETE, 

PGE2, 12(S)-HEPE, 12-oxo-ETE, 15(S)-HETE, tetranor-PGDM and 14-HDoHE. Comparison of these 

groups with clinical data showed no clear clinical explanation for this grouping. There was no 

differentiation based on the underlying pathology, the use of drugs known to alter eicosanoid 

metabolism or the development of later infection. 

Use of OPLS-DA, figure 4.5, enabled a model to be constructed with R2Y 0.68, Q2Y 0.40, p=0.02. 

Examination of the loadings for the model showed a predominance of fatty acids, particularly DHA, 

EPA, AA and LA, in the brain injury group along with the metabolites 6-keto-PGF1α, 5,6-DHET, 9(S)-

HODE, 13(S)-HODE, 10(S),17(S)-DiHDoHE and 5(S)-HETE. Lipoxin B4 and tetranor-PGDM were more 

abundant within the pneumonia group. Testing this model with the set of 11 patients with 

borderline scores, that were reclassified blindly by an independent clinician, demonstrated the 

model to have a sensitivity of 0.60, a specificity of 0.67, a positive predictive value of 0.6 and a 

negative predictive value of 0.67. When the same subgroup of patients was used to construct a 

batch model only a much less predictive model could be made (R2Y 0.52, Q2Y 0.15, p=0.30) with less 

of the overall variation described by the batch model compared to the disease classification model 

(R2X 0.42 vs 0.55) implying that disease group had a greater impact on inter sample variation than 

the batch effect. 
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Figure 4.4. a. Three component PCA model (R2X 0.62, Q2X 0.25), showing components 1 and 2, comparing samples taken at the first time point from 

patients admitted with pneumonia (red squares) to those admitted with brain injuries with no evidence of pneumonia when the first sample was 

taken (blue circles). No overall natural separation between pneumonia and brain injured patients is seen, however a group of brain injured patients 

seem to separate out into the right side of the plot, along the first component, and two patients with pneumonia separate from the main group 

along the second component.  b. Loadings plot for the PCA model demonstrating the eicosanoids causing the most separation in the model. 

Eicosanoids distributed at the extremes of the x-axis are responsible for most variation in the first component, x-axis, and those at the extremes of 

the y-axis are responsible for most variation in the second component, y axis, of the PCA model. 
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Figure 4.5 a. OPLS-DA scores plot from a model with one aligned and two orthogonal components, showing the aligned vs. the first orthogonal 

component, before cross validation, (R2X 0.68 Q2Y 0.40, p=0.02) based on eicosanoid analysis from samples taken at the first time point from 

patients admitted with pneumonia (red squares) to those admitted with brain injuries with no evidence of pneumonia when the first sample was 

taken (blue circles). Distribution along the x-axis shows the degree of separation of the two groups along the first component. b. Loadings plot for 

the OPLS-DA model  demonstrating the eicosanoids causing the most separation in the model. Eicosanoids distributed at the extremes of the x-axis 

are responsible for most variation in the first component, x-axis, of the OPLS-DA model and those at the extremes of the y axis are responsible for 

most variation in the orthogonal component. 

  a. b. 
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4.5.2.3 Brain Injury vs VAP 

Comparison of serum samples taken from the 21 patients with brain injury without infection at the 

time of ventilation to the samples taken from the five brain injured patients who developed VAP 

based on CPIS scores at the time pneumonia developed failed to demonstrate separation on PCA. 

OPLS-DA modelling had no predictive capacity with a negative Q2Y (R2Y 0.36 Q2Y -0.06). Models 

failed to have any predictive capacity even when VAP was compared to only samples from those 

brain injured patients who did not go on to develop VAP (R2Y 0.56 Q2Y -0.25), their own first time 

point (R2Y 0.29 Q2Y 0.01) or a larger group including the patients assessed by an independent 

assessor (R2Y 0.23 Q2Y -0.16 ). Some of this lack of predictivity may have related to batch effect. 

When a batch effect model was made from the subgroup of brain injured and VAP patients a more 

predictive model could be made (R2Y 0.59, Q2Y 0.35, p=0.05) and explained a greater proportion of 

population variation (R2X 0.47 vs 0.15). This may have been because of the small number of VAP 

patients, especially if they had a tendency to be randomised to one of the batches. 

4.5.3 Cytokines  

4.5.3.1 Evaluation of Batch Effect 

Cytokine measurement was performed in six batches due to the length of the protocol. In order to 

assess for batch effect PCA was performed and each sample was coloured based on the day on 

which it was run. One patient’s samples were excluded from this analysis due to cytokine levels that 

were far in excess of the maximum values of many of the standard curves, even after rerunning the 

samples at a 40 fold dilution. This patient was found to have a lymphoma after enrolment to the 

study, this diagnosis possibly accounts for the pronounced cytokine levels. Interestingly this patient 

was not an outlier when only eicosanoids were considered, possibly a consequence of the difference 

in site of production of cytokines and eicosanoids in relation to lymphoma or the differing timescales 
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of production of the two types of mediators. This patient’s samples were excluded from all other 

comparisons. The PCA, figure 4.6, shows no natural separation based on sample batch and individual 

patients’ time points tended to cluster together, even when run on different days, suggesting inter-

patient variability was greater than either that caused by batch effect or that from time point to time 

point. A two component OPLS-DA model (R2Y 0.14 Q2Y 0.08, p<0.001) could be constructed to try to 

differentiate the batches. The biggest difference appeared to be between batch 2 and 5, 

examination of the loadings suggested most of this difference was accounted for by the levels of IL-

10 and IL-12p70. However, when the R2X of this model was explored the batch model explained 58% 

of the variation across all samples suggesting that batch may be an important contributor to this 

data.  

4.5.3.2 Brain Injury vs Pneumonia 

Comparison of the 13 patients with pneumonia on admission to those 21 with brain injuries, without 

infection, via PCA (R2X 0.46 Q2X 0.23) failed to show any natural groupings but with outliers all 

coming from the pneumonia group, the outliers were associated with elevated levels of almost all 

cytokines compared to the non-outliers suggesting a generalised increase in inflammatory activity. 

Supervised analysis with a single component OPLS-DA model (R2Y 0.18, Q2Y 0.11, p=0.17), figure 4.7, 

only had a low ability on cross validation to discriminate the two groups. Assessment of the model 

with a test set of patients based on the borderline group of patients independently assessed only 

produced a sensitivity 0.6, specificity 0.67 positive predictive value of 0.6 and negative predictive 

value of 0.67, similar to those from the eicosanoid only model. All cytokines other than IL-8 and IL-1α 

had a tendency to increase in the pneumonia patients, the most important cytokines, based on a VIP 

score of >1.0, in this model were ICAM-1, E-selectin , IP-10, MCP-1, IL-13, and TNFα. When this 

subgroup was used to construct a batch model it was impossible to build an OPLS-DA model with a 

+ve Q2Y suggesting that within this group the effects of batch were limited and those of the disease



162 

 

 

 

Figure 4.6. a. Single component PCA (R2X 0.34 Q2Y 0.25) of all cytokine batches (run 1: red triangles, run 2: green circles, run 3: yellow inverted triangles, run 

4: cyan diamonds, run 5: blue squares, run 6: purple pentagons) showing samples clustering by patient along the first component, direction axis, with no 

batch predominance as shown by the degree of overlap of the six batches. b. Two component supervised OPLS-DA model (R2Y 0.21 Q2Y 0.11, p<0.001) before 

cross validation showing that the greatest difference is between batches 2 and 5, with this difference being driven by IL-10 and IL12p70 being more 

predominant in batch 2 as shown on the loadings plot, c.  The loadings plot demonstrates the cytokines causing the separation in the OPLS-DA model. The 

cytokines at the extremes of the x and y-axes are responsible for the most separation in the same respective directions in the OPLS-DA model.  
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Figure 4.7. a. Single component OPLS-DA model (R2Y 0.18 Q2Y 0.11, p=0.17) based on cytokine analysis comparing samples taken at the first time point from 

patients admitted with pneumonia (red bars) to those admitted with brain injuries with no evidence of pneumonia when the first sample was taken (blue 

bars). Samples from brain injured patients tend to deflect downwards along component 1, y-axis, however, the samples from patients with pneumonia are 

distributed both upwards and downwards with three patients dominating the upward direction.  b. Loadings plot for the OPLS-DA model showing that nearly 

all cytokines tend to dominate in the pneumonia patients whose samples deflect upwards along component 1 in the OPLS-DA model. 

 

a. 

a. b. 
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were more important, this was supported by the larger R2X within the disease model (R2X 0.43 vs 

0.37). 

4.5.3.3 Brain Injury vs VAP 

Comparison of serum samples taken from the 21 patients with brain injuries without infection at the 

time of ventilation to the samples taken from the five brain injured patients who developed VAP 

based on CPIS scores showed no grouping on PCA (R2X 0.492 Q2X 0.17). However, a supervised 

model using OPLS-DA showed an improved predictive capacity (R2Y 0.38 Q2Y 0.16, p=0.13) compared 

to that made from eicosanoid measurements, figure 4.8. The loadings showed a tendency for all 

cytokines except IL-6 to increase in the VAP group, of these TNFα, ICAM-1, IP-10, IL-13, iL-12p70, IL-

17A, INFγ and Il-1beta caused the majority of the separation based on their VIP scores. The 

predictive capacity was only marginally improved (R2Y 0.49 Q2Y 0.22, p=0.18) when only brain 

injured patients who did not develop VAP at any point were used as controls with the same trend,  

including IL-6, of all cytokines increasing with VAP. However, when the samples taken from the time 

that VAP developed were compared to the first samples taken from the same patients, before VAP 

developed, the model lacked any predictive capacity (R2Y 0.44 Q2Y -0.53) and this remained the case 

even with a larger group made up from a combination of VAP diagnosed from CPIS scores and 

classification of borderline cases (R2Y 0.21 Q2Y -0.80). 

The influence of batch on this model appeared greater than when brain injured patients were 

compared to those with pneumonia at admission. When an OPLS-DA model comparing batch was 

constructed from the subgroups of patients with brain injuries or VAP (R2Y 0.19, Q2Y 0.09, p=0.39) 

the predictive capacity was less than that for the model comparing disease classes. However, the 

amount of variation explained in the overall population was greater (R2X 0.46 vs 0.31) again possibly 

relating to the small number of patients in the VAP group.  
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Figure 4.8. a. Single component OPLS-DA model (R2Y 0.38, Q2Y 0.16, p=0.13) based on cytokine analysis comparing samples taken at the first time point from 

patients admitted with brain injuries with no evidence of pneumonia at the time of sampling (blue bars) to the time point that VAP developed (green bars). 

VAP samples are all oriented upwards along component 1 and brain injury samples generally deflect downwards, however, a number of brain injury patients 

overlap the VAP group showing positive orientation.  b. Loadings plot for this model showing that nearly all cytokines tend to dominate in patients whose 

samples show upwards orientation along component 1 in the OPLS-DA model. 

 

 

  

a. 

a. b. 
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4.5.4 Combining Eicosanoids and Cytokines 

4.5.4.1 Brain Injury vs Pneumonia 

Combining the cytokine and eicosanoids together into one model produced a two component PCA 

which still failed to show any natural separation into pneumonia and non-pneumonia groups. 

Clustering continued to mirror the PCA model using only eicosanoid levels with one group 

demonstrating a predominance of fatty acids. Similarly three of the pneumonia patients naturally 

separated out from the others due to dominant levels of nearly all cytokines. Supervised analysis 

produced an OPLS-DA model (R2Y 0.69, Q2Y 0.35, p=0.01) with a slightly reduced predictive capacity 

compared to that from the eicosanoids alone. The loadings from this model, figure 4.9, 

demonstrated that most of the measured cytokines dominated in the pneumonia group with the 

exception of MIP-1α, MIP-1β, IL-8 and IL-1α. The cytokines dominating the separation based on VIP 

scoring were ICAM-1, E-selectin, IP-10, MCP-1, IL-13, TNFα, INFγ and IL-6. Fatty acids dominated the 

brain injury group, as seen in the eicosanoid model, with 6-keto-PGF1α, 5,6-DHET,DHA, EPA, 9(S)-

HODE, 13(S)-HODE, 10(S),17(S)-DiHDoHE, AA, and 5(S)-HETE   causing most separation.  Tetranor-

PGDM and lipoxin B4 were the eicosanoids differentiating the patients with pneumonia. Validation 

of the model using the classified borderline cases gave a sensitivity 0.6, specificity 0.67, positive 

predictive value 0.6 and negative predictive value 0.67, similar to both the eicosanoid and cytokine 

models. Building a model based only on the most important mediators produced a model with a 

slightly improved predictive capacity to that using all inflammatory molecules (R2Y 0.49, Q2Y 0.43, 

p<0.001), however, although the sensitivity 0.40, and negative predictive value 0.625 reduced the 

specificity 0.83 and positive predictive value 0.67 both increased. 

As it was possible that some of the brain injured patients could be developing VAP earlier than was 

clinically apparent a further model was constructed comparing only those patients who never 

developed VAP with those with pneumonia on admission. This two component model (R2Y 0.78, Q2Y  
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Figure 4.9. a. OPLS-DA model with one orthogonal component (R2Y 0.69 Q2Y 0.35, p=0.01) before cross validation, comparing cytokines and eicosanoids at 

the first time point from patients admitted with pneumonia (red squares) to those admitted with brain injuries with no evidence of pneumonia at sampling 

(blue circles).Pneumonia samples cluster in a positive direction along the first component, x-axis, and brain injury samples in the negative direction. b. 

Loadings plot for the model shown in a, inflammatory molecules to the right of the plot dominate in the pneumonia group and those on the left in the brain 

injury group. 

a. b. 
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0.25, p=0.19), figure 4.10, had an improved sensitivity of 0.8, a specificity 0.67, positive predictive 

value 0,67 and negative predictive value of 0.8. Similarly to the model using all brain injured patients 

ICAM-1, IL-6, MCP-1, E-selectin, IP-10, IL-17A and IL-13 were the cytokines causing most of the 

separation. Fatty acids again dominated in the brain injury group, with 5,6-DHET, 6-keto-PGF1α, 

DHA, 9(S)-HODE, EPA , 13(S)-HODE,  10(S),17(S)-DiHDoHE, 5(S)-HETE, AA, LA and LTB4 , causing most 

separation. Lipoxin B4 and tetranor-PGDM again appeared in the pneumonia group.  

4.5.4.2 Brain Injury vs VAP 

Combining cytokine and eicosanoid data into one model improved the predictive capacity, after 

cross validation, when patients with VAP were compared to the first time point from brain injury 

patients before infection developed (R2Y 0.76 Q2Y 0.27, p=0.14), figure 4.11. In this model the 

separating molecules all dominated in the VAP group and were almost all cytokines, predominantly 

TNFα, ICAM-1, IP-10, IL-13, IL-12p70, IL-17A, INFγ, IL-1beta, IL-10, and IL-4. The eicosanoids causing 

separation also dominated in the VAP group and were LTC4, 14,15-DHET, LTB4, 8,9-DHET, tetranor-

PGDM, 11,12-DHET and Lipoxin A4. LA and DHA both dominated in the brain injury group. 

When samples taken at the time patients developed VAP were compared to those at the start of 

ventilation from brain injured patients who never developed VAP the OPLS-DA model improved (R2Y 

0.90 Q2Y 0.38, p=0.19), figure 4.12. The mediators causing most of the separation in this model were 

IL-12p70, IL-17A,TNFα, IP-10, INFγ,ICAM-1, IL-13, IL-4,  IL-10, , IL-1beta and MCP-1, the eicosanoids 

causing separation, also dominating in the VAP group, were 12-oxo-LTB4, 14,15-DHET, Lipoxin A4, 

LTB4, tetranor-PGDM and LTC4 . In this model DHA, LA, EPA and 14-HDoHe became important in 

identifying the first time point from brain injured patients who never developed VAP.  

However, when the patients diagnosed with VAP based on CPIS were combined with those with 

borderline scores that were independently classified the model lost all predictive capacity on cross- 
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Figure 4.10. a. OPLS-DA model with one orthogonal component (R2Y 0.78 Q2Y 0.25, p=0.19) shown prior to cross validation, comparing cytokines and 

eicosanoids at the first time point from patients admitted with pneumonia (red squares) to those admitted with brain injuries who never developed VAP 

during their stay (blue circles). Pneumonia patients separate from brain injured patients along the first component, x axis. b. Loadings plot for the OPLS-DA 

model. Inflammatory molecules dominating in the pneumonia group are positioned on the right of the plot, predominantly cytokines, and those in the brain 

injury group are to the left, predominantly eicosanoids. 

b. a. 
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Figure 4.11. a. OPLS-DA model with one orthogonal component (R2Y 0.76, Q2Y 0.27, p=0.14), comparing samples taken at the first time point from patients 

admitted with brain injuries (blue circles) to samples taken from those brain injury patients who developed VAP at the time point that VAP developed (green 

triangles). VAP samples separate in the positive direction along the first component. b. Loadings plot for the OPLS-DA model. Inflammatory molecules 

important in the VAP group are positioned on the right of the plot whilst those important in the brain injured group are to the left. 

 

a. b. 
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Figure 4.12. a. OPLS-DA model with one orthogonal component (R2Y 0.90, Q2Y 0.38, p=0.19), comparing samples taken at the first time point from patients 

admitted with brain injuries (blue circles) who never developed VAP to samples taken when VAP developed in those that did (green triangles). VAP samples 

separate in the positive direction along the first component. b. Loadings plot for the OPLS-DA model. Inflammatory molecules important in the VAP group 

are positioned on the right of the plot whilst those important in the brain injured group are to the left. 

a. b. 
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validation (R2Y 0.51 Q2Y-0.42). Also, even when cytokines and eicosanoids were combined, the 

models were still unable to differentiate samples from the time that VAP developed from those at 

the start of ventilation (R2Y 0.60 Q2Y -0.17) in the same patients. 

4.5.4.3 Time Course 

So far samples taken from the start of ventilation have been compared to samples taken at the time 

VAP developed. However, changes seen between these groups may not have been  genuinely due to 

development of VAP and may have represented changes associated with a prolonged stay on 

intensive care. In the majority of cases VAP developed around time point three and four. In order to 

get a sense of the inflammatory changes over this time frame the samples from the first time point 

from brain injured patients who did not develop VAP were compared to samples taken at the fourth 

time point. OPLS-DA modelling (R2Y 0.96, Q2Y 0.66, p=0.05), figure 4.13, suggested that the 

dominance of fatty acids at the first time point shifts towards the metabolites of arachidonic acid, in 

the form of 5,6-DHET, 8,9-DHET and 14,15-DHET and 16(R)-HETE, 12(R)-HETE, 15(S)-HETE and 11(R)-

HETE. Cytokines seemed generally to be at higher concentrations at the beginning of the ICU stay 

but over time the levels of IL-13, IL-4, IL-1β, TNFα and IP-10 increased.     

If samples from patients diagnosed with VAP based on CPIS scoring were compared to the fourth 

time point samples from brain injury patients who did not develop VAP a cross validated OPLS-DA 

model (R2Y 0.98, Q2Y 0.56, p=0.31), figure 4.14, could be made. The loadings from this model 

showed a greater dominance of cytokines in those who developed VAP than in those who did not 

develop infection. The cytokines causing separation of these group were IL-6, MCP-1, IL-12p70, IFNγ,  

IL-17A, IFNα, IL-10, ICAM-1, G-CSF, IL-1beta, IP-10 and TNFα within the VAP group. The eicosanoids 

12-oxo-LTB4 and Lipoxin A4 were the only eicosanoids dominating in the VAP group. Fatty acid 

metabolites continued to dominate in the final time point of the non-VAP group with 5,6-DHET and 

8,9-DHET being responsible for the separation. When only the metabolites causing the greatest   
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Figure 4.13. a. OPLS-DA model with one aligned and two orthogonal components (R2Y 0.96 Q2Y 0.66, p=0.05), comparing samples taken at the first time 

point from patients admitted with brain injuries (blue circles) who never developed VAP to the fourth time point sample (blue squares). Fourth time point 

samples are separated in a positive direction along the first component, x-axis, and first time point samples in a negative direction. b. Loadings plot for the 

OPLS-DA model. Inflammatory mediators that increase over time are on the right of the plot and those that decrease are on the left. 

 

 

 

 

a. b. 
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Figure 4.14. a. OPLS-DA model with one orthogonal component (R2Y 0.98 Q2Y 0.56, p=0.31), comparing samples taken at the fourth time point from patients 

with brain injuries (blue squares) who never developed VAP to samples taken from those patients with VAP (green triangles). Brain injured patients separate 

in a positive direction along the first component and VAP patients in a negative direction, x-axis b. Loadings plot for the OPLS-DA model. Inflammatory 

mediators that increase in VAP are on the left side of the plot. c and d. Hierarchical dendrograms illustrating, c, the cytokines and eicosanoids involved in 

separating the two groups and, d, the sub-clustering of patients in both groups (group 1 – VAP group 2 – time point 4 from BI patients not developing VAP). 
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separation were used to construct the OPLS-DA model the predictive capacity improved (R2Y 0.90, 

Q2Y 0.78, p<0.01). Univariate statistics were performed on those analytes, figure 4.15, that were 

associated with a VIP of >1.0 and a p(corr) >0.5 in either direction in this model. The non-parametric 

Mann-Whitney U test was used to compare individual markers as none of these followed a normal 

distribution when Kolmogorov-Smirnov or Shapiro-Wilk tests of normality were applied.  Before 

correction for multiple comparisons was applied, table 4.4, Lipoxin A4, IL-12p70, IFNγ, MCP-1 and IL-

6 showed a tendency towards being elevated in those with VAP and 5,6-DHET showed a tendency to 

be increased in those brain injury patients not developing VAP at their final time point. IL-10, IFNα, 

IL-17A, IL-1β and 12-oxo-LTB4 failed to reach statistical significance between the groups. After the 

Benjamini-Hochberg procedure was applied to control the false discovery rate only the differences 

observed for IFNγ (p=0.04), MCP-1 (p=0.04) and IL-6 (p=0.04) remained significant. 

Table 4.4. Univariate comparison of discriminant mediators based on an OPLS-DA model comparing 

brain injury patients at the time point that VAP develops (VAP) to those who do not develop VAP at 

their final time point (BI TP4). Concentrations are given as median and interquartile range. P-values 

are from Mann-Whitney U test prior to correction for false discovery rate. 

Mediator VAP BI TP4 p-value 

Lipoxin A4 (fg/µL) 647.1 (473.6-667.6) 0 (0-183.2 ) 0.04 

IL-12p70 (pg/ml) 23.49 (18.97-27.3) 0.74 (0-1.38) 0.02 

IFNγ (pg/ml) 124.56 (99.76-135.92) 78.55 (26.60-81.96) 0.01 

MCP-1 (pg/ml) 412.78 (405.61-573.24) 207.1 (192.90-207.14) 0.01 

IL-6 (pg/ml) 24.48 (18.55-36.89)  0 (0-0) 0.01 

5,6-DHET (fg/µL) 132.2 (101.9-132.8) 367.3 (266.0-434.2) 0.04 

IL-10 (pg/ml),  15.49 (15.0-22.29) 1.67 (1.31-9.87) 0.14 

IFNα (pg/ml) 220.25 (97.24-253.31) 32.63 (30.71-55.89) 0.06 

IL-17A (pg/ml) 161.01 (127.88-194.05) 60.54 (14.53-72.59) 0.06 

IL-1β (pg/ml) 179.95 (80.26-192.03) 102.26 (56.58-132.70) 0.21 

12-oxo-LTB4 (fg/µL) 23947.1 (5529.9-51405) 6467.6 (5912.2-9771) 0.40 
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Figure  4.15. Univariate comparison of the mediators associated with a p(corr) of >0.5 in either direction from the OPLS-DA  model comparing the final time 

point from brain injured patients who did not develop VAP to the time point VAP developed in those that did. Green bars VAP time point, blue bars final time 

point from brain injured patients who did not develop VAP. Data displayed as median ± inter-quartile range. VAP n =5 Brain Injury n=5. Comparisons marked 

* are significant at p<0.05 after application of the Benjamini-Hochberg procedure. 
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Even when both cytokines and eicosanoids were combined it was not possible to distinguish patients 

with brain injuries who went on to develop pneumonia from those who did not at the first sample 

time point, before pneumonia had become clinically apparent (R2Y 0.35, Q2Y -0.191). 

4.5.4.4 Correlation 

The correlation of all inflammatory mediators was checked against each other to produce 

correlation heatmaps, figure 4.16. When all samples were explored together there was clearly a 

trend for the cytokines to broadly correlate in a positive direction and the eicosanoids to do the 

same. Only low level correlation was seen between the two classes of inflammatory mediators. 

Within the eicosanoids the precursor fatty acids such as AA, EPA and LA seemed to correlate 

together and strong correlation was seen between several of their metabolites such as the HETE 

group of metabolites. When only samples taken at the first time point from patients with pneumonia 

were considered the strength of correlation between the cytokines generally increased with strong 

correlation between several of the interleukins with the exception of IL-8 and IL-1α, which 

correlated with each other.  Some correlation between cytokines and eicosanoids became apparent 

within this group. For example, 6-keto-PGF1α, a break down product of prostacycline which 

mediates vasodilation, was seen to correlate with several, mainly pro-inflammatory, cytokines. 

Alternatively when the first time point samples from the brain injured patients who never developed 

pneumonia, including two patients clearly without pneumonia at enrolment but with borderline CPIS 

scores during their ICU stay who were independently assessed and classified as not developing VAP, 

were examined, although correlation still existed between cytokines, the greatest correlation was 

seen between the eicosanoids. This correlation was seen predominantly between families of similar 

molecules, such as the fatty acid precursor molecules, the HETEs and the DHETs. Interestingly the 

cytokine which correlated with the most eicosanoids in this group was ICAM-1, which has previously 

been associated with subarachnoid haemorrhage. 
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4.6 Discussion 

This chapter has explored the potential of a panel approach to eicosanoid, using a MS methodology, 

and cytokine, using a flow cytometry based method, measurement to assist the diagnosis of both 

pneumonia and VAP. Not only has the independent ability of each of these panels to differentiate 

patients with pneumonia from those with brain injuries been examined but also a combined 

approach using both panels together. 

Neither the eicosanoid nor cytokine measurements appeared to suffer from a significant batch 

effect when PCA was used to look for natural separation within all samples. Differences between 

individual patients, especially for the cytokine experiments, seemed to dominate over either an 

effect due to batch or that related to samples taken from different time points during a patient’s 

stay. In both cases, however, it was possible to produce multivariate models that showed some 

ability to separate samples based on batch and thus identify the analytes that may be most affected 

by batch effect.  

Use of only eicosanoid measurements to differentiate pneumonia from brain injuries at the time of 

admission to ICU allowed a model to be constructed that had a moderate predictive capacity at 

cross-validation and both sensitivity and specificity of 60-70% when validated with a small 

independent group of patients. Interestingly the markers that caused most of the separation 

dominated in the brain injured group. These markers were predominantly fatty acids and their direct 

metabolites. Polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic 

acid (EPA) may inhibit platelet function (285) and increase risk of bleeding and thus subarachnoid 

haemorrhage (SAH), the predominant injury in this brain injury group. In some populations higher 

risk of haemorrhagic stroke has been seen in patients with high levels of these polyunsaturated fatty 

acids in their fat composition (286), however, this has not been seen in all populations (287). 

Although little is written about serum levels of free fatty acids in patients with brain injury, the brain 
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has a high composition of polyunsaturated fatty acids, especially DHA, and all free fatty acids have 

been seen to be elevated in the cerebrospinal fluid of patients with SAH (288) and the F4-

neuroprostanes, the oxidative metabolites of DHA, have also been seen to increase in the CSF of 

both patients with SAH and traumatic brain injury (289). EPA may be involved in brain injury and 

may play an important role in the modulation of cerebral circulation (290-292). Similarly, in an 

experimental model hydroxyeicosatetraenoic acids have been found to be elevated in the CSF, 

haemorrhagic clot and basilar artery following SAH (293) and levels of 6-keto-PGF1α have been seen 

to be elevated in the urine of patients following haemorrhagic stroke (294). As 6-keto-PGF1α 

represents the metabolic product of prostacyclin a possible causal relationship may exist through 

alterations in the regulation of cerebral blood flow associated with brain injury.  

Although the differences in eicosanoids potentially represented both risk factors for and the result of 

cerebral haemorrhage it is also possible that they represented different temporal courses of the two 

diseases in question. Brain injury usually occurs rapidly in patients who were often previously well, 

however, pneumonia takes several days to develop with a prodromal phase when patients may feel 

unwell and have altered or diminished dietary intake. Levels of polyunsaturated fatty acids, such as 

LA, have been seen to fall in states of reduced oral intake such as anorexia nervosa (295) and similar 

changes may be occurring seen in this context.  

Within the pneumonia group lipoxin B4, a metabolic product of lipoxin A4, and tetranor-PGDM, the 

stable degradation product of prostaglandin D2, were the two eicosanoids that were greater than in 

the brain injured patients. The lipoxins have been associated with the resolution phase of 

inflammation and inhibit the actions of the leukotrienes, especially LTB4. Lipoxin A4 has been 

measured in the BAL fluid of patients with several pulmonary diseases including pneumonia (162) 

and PGD2 has been suggested to have an anti-inflammatory role in lung inflammation (296). 
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Interestingly it was not possible to use eicosanoid measurements to predict patients with brain 

injuries who went on to develop VAP either in comparison to all brain injured patients at time point 

one or to only those that were known not to develop infection at any time. This suggests that the 

lack of ability to identify these patients was not due to confounding factors from the patients who 

went on to develop VAP exhibiting important metabolic changes at the time of first sampling. As the 

eicosanoids identified in those patients with pneumonia at admission seemed to be predominantly 

anti-inflammatory it is possible that by looking at the serum samples that were taken when VAP 

seemed to be developing clinically it was too early in disease progression to see these markers in 

VAP patients. The number of patients developing VAP was small in comparison to both the brain 

injury and pneumonia groups and it is possible that with this sample size it was not possible to 

detect subtle changes in eicosanoid levels in this group. 

Use of a cytokine panel to try to differentiate patients with pneumonia from those with brain injury 

performed less well than the model using eicosanoids alone. On the whole all cytokines tended 

towards an increase in the pneumonia group. Of the most predominant cytokines IP-10 and MCP-1 

are involved in chemoattraction for monocytes and IP-10 is secreted in response to INFγ. ICAM-1 

and E-selectin are involved in leucocyte cellular adhesion and TNFα is an acute phase reactant 

associated with several inflammatory conditions. Interestingly out of the most important cytokines 

in this model IL-10 is the only one that has a predominantly anti-inflammatory role.  

In a mouse model of E.Coli pulmonary infection the importance of MCP-1 has been demonstrated 

and it is suggested that it may control production of other cytokines such as TNFα, IL-6 and 

eicosanoids such as LTB4 (297). In humans systemic levels of TNFα, IL-6, IL-10 and IFN-γ were 

significantly higher in severe community acquired pneumonia than in non-severe pneumonia and 

healthy individuals (298, 299), however, TNFα has also been seen to be higher in ARDS than 

severe pneumonia (300). Some of these cytokine changes may act as predisposing factors to CAP 
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as opposed to direct responses to infection as high TNFα and IL-6 levels have been suggested to 

predispose to CAP (301). In another study using stimulated leukocytes from patients who had 

recovered from Gram negative pneumonia, stimulated leukocytes produce less IL12p70 and TNFα 

than healthy controls but more G-CSF, and similar IL-10 levels (302). In paediatric patients with 

influenza and secondary pneumonia both IL-10 and IL-5 were significantly greater in patients with 

pneumonia than in those without. Serum concentrations of INFγ, TNFα, IL-4, and IL-2 were 

significantly lower in pneumonia patients with neutrophilic leukocytosis than in those without (303). 

Elevated levels of IL-6, IL-8, MCP-1 and TNFα  associated with pneumonia have been shown to be 

reduced when patients are given dexamethasone, with the degree of suppression being linked to the 

causative organism  (304). In an animal model the concentration of serum TNFα correlated to that in 

BAL specimens after an interbronchial E.Coli challenge and the serum concentration also appeared 

to be dependent on the degree of bacterial challenge (305). The patients with pneumonia in this 

study not only had community acquired pneumonia but some who had brain injuries possibly had an 

aspiration pneumonia. In models of aspiration MCP-1 and TNFα have been found in BAL fluid and 

used to predict the type of aspiration syndrome (306). Increased levels of IL-1beta and IL-6 have also 

been associated with other forms of lung disease such as those working in phosphate mines (307) 

suggesting a more generalised role  in pulmonary inflammation. 

Slight variations in cytokine levels in previously reported studies and the current study may be due 

to a number of factors, firstly the exact cytokines that are up-regulated may vary between causative 

organisms and in this population there was a range of responsible microorganisms causing 

pneumonia, see chapter 2. Secondly cytokine levels change with the stage and natural history of 

disease. Although an attempt was made to enrol all patients within 48h of the start of mechanical 

ventilation it was impossible to account for the duration of disease prior to enrolment and the phase 

of pulmonary inflammation for each patient, and thus the exact cytokines that may predominate.  
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Cytokine measurements performed better than eicosanoid measurements when trying to 

differentiate brain injured patients at the time of developing VAP from the first sample taken from 

brain injured patients without infection. However, even with these measurements the predictive 

capacity of these models following cross validation was limited.  

When both cytokine and eicosanoid measurements were combined into one model the ability to 

differentiate pneumonia from brain injured patients was marginally reduced after cross-validation 

than with eicosanoids alone. When validated using the independently classified patients the test 

statistics were similar to those from models based on eicosanoids and cytokines alone, sensitivity 

0.6, specificity 0.67, positive predictive value 0.6 and negative predictive value 0.67. As there is no 

gold standard by which to diagnose pneumonia there was no single test or score to which this 

method could be compared. The use of clinical diagnostic criteria in a paediatric population to 

predict radiologically confirmed pneumonia had a sensitivity of 0.45, specificity of 0.66 and positive 

and negative predictive values of 0.25 and 0.82 respectively (12). In adults abnormal vital signs have 

a high degree of sensitivity (14) but lack specificity for pneumonia, however, it is also known that 

features such as respiratory rate may be sensitive but not specific (16) limiting their usefulness.  

Decision aids have been evaluated that use clinical features to determine the likelihood of a 

radiological diagnosis of pneumonia. In a single study clinicians judgement was found to have a 

sensitivity of  0.74, a specificity of 0.84, a positive predictive value of 0.27 and a negative predictive 

value of 0.97 in primary care (18) and in another clinical diagnosis had a sensitivity of 0.29, a 

specificity of 0.99, positive predictive value of 0.57 and a negative predictive value of 0.96 (19).  

No biomarker has been found to be a gold standard test for pneumonia, the most studied are C-

reactive protein (CRP) and procalcitonin (PCT). In studies of CRP with and without clinical features of 

pneumonia sensitivity varied from 0.36-1.0 and specificity from 0.52-0.96 depending on the cut off 

of used (22-24), however, if an infiltrate was present on the x-ray then these values changed to 

sensitivity 0.36-0.89 and specificity 0.17-0.91 (24). In another primary care study a CRP>20mg/l had 
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a sensitivity of 0.73, a specificity of 0.65, a positive predictive value of 0.24 and a negative predictive 

value of 0.94 to diagnose pneumonia in patients already suspected of having lower respiratory tract 

infections (25). PCT may have sensitivities of 0.17-0.90, specificities of 0.59-1.0, positive predictive 

values of 0.24-1.0 and negative predictive values of 0.89-0.94 depending on the cut off levels used in 

the absence of radiology, however, if an infiltrate was already present on the CXR then these values 

changed to sensitivity 0.43-0.90 and specificity 0.39-0.87. In comparison blood cultures only had a 

sensitivity of 0.11 (24, 25). 

Many of these studies used radiological findings as confirmation of pneumonia, however, depending 

on the frequency of bacterial infection infiltrates on chest radiograph have been found to have a 

positive predictive value of only 0.46-0.85 in one study (26) and lack sensitivity, with around 21% of 

radiographs being negative initially, in another (27).   

The model described above using cytokine and eicosanoid measurement performed at least similarly 

to some of the clinical models outlined above. However, it must be remembered that the group of 

patients in this study were much more unwell than those in the primary care studies so the 

performance of clinical variables may be very different in this group. Also many of these studies used 

radiological findings as an end point where as the diagnosis of pneumonia in this model took 

radiology and all laboratory results into account when patients were classified as pneumonia. Clearly 

evaluating any new test to make a diagnosis of pneumonia is potentially limited when no gold 

standard exists, the calculated test performance statistics are based on patient classifications that 

have their own limited sensitivities and specificities as such it would be impossible to know if a new 

test outperformed the criteria used as the basis of study classification.   

  

The inflammatory molecules that were of most importance in this model were almost identical to 

those identified with either eicosanoids or cytokines alone with the exception that in this model IL-6 

assumed a new degree of importance.  
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Due to concerns that the differences between VAP and brain injured patients sampled at the first 

time point may have represented the effect of a prolonged stay on ICU, rather than the 

development of infection, a further model was constructed comparing an equivalent time point from 

those brain injury patients not developing VAP. This allowed a model to be constructed with 

reasonable predictive capacity on cross validation. Again cytokines dominated in the VAP group. As 

well as cytokines seen in previous models G-CSF, IL-1beta, IL-12p70 and IL-17A become important 

along with the eicosanoids 12-oxo-LTB4 and lipoxin A4. 12-oxo-LTB4 is a metabolite of LTB4 which 

has been associated with pneumonia in a number of ways. It has been seen to increase IL-6 levels 

(159), has been linked to pulmonary complications following trauma (160) and has been associated 

with an increase with both Klebsiella  (308) and Pneumococcus (309) infections. LTB4 has also been 

measured in the EBC of children with CAP (310), in the pleural effusions of patients with pneumonia 

(311) and in BAL fluid from an animal model of brain trauma  which was associated with a non-

significant rise in serum LTB4,  IL-1β and IL-6 (312). In patients with severe head injuries IL-6, IL-10, 

IL-1α, TNFα, and IL-8 have been associated with poor prognosis (313, 314) whilst TNFα, IL-8 and IL-

10 were associated with longer mechanical ventilation and the development of VAP (314). Similarly 

in trauma patients who develop VAP IL-6 and 8 may be associated with antibiotic non-

responders (315). Interestingly previous studies failed to find that serum or plasma cytokines 

were able to identify VAP but within  BALF several cytokines have been noted to increase 

including IL-1α, IL-1β, IL-8, G-CSF, MIP1α and TNFα (316, 317). 

Cytokine production may not only be a response to infection but may result from the act of 

mechanical ventilation its-self, for example  increased tidal volumes may cause increase in plasma 

cytokines (318) and following lung injury in animal models  TNFα, IL-6 and IL-1B have been 

seen to act in combination to cause airway IgA secretion (319). 
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A limited amount of work exists examining the correlations of cytokines and eicosanoids especially 

between such an extensive number of inflammatory mediators. Looking at the correlation between 

all of the inflammatory mediators measured showed some interesting results. The most striking 

difference was that when all patients at time point one were taken very little correlation was seen 

between cytokines and eicosanoids, where as strong correlations existed between molecules from 

within the same families of mediators. However, when either patients with pneumonia or those with 

brain injury who did not develop pneumonia were taken alone new patterns of correlation became 

apparent.  In pneumonia negative correlation was seen between lipoxin B4 and almost all the 

cytokines whereas this was less marked when the brain injured patients were considered and was 

not apparent when all patients were combined. Similarly lipoxin A4 shows only weak correlation 

with cytokines in pneumonia patients but strong positive correlations with IL-12p70, MIP1b, GCSF, 

IL-8, ICAM-1 and IL-1α in brain injured patients. 10(S)17(S)DiHDoHE and 17(S)-HDoHE both 

demonstrated similar patterns of correlation in pneumonia patients with positive correlation being 

seen with all cytokines except MIP-1b, IL-8 and IL-1α where negative correlation was seen. These 

patterns were not the same in the brain injured patients. These two eicosanoids are both anti-

inflammatory in nature and oppose the actions of the cytokines they showed negative corrolation 

with.  

Within the pneumonia patients DHA and EPA had strong positive correlation with IL-12p70, LAP, 

INFγ, IL-13 and IL-17A whereas AA and DGLA had predominantly negative correlation with almost all 

cytokines. In the brain injury cohort this pattern was less clear-cut, in this group there were similar 

patterns with all fatty acid precursors with negative correlations with MIP-1b, GCSF, MP-1 and IL-6. 

EPA and DHA have previously been shown to inhibit IL-6 and IL-8 production from endotoxin 

stimulated endothelial cells (320) and in this data set, negative correlation was seen between both 

EPA and DHA and IL-6 across all three clinical groups which is consistent with the previously reported 

data (320). EPA and DHA have also been seen to reduce TNFα, IL-1β and IL-8 levels although this was 
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less clearly seen in these data. Adhesion molecule expression, including ICAM-1, have been reduced 

by both EPA and DHA (320), however, the correlation data from all three groups in this current data 

set did not support these previous finding with low levels of positive correlation seen.  

In pneumonia tetranor-PGDM had a positive correlation with all cytokines, consistent with its action 

as a mediator of inflammation and vasodilation, but in the brain injury group there were several 

strong negative correlations including LAP, IFNγ, MIP1α, IFNα, IL-13, IP-10, IL-4, IL-17A, IL-1β and E-

selectin. PGD2 is a predominant prostaglandin in the brain and in this organ is synthesized via an 

alternative pathway to that in the systemic circulation. It is possible that a difference in the 

expression of this prostaglandin exists between patients with brain injuries and pneumonia 

explaining the variation in correlation in these two conditions.  Similarly 6-keto-PGF1α correlated 

with all cytokines except ICAM-1 in pneumonia but in the brain injured group negative correlation 

with ICAM-1, IL-6, MCP-1, MIP1a and E-selectin was seen. 6-keto-PGF1α is the more stable 

metabolite of prostacycline, a potent vasodilator, so correlation with cytokines in the infected group 

makes biological sense. In the pneumonia patients IL-8 had a positive correlation with the family of 

HETE metabolites but negative correlation with the DHET family 

In a group of patients with severe sepsis IL-1β was seen to correlate with both TNFα and IL-6 (321). 

In this data set the strongest correlations between these markers were also seen in the infected, 

pneumonia, patients.  

A previous study has correlated phospholipase A2 activity with concentrations of IL-6, IL-8, TNFα, 6-

keto-PGF1α, LTB4 and TXB2 in patients with burns (322). Although we did not measure 

phospholipase 2 activity we measured the concentration of arachidonic acid (AA), the direct result of 

activity of this enzyme. However, only in the BI group did we see positive correlation between TXB2 

and LTB4 with AA. With the other inflammatory markers and in the other groups the relationships 

often showed either a negative correlation or only a weak positive correlation. This may represent 
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downstream enzyme activity in our cohort converting AA into other eicosanoids thereby reducing AA 

levels. Notably in severe sepsis (321) other investigators failed to find significant correlation 

between phospholipase A2 activity and inflammatory mediator levels. 

During cardiopulmonary bypass several positive inflammatory mediator correlations have been 

documented;  IL-6 with IL-8; TXB2 with LTC4 and PGE2; LTB4 with PGE2  and 6-keto-PGF1α and PGE2 

with 6-keto-PGF1α (323). Some of these observations are preserved in this data set. Local 

correlation of IL-1α and PGE2 has been seen in the blister fluid of capsasin induced skin irritation 

(324) with similar finding in our pneumonia patients where inflammation was prominent. IL-8 and 

PGE2 have previously been positively correlated in astrocytomas (325), however, in our brain injured 

patients this correlation was in fact negative. 

The complexity of the relationship between eicosanoids and cytokines can be seen in the following 

example. Negative correlation of PGE2 and TNFα from LPS stimulated human macrophages in the 

plasma of decompensated liver disease has been observed (326), however, the same mediators have 

been seen to be positively correlated in the plasma of children with febrile convulsions  (327). In the 

cohort of patients described above in both the analysis of all patients and when only brain injured 

patients were considered TNFα and PGE2 showed positive correlation, however, when those 

patients with pneumonia at admission were isolated this degree of correlation was no longer 

apparent. This may represent the regulatory effect of PGE2 on TNFα during infection (305).  

Despite some promising findings it is important to note the limitations of this study. Firstly the small 

number of patients, especially in the VAP group, limited the interpretation that could be made of the 

multivariate models and the possibility of over-fitting had to be borne in mind. The optimal way to 

test for this would have been with a validation set of data, however, the low numbers in the VAP 

group meant there were insufficient patients to allow a validation set. We were able to add the few 

reclassified, borderline, patients to the model to explore if a slightly larger data set made a 
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difference to the predictive capacity or the inflammatory mediators of importance compared to the 

original models based on the original patients based on CPIS classification, however this potentially 

lead to new problems. These patients were likely to be different to those diagnosed based on CPIS as 

by being borderline ran a higher risk of having been misclassified before being put into the model. 

Although extensive effort was made to recruit groups of patients that were similar in most respects, 

including time from admission, time and methods of sampling, the inherent heterogeneity of ICU 

patients meant that even within a relatively defined group, such as patients admitted with brain 

injuries, a great deal of variation was likely to exist between individual patients which limiting the 

ability of multivariate models to define specific differences within the population. 

4.7 Conclusion 

Both eicosanoid and cytokine profiling demonstrated an ability to differentiate patients with 

pneumonia from those admitted to ICU with brain injuries. Models based on cytokines highlighted 

inflammatory changes present in the serum of pneumonia patients, whereas models based on 

eicosanoid profiling had a tendency to highlight fatty acids and their metabolites present in the 

serum of patients with brain injuries. Neither type of profiling was particularly able to identify those 

brain injured patients who went on to develop VAP. However, by combining both profiling methods 

a more predictive model of VAP could be created. A combined approach using a combination of both 

cytokines and eicosanoids shows promise for aiding the diagnosis of pneumonia and specifically VAP. 
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5. EXHALED BREATH CONDENSATE 

 

5.1 Summary 

Exhaled breath condensate (EBC) has been investigated using a number of modalities in a range of 

diseases. Some previous work has been done in relatively stable diseases using both NMR 

spectroscopy and mass spectrometry (MS). However, very little work has been done addressing 

pneumonia or metabolic profiling of EBC from ventilated patients. This chapter explores profiling of 

EBC with both NMR spectroscopy and MS to distinguish patients admitted for ventilation with 

pneumonia from those with brain injuries and also to identify those patients who develop ventilator 

associated pneumonia (VAP). NMR spectroscopy was only able to identify a limited number of, 

mainly volatile, metabolites, whereas MS was able to detect a greater number of metabolites, 

however, this was limited by a significant batch effect. Untargeted MS analysis showed some ability 

to distinguish pneumonia from brain injury. However, the biggest metabolic changes seen appeared 

to be those that occurred over time with the duration of mechanical ventilation. 

5.2 Background 

Volatile organic compounds (VOCs) in breath give signatures that are familiar to us from several 

disease processes, from the ketones associated with diabetic complications to the compounds that 

produce the recognisable hepatic fetor. Formalised breath analysis is used widely in law 

enforcement and in some diagnostic clinical tests such as for Helicobacter pylori.  

Technology exists to perform online metabolic profiling of exhaled breath using selected ion flow 

tube mass spectrometry (SIFT-MS) and gas chromatography mass spectrometry (GC-MS) (170-172). 

Work in healthy volunteers has allowed metabolites such as acetone, ammonia and methane to be 

quantified (173, 174) and the repeatability of the technique has been demonstrated (175). Levels of 

exhaled nitric oxide (NO) have shown potential for detecting airway inflammation in asthma and 
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chronic obstructive pulmonary disease (COPD) (176) and carbon monoxide levels increase in 

systemic sepsis (178).  

Trace gas analysis has detected elevated NO levels in patients suffering from pneumonia (177) and 

techniques such as SIFT-MS have shown a potential ability to detect of a range of micro-organisms 

by examining headspace gas of cultures (179-181) including from broncheoalveolar lavage fluid from 

patients with pneumonia (182). Specifically pseudomonas has been investigated from cultures from 

patients with cystic fibrosis (183, 184) and breath has been analysed in an attempt to determine 

colonisation status (185-187). It is thus suspected that analysis of exhaled breath may allow 

detection of specific organisms causing pneumonia by differentiating metabolic profiles.  

Along-side the gaseous phase of breath it is possible to condense and collect the water vapour 

contained in breath, known as exhaled breath condensate (EBC). EBC is 99% evaporated water but 

also contains droplets of fluid from the airway linings allowing non-volatile compounds to be 

detected. Many substances have been detected in EBC including interleukins (188), leukotrienes 

(189) and soluble triggering receptor expressed on myeloid cells (sTREM-1)(89). One of the most 

extensively investigated substances is hydrogen peroxide which is elevated in many inflammatory 

conditions including ARDS (190), asthma (191) and may correlate with treatment response in 

patients with cystic fibrosis treated with antibiotics (192). Similarly EBC isoprostanes have been 

noted to be increased  in COPD (193), asthma (194) and ARDS (195). EBC pH also appears to 

decrease with lung inflammation and has been seen to fall in bronchiectasis, COPD and lung injury 

(196, 197). Limited work has been done in the field of pneumonia but thiobarbituric acid and 

hydrogen peroxide can been seen to increase in CAP (198, 199). 

Limited work has been carried out applying metabonomic techniques to breath. Small scale studies 

with EBC have used NMR analysis to distinguish asthmatics from controls (201-203), stable from 

unstable patients with cystic fibrosis (200) and to investigate smoking related diseases (204). Studies 
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have made attempts at metabolite assignment based on NMR spectra (99, 200, 204, 205) identifying 

26 compounds between them, table 5.1.  

Table 5.1. Metabolites identified by H1NMR analysis of EBC across all diseases studied 

Metabolites 
1-methylimidazole ^ 
2-Propanol (Isopropanol) †^ 
Acetate *†‡^ 
Acetoin ^ 
Acetone † 
Alanine *‡ 
Choline * 
Ethanol †‡^ 
Formate †‡^ 
Glutamate *† 
Glutamine *† 
Isobutyrate ^ 
Lactate *†‡ 
Leucine ‡ 
Lysine * 
Methanol * †‡^ 
N-Butyrate ‡ 
Phosphorylcholine * 
Phenylalanine ‡ 
Propionate *†‡^ 
Pyruvate *‡ 
Succinate *‡ 
Saturated Fatty Acids † 
Taurine * 
Trimethylamine *‡ 
Threonine *‡ 

*de Laurentiis et al (205) † Montuschi et al (200) ‡ Sofia et al (99) ^ de Laurentiis et al (204) 

 

Concern has been raised regarding the risk of contamination of EBC with disinfectant when reusable 

collection devices are used and some conflicting work has been done to investigate this (328, 329). 

As yet there is no experience of collecting EBC from ventilated patients for the purpose of 

metabolite analysis. As with the gaseous phase of breath the optimal methods for sample collection, 

processing and analysis are not known.  

Although it is known that changes in respiratory parameters, especially minute ventilation, alter the 

volume of EBC obtained for a given time period of collection (330) it is unknown what effect this has 
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on metabolite concentrations. In the literature using NMR to analyse EBC, samples have been both 

freeze dried and used unaltered prior to spectral acquisition. It is debatable as to which method is 

better, although freeze drying may allow concentration of metabolites leading to improved 

detection it is conceivable that volatile compounds may be lost with this approach.  

With its greater sensitivity mass spectrometry (MS) has potential advantages over NMR 

spectroscopy for the analysis of EBC given the very low concentrations of metabolites within this 

biofluid. Very little work has been done ustilising MS as a profiling tool (206, 207), more work has 

focused on specific markers or panels of markers. Examples of markers that have been explored 

using MS modalities include  glucose (208), urea (209, 210), volatile organic compounds (211, 212), 

aldehydes (213-216),  isoprostanes (195, 217-226), markers of oxidative stress (218), cystinyl 

leukotrienes (218, 227, 228), leukotrienes (189, 227, 229-233), eicosanoids (234-239), 12-HETE (240), 

lysophosphatidic acid (241), asymmetric dimethylarginine (ADMA) (242, 243), adenosine (209), 

phenylalanine (209), lysine (244), tyrosine (245), hydroxyproline (245), proline (245),  purines (246-

249), metallic elements(250), 3-nitrotyrosine (245, 251-254), and proteins (255). In order to measure 

this number of markers a  number of chromatographic techniques have been coupled to MS to 

analyse EBC including Liquid Chromatography – Mass Spectrometry  (206-208, 218), Liquid 

Chromatography Tandem Mass Spectrometry (217, 241, 255), Gas Chromatography - Mass 

Spectrometry (211) and Ultra Performance Liquid Chromatography Tandem Mass Spectrometry 

(227, 243). 

As was the case with NMR analysis of EBC, the majority of work with MS has focussed on relatively 

stable diseases including healthy subjects (215, 238, 256), asthma (189, 206, 218, 227, 232, 234-236, 

239, 242, 248), COPD (216, 247, 250, 255), pulmonary fibrosis (223, 224, 241), cystic fibrosis (208, 

209), pulmonary hypertension (211), brochopulmonary dysplasia (207), pneumoconiosis (229), 

silicosis (221), asbestosis (226), ARDS (195), Churg Strauss (240) and seasonal rhinitis (233). Almost 
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all of the studies so far have been performed in spontaneously ventilating patients with only two in 

those requiring mechanical ventilation (195, 210). No studies have been carried out utilising this 

approach in patients with pneumonia either with or without the need for mechanical ventilation.  

Analysis of EBC is an appealing tool for the diagnosis of pneumonia in ventilated patients as it 

provides a non-invasive method to directly sample form the site of pathology so may be able to 

provide early diagnostic markers and allow for repeated sampling. 

In this chapter I outline an attempt to use a metabonomic profiling approach using 1H-NMR and MS 

methods to analyse EBC collected from ventilated patients with and without pneumonia. 

5.3 Aims 

The overall aim of this study was to investigate the usefulness of metabonomic analysis of EBC in an 

attempt to improve the diagnosis of pneumonia in patients requiring ventilation, specifically those 

going on to develop VAP.  The following questions were addressed: 

1. Can 1H-NMR and MS be used as methods for analysing EBC collected from ventilated 

patients? 

2. Can metabolic profiling of EBC have the potential to aid in the diagnosis of pneumonia in 

ventilated patients? 

5.4 Protocols 

5.4.1 Patient Recruitment and Sample Collection 

Patients were recruited and samples taken as described in chapter 2. Patients were defined as either 

having pneumonia or a brain injury as described earlier. All patients were followed up over time and 

those brain injured patients developing VAP were defined based on CPIS scoring. For a breakdown of 
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the CPIS score used see chapter 2. Patients with borderline scores were assessed and classified as 

VAP or no VAP by an independent assessor. 

Where healthy volunteer EBC was required for method development, samples were taken from a 

single investigator, DA. In order to simulate collection of samples from a ventilated patient as far as 

possible samples were collected using the same equipment as described in chapter 2. The volunteer 

breathed through a non-invasive ventilation mask connected to a Servo-I ventilator set up to provide 

non-invasive ventilation. EBC samples were collected from the expiratory limb of the ventilator for 

15 minutes as described previously, aliquotted into 500µl aliquots and immediately frozen at -80°C. 

To explore the potential contribution of the collection equipment to the metabolic profiles obtained 

from samples of EBC, blanks were prepared with distilled and sterile water to simulate the EBC 

collection. Approximately 2ml of distilled water was placed into an RTube™ and left for 15 minutes, 

the water was then collected using the aluminium plunger and aliquotted into 500µl aliquots before 

being frozen at -80°C. When these blanks were processed similar samples of the distilled and sterile 

water, that had not been through and RTube™, were also run in an attempt to determine whether 

additional signals originated from the water or the RTube™.   

5.4.2 1H-NMR Spectroscopy 

 5.4.2.1 1H-NMR Experiments 

As EBC is >99% water initial assessment was of different methods of water supression. Samples from 

both a healthy subject and a ventilated patient were prepared by the addition of 100µl of D2O to 

500µl of EBC. 550µl were then transferred to a 5mm NMR tube. Four different 1D NMR experiments 

using different pulse sequences were acquired for comparison on an 800MHz spectrometer,  a 

standard one-dimensional experiment using the first increment of a Nuclear Overhauser Effect pulse 

sequence to achieve pre-saturation of the water resonance (110), water suppression using excitation 
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sculpting with gradients, water suppression using excitation sculpting with gradients with a flip back 

pulse and a water gated experiment using water suppression with a 3-9-19 pulse sequence with 

gradients.  All experiments were run at a constant temperature of 300 K. 128 FIDs were accumulated 

for each experiment using a 20 ppm spectral width centred at δ 4.75. The relaxation delay was set at 

2s and a water pre-saturation pulse was applied during this period to cancel the water signal and the 

receiver gain was kept constant.  

For both the volunteer sample, figure 5.1, and that from the patient, figure 5.2, water suppression 

using excitation sculpting without the flip back pulse provided the optimal water suppression. 

However, few new metabolites became apparent with the different pulse sequences. Although more 

spectral peaks were apparent in the patient sample when compared to that from the volunteer, 

there remained relatively few metabolites apparent in these spectra. 

 5.4.2.2 Freeze Drying 

In some of the previously published work EBC has been freeze dried and reconstituted in an attempt 

to improve the yield of metabolites at low concentrations. To explore this method the EBC samples 

were processed as follows. 500µl aliquots were left to dry in the freeze drier overnight. The samples 

were then reconstituted with either 500µl D2O and 100µl 0.1mM TSP with 550µl being placed in a 

5mm NMR tube or with 167µl D2O and 33mcl 0.1mM TSP with 180µl being placed into a 3mm NMR 

tube. 1D NMR experiments using excitation sculpting for water suppression were then performed as 

described above. 
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When samples obtained from a healthy volunteer were compared with and without freeze drying, 

figure 5.3, loss of several of the metabolites was seen, especially those which were volatile such as 

methanol, acetone and acetic acid. When the same experiments were performed on a sample 

obtained from a ventilated patient, figure 5.4, the results were less clear cut.  Many signals appeared 

to be enhanced when samples were freeze dried, with little difference between samples 

reconstituted into 5mm and 3mm tubes. 

5.4.2.3 Effect of Collection Equipment. 

In order to assess the potential for the observed metabolites to originate, not from the samples, but 

from the D2O, the TSP or the RTube™ collecting equipment several blanks were run of the added 

chemicals, figure 5.5, and of D2O instilled into the RTube™, figure 5.6. The spectrum obtained from 

the TSP demonstrated many of the peaks also seen in the freeze dried patient sample, figure 5.5, 

suggesting that much of what was seen did not represent endogenous metabolites but additive 

peaks from the TSP, however, when the spectra from D2O instilled into the RTube™ was compared 

to that from the TSP very few additional signals were seen suggesting that the RTube™ itself had 

minimal effect on the NMR spectra from EBC samples collected using this device. 
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 5.4.2.4 Summary of 1H-NMR 

Only a small number of metabolites were recovered from the EBC using NMR without a freeze drying 

step. Although the use of freeze drying could potentially make metabolites apparent that could not 

otherwise be seen, some of the volatile metabolites were lost in this process and it was unclear how 

reproducible this step may be. Also as there was limited capacity for freeze drying samples would 

have had to be processed in batches making this process unsuitable for either large sample sets or a 

high throughput methodology and adding an additional, time consuming, step that would be 

unwanted in a clinical test. For these reasons, the risk of the additive batch effect with freeze drying 

and the limited number of metabolites recovered without this step it was decided to shift focus from 

NMR analysis of EBC to a method based on MS with the greater sensitivity offered by this method.  

5.4.3 Mass Spectrometry 

EBC samples were randomised and thawed at room temperature prior to preparation. Methanol was 

added to the samples as a solvent prior to MS analysis. In order to optimise the method a range of 

methanol to sample ratios were tested using a sample of healthy control EBC, the best signal 

acquisition was found to be obtained using a ratio of 1:5 sample to methanol. 40µl of EBC was 

placed into each well of a 96 well plate and then 200µl of methanol was added to each well. The 

plate was then heat sealed with foil prior to mixing in an ultrasonic bath for 5 minutes and then a 

plate shaker of a further 5 minutes. For each 96 well plate a number of blanks were run consisting of 

methanol only. Also blanks to examine the RTube™ collecting system were made with distilled water 

as described earlier, along with these blanks samples of the distilled water that had not been 

through the RTube™ were also run to ensure detected metabolites were not from the water itself.  

 A high-throughput screening method was used using an Exactive Instrument equipped with TriVersa 

NanoMate ion source (Advion, Ithaca, NY, USA). Chip-based infusion mode measurements were 
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performed using 5μm nominal internal diameter nozzle chips, and a sample volume of 5μL was 

injected. Total data acquisition time was 2 min, 1 min in negative ion mode and 1 min in positive ion 

mode with automatic polarity switching. EBC samples were run in three batches. 

5.4.3.1 Data processing 

Following data acquisition spectral data were imported into MatLab 2013 (MathWorks, 

Massachusetts, USA) using in-house scripts for all processing steps. Firstly peak picking using a 

threshold of 0.7 was performed to reduce the size of the data matrix and remove noise from the 

data. Probabilistic quotient normalisation was performed to counter for intensity multiplier effects 

such as concentration. Finally data were scaled to reduce the influence of a small number of intense 

peaks that dominate the variance of the un-scaled dataset.  Log scaling was used with an offset of 

the median of all values greater than zero. 

 5.4.3.2 Statistical Analysis 

Processed data were imported into the SIMCA 13.0 statistical package (Umetrics, Sweden) and 

multivariate statistics were used for analysis. Initial exploration with principal component analysis 

(PCA) was performed to look for natural clustering and to detect outliers before supervised 

multivariate analysis using orthogonal partial least squared discriminant analysis (OPLS-DA) was used 

to generate models to optimally separate predefined groups. OPLS-DA models were cross validated 

using seven fold cross-validation using a “leave-one-out” methodology. Important ions within the 

OPLS-DA models were identified by examining the ‘s-plots’ for the models. The ‘s-plots’ show the 

covariance plotted against the correlation with the model for each variable. Variables that are likely 

to be important have a high covariance, indicating a real biological effect on the model and not just 

one driven by analytical variation or noise, and a high correlation, suggesting greater reliability (112, 

331). Such variables lie at the extreme tips of the ‘S’ formed in this plot. 
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An attempt was made to assign potential metabolites to the m/z ratios that appeared in multiple 

comparisons by comparing them with entries in both the Human Metabolome Database, Canada 

(332) and the Scripps Center for Metabolomics METLIN database, USA (333). 

5.5 Results 

5.5.1 Patients 

Thirty four patients, that fulfilled the criteria defined in chapter 2, had samples of EBC taken and 

analysed with MS. Of these 13 had pneumonia on admission and 21 had brain injuries with no 

suggestion of pneumonia when the first samples were taken. Five brain injured patients went on to 

develop VAP based on CPIS scoring. Clinical features of these patients can be seen in table 5.2. As 

previously described in chapter 2, patients with borderline CPIS scores were reviewed by an 

independent clinical assessor and classified as non-infected, pneumonia or VAP based on clinical 

course. Based on this assessment a further six brain injured patients were classified as not having 

pneumonia on admission, five were defined as pneumonia and three as VAP. All initial comparisons 

were made with the original grouping of patients based on CPIS. 

Patients were similar across the groups with respect to their demographic details. Features that 

identified the pneumonia and VAP groups from those with brain injuries included markers of 

infection such as CRP, use of antibiotics and the higher oxygen requirement as would be expected in 

patients with pulmonary infection. 

5.5.2 Evaluation of Batch Effect 

The EBC was run on three separate occasions so a PCA was performed to look for natural separation 

of the samples by batch, figure 5.7. Clear separation could be seen between the three batches along 

the first component. The methanol blanks run at the same time as the samples were seen to cluster 

with the samples as were those blanks prepared from the RTubes™ and distilled water. Separation of  



213 

 

 

 

Table 5.2. Clinical features of included patients with EBC for MS analysis. Continuous variables are 

given as mean and standard deviation and categorical variables as number and percentage. P-values 

presented in bold text relate to parameters that were significant at the p<0.05 level. 

 Pneumonia (P) Brain Injury (BI) p-value 
(BI vs P) 

VAP p-value 
(BI vs VAP) 

n 13 21 - 5 - 
Age (Mean +/- SD) 55.4±17.7 52.3±14.9 0.60 50.8±17.2 0.87 
Sex, Number of males (%)  9 (69) 12 (57) 0.72 3 (60) 1.00 
Ethnicity, number  White 
European (%) 

11 (84) 15 (71) 0.44 4 (80) 1.00 

Outcome, Number alive (%) 10 (77) 16 (76) 1.00 3 (60) 0.59 
APACHIE II Score (Mean +/- 
SD) 

18.9±5.3 17.0±6.0 0.32 17.8±9.4 0.86 

SOFA Score (Mean +/- SD) 9.9±2.8 8.9±2.6 0.28 8.6±3.1 0.87 
CPIS (Mean +/- SD) 5.8±1.1 2.1±1.4 <0.001 7.0±1.6 <0.01 
Lowest WCC (109/L) (Mean 
+/- SD) 

14.3±5.4 10.0±3.8 0.02 10.5±3.2 0.76 

Highest WCC (109/L) (Mean 
+/- SD) 

14.9±5.2 11.2±3.9 0.04 10.5±3.2 0.70 

Lowest CRP (mg/L) (Mean 
+/- SD) 

174.8±109.8 49.4±54.2 <0.01 116.7±28.2 <0.01 

Highest CRP (mg/L)(Mean 
+/- SD) 

192.8±101.0 62.0±52.5 <0.001 116.7±28.2 <0.01 

Lowest Temperature (°C) 
(Mean +/- SD) 

36.0±0.6 36.0±0.7 0.96 36.0±1.6 0.95 

High Temperature (°C) 
(Mean +/- SD) 

37.5±0.9 37.6±0.7 0.93 38.0±1.3 0.45 

Lowest FiO2 (Mean +/- SD) 0.43±0.15 0.40±0.22 0.57 0.36±0.07 0.51 
Lowest PaO2:FiO2 (Mean +/- 
SD) 

26.2±8.4 41.8±15.5 <0.001 18.6±8.5 <0.001 

Lowest MAP (mmHg) (Mean 
+/- SD) 

70.4±9.8 74.0±11.3 0.33 71.0±12.4 0.64 

Use of noradrenaline, N (%) 9 (69) 13 (62) 0.72 1 (20) 0.15 
Use of antibiotics N (%) 13 (100) 10 (48) <0.01 5 (100) 0.05 
Enteral nutrition, N (%) 11 (85) 15 (71) 0.44 5 (100) 0.30 
Time to sampling from start 
of ventilation (h) (Mean +/- 
SD) 

39.4±8.6 40.4±16.7 0.82 143.6±45.2 <0.01 

Time of day of sample, 
Number taken in the 
morning (%) 

10 (77) 13 (62) 0.47 5 (100) 0.28 
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Figure 5.7. PCA (R2X 0.86, Q2X 0.66) showing separation of batch 1, blue, batch 2, red, and batch 3, 

green. The blanks, triangles, RTube™ blanks, squares, and distilled water blanks, stars, cluster with 

the samples run at the same time point. Separation between the batches is seen along the first 

component, horizontal axis, indicating that the variation caused by batch is of much greater 

magnitude than biological or sample preparation variance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the blanks by batch could also be seen when a PCA using only the blank samples was constructed, 

figure 5.8. The spectra obtained from the blanks can be seen in figure 5.8 with most of the difference 

being seen between batch 3 and both batch 1 and 2. As much of the separation between batches 

seemed to be accounted for by signals originating from the methanol, the average spectral signal 

from each set of blanks was calculated then subtracted from each of the sample spectra from the 

same run. After subtraction from the raw spectra normalisation and scaling was re-applied as 

detailed above. PCA of the resulting spectra, figure 5.9 showed a reduction in batch effect especially  
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Figure 5.8. a. PCA (R2X 0.61, Q2X 0.35) showing separation of blanks run with each batch. Batch 1, 

blue, batch 2, red, and batch 3, green. The greatest separation is seen between batch 3 and batches 

1 and 2. b. MS spectra of blanks run with batch 1 and c. MS spectra of blanks run with batch 3.  

  
 

 

a. 
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Figure 5.9. PCA (R2X 0.77, Q2X 0.48) showing separation of batch 1, blue, batch 2, red, and batch 3, 

green after subtraction of average signal from the blanks run simultaneously. The RTube™ blanks, 

squares, and distilled water blanks, stars, cluster with the samples run at the same time point. Less 

separation between the batches is seen than from the previous PCA although batch 3 still shows 

some separation along the second component, y- axis. 
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between the first and second batch, some separation of batch 3 was still observed along the second 

component.  

5.5.3 Collection Equipment 

After attempting to correct for the batch effect the blanks created to simulate sample collection in 

the RTube™ device could be seen to cluster together away from most of the samples on PCA 

analysis, figure 5.9. However, alongside the RTube™ blanks the blanks made up of only distilled 

water that had not been through an RTube™ could be seen to cluster in the same area. In fact it was 

impossible to construct an OPLS-DA model to separate the RTube™ blanks from the distilled water 

blanks. This implied that almost all of the signals coming from the RTube™ were due to the water 

that had been used to prepare them and not from the tubes themselves. As no water was used in 

any stage of sample preparation these signals could be discounted from interfering with the 

separation of samples based on clinical comparisons. 

5.5.4 Brain Injury vs Pneumonia 

When the 13 patients with pneumonia at admission were compared to the 21 with brain injuries and 

no evidence of pneumonia no natural separation on PCA could be seen (R2X 0.33, Q2X 0.12), figure 

5.10. One outlier could be seen who seemed to have a generally greater intensity of metabolites, 

especially in negative mode. However, there were no technical issues either in the patient’s care or 

sample collection that suggested they should be excluded from further analysis. An OPLS-DA model 

(R2Y 0.90, Q2Y 0.20, p=0.64), figure 5.11, could be constructed to separate the cases of pneumonia 

from those with brain injuries, however, the first orthogonal component is required to obtain a 

positive Q2Y. When the set of patients who were classified by an independent assessor were used to 

validate this model, seven with pneumonia and six with brain injuries, this model had a sensitivity of 

0.43, a specificity of 0.83, positive predictive value of 0.75 and a negative predictive  
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value of 0.56. The ions that were most significant in determining the difference between groups 

were determined by observing the s-plot for the model, figure 5.11 and table 5.3. If a group of brain 

injured patients were used who never went on to develop pneumonia during their stay as the 

control group it became impossible to construct an OPLS-DA model to separate brain injury from 

pneumonia. 

 

Figure 5.10.  PCA scores plot (R2X 0.33, Q2X 0.12) comparing samples taken at the first time point 

from patients admitted with pneumonia (red squares) to those admitted with brain injuries with no 

evidence of pneumonia at sampling (blue circles). No natural separation can be seen between groups 

on the first and second component with only a single outlier being identified.   
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Figure 5.11.  OPLS-DA model with three orthogonal components (R2Y 0.90, Q2Y 0.20, p=0.64) a. 

before and b. after cross validation, comparing samples taken at the first time point from patients 

admitted with pneumonia (red squares) to those admitted with brain injuries with no evidence of 

pneumonia at sampling (blue circles). c. demonstrates the s-plot for the model. This plot compares 

the covariance with the correlation co-efficient for each metabolite. Important metabolites appear at 

the extreme ends of the ‘S’ and are associated with the highest of both the correlation co-efficients 

and the covariance. Metabolites in the top right hand corner are associated with pneumonia and 

those in the bottom left are associated with brain injury. Important ions, labelled are those within the 

circles. 
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Table 5.3. m/z descriptors that were most important in separating patients with pneumonia from 

those with brain injuries at the start of ventilation, the arrows indicate in which of the two groups the 

m/z showed a predominance. Highlighted rows represent ions also identified in other comparisons. 

m/z Brain Injury Pneumonia Possible Assignments 
-221.155  ↑  
-92.015  ↑ Cefuroxime 
-78.995  ↑  
-77.995  ↑  
-76.995  ↑  
371.105  ↑ - 
415.215 ↑  Dexamethasone, Histidine, Lysine, Methionine 
421.225 ↑   
432.245 ↑  Alanine, Arginine, Glutamine, Lysine, Tryptophan 

 433.245 ↑  Lysophosphatidic acid 
437.195 ↑   

 

5.5.5 Brain Injury vs VAP 

When the five patients who developed VAP based on CPIS were compared with those with BI with 

no infection at the start of ventilation PCA (R2X 0.18, Q2X 0.03) failed to separate the two groups. In 

fact it was not possible to build OPLS-DA models with either the original patients based on CPIS or 

with a combined group utilising patients classified with CPIS and those borderline patients classified 

by the independent assessor. However, if only those BI patients who never developed VAP were 

used from the original group an OPLS-DA model with weak classification ability could be constructed 

(R2Y 0.58, Q2Y 0.09, p=0.54) but this did not remain true of when the combined group was used. The 

ions that were important in this model can be seen in table 5.4. 
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Table 5.4. m/z descriptors that were most important in separating samples taken from patients as 

they developed  VAP from those taken from patients with brain injuries, who never developed VAP,  

at the start of ventilation, the arrows indicate in which of the two groups the m/z showed a 

predominance. Highlighted rows represent ions also identified in other comparisons. 

m/z Brain Injury VAP Possible Assignments 
135.054 ↑   
358.205 ↑   
371.105  ↑ - 
432.285 ↑   
433.285 ↑   

 

5.5.6 Time Course 

To investigate whether with time there was a change in the metabolites present in EBC the samples 

taken from the first time point were compared to those taken at the fourth for those brain injured 

patients who did not develop VAP. OPLS-DA models were similar for both the original group based 

only on CPIS (R2Y 0.93, Q2Y 0.53, p=0.05)(TP1 n=12 and TP4 n=5), figure 5.12, and with a combined 

group (R2Y 0.91, Q2Y 0.59, p<0.01)(TP1 n=16 and TP4 n=5). When the samples were paired so that 

only those patients who had both a time point one and four sample were used the Q2Y of the model 

was similar although the p-value fell to below significance due to the small number of subjects (R2Y 

0.96, Q2Y 0.59, p=0.26)(n=5 for each time point). The metabolites that were important in separating 

the time points can be seen in table 5.5 below. 

When the time course of patients with pneumonia was examined an OPLS-DA model from the 

original group (R2Y 0.52, Q2Y 0.20, p=0.89) (TP1 n=13 and TP2 n=5) and the combined group could be 

made (R2Y 0.49, Q2Y 0.19, p=0.08) (TP1 n=20 and TP2 n=7). However, if only paired samples were 

used it was impossible to build a discriminant model. Table 5.6 shows the ions that were important 

in these models. 
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Figure 5.12.  OPLS-DA model with one orthogonal component (R2Y 0.93, Q2Y 0.53, p=0.05) a. before 

and b. after cross validation, comparing samples taken at the first time point from patients admitted 

with brain injuries (blue circles) who never developed pneumonia to the fourth (blue squares). c. 

demonstrates the s-plot for the model. This plot compares the covariance with the correlation co-

efficient for each metabolite. Important metabolites appear at the extreme ends of the ‘S’ and are 

associated with the highest of both the correlation coefficients and the covariance. Metabolites in 

the top right hand corner are associated with pneumonia and those in the bottom left are associated 

with brain injury. Important ions, labelled are those within the circles. 
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Table 5.5. m/z descriptors that were most important in separating samples taken from brain injured 

patients who never developed VAP comparing time point 1 (TP1) with time point 4 (TP4), the arrows 

indicate in which of the two groups the m/z showed a predominance. Results from the models based 

on both the original groups based on CPIS and the combined group including patients categorised by 

and independent assessor are shown Highlighted rows represent ions also identified in other 

comparisons. 

 Group based on CPIS Combined group Possible Assignments 
m/z TP1 TP4 TP1 TP4  
-92.015   ↑  Cefuroxime 
-101.065  ↑  ↑  
226.065  ↑   Alanine, Asparagine, Cysteine 
265.115 ↑  ↑   
371.105  ↑  ↑ - 
372.105  ↑  ↑  
373.105  ↑  ↑  
388.135  ↑  ↑ Cysteine, Glutamate, Glutamine, 

Histidine, Phenylalanine 
393.085  ↑  ↑ - 
395.085    ↑  
415.215 ↑  ↑  Dexamethasone, Histidine, Lysine, 

Methionine 
416.215 ↑  ↑   
432.245 ↑  ↑  Alanine, Arginine, Glutamine, 

Lysine, Tryptophan 
432.265   ↑   
433.245 ↑  ↑  Lysophosphatidic acid 
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Table 5.6. m/z descriptors that were most important in separating samples taken from patients with 

pneumonia at time point 1 (TP1) from time point 4 (TP4), the arrows indicate in which of the two 

groups the m/z showed a predominance. Results from the models based on both the original groups 

based on CPIS and the combined group including patients categorised by and independent assessor 

are shown. Highlighted rows represent ions also identified in other comparisons. 

 Group Based on CPIS Combined Group Possible Assignments 
m/z TP1 TP4 TP1 TP4  
-302.225  ↑    
-299.205  ↑    
-199.175 ↑     
82.045  ↑    
89.065 ↑    25-Hydroxycholesterol, Alanine, 

Aspartate, Cysteine, Glutamate, Histidine 
111.555  ↑  ↑  
119.055  ↑  ↑  
135.045   ↑  Noradrenaline, Prostaglandin G2,  

Arginine, Asparagine, Glutamine, Glycine,  
Isoleucine, Tyrosine 

144.085  ↑  ↑  
207.165 ↑  ↑   
210.175   ↑   
212.155 ↑    - 
214.095   ↑   
279.165 ↑  ↑   
355.285  ↑    
358.252 ↑     
361.335  ↑    
364.345  ↑    
369.305  ↑    

  

In order to establish if changes over time were different between those brain injured patients who 

did and did not go on to develop VAP the time point four samples were compared to those samples 

taken when VAP developed. Using the original group based on CPIS a discriminant OPLS-DA model 

could be built (R2Y 0.93, Q2Y 0.23, p=0.82)(BI n=5 and VAP n=5), figure 5.13. The predictive capacity 

improved when a combined group was used (R2Y 0.93, Q2Y 0.57, p=0.11) (BI n=5 and VAP n=8). The 

important metabolites in these models can be seen in table 5.7.   
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Figure 5.13.  OPLS-DA model with one orthogonal component (R2Y 0.93, Q2Y 0.23, p=0.82) a. before 

and b. after cross validation, comparing samples taken from patients admitted with brain injuries 

(blue squares) at the fourth time point who never developed pneumonia to those with VAP (green 

triangles). c. demonstrates the s-plot for the model. This plot compares the covariance with the 

correlation coefficient for each metabolite. Important metabolites appear at the extreme ends of the 

‘S’ and are associated with the highest of both the correlation coefficients and the covariance. 

Metabolites in the top right hand corner are associated with pneumonia and those in the bottom left 

are associated with brain injury. Important ions, labelled are those within the circles. 
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Table 5.7. m/z descriptors that were most important in separating samples taken from patients with 

VAP from time point 4 (TP4) samples taken from patients with brain injuries who never went on to 

develop VAP, the arrows indicate in which of the two groups the m/z showed a predominance. 

Results from the models based on both the original groups based on CPIS and the combined group 

including patients categorised by and independent assessor are shown. Highlighted rows represent 

ions also identified in other comparisons. 

 Group based on CPIS Combined group Possible Assignments 
m/z VAP TP4 VAP TP4  
115.575  ↑  ↑  
135.045  ↑   Noradrenaline, Prostaglandin G2,  

Arginine, Asparagine, Glutamine, 
Glycine, Isoleucine, Tyrosine 

135.085 ↑   ↑  
191.115  ↑    
194.125  ↑    
212.155 ↑  ↑  - 
222.175 ↑     
226.065    ↑ Alanine, Asparagine, Cysteine 
226.565    ↑  
303.295 ↑     
306.305 ↑     
325.275 ↑     
371.105    ↑ - 
388.135    ↑ Cysteine, Glutamate, Glutamine, 

Histidine, Phenylalanine 
415.215 ↑  ↑  Dexamethasone, Histidine, Lysine, 

Methionine 
432.245 ↑  ↑  Alanine, Arginine, Glutamine, 

Lysine, Tryptophan 
433.245 ↑  ↑  Lysophosphatidic acid 
445.125 ↑     
520.055  ↑    
548.505 ↑     
589.405 ↑     
590.405 ↑     

 

When only those patients who developed VAP were examined it was impossible to build a model 

that would separate the first time point sample from the sample taken at the time that VAP 

developed. 
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Using the first time point samples from the brain injured patients it was possible to build a weakly 

predictive model to separate those patients who went on to develop VAP from those who did not 

from the group based on CPIS scoring (R2Y 0.90, Q2Y 0.20, p=0.61), however, when the combined 

group was used this failed to be the case. The metabolites that cause this separation can be seen in 

table 5.8 below. 

Table 5.8. m/z that were most important in separating patients who did and did not go on to develop 

VAP using samples taken from patients with brain injuries at time point 1 (TP1), the arrows indicate 

in which of the two groups the m/z showed a predominance. Results from the models based on both 

the original groups based on CPIS and the combined group including patients categorised by and 

independent assessor are shown. Highlighted rows represent ions also identified in other 

comparisons. 

m/z VAP  No VAP Possible Assignments 
81.035 ↑   
89.065  ↑ 25-Hydroxycholesterol, Alanine, Aspartate, 

Cysteine, Glutamate, Histidine 
124.035  ↑  
212.155  ↑ - 
246.175  ↑  
277.185  ↑  
393.085  ↑ - 
419.325 ↑   
420.325 ↑   
441.305 ↑   
442.305 ↑   
467.105 ↑   
468.105 ↑   

 

5.6 Discussion 

In this chapter I have investigated the possibility of using a metabonomic approach to EBC to assist 

in the diagnosis of pneumonia in ventilated patients. The initial approach using 1H-NMR 

spectroscopy found only a handful of metabolites in the samples that were run. An attempt to 

improve metabolite recovery by freeze drying the samples was made. 
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The majority of the identified metabolites within the EBC were volatile metabolites such as ethanol, 

methanol and acetone, such metabolites would be poor candidates for quantitation due to their 

volatility and instability. Similar metabolites have been identified before in the literature (99, 200, 

204, 205), however, it is notable that the number of metabolites seen in this sample set is lower 

than that previously documented. There are a number of potential reasons for this, firstly this group 

of patients were clinically quite different from those studied previously, in none of the previous 

studies have patients who are critically ill been investigated. It is very possible that differences in 

disease processes account for some of the differences. In this study all samples were collected from 

intubated patients, where a tube lies in the patient’s trachea, avoiding the potential for 

contamination of the EBC from metabolites originating in the oral cavity, from saliva, or from the 

digestive tract. For example trimethylamine, a noted cause of halitosis, originating from the 

gastrointestinal tract (334) has been found with NMR in samples of EBC collected from 

spontaneously breathing patients (200, 205). This raises the possibility that some of the metabolites 

within EBC that were identified with NMR that have previously been attributed to the respiratory 

tract may actually originate from other parts of the oropharynx.  Finally, although no work has been 

done specifically examining the effect of different collection techniques on metabolic profiling, 

different equipment used to collect EBC has been seen to alter levels of other markers measured 

(335, 336). The majority of the NMR based metabonomic EBC studies to date have used the 

Ecoscreen collection device to collect samples (200, 201, 204, 205, 328, 329). This device has several 

reusable components and so needs cleaning between samples. There have previously been 

controversies regarding contamination of NMR spectra with metabolites originating from the 

disinfectant used to clean the reusable equipment (205, 328). The use of the disposable RTube™ in 

this study avoided the potential for such artefacts and may also account for the number of 

metabolites being observed appearing lower. The best method in which to handle the samples prior 

to NMR analysis is unclear. In the previous literature both methods involving drying (202) and using 
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samples with only the addition of deuterium have been used (200, 201, 204, 205, 328, 329). No 

studies exist comparing the two techniques. In this study an attempt was made to freeze dry 

samples to enhance metabolite recovery.  However, during the freeze drying process volatile 

compounds could be easily lost and this method showed only a limited ability to improve the 

number of metabolites seen in the spectra. Due to the difficulty in standardising this technique and 

the possibility of both losing important volatile metabolites and adding in metabolites during the 

freeze drying process, this was judged to be an unappealing solution. Also the extra time needed to 

process the samples was unfeasible for large sample sets so this was not pursued further. 

In an attempt to improve metabolite recovery from the EBC an approach using a direct injection MS 

methodology was used.  This method initially demonstrated significant batch effects. The batch 

effect was reduced, although not entirely eliminated, when the peaks found in the methanol blanks 

were removed from the sample spectra.  

When spectra obtained using MS were compared for patients at the start of ventilation who did and 

did not have pneumonia it was possible to build a model that had limited predictive value. As 

described earlier there is no gold standard by which to diagnose pneumonia. Use of vital signs, 

biomarkers and radiographs in differing combinations have all had varying performance 

characteristics in different patient groups (12-16, 18, 20, 22-24, 26, 27) and as such it  is difficult to 

compare the current findings with what is known about currently available tests. However, a 

sensitivity of only 43% would make this test perform less well than many of those described in the 

literature. 

EBC analysis did not perform well when VAP was compared to brain injured patients at the start of 

ventilation. However, although it was not possible to validate the models, EBC seemed to perform 

better after cross-validation when metabolic changes over time were considered for both brain 

injured patients and patients with pneumonia. In both cases a number of potential metabolites 
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could be seen to both increase and decrease over time. It is interesting to observe that the set of 

metabolites that changed over time for pneumonia and brain injured patients were different 

suggesting that what was being observed was not just an accumulation of metabolites from the 

plastic of the endotracheal tube and ventilator circuit. Differences in the changes in airway 

inflammation such as those caused by infection with pneumonia, patterns of airway micro-organism 

colonisation or airway stress from the differences in mechanics involved in the different approaches 

to ventilation in the two groups could all account for the differences seen over time. 

Some of the best models seen could be made when EBC samples taken from similar time points 

were compared between brain injured patients with and without VAP suggesting important 

metabolic differences  may develop as  infection takes hold in the lower respiratory tract. However, 

it is notable that even at the first time point there was a suggestion that there may be some 

potential to distinguish patients before VAP became clinically apparent potentially representing 

metabolic predisposition to infection or the early development of infection itself. 

Because of the nature of MS and the multiple ions that can be produced from the fragmentation of a 

given metabolite and the potential for two metabolites to produce fragmentation ions with similar 

mass/change ratios metabolite identification is much more challenging with this modality than with 

NMR. An attempt was made to make some preliminary assignments of the ion fragments that 

appeared in multiple clinical models by comparison with published databases. Because of the 

overlap of m/z ratios firm assignment was not possible within the scope of this project. However, 

some interesting metabolites were potentially detected. Amino acid species seemed to be candidate 

metabolites for many of the detected ion fragments. Amino acids, especially adenosine (209), 

phenylalanine (209), lysine (244) and tyrosine (245), have been measured previously in EBC. Of note, 

alanine and glutamine were potentially identified in the breath of those patients with brain injuries, 

in keeping with the abundance of these amino acids seen in the serum of this group of patients, in 

chapter 3. Similarly phenylalanine may have been detected in samples taken from those with brain 
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injuries at time point four, again, in keeping with findings from serum. More detailed conclusions 

regarding the amino acids detected in EBC are difficult to make due to the great deal of overlap in 

the ion fragments of these species.   Lysophosphatidic acid, a signalling molecule derived from 

phospholipids that has been implicated in increasing vascular permeability, promoting epithelial cell 

death and the development of fibrosis, was also potentially identified in the samples studied here and 

has also been previously reported in EBC of patients with pulmonary fibrosis (241). Although it may 

have been expected that lysophosphatidic acid was more abundant in those with pneumonia, due to 

its role in inflammation, it was generally found in the breath of those with brain injuries especially at 

the start of the ICU stay, the only case where this was not so was with VAP when it was more 

abundant than in those with brain injuries ventilated for a similar time. Other biological markers 

possibly detected included prostaglandin G2 at the start of ventilation in those with pneumonia and 

towards the end of ICU stay in those with brain injuries and 25-hydroxycholesterol in those with 

pneumonia, however, without further information these assignments are very tentative. Along with 

biological substances a number of drugs were potentially present. Breath analysis has been used 

before to detect the presence of drugs, for example to the anaesthetic agent propofol in the gaseous 

phase of breath (337). In this study cefuroxime, noradrenaline and dexamethasone were tentatively 

identified in the EBC. Dexamethasone was seen as a possible differentiating substance in those with 

brain injuries compared to those with pneumonia and was detected in the breath of those with brain 

injuries at the start of ventilation compared to the final time point. These findings make sense as 

dexamethasone was used in a number of the brain injured patients as an anti-inflammatory drug in 

certain diseases and as such was more likely to administered at the start of the ICU stay. 

Dexamethasone was also more likely to be associated with VAP than those brain injured patients who 

were ventilated for a similar amount of time, perhaps because of the immunosuppressive properties of 

steroids predisposing to infection. The antibiotic cefuroxime seemed to be more abundant in those 

with pneumonia compared to those with brain injuries, however, this seems unlikely as 

cephalosporins were more widely administered to those with brain injuries than to those with 

pneumonia suggesting that this is not a true assignment. This drug may have also been able to 

distinguish time point one from time point four samples from patients with brain injuries which makes 

much more sense as this antibiotic was more likely to be given around the time of admission to 
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intensive care than during a patient’s stay. Noradrenaline is a vasopressor frequently given to patients 

on intensive care, and although no statistical significant differences existed in the use of this drug 

between the pneumonia, brain injured and VAP groups it was interesting that it may be associated 

with some capacity to help separate some of the groups with multivariate analysis. The fact that some 

drug metabolite may have been detected in these samples raises the concern that some of the 

predictive models were basing prediction not on genuine biological differences but treatment effect. In 

order to address this fully more detailed metabolite assignment would need to be performed. 

 

This study represents the first attempt to investigate pneumonia using a metabonomic approach to 

the analysis of EBC and is one of only a few studies looking at ventilated patients with such 

techniques (195, 210). Almost all of the previous work has focused on relatively stable diseases in a 

clinic setting. Also although MS has been used to study EBC in a number of previous studies few have 

approached the problem with an entirely non-targeted, profiling, approach (206, 207) and this is the 

only one to use a direct-injection non-hyphenated technology. 

The current study has a number of limitations. Firstly as no gold standard exists for the diagnosis of 

pneumonia any method used to define the clinical groups will lead to some misclassification so 

building a model with 100% accuracy is unlikely. Also this study used a limited number of patients, of 

all of those that were recruited only those with the clearest diagnosis of pneumonia were used in 

order to ensure the best clinical separation between comparison groups. This will limit the ability to 

build models to correctly classify patients. EBC itself poses a particular challenge with the 

metabolites it contains being present in very low concentrations thus requiring very sensitive 

equipment to detect them. This also leads to the problem that exogenous metabolites contained 

within solvents, collecting equipment and introduced by any laboratory equipment will also be more 

easily detected. Care had to be taken to minimise the potential for contamination in any of the 

assays. Despite extensive efforts to eliminate such confounders a great number of metabolites were 

still detected within the methanol used for MS analysis. Even after these were addressed batch 
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effect could still be observed between samples run at different times. Although when individual 

models were examined it was not apparent that the batch effect was having an influence on the 

models themselves this issue needs to be addressed when considering this approach as a clinical 

test. For this to be a useful approach in the clinical environment it would have to be reproducible 

day to day and location to location in order to provide accurate results that could influence clinical 

decision making. To further address the clinical importance of the MS based models further 

metabolite identification needs to be undertaken to address the biological importance of the ions 

identified as being discriminant in the models 

 

5.7 Conclusion 

Analysis of EBC using a metabonomic approach with either NMR spectroscopy or MS poses a 

number of challenges due to the low concentration of metabolites within this fluid. In this sample 

set NMR provided only a limited number of metabolites and freeze drying the sample prior to 

preparation failed to produce a feasible solution to the low metabolite count. 

Analysis of EBC with a direct-injection MS methodology shows some possibility to assist with 

diagnosis of both pneumonia and VAP, however, this method has limitations with regard to its 

reproducibility and further work needs to be done in order to identify the metabolites that seem to 

differentiate the clinical groups in order to assess their clinical relevance.  
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6. MULTIVARIATE ANALYSIS OF CLINICAL DATA 

 

6.1 Summary 

Clinical data are typically analysed using simple statistics such as Student’s t-test, ANOVA or Fishers 

exact teat. There are relatively few examples of studies that have used multivariate techniques, 

usually associated with ‘omics’ data processing, to analyse routinely collected clinical data. In this 

chapter multivariate analysis was applied to a set of clinical data in an attempt to differentiate those 

patients with pneumonia and VAP from those with brain injuries. Several interesting differences 

were found between these groups that were not confined to typical clinical features that would have 

been expected to be different in those with and without pneumonia. 

Within this chapter an attempt was made to combine clinical, inflammatory and metabolic data sets. 

Clinical data was important in all comparisons but the significance of inflammatory and metabolic 

data varied depending on the comparison being made. Overall there seemed to be an advantage to 

combining some or all data sets to improve discrimination of the models. Discrimination between 

clinical groups could be improved further by selecting the most important variables. 

6.2 Background 

For patients on the ICU there is an enormous amount of clinical data available from bedside clinical 

observations, for example blood pressure, heart rate and temperature, laboratory tests, such as 

haematological and clinical chemistry parameters, point of care tests, for example blood gas analysis 

and blood glucose measurement, to specific measureable parameters for particular interventions 

such as those associated with mechanical ventilation. Interpreting clinical data is clearly one of the 

skills of the physician. However, in some situations clinical judgement may be unable to detect some 

of the subtle changes in these parameters. In some conditions clinical features can overlap with 
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other medical conditions such as pulmonary oedema, ARDS and lobar collapse, this becomes 

especially problematic when the diagnosis, such as VAP, does not have a gold standard diagnostic 

test.  

Clinical feature have been found to have a variable ability to diagnose pneumonia (11, 14, 18, 19, 21) 

in the primary care setting and the addition of biomarkers such as CRP and PCT have a limited effect 

on improving diagnostic potential (22-25). Despite the greater amount of clinical information 

available on the ICU making the diagnosis of VAP is potentially more challenging than when 

pneumonia is the presenting diagnosis (72-74). This probably represents the greater complexity of 

ICU patients where several clinical conditions can exist simultaneously and the features of each can 

overlap. None of the features that are important in making the diagnosis of pneumonia are specific 

to this condition, a white cell count and temperature increase can be seen in any condition where 

there is a SIRS response; radiological changes of consolidation can be difficult to distinguish from 

lobar collapse or ARDS (73, 75) and similarly oxygen requirements can increase due to these other 

lung conditions.  

The integration of clinical data on ICU has mainly been focused on outcome scores such as the Acute 

Physiology and Chronic Health Evaluation II score (APACHEII) (338) and the Simplified Acute 

Physiology Score II (SAPS II) (339) to predict the risk of death and organ dysfunction scores such as 

the Logistic Organ Dysfunction Score (LODS) (340), Multiple Organ Dysfunction Score (MODS) (341), 

and the Sequential Organ Failure Assessment (SOFA) (342). These scores are generally derived from 

logistic regression models of clinical variables and then validated in large ICU populations. However, 

on the whole these scores have little impact on an individual patient and are used predominantly in 

the context of clinical research to compare patient groups or as a marker of ICU performance (343). 

So far the only attempt to combine clinical data into a model to diagnose VAP has been the CPIS  

developed by Pugin et al based on six clinical parameters, temperature, white cell count, secretion 
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load, radiological changes, oxygen requirement and microbiology, which gives a score from 0-12 (83) 

with a score of greater than six correlating with high bacterial load on broncheoalveolar lavage. This 

score has been used to guide prescribing with a significant reduction in antibiotic prescribing without 

increase in mortality (84).  However, CPIS doesn’t work well in all clinical scenarios such as burn and 

trauma patients (86) and it is plausible that the addition of further parameters available on the ICU 

may be able to strengthen this score. 

There have been a few attempts to use the multivariate statistical methods used previously in this 

study to analyse clinical data. For example, PLS has been used to predict survival in patients with 

multiple myeloma following treatment (344), to predict outcome in children following surgery for 

tuberous sclerosis (345) and using specific measurements of dental disease to predict outcome 

following dental intervention (346). No studies exist that attempt to apply these methods to either 

intensive care patients or to those with pneumonia. 

Further, despite the number of studies that exist using ‘omics’ sciences there is little available 

attempting to combine ‘omics’ data with clinical features. A few studies exist that attempt to 

combine different ‘omics’ data sets. For example, an animal study looking at liver toxicity combined 

NMR, microarray and clinical chemistry data (347). 

6.3 Aims 

The overall aim of this study was to use multivariate techniques with clinical data to attempt to 

improve the diagnosis of pneumonia in patients requiring ventilation, specifically those going on to 

develop VAP. The following questions were addressed: 

1. Can multivariate methods applied to routinely collected clinical data produced 

discriminant models to differentiate those with and without pneumonia? 
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2. Can combining clinical data with metabolic and inflammatory data more accurately 

differentiate pneumonia than any one set of data alone? 

6.4 Protocols 

6.4.1 Patient Recruitment 

Patients were recruited as described in chapter 2. Patients were defined as either having pneumonia 

or a brain injury as described earlier. All patients were followed up over time and those brain injured 

patients developing VAP were defined based on CPIS scoring, for a breakdown of the CPIS score used 

see chapter 2. Patients with borderline scores were assessed and classified as VAP or no VAP by an 

independent assessor. 

6.4.2 Clinical Data 

A comprehensive set of clinical data was recorded for each day of a patient’s ICU stay. Data included 

all physiological variables, laboratory test results, radiology results, arterial blood gas results, 

microbiology results and administered drugs, fluid and feed. Data were collected at 8:00am every 

morning and covered the preceding 24h period. For all variables the minimum and maximum values 

were recorded for the 24h period. Where data were not recorded or had not been measured the 

relevant data point was left blank. Where patients were spontaneously breathing and receiving 

oxygen via nasal cannula or facemask the number of litres of oxygen was converted into an FiO2 

using the conversion in table 6.1 to allow comparison to patients receiving titrated oxygen therapy 

either through the ventilator or via a face mask such as a venturi or humidified system. 
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Table 6.1. Conversion table for litres of oxygen to FiO2. 

Method O2 Flow (l/min) Estimated FiO2 
Nasal Cannula 1 0.24 
 2 0.28 
 3 0.32 
 4 0.36 
 5 0.40 
 6 0.44 
Facemask 5 0.40 
 6-7 0.50 
 7-8 0.60 

 

All clinical data were checked by hand to ensure that recorded values fell within physiological 

ranges. Numerical data were selected to build multivariate models to compare pneumonia to brain 

injured patients leaving a data set made of continuous variables that could be objectively measured. 

The complete list of variables acquired can be seen in table 6.2, giving 106 variables for multivariate 

analysis. 

6.4.3 Metabolic and Inflammatory Data 

The two most reliable data sets from the earlier analysis, the metabonomic and inflammasome data 

from serum samples, were chosen to combine with the clinical data in an attempt to build an all-

encompassing model taking into account clinical, inflammatory and metabolic data. Because of the 

much larger data set that was the metabonomic data this data set was handled in two ways, first the 

entire spectral data was combined with the two other data sets and then a smaller data set using 

only the integrals of the identified peaks. The integrals were calculated using an in-house Matlab 

script and reduced this data set from thousands of data points to just over 200. 
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Table 6.2. Clinical variables used for multivariate analysis, for all values other than those which are 

averages over 24h (*) the minimum and maximum values for each variable for the 24h period prior 

to sampling were taken. Some variables (ǂ) were only available for certain ventilation modes. 

 

  

Bedside Variables Laboratory Variables 
Ventilator Settings Laboratory Parameters 
Peak end expiratory pressure (PEEP) (cmH2O)ǂ White Blood Cell Count (x10^9/L) 
FiO2 Haemoglobin (g/dl) 
Respiratory rate set (breaths/min)ǂ Haematocrit (%)  
Respiratory rate measured (breaths/min) Platelet Count (x10^9/L) 

Set tidal volume (ml)ǂ Prothrombin Time (s) 
Expiratory tidal volume (ml) Activated Partial Thromboplastin Time (s) 
Pressure support (cmH2O)ǂ Fibrinogen (g/L) 
Pressure control (cmH2O)ǂ Sodium (mmol/L)  

Expiratory minute volume (L) Potassium (mmol/L)  

Peak airway pressure (cmH2O) Creatinine (µmol/L)  
 Urea (mmol/L)  
Physiological Parameters Chloride (mmol/L) 
Glasgow Coma Scale  Magnesium (mmol/L)  
Heart rate (beats/min) C-Reactive Protein (mg/l)  
Systolic blood pressure (mmHg) Alanine Transaminase (IU/L) 
Diastolic blood pressure (mmHg) Alkaline Phosphatase (IU/L) 
Mean arterial pressure (mmHg) Bilirubin (µmol/L)  
Temperature (°C) Albumin (g/L)  
Oxygen saturations (SpO2) (%) with associated FiO2 Corrected Calcium (mmol/L)  
Ratio of saturation (SpO2) to FiO2 Phosphate (mmol/L) 
Hourly urine output (ml/h)  
Total urine output over 24 hours (ml) Blood Gas Parameters 
Average hourly urine output (ml)* PaO2  with associated FiO2 
Total fluid input over 24 hours (ml) PaO2:FiO2 ratio (kPa) 
Average hourly fluid input (ml)* PaCO2 (kPa) 
Fluid balance over previous 24h (ml) pH 
Number of tracheal secretions over 24h Bicarbonate (mmol/L) 
Central Venous Pressure (CVP)(cmH2O) Base excess 
 Lactate (mmol/L) 
 Glucose (mmol/L) 
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6.4.4 Statistical Analysis  

Prior to multivariate analysis all data were scaled to unit variance. Standardising the variance 

attempts to take into account the influence on multivariate models of variables with naturally higher 

values that tend to be associated with higher variance and allows smaller parameters to have similar 

weight within the model. This technique also allows parameters measured with different units to be 

combined without other manipulation. Multivariate statistics were used to analyse the data. Initial 

exploration with principal component analysis (PCA) was performed to look for natural clustering 

and to detect outliers before supervised multivariate analysis using orthogonal partial least squared 

discriminant analysis (OPLS-DA) was used to generate models to optimally separate predefined 

groups. OPLS-DA models were cross validated using seven fold cross-validation using a “leave-one-

out” methodology. Important variables in each model were identified by examining the loadings 

associated with each model and the variable importance, VIP, scores. VIP is a parameter which 

summarizes the influence on Y, the defined groups, of each variable in the model. It is a sum over all 

model dimensions of the variable contributions. Variables important in the models were defined as 

those with VIP greater than 1.0 (112). All multivariate analysis was performed using the SIMCA 13.0 

statistical package (Umetrics, Sweden). Where it was necessary to compare models constructed with 

clinical data combined with inflammatory and metabolic data with those using only metabolic or 

inflammatory data new models were constructed with the inflammatory or metabolic data utilizing 

only those patients who had both sets of data. This was done to ensure that the same patients were 

being compared to avoid bias based on the slightly differences in the patient groups who had both 

types of data. Univariate analysis was performed using the Student’s t-test with the Benjamini-

Hochberg procedure to correct for false discovery rate from multiple comparisons. 
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6.5 Results 

6.5.1 Patients 

21 patients with brain injuries, 12 with pneumonia and 5 who developed VAP had all three of sets of 

data: clinical, inflammatory and serum metabonomic, to allow combined models to be built.  

Overall from these patients 6.1% of the clinical data was missing, however, the majority of the 

‘missing data’ originated from certain ventilator parameters that were only applicable when some 

ventilator modes were used, for example pressure support and set tidal volume. Excluding these 

parameters the rate of missing data was only 3.2%. Excluding ventilation parameters, rates of 

missing data varied from 0-60.5%. The parameter with the largest proportion of missing data was 

the central venous pressure which was missing in over 60% of cases. Selected models were 

examined with and without this parameter and little difference was found when it was included or 

excluded, therefor to simulate the clinical environment, where not all data is necessarily available, it 

was left in for initial comparisons. After CVP the next most common missing variable was ALT which 

was missing 9.3% of the time. 31 parameters had no missing data and a further 51 had only 2% 

missing data, representing data missing from only a single patient. Fourteen variables had 4% 

missing data representing only 2 missed data points. 

6.5.2 Clinical Data Models 

6.5.2.1 Brain Injuries vs Pneumonia 

Principal component analysis of the clinical variables demonstrated natural separation of the brain 

injured and pneumonia patients (R2X 0.27, Q2X 0.05), figure 6.1, but the predictive value for this 

model was only 5% implying that the data set was very heterogeneous. Three of the pneumonia 

patients were outliers, the first lying to the left of the plot was distinguished by having a marked   
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Figure 6.1 a. Three component PCA comparing samples taken from patients with brain injuries, blue circles, and patients with pneumonia, red squares, at the 

start of ventilation (R2X 0.27, Q2X 0.05) with all clinical parameters and b. excluding those used in the CPIS (R2X 0.31, Q2X 0.12). The ellipse represents 

Hotelling’s T2 at p=0.05. Some natural separation can be seen between the two groups in the first and second components, in figure 6.1a two of the 

pneumonia patients are outliers as demonstrated by lying outside the Hotelling’s ellipse, numbered. c. Loadings plot for the first PCA, showing the clinical 

variables causing most of the separation. 

  a. 

1 

2 3 

b. 



244 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

c. 



245 

 

 

 

inflammatory response with a higher white cell count and CRP along with renal failure as suggested 

by high urea,  also for this patient several respiratory parameters were not available as they had 

both of their lungs independently ventilated at the start of recruitment so a single set of parameters 

were impossible to obtain. The second two patients presenting as outliers at the bottom of the plot 

were characterised by the high carbon dioxide, bicarbonate and base excess values. This is not 

unexpected as these individual had compensated chronic respiratory failure secondary to previous 

brain injuries. All of these patients were retained for further analysis as ideally a good clinical model 

would be able provide discrimination across a range of patients with various associated 

comorbidities. The natural separation between the pneumonia and brain injured groups was not 

entirely surprising as the classification of pneumonia was based on an adaption of the CPIS score 

which is based on several of the clinical parameters here. When the model was rebuilt excluding 

temperature, secretion load, white cell count and markers of oxygenation there was still a 

suggestion of separation along the first two components (R2X 0.31, Q2X 0.12), figure 6.1b. When the 

loadings from the first PCA were examined, figure 6.1c, the features that caused the separation were 

not those from the CPIS but parameters such as haemoglobin, PEEP, CRP, fibrinogen and PaCO2. 

When a supervised model was constructed using OPLS-DA then good separation was achieved on 

cross validation (R2Y 0.71, Q2Y 0.53, p<0.001), figure 6.2, and this predictive capacity was only slightly 

reduced when features from the CPIS were excluded (R2Y 0.62, Q2Y 0.43, p<0.001). The clinical 

features that were most important in building this model can be seen in table 6.3. 
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Figure 6.2. OPLS-DA model based on clinical data with one component comparing patients admitted with brain injuries, blue bars, to those with pneumonia, 

red bars, at the start of ventilation (R2Y 0.70, Q2Y 0.53, p< 0.001) a. before and b. after cross validation. Before cross validation the groups can be seen to be 

separated with pneumonia samples separated in the positive direction along the first component. After cross validation this separation is less with some of 

the pneumonia patients crossing between groups.   

 

a. b. 
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Table 6.3 Clinical features with VIP>1.0 for the OPLS-DA model (R2Y 0.71, Q2Y 0.53, p<0.001) 

comparing patients with pneumonia to those with brain injuries, including features making up the 

CPIS. 

 

When only those variables with VIP >1.0 were used to construct the model, including features used 

in the CPIS then predictive capacity improved (R2Y 0.72, Q2Y 0.65, p<0.001) and when the nine 

independently classified patients were used as a small validation cohort then the model had a 

sensitivity of 0.75, specificity of 0.80, positive predictive value of 0.75 and negative predictive value 

of 0.80. 

 

Variables Increased in Pneumonia Variables Reduced in Pneumonia 
Variable VIP Direction of 

Change in 
Pneumonia 

Variable VIP Direction of 
Change in 

Pneumonia 
Highest PEEP 2.68 ↑ Highest Albumin 2.08 ↓ 
Highest CRP 2.10 ↑ Lowest Albumin 2.04 ↓ 
Lowest CRP 1.95 ↑ Highest PaO2:FiO2 ratio 1.75 ↓ 
Lowest PEEP 1.82 ↑ Lowest PaO2:FiO2 ratio 1.70 ↓ 
Highest Peak Airway Pressure 1.68 ↑ Highest SpO2:FiO2 Ratio 1.58 ↓ 
Highest Respiratory Rate 1.62 ↑ Highest pH 1.55 ↓ 
Highest Fibrinogen 1.59 ↑ Highest Haemoglobin 1.40 ↓ 
Highest PaCO2 1.53 ↑ Lowest pH 1.30 ↓ 
Lowest Fibrinogen  1.53 ↑ Lowest SpO2:FiO2 Ratio 1.25 ↓ 
Lowest White Cell Count 1.51 ↑ Lowest PaO2  1.12 ↓ 
Lowest Glasgow Coma Score 1.43 ↑ Lowest Expiratory Tidal 

Volume 
1.07 ↓ 

Total Secretions 1.40 ↑ Lowest Haemoglobin 1.06 ↓ 
Highest White Cell Count 1.39 ↑    
Lowest FiO2 1.38 ↑    
FiO2 for highest SpO2 1.38 ↑    
Highest Haematocrit 1.27 ↑    
Lowest PaCO2 1.26 ↑    
FiO2 to get the highest PaO2 1.20 ↑    
Highest Heart Rate 1.20 ↑    
Lowest Heart Rate 1.14 ↑    
Lowest Peak Airway Pressure 1.11 ↑    
Lowest ALP 1.10 ↑    
Highest Prothrombin Time 1.09 ↑    
Lowest Urea 1.08 ↑    
Lowest APTT 1.07 ↑    
Highest Expiratory Minute Volume 1.02 ↑    
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6.5.2.2 Brain Injury vs VAP 

OPLS-DA models comparing the five patients who developed VAP to those admitted with brain 

injuries continued to have good predictive capacity both when all clinical data was used (R2Y 0.69, 

Q2Y 0.52, p<0.001), figure 6.3, and when the features in the CPIS were excluded (R2Y 0.71, Q2Y 0.50, 

p<0.001). Table 6.4 gives the most important parameters in this model. When the patients with VAP 

were compared to those brain injured patients who never developed VAP but who had data for an 

equivalent time point then the model remained good (R2Y 0.83, Q2Y 0.54, p=0.08)with oxygenation 

and associated parameters having a much greater influence than in previous models, table 6.5. 

When the CPIS variables were removed the predictive capacity fell (R2Y 0.75, Q2Y 0.26, p=0.44). 

Table 6.4 Clinical features with VIP>1.0 for the OPLS-DA model used (R2Y 0.69, Q2Y 0.52, p<0.001) 

comparing patients with VAP to those with brain injuries, including features making up the CPIS. 

Variables increased in VAP Variables decreased in VAP 
Variable VIP Direction of 

Change in VAP 
Variable VIP Direction of 

Change in VAP 
Lowest ALP 2.32 ↑ Highest SpO2:FiO2 Ratio 1.66 ↓ 
Highest ALP 2.28 ↑ Lowest PaO2:FiO2 ratio 1.65 ↓ 
Lowest Fibrinogen  2.23 ↑ Lowest SpO2 1.59 ↓ 
Highest Expiratory Tidal Volume 2.23 ↑ Highest Albumin 1.46 ↓ 
Highest Fibrinogen 2.16 ↑ Lowest Albumin 1.32 ↓ 
FiO2 to give highest SpO2 1.78 ↑ Highest PaO2:FiO2 ratio 1.30 ↓ 
Total Secretions 1.74 ↑ Lowest PaO2  1.08 ↓ 
Lowest ALT 1.74 ↑ Lowest SpO2:FiO2 Ratio 1.06 ↓ 
Highest ALT 1.71 ↑    
Highest Respiratory Rate 1.70 ↑    
Lowest Expiratory Tidal Volume 1.67 ↑    
Lowest Respiratory Rate 1.66 ↑    
Lowest Urea 1.63 ↑    
Highest Peak Airway pressure 1.56 ↑    
Lowest CRP 1.51 ↑    
Highest Expiratory Tidal Volume 1.51 ↑    
Lowest FiO2 1.49 ↑    
Highest PEEP 1.41 ↑    
Highest Urea 1.39 ↑    
Highest Systolic Blood Pressure 1.38 ↑    
Highest CRP 1.32 ↑    
Lowest PEEP 1.27 ↑    
FiO2 to give lowest PaO2 1.09 ↑    
Lowest Bilirubin 1.08 ↑    
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Figure 6.3. OPLS-DA model, with one component, based on clinical data comparing patients admitted with brain injuries, blue bars, to those who developed 

VAP, green bars, a) with all clinical variables (R2Y 0.69, Q2Y 0.52, p< 0.001) and b) without those used in the CPIS (R2Y 0.71, Q2Y 0.50, p< 0.001). Before cross 

validation the groups can be seen to be separated with pneumonia samples separated in the positive direction along the first component.  

  
a. b. 
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Table 6.5 Clinical features with VIP>1.0 for the OPLS-DA model (R2Y 0.83, Q2Y 0.54, p=0.08) 

comparing patients with VAP to those with brain injuries at an equivalent time point, including 

features making up the CPIS. 

Variables Increased in VAP Variables Decreased in VAP 
Variable VIP Direction 

of Change 
in VAP 

Variable VIP Direction 
of Change 

in VAP 
Lowest FiO2 1.81 ↑ Lowest PaO2:FiO2 ratio 1.99 ↓ 
Highest FiO2 1.71 ↑ Highest SpO2:FiO2 ratio 1.93 ↓ 
FiO2 to give highest SpO2 1.69 ↑ Lowest SpO2:FiO2 ratio 1.92 ↓ 
FiO2 to give highest PaO2 1.65 ↑ Highest PaO2:FiO2 ratio 1.61 ↓ 
Lowest CRP 1.61 ↑ Lowest PaO2 1.58 ↓ 
Highest CRP 1.61 ↑ Lowest SpO2 1.58 ↓ 
FiO2 to give lowest PaO2 1.61 ↑ Lowest Platelet Count 1.48 ↓ 
Lowest Creatinine 1.54 ↑ Highest Platelet Count 1.48 ↓ 
Highest Creatinine 1.54 ↑ Lowest Urine Output 1.37 ↓ 
Lowest Inspired Tidal Volume 1.51 ↑ Lowest pH 1.27 ↓ 
FiO2 to give lowest SpO2 1.37 ↑ Total Urine Output in 24h 1.25 ↓ 
Highest PaCO2 1.36 ↑ Average Hourly Urine Output 1.25 ↓ 
Highest Central Venous Pressure 1.36 ↑ Lowest Diastolic Blood Pressure 1.18 ↓ 
Highest PEEP 1.28 ↑ Total Fluid Input in 24h 1.13 ↓ 
Highest Systolic Blood Pressure 1.26 ↑ Average Fluid Intake per Hour 1.12 ↓ 
Highest Inspired Tidal Volume 1.24 ↑ Lowest Mean Arterial Pressure 1.05 ↓ 
Highest Peak Airway Pressure 1.24 ↑    
Lowest Bilirubin 1.15 ↑    
Highest Bilirubin 1.15 ↑    
Lowest ALP 1.13 ↑    
Highest ALP 1.13 ↑    
Lowest Sodium 1.11 ↑    
Highest Sodium 1.11 ↑    
Highest Expiratory Minute 
Volume 

1.05 ↑    

Highest Pressure Support 1.00 ↑    
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6.5.3 Combining Clinical Variables with Metabonomic and Inflammasome Data 

6.5.3.1 Brain Injury vs Pneumonia 

6.5.3.1.1 Clinical and Metabonomic Data 

Combining clinical data with full spectral serum data provided an OPLS-DA model with a reasonable 

Q2Y (R2Y 0.95, Q2Y 0.42, p=0.003) although slightly lower than that using clinical data alone but 

identical to a model using only the spectral data for this patient set (R2Y 0.95, Q2Y 0.42, p=0.003). 

From this model the variables with the highest VIP were metabolites corresponding to lipids at 0.81-

0.74ppm, lipids at 1.18-1.11ppm, alanine at 1.49-1.46ppm, lipids at 1.558-1.51, Glycoproteins at 

2.04, lipids at 2.21-2.17, glutamine at 2.49-2.42ppm, an unidentified metabolite at 3.07, 

phospholipids at 3.20ppm, glycerol at 3.57ppm, phenylalanine at 7.45-7.41ppm and formate at 

8.45ppm. Clinical variables of importance were maximum and minimum PEEP, highest and lowest 

CRP, highest and lowest albumin and highest PaO2:FiO2 ratio.  

Due to concerns that the vastly overwhelming number of data points contributed by the metabolic 

data may dominate these models similar analysis was carried out using the integrals of all of the 

NMR peaks. When clinical data were combined with the integrals of the metabolic peaks via OPLS-

DA a model could be created that was similar to that using the entire spectral data (R2Y 0.86, Q2Y 

0.43, p=0.003) and was better than using only the integrals of the metabolic data alone (R2Y 0.72, 

Q2Y 0.29, p=0.04). Using this method the metabolites that were most important can be seen in table 

6.6. They were similar to those that were seen when the entire spectrum was utilised, with formate, 

alanine, glycoprotein and phospholipids being some of the most important metabolites 

differentiating between patients with brain injury and pneumonia. Univariate comparison of these 

integrals found all but one of the unidentified metabolites to be significantly different between the 

two groups even after correction for false discovery rate, table 6.6.  Many of the lipid species seen to 
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be important when brain injured patients were compared to those with pneumonia using only 

metabolic data, in chapter 3, appeared no longer to differentiate the groups when spectral integrals 

were used.  

Table 6.6. Integrals of metabolites with the most influence on the OPLS-DA model comparing 

pneumonia with brain injuries. p-values represent comparisons between groups of individual 

integrals using the Student’s t-test corrected for the false discovery rate using the Benjamini-

Hochberg procedure.  

Metabolite Integral ppm Range VIP p-value Direction of Change in Pneumonia 
Phospholipids 3.196 3.188 2.89 0.02 ↓ 
Glycoproteins 2.046 2.022 2.69 0.02 ↑ 
Formate 8.455 8.450 2.58 0.03 ↑ 
Unknown 3.074 3.059 2.40 0.03 ↑ 
Unknown 2.057 2.052 2.34 0.02 ↑ 
Unknown 2.063 2.057 2.32 0.03 ↑ 
Unknown 3.016 3.01 2.29 0.02 ↓ 
Glutamine 2.453 2.449 2.25 0.02 ↓ 
Alanine 1.489 1.461 2.24 0.02 ↓ 
Unknown 7.812 7.805 2.15 0.07 ↑ 
Unknown 2.052 2.046 2.06 0.03 ↑ 
Glutamine 2.470 2.460 2.02 0.03 ↓ 

 

6.5.3.1.2 Clinical and Inflammatory Data 

Combining clinical and inflammasome data provided an OPLS-DA model with a good predictive 

capacity (R2Y 0.68 Q2Y 0.49, p<0.001) which was better than that using the inflammatory data alone, 

from these patients (R2Y 0.45 Q2Y 0.26, p=0.012). The variables that were most important in this 

model can be seen in table 6.7, the most important variables in this model were predominantly 

clinical. 

  



253 

 

 

 

Table 6.7. Variables with VIP>1.0 in the OPLS-DA model (R2Y 0.68, Q2Y 0.49, p<0.001) combining 

inflammatory and clinical data comparing patients with pneumonia and brain injuries. Clinical 

variables are in black and inflammatory variables blue. 

Variables Increased in Pneumonia Variables Decreased in Pneumonia 
Variable VIP Direction of 

Change in 
Pneumonia 

Variable VIP Direction of 
Change in 

Pneumonia 
Highest PEEP 2.84 ↑ Highest Albumin 2.20 ↓ 
Highest CRP 2.22 ↑ Lowest Albumin 2.16 ↓ 
Lowest CRP 2.06 ↑ Highest PaO2:FiO2 ratio 1.86 ↓ 
Lowest PEEP 1.97 ↑ Lowest PaO2:FiO2 ratio 1.80 ↓ 
Highest Peak Airway pressure 1.76 ↑ Highest SpO2:FiO2 ratio 1.68 ↓ 
Highest Respiratory Rate 1.72 ↑ Highest pH 1.64 ↓ 
Highest Fibrinogen 1.69 ↑ 6-keto-PGF1α 1.58 ↓ 
Highest PaCO2 1.62 ↑ Highest Haemoglobin 1.48 ↓ 
Lowest Fibrinogen  1.61 ↑ 5,6-DHET 1.41 ↓ 
Lowest White Cell Count 1.60 ↑ Lowest pH 1.37 ↓ 
Lipoxin B4  1.52 ↑ Highest Haematocrit 1.34 ↓ 
Lowest Glasgow Coma Score 1.52 ↑ Lowest SpO2:FiO2 ratio 1.33 ↓ 
Total Secretions 1.48 ↑ C22:6 (DHA) 1.32 ↓ 
Highest White Cell Count 1.47 ↑ Lowest PaO2 1.18 ↓ 
Lowest FiO2 1.46 ↑ Lowest Expiratory Tidal 

Volume 
1.13 ↓ 

FiO2 to get the highest  SpO2 1.46 ↑ Lowest Haemoglobin 1.12 ↓ 
E-Selectin 1.38 ↑ C20:5 (EPA) 1.07 ↓ 
MCP-1 1.38 ↑ 10(S),17(S)-DiHDoHE 1.04 ↓ 
ICAM-1 1.35 ↑ 9(S)-HODE 1.00 ↓ 
IP-10 1.34 ↑    
Lowest PaCO2 1.34 ↑    
FiO2 to get the highest  PaO2 1.28 ↑    
Highest Heart Rate 1.27 ↑    
Tetranor-PGDM 1.26 ↑    
TNFα 1.26 ↑    
Lowest Heart Rate 1.21 ↑    
IL-13 1.19 ↑    
Lowest ALP 1.17 ↑    
Lowest Peak Airway Pressure 1.16 ↑    
Highest Prothrombin Time 1.15 ↑    
Lowest Urea 1.15 ↑    
Lowest APTT 1.13 ↑    
Highest Expiratory Minute 
Volume 

1.07 ↑    

Lowest Creatinine 1.05 ↑    
Highest APTT 1.05 ↑    
Highest Urea 1.05 ↑    
Lowest Magnesium 1.04 ↑    
Highest ALP 1.04 ↑    
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6.5.3.1.3 Clinical, Metabonomic and Inflammatory Data 

Combining the clinical variables, metabolic spectral data and the inflammatory data yielded an OPLS-

DA model (R2Y 0.95, Q2Y 0.42, p=0.003) ,figure 6.4, which had a Q2Y similar to that from the 

metabolic data alone but not as good as that seen when only the clinical data were used. However, 

when the model was constructed using only variables that had a VIP greater than 1.0 the model 

improved, figure 6.5, (R2Y 0.95, Q2Y 0.73, p<0.001) but when variables with a VIP greater than 2.0 

were used no further improvement in Q2Y was gained (R2Y 0.91, Q2Y 0.71, p<0.001). 

When the integrals of the metabolite peaks were used instead of the full spectral data the model 

was similar to that using the whole spectral data (R2Y 0.69, Q2Y 0.38, p<0.001) and when only 

features with VIP greater than 1.0 (R2Y 0.70, Q2Y 0.60, p<0.001) or greater than 2.0 (R2Y 0.66, Q2Y 

0.63, p<0.001) were used the models were no better than using the full spectra. 

Although the best model was found when clinical and metabolic spectral data were combined, 

without the addition of inflammatory data, and features with a VIP greater than 2.0 were selected 

(R2Y 0.91, Q2Y 0.75, p<0.001) many of the areas of spectral data included appeared to be associated 

with baseline noise.  Much of this was removed by using a VIP cut off of 2.5 (R2Y 0.77, Q2Y 0.66, 

p<0.001), without the loss of metabolic information, which was similar to the models produced 

when only the clinical and metabolic integral data were used, with a VIP cut off of 2.0 (R2Y 0.70, Q2Y 

0.68, p<0.001). This model was made up of 15 variables: Minimum and maximum PEEP, highest 

respiratory rate, highest peak pressure, minimum and maximum CRP, minimum and maximum 

albumin, glycoproteins, formate, minimum and maximum PaO2:FiO2 ratio and three unidentified 

metabolites. When the independently classified patients were used to validate the model it had a 

sensitivity of 0.50, specificity of 1.0, positive predictive value of 1.0 and negative predictive value of 

0.71. As there was a great deal of, seemingly, duplicate information within this model, for example 

with the inclusion of both minimum and maximum PEEP, the model was reconstructed using only  
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Figure 6.4. OPLS-DA model based on clinical, metabolic and inflammatory data with one component and one orthogonal component comparing patients 

admitted with brain injuries, blue circles, to those with pneumonia, red squares, at the start of ventilation (R2Y 0.95, Q2Y 0.42, p= 0.003) a. before and b. 

after cross validation. Before cross validation the groups can be seen to be separated with pneumonia samples separated in the positive direction along the 

first component. After cross validation this separation is less with several samples crossing between groups. 

 

  
a. b. 
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Figure 6.5. OPLS-DA model based on clinical, metabolic and inflammatory data using only variables with a VIP>1.0 with one component and one orthogonal 

component comparing patients admitted with brain injuries, blue circles, to those with pneumonia, red squares, at the start of ventilation (R2Y 0.95, Q2Y 

0.73, p< 0.001) a. before and b. after cross validation. Before cross validation the groups can be seen to be separated with pneumonia cases separated in the 

positive direction along the first component. After cross validation this separation remains good with only a few patients crossing between groups. 

 

  
a. b. 
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the variable from each pair with the highest VIP. In this case there was no change to the model 

parameters (R2Y 0.70, Q2Y 0.68, p<0.001). 

6.5.3.2 Brain Injury vs VAP 

6.5.3.2.1 Clinical and Metabonomic Data 

When the brain injured patients who developed VAP were compared to the brain injured patients 

without infection at the start of ventilation using OPLS-DA, combining metabolic and clinical data 

was only just able to produce a model with discriminant capacity (R2Y 0.94, Q2Y 0.16, p=0.45) which 

was almost identical to that using only the metabolic data (R2Y 0.94, Q2Y 0.15, p=0.46) for this 

patient group.  

When metabolite integrals were used instead of the entire spectrum the OPLS-DA model was more 

predictive (R2Y 0.77, Q2Y 0.37, p=0.04) and functioned better than that based only on metabolic data 

(R2Y 0.64, Q2Y 0.15, p=0.47) for this set of patients. However, this model was not as good as that 

using clinical data alone (R2Y 0.69, Q2Y 0.52, p<0.001). Metabolites that were important in this model 

can be seen in table 6.8. The most important variables were those from the clinical data but the 

metabolites causing the largest effect on the model were phenylalanine, glycoproteins, and 

phospholipids as previously seen, along with a number of metabolites that have not previously been 

identified in this work. 
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Table 6.8. features important, VIP>1.0, in an OPLS-DA model (R2Y 0.77, Q2Y 0.37, p=0.04)  comparing 

patients admitted with brain injuries to those developing VAP using a combination of clinical data 

and the integrals of the metabolic spectral data. Clinical variables are in black and metabolic 

variables in red. 

Variables increased in VAP Variables decreased in VAP 
Variable VIP Direction of 

change in VAP 
Variable VIP Direction of 

change in VAP 

Highest Expiratory Minute 
Volume 

2.91 ↑ Highest SpO2:FiO2 ratio 2.16 ↓ 

Lowest ALP 2.85 ↑ Lowest PaO2:FiO2 ratio 2.15 ↓ 
Highest ALP 2.80 ↑ Lowest SpO2 2.07 ↓ 
Lowest Fibrinogen  2.72 ↑ Highest Expiratory Tidal Volume 1.97 ↓ 
Highest Fibrinogen 2.62 ↑ Highest Albumin 1.86 ↓ 
Phenylalanine (7.446-7.404) 2.34 ↑ Highest PaO2:FiO2 ratio 1.70 ↓ 
FiO2 to give highest SpO2 2.32 ↑ Lowest Albumin 1.68 ↓ 
Total Secretions 2.27 ↑ Unknown (3.196-3.188) 1.51 ↓ 
Highest Respiratory Rate 2.20 ↑ Lactate (4.120-4.084) 1.46 ↓ 
Lowest Expiratory Minute 
Volume 

2.18 ↑ Lowest PaO2 1.41 ↓ 

Lowest Respiratory Rate 2.14 ↑ Unknown (3.016-3.01) 1.41 ↓ 
Unknown (2.063-2.057) 2.12 ↑ Alanine (1.489-1.461) 1.38 ↓ 
Lowest ALT 2.04 ↑ Lowest SpO2:FiO2 ratio 1.38 ↓ 
Highest Peak Airway 
Pressure 

2.04 ↑ Citrate (2.521-2.511) 1.30 ↓ 

Highest ALT 2.00 ↑ Phospholipids (3.225-3.213) 1.30 ↓ 
Lowest Urea 1.99 ↑ Unknown (2.370-2.363) 1.27 ↓ 
Lowest FiO2 1.94 ↑ Glutamine (2.470-2.460) 1.26 ↓ 
Unknown (2.078-2.063) 1.92 ↑ Citrate (2.547-2.537) 1.24 ↓ 
Unknown (2.052-2.046) 1.91 ↑ Phospholipids (3.213-3.196) 1.24 ↓ 
Lowest CRP 1.88 ↑ Highest PaO2 1.23 ↓ 
Highest PEEP 1.84 ↑ Unknown (2.899-2.894) 1.22 ↓ 
Glycoproteins (2.046-2.022) 1.80 ↑ Average Fluid Intake per Hour 1.18 ↓ 
Highest Systolic Blood 
Pressure 

1.80 ↑ Unknown (2.970-2.960) 1.16 ↓ 

Phenylalanine (7.340-7.313) 1.75 ↑ Unknown (3.443-3.438) 1.15 ↓ 
Unknown (1.052-1.045) 1.73 ↑ Glutamine (2.460-2.453) 1.12 ↓ 
Highest Urea 1.69 ↑ Unknown (2.912-2.907) 1.10 ↓ 
Lowest PEEP 1.65 ↑ Glutamine (2.449-2.444) 1.09 ↓ 
Unknown (2.057-2.052) 1.64 ↑ Lowest Expiratory Tidal Volume 1.07 ↓ 
Tyrosine (7.201-7.176) 1.63 ↑ Glutamine (2.453-2.449) 1.06 ↓ 
Highest CRP 1.62 ↑ Fluid Balance 1.05 ↓ 
Unknown (7.497-7.471) 1.60 ↑    
Unknown (8.127-8.12) 1.60 ↑    
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Unknown (5.474-5.457) 1.60 ↑    
Unknown (8.078-8.071) 1.60 ↑    
Unknown (7.857-7.850) 1.60 ↑    
Tyrosine (6.907-6.882) 1.58 ↑    
Unknown (1.037-1.032) 1.54 ↑    
Unknown (1.18-1.174) 1.47 ↑    
Unknown (1.168-1.163) 1.46 ↑    
Unknown (7.670-7.664) 1.44 ↑    
Unknown (1.025-1.019) 1.43 ↑    
FiO2 to give lowest PaO2 1.42 ↑    
Unknown (2.356-2.342) 1.40 ↑    
Unknown (1.062-1.057) 1.38 ↑    
Lowest Bilirubin 1.36 ↑    
Unknown (5.101-5.080) 1.34 ↑    
Unknown (7.79-7.756) 1.31 ↑    
Unknown (1.074-1.068) 1.31 ↑    
Highest Inspired Tidal 
Volume 

1.30 ↑    

Lowest Magnesium 1.29 ↑    
Unknown (1.174-1.168) 1.25 ↑    
Unknown (1.458-1.443) 1.23 ↑    
FiO2 to give lowest SpO2 1.21 ↑    
Unknown (1.113-1.107) 1.21 ↑    
Unknown (5.454-5.445) 1.20 ↑    
Highest Mean Arterial 
Pressure 

1.19 ↑    

Unknown (4.901-4.894) 1.18 ↑    
Highest Central Venous 
Pressure 

1.16 ↑    

Formate (8.488-8.484) 1.10 ↑    
Highest FiO2 1.08 ↑    
Lowest Potassium 1.06 ↑    
Highest Diastolic Blood 
Pressure 

1.05 ↑    

Highest Base Excess 1.04 ↑    
Unknown (5.501-5.495) 1.04 ↑    
Unknown (2.342-2.331) 1.03 ↑    
Highest Pressure Support 1.01 ↑    

 

6.5.3.2.2 Clinical and Inflammatory Data 

Combining clinical and inflammatory data into a single OPLS-DA model (R2Y 0.74, Q2Y 0.50, p<0.001) 

performed better than those detailed above with metabolic data and better than the inflammatory 



260 

 

 

 

data used alone (R2Y 0.76, Q2Y 0.27, p=0.14) for this patient group. The features contributing most to 

this combined model can be seen in table 6.9. The model was similar, although not quite as good, as 

that using only the clinical data (R2Y 0.69, Q2Y 0.52, p<0.001). 

6.5.3.2.3 Clinical, Metabonomic and Inflammatory Data 

Combining all three data types into a single OPLS-DA model performed only as well as the metabolic 

data alone (R2Y 0.94, Q2Y 0.16, p=0.44). If integrals of the metabolites were used instead of the 

whole spectra the model was better (R2Y 0.82, Q2Y 0.4, p=0.03) and could be improved further by 

taking either those features with a VIP greater than 1.0 (R2Y 0.70, Q2Y 0.56, p<0.001) or with VIP 

greater than 2.0 (R2Y 0.72, Q2Y 0.68, p<0.001), figure 6.6. The features that made up the last of these 

models can be seen in table 6.10. 

This model could only be improved upon by using the full metabolic spectra when only metabolites 

with VIP greater than 2.0 were used (R2Y 0.94, Q2Y 0.73, p<0.001), figure 6.7. This model had the 

same features as that in table 6.10 with the addition of maximum and minimum PEEP, Highest 

PaO2:FiO2, IP-10, IL-17A, IL-13, Il-12p70, ICAM-1, highest systolic blood pressure, minimum FiO2 and 

maximum expiratory tidal volume. However, within the metabolic component of this model were 

areas of the spectrum that corresponded to the baseline and not specific metabolic features. This 

was not improved by taking VIP>2.5. 

 

 

 

 

 

 



261 

 

 

 

Table 6.9. Variables with VIP>1.0 in the OPLS-DA model (R2Y 0.74, Q2Y 0.50, p<0.001) combining 

inflammatory and clinical data comparing patients with VAP and brain injuries before infection 

developed. Clinical variables are in black and inflammatory variables blue. 

Variables Increased in VAP Variables Decreased in VAP 
Variable VIP Direction of 

Change in VAP 
Variable VIP Direction of 

Change in VAP 
Lowest ALP 2.50 ↑ Highest SpO2:FiO2 ratio 1.83 ↓ 
Highest ALP 2.46 ↑ Lowest PaO2:FiO2 ratio 1.82 ↓ 
Highest Expiratory Minute Volume 2.45 ↑ Lowest SpO2 1.75 ↓ 
Lowest Fibrinogen  2.37 ↑ Highest Albumin 1.55 ↓ 
Highest Fibrinogen 2.29 ↑ Highest PaO2:FiO2 ratio 1.43 ↓ 
FiO2 to give highest SpO2 1.96 ↑ Lowest Albumin 1.42 ↓ 
Total Secretions 1.92 ↑ Lowest PaO2 1.19 ↓ 
TNFα 1.91 ↑ Lowest SpO2:FiO2 ratio 1.17 ↓ 
Highest Respiratory Rate 1.87 ↑ Highest PaO2 1.03 ↓ 
Lowest Expiratory Minute Volume 1.84 ↑    
Lowest ALT 1.82 ↑    
Lowest Respiratory Rate 1.82 ↑    
Highest ALT 1.79 ↑    
Lowest Urea 1.73 ↑    
Highest Peak Airway Pressure 1.73 ↑    
Highest Expiratory Tidal Volume 1.66 ↑    
Lowest FiO2 1.64 ↑    
Lowest CRP 1.61 ↑    
Highest PEEP 1.55 ↑    
ICAM-1 1.53 ↑    
IP-10 1.52 ↑    
Highest Systolic Blood Pressure 1.52 ↑    
IL-13 1.48 ↑    
IL-12p70 1.47 ↑    
Highest Urea 1.47 ↑    
IL-17A 1.47 ↑    
Highest CRP 1.40 ↑    
Lowest PEEP 1.39 ↑    
IFNγ 1.25 ↑    
FiO2 to give lowest PaO2 1.20 ↑    
LTC4 1.16 ↑    
Lowest Bilirubin 1.14 ↑    
Highest Inspired Tidal Volume 1.12 ↑    
Lowest Magnesium 1.08 ↑    
IL-1β 1.05 ↑    
FiO2 to give lowest SpO2 1.02 ↑    
Highest Central Venous Pressure 1.02 ↑    
Highest Mean Arterial Pressure 1.01 ↑    
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Figure 6.6. OPLS-DA model with one component comparing patients admitted with brain injuries, blue bars, to those with VAP, green bars, based on clinical 

data , inflammatory data and integrals of metabolic spectral features using only variables with a VIP>2.0 . (R2Y 0.72, Q2Y 0.68, p<0.001) a. before and b. 

after cross validation. VAP cases can be seen to separate in a positive direction along the first component, there is little change after cross validation.  

a. b. 
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Figure 6.7. OPLS-DA model with one component and one orthogonal component comparing patients admitted with brain injuries, blue circles, to those with 

VAP, green triangles, based on clinical data , inflammatory data and full metabolic spectral features using only variables with a VIP>2.0 . (R2Y 0.94, Q2Y 0.73, 

p<0.001) a. before and b. after cross validation. VAP cases can be seen to separate along the first component and after cross validation this separation 

remains good. 

 
a. b. 
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Table 6.10. Features comprising an OPLS-DA model (R2Y 0.72, Q2Y 0.68, p<0.001) comparing patients 

with brain injuries to those with VAP using only features with VIP>2.0, combining clinical, 

inflammatory and integrals of metabolic data. Clinical variables are in black, metabolic variables in 

red and inflammatory variables blue. 

Variable 
Lowest ALP 
Highest ALP 
Lowest Fibrinogen  
Highest Expiratory Minute Volume 
Highest Fibrinogen 
Phenylalanine (7.446-7.404) 
FiO2 to give highest SpO2 
Lowest ALT 
Total Secretions 
TNFα 
Highest ALT 
Highest Respiratory Rate 
Lowest Expiratory Minute Volume 
Highest SpO2:FiO2 ratio 
Lowest Respiratory Rate 
Lowest PaO2:FiO2 ratio 
Unknown (2.063-2.057) 
Lowest SpO2 
Highest Peak Airway Pressure 

 

When the patients with VAP were compared to those with brain injuries who did not develop 

infection, but spent a similar time on ICU, combining clinical with metabolic data and combining all 

data types failed to produce OPLS-DA models with any predictive capacity with negative Q2 in all 

cases. Combining clinical and Inflammatory data (R2Y 0.88, Q2Y 0.55, p=0.07) produced a model that 

was similar to that with clinical data alone, however, using only the inflammatory data for this group 

of patients produced a more predictive model (R2Y 0.98, Q2Y 0.56, p=0.31). Combining clinical data 

and metabolite integrals (R2Y 0.86, Q2Y 0.18, p=0.9) and using all data with metabolite integrals (R2Y 

0.69 Q2Y 0.16, p=0.59) generated predictive models, although, not as good as those with only 

inflammatory data. The most predictive model was made when all data were combined using 

metabolite integrals selecting those features with VIP>2.0, figure 6.8, (R2Y 0.87, Q2Y 0.84, p=0.001). 

The features that were important in this model can be seen in table 6.11. Many of the variables used 
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in this model represented oxygenation so the model was reconstructed only using the one with the 

highest VIP, the lowest PaO2:FiO2 ratio, the other markers of oxygenation and the duplicate CRP 

value with the lowest VIP were omitted. When this was performed the model (R2Y 0.92, Q2Y 0.86, 

p=0.001) performed similarly. 

Table 6.11. Features used in an OPLS-DA model (R2Y 0.87, Q2Y 0.84, p=0.001) comparing patients 

with VAP to those with brain injuries without infection at a similar time point to that when VAP 

developed. Using a combination of clinical, inflammatory and metabolite integral data but only 

selecting features with VIP>2.0. Clinical variables are in black, metabolic variables in red and 

inflammatory variables blue. 

 

  

Variable 
Lowest PaO2:FiO2 ratio 
IL-6 
Highest SpO2:FiO2 ratio 
Lowest SpO2:FiO2 ratio 
MCP-1 
IL-12p70 
Lowest FiO2 
Highest FiO2 
5,6-DHET 
FiO2 to give highest SpO2 
IFNγ 
FiO2 to give highest PaO2 
Highest PaO2:FiO2 ratio 
Lowest CRP 
Highest CRP 
FiO2 to give lowest PaO2 
Unknown (6.938-6.911) 
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Figure 6.8. OPLS-DA model with one component comparing patients admitted with brain injuries without infection at time point 4, blue bars, to those with 

VAP, green bars, based on clinical data , inflammatory data and metabolic integrals using only variables with a VIP>2.0 (R2Y 0.87, Q2Y 0.84, p=0.001) . a. 

before and b. after cross validation.  VAP cases can be seen to separate along the first component and after cross validation this separation remains good. 

 

a. b. 
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6.6 Discussion 

This chapter focused on the application of multivariate analysis in the form of PCA and OPLS-DA to 

clinical data and the combination of clinical data with metabonomic and inflammatory data. Few 

attempts have been made previously to use these techniques with clinical data sets (344-346) and 

no studies exist using either data sets from patients on ICU or from those with pneumonia.  

The use of multivariate techniques with clinical data produced both PCA and OPLS-DA models that 

were able to separate patients with brain injuries from those with either pneumonia or VAP. This 

was not entirely unexpected as some of the clinical data, oxygenation, secretions, temperature and 

white blood cell count were part of the CPIS that was used to define both VAP and pneumonia. 

However, even when these and closely related features were removed from the models they 

retained a great deal of their predictive capacity. The clinical variables that were important in the 

comparison of patients admitted with pneumonia or VAP to those with brain injuries were not the 

same. Comparing pneumonia to brain injury the features that were most important was the amount 

of PEEP which was highest in the pneumonia group and was likely to represent the difficulty with 

oxygenation that occurs with pneumonia. CRP was also higher in the pneumonia group as may be 

expected as CRP has previously been used as an aid to the diagnosis of this condition (22-25).  

Patients with pneumonia had higher airway pressures, respiratory rate, PaCO2, and minute 

ventilation and lower pH and lowest expiratory tidal volume than those with brain injuries 

suggesting a greater difficulty with ventilation and CO2 clearance in this group (348-350). All 

variables that reflected oxygen requirement for example, PaO2:FiO2 ratio, SpO2:FiO2 ratio and lowest 

PaO2 demonstrated the greater degree of hypoxaemia in those with pneumonia as expected from 

both the natural history of the condition and the CPIS. Similarly white cell count and volume of 

secretions were predictably higher in those with pneumonia as expected as both are components of 

the CPIS. Of note temperature did not appear in the multivariate model comparing brain injury with 
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pneumonia, perhaps reflecting the disregulated temperature control that often occurs in brain 

injury. Of the other variables to appear important albumin levels were higher in those with brain 

injuries. Low albumin has previously been associated with poorer outcomes and worse severity with 

pneumonia (351-354) and may reflect the longer duration of disease, poorer nutritional status in 

patients with pneumonia or the effect on albumin of having a pro-inflammatory state such as 

infection, other pro-inflammatory conditions such as a surgical insult are known to lower albumin. 

Similarly haemoglobin levels were lower in those with pneumonia, although haematocrit was higher 

in this group, and may represent a combination of anaemia associated with a more prolonged 

disease and a degree of dehydration occurring in pneumonia. Anaemia (355, 356) with an increased 

red cell distribution width (357) has been associated with a complicated hospital course in those 

with pneumonia so it is not surprising that anaemic patients with pneumonia find themselves on 

ICU. Although there is no work looking at anaemia as a risk factor for pneumonia in adults it has 

been recognised as such in children in certain populations (358, 359) with anaemia being associated 

with two to five times the risk of pneumonia, potentially as a result of underlying iron deficiency in 

the majority of cases. 

Fibrinogen levels were also found to be higher in those with pneumonia which likely reflects the way 

in which it acts as an acute phase reactant, activates pro-inflammatory processes (360, 361) by 

activating cytokines such as TNFα and IL-1β and possibly has a role in promoting certain bacterial 

survival (362). However, other clotting features, prothrombin time and activated partial 

thromboplastin time, were found to be elevated in those with pneumonia suggesting that there may 

be either a predisposition to coagulopathy (363) in this group or that in the brain injury group there 

was more aggressive correction of coagulopathy due to the risk of bleeding. Tachycardia in those 

with pneumonia was a useful marker in building a model to separate pneumonia from brain injury 

and pneumonia patients had a higher level of consciousness than the brain injury cohort as may be 

expected either from the underlying pathology in the brain injury group rendering the patients 



269 

 

 

 

unconscious or because of the use of sedative drugs to ensure deep sedation, as a neuroprotective 

measure, in this group. Alkaline phosphatase and urea levels both had VIP scores of just over 1. Urea 

has previously been recognised as a marker of severity in pneumonia (364-366) and is likely to 

represent relative dehydration in this group of patients. The higher ALP in pneumonia patients is 

interesting as although it has not been specifically described in pneumonia, elevated ALP can be 

associated with sepsis (367-369) through sepsis induced cholestasis.  

When brain injured patients were compared to those with VAP the pattern of clinical variables that 

were important in separating the two groups were quite different from those separating pneumonia 

from brain injuries. Although features representing the degree of hypoxaemia were important in the 

model, including the level of set PEEP, suggesting a greater degree of hypoxaemia in the VAP group, 

as would be expected, they were not the most important variables. The levels of ALP in the VAP 

patients were higher than in those admitted with brain injuries. The reason for this may be either 

because of sepsis related cholestasis (367-369) or that the VAP group had a greater time to be 

exposed to drugs increasing the chances of drug induced cholestasis and liver dysfunction, either of 

these explanations may also account for the appearance of bilirubin as a distinguishing variable in 

this model. Fibrinogen was again important in this model acting as an acute phase reactant (360, 

361). Variables relating to higher tidal volumes, respiratory rates and minute ventilation were 

greater in the VAP group suggesting greater difficulty in CO2 control. Secretion burden was greater in 

the VAP group, again as would be expected from the CPIS. Other than hypoxaemia and secretion 

burden the other features of the CPIS, temperature and white cell count, did not appear in the 

multivariate model implying that within this group these are not important features to differentiate 

VAP. Similar results have been reported previously in a group of brain injured patients (370). 

Other features that formed the most important variables to differentiate VAP from brain injuries 

included albumin levels that were lower in those with VAP, probably representing the greater 

duration of ICU stay of these patients and their heightened catabolism. Similar to the ALP levels 



270 

 

 

 

alanine transaminase levels were also greater in the VAP group but were not as important in the 

model. High CRP was also a variable that played a part in identifying those with VAP, although not to 

such a degree as for pneumonia. CRP has previously been seen to have use in identifying VAP (92, 

371) and to track its response to antibiotics and predict survival (372-374) although this has not 

always been the case and the importance of CRP has been controversial (370, 375). Urea was again 

seen to be higher in the VAP than brain injury group. 

When VAP was compared with brain injury patients without infection who had spent a similar time 

on intensive care parameters associated with oxygenation dominated the model. However, the next 

most important variables were CRP as discussed above. In this model creatinine and sodium became 

important, with higher levels being present in those with VAP, implying a trend towards relatively 

higher rates of renal failure within those who developed VAP, this was also supported by the fact 

that urine output was lower in those with VAP. Within this model hourly fluid input and total fluid 

input over 24h were lower in those with VAP than in those with brain injuries which may have 

accounted for the other renal parameter trends. However, when the data were inspected the 

absolute sodium and creatinine levels were all within the normal range suggesting only a relative 

impairment in renal function, not one generally recognised as renal failure, but these may represent 

subtle changes occurring in those developing infection that may not be apparent to a bedside 

clinician.  Again features suggesting greater difficulty with ventilation, including tidal volume, arterial 

PaCO2, minute ventilation and peak airway pressure were higher in those with VAP implying a 

greater difficulty in achieving neuroprotective CO2 targets in patients with VAP. Platelet count was 

higher in those who did not develop VAP but on closer inspection of the raw data this difference 

could be seen to reflect variations within the normal range for all participants except one of the 

patients without VAP whose result lay above the upper level of normal. This may reflect slight 

reduction of platelet count in the context of sepsis or the elevated platelet count in a single patient 

may reflect ongoing systemic inflammation as a response to intracerebral blood. The influence of 
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blood pressure measurements on the differentiation of VAP from those without infection was a little 

contradictory. The lowest recorded mean arterial and diastolic blood pressures where greater in 

those without VAP, which may represent the lack of sepsis in this group. However, highest recorded 

systolic pressures where higher in those with VAP. As with the model comparing VAP to patients 

with brain injuries at admission to ICU, ALP and bilirubin are higher in those with VAP than those 

without, although these features were not as important in constructing this model as in the other 

models. This added support to the idea that these results may represent cholestasis in the context of 

infection as opposed to results relating to duration of ICU stay, such as exposure to drugs. Results 

from the comparisons of those with VAP to other groups have to be interpreted with care as the 

small number of patients in this group meant that small changes in the variables of one patient 

potentially had a great impact on the models and variables’ apparent importance. Also of note is 

that fact that in some of the models, especially when brain injured patients were compared to those 

with VAP, the number of patients in each group were unbalanced which may have had an impact on 

the statistical analysis. 

Combining clinical data with data from the inflammasome was more straight forward than 

combining clinical data with metabonomic data. This was because the inflammatory data consisted 

of individually measured variables that could be considered as parameters similar to those 

laboratory variables contained within the clinical data set. However, combining clinical data with 

spectral metabolic data was more of a challenge. The metabonomic data set was made up of a 

continuum of variables with each metabolite being comprised of a collection of many data points. As 

little work has been done combining these two types of data before there was little precedent by 

which to proceed. In order to try to account for the potential problem that the sheer number of 

variables contained within the metabolic data may have saturated the data set, models were made 

using both the metabolic spectral data and a simpler data set using integrals of all the peaks in the 

spectral data. On the whole, similar metabolites were seen to be important with both methods. 
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However, the importance of lipids was under represented when integral data was used. This 

probably reflected the fact that several lipid species occupy similar spectral regions. Subtleties in the 

spectral waveform pattern could be elucidated, when the entire spectral data set was used, that 

represent changes in these different species. When only integrals were used these subtleties were 

lost and the lipids seemed to be unimportant. For example, a typical lipid peak may contain around 

350 data points from the spectral data set whereas a metabolite such as formate only around 20, 

leading to lipids being over represented in the spectral data.  Similarly when the integrals were used 

some metabolites that had previously not seemed important and thus not identified appeared 

prominent in the models, which may have reflected slight differences in alignment of the different 

spectra with some spectra having part of the metabolite missed in the integral region. Finally, when 

VIP scores of 1.0 or 2.0 were used as a threshold for important variables in combined models this 

method failed to be of value for the spectral data as several areas of baseline variation were 

detected as important, although baseline variation was not apparent when the spectra were 

examined manually this differences may suggest differences in the protein content of the two 

sample sets. This issue was solved by using a higher threshold of 2.5 for models with these data sets. 

Previously when metabolic data were used this problem was not identified as the spectral data, 

when analysed alone, could be displayed on the OPLS-DA regression co-efficient plots where the 

colour of the peaks represented the significance of the variable and in these cases baseline variation 

never appeared to be a problem. When the data sets were combined these figures could no longer 

be used as not all the data was spectral in nature. 

Combining clinical data with either the metabolic or inflammatory data to compare pneumonia with 

brain injury at admission produced models that were better than models based on either of these 

‘omics’ data sets alone although not quite as good as when only clinical data were used. This may be 

because the initial diagnosis of pneumonia was based firstly on clinicians’ opinion and then refined 

using the CPIS. It may have been expected that the most predictive variables would be those that 
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the physician had access to when making their judgement. Importantly, however, even when 

variables that were related to the CPIS score were omitted from the models only a little predictive 

capacity was lost, similarly when the most important variables were examined for these models 

those from the CPIS were not the most important and some did not feature in these models at all.  

When combining clinical and metabolic data both data types appeared important in the models to 

differentiate pneumonia from brain injuries, when the whole spectra were used important 

metabolites appeared similar to those identified in chapter 3 with lipid species, alanine, 

glycoproteins, phospholipids, phenylalanine and formate appearing important. Of these formate, 

glycoproteins, phospholipids and alanine were significantly different, after correction for the false 

discovery rate, when the metabolite integrals were compared using univariate methods. The clinical 

features were those described when clinical variables alone were used. When the inflammatory data 

set was combined with clinical variables, the clinical data dominated the models. The only 

inflammatory molecules that appeared important in the model were lipoxin B4, E-selectin, MCP-1, 

ICAM-1, IP-10, tetranor-PGDM and TNF-α, IL-13,  which were higher in those with pneumonia and 6-

keto-PGF1alpha, 5,6-DHET, DHA, EPA, 10(S),17(S)-DiHDoHE and 9(S)-HODE in those with brain 

injuries. These were almost identical to the most important inflammatory mediators seen in chapter 

4, with the exception of 13(S)HODE, which was previously seen to be useful in separating patients 

with pneumonia from those with brain injuries. In the model combining clinical and inflammatory 

data this substance only just missed out on being important with a VIP of 0.98. There was a slight 

difference in the order in which some of these inflammatory mediators appeared in the models 

between those made here and those constructed in chapter 4. This may reflect slight differences in 

the total number of patients included in the two chapters, as here only patients who had all three 

sets of clinical, metabolic and inflammatory data were used. 
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Combining all three data types failed to improve the model to a degree that outperformed using 

clinical data alone. The best model based on the Q2Y from cross validation was that made using a 

combination of metabolic and clinical data using either the entire spectral data or the integrals of 

the peaks using only features with a VIP>2.0. It is of note that inflammatory data were not involved 

in the best model. This may have been because many of these inflammatory mediators are known to 

have a transient role in the inflammatory processes in infection. The variable amount of time 

between patients with pneumonia becoming unwell and being admitted to ICU may have meant that 

this group of patients were captured at different stages in there inflammatory cascades, lessening 

the apparent importance of these markers. The factors that made up the best model made clinical 

sense. The important clinical variables were PEEP and PaO2:FiO2 ratio reflecting the increased 

difficulty in oxygenating patients with pneumonia, CRP as has been used previously as an aid to 

pneumonia diagnosis (22-25) indicating the inflammatory processes ongoing in this group and 

albumin which may be a marker of either the more prolonged duration of illness in patients with 

pneumonia prior to critical care admission, poorer nutritional status or an ongoing inflammatory 

process and maybe a marker of severity of disease (351-354). The metabolites that formed part of 

this model were lipid species which may reflect either a response to inflection (269, 270) or risk 

factor for brain injury (276, 278) as described earlier. Alanine was again seen to be reduced in those 

with pneumonia as previously described (145, 281), potentially reflecting either alterations in 

nutritional status or release of amino-acids from muscle. Formate was once again seen to be higher 

in those with pneumonia than in those without as described in chapter 3 as were acetylated 

glycoproteins that may represent acute phase reactants, such as immunoglobulins, often raised in 

infection and inflammation (376). On validation with the independently classified patients this model 

performed well with sensitivity of 50%, specificity of 100%, positive predictive value of 100% and 

negative predictive value of 71%. This is similar, if not better than reports of the performance of 
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clinical variables (12, 13, 16-19), CRP and PCT (22-24) or radiographs (26, 27) to aid in the diagnosis 

of primary pneumonia.   

When data sets were combined to compare VAP to brain injured patients combining clinical and 

metabolic data failed to perform as well as clinical data alone. However, a combination of clinical 

and inflammatory variables performed better than when clinical and metabolic data were combined 

and similarly to when only clinical data were used. This model contained a number of inflammatory 

mediators along with a similar pattern of clinical variables as described earlier. All of the most 

discriminant inflammatory mediators occurred in the VAP group and these included TNFα, ICAM-1, 

IP-10, IL-13, IL-12p70, IL-17A, INFγ, LTC4 and IL-1beta, as described in chapter 4, most of which are 

pro-inflammatory. The best model to distinguish patients with VAP from those with brain injuries at 

the start of ventilation was made when combining all three data types and taking variables with a 

VIP greater than 2.0. In this model clinical features appeared most important and were made up of 

ALP suggesting cholestasis, fibrinogen as an acute phase reactant, markers of oxygenation and 

ventilation and the burden of secretions as previously identified in the CPIS, metabolic data formed 

only a small component of this model with the only positively identified metabolites being part of 

phenylalanine, possibly representing changes in its metabolism in sepsis to activate the immune 

system or because of increased oxidative stress (282-284), phospholipids, acetyl groups of 

glycoproteins and some lipid species. Several inflammatory mediators formed part of this model 

with TNFα, a well-known mediator of inflammation, being the most important as has been noted 

before in pneumonia (163, 299). Other inflammatory mediators were predominantly cytokines 

including the chemotractant IP-10 and adhesion molecule ICAM-1 along with the interleukins IL-13, 

IL-12p70 and IL-17A, all of which have pro-inflammatory actions. IL-13 has been associated with 

airways inflammation. Interestingly several of these inflammatory mediators work synergistically 

supporting the fact that they are found to be important together. The fact that inflammatory 

mediators were much more important in this model than in the model comparing patients with 
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pneumonia at admission is interesting. This may be because the subtlety of the changes in the 

inflammasome are lost in the pneumonia cohort who present at different stages of their disease 

where as we were able to track the VAP patients, allowing sampling at more similar times during the 

disease process possibly meaning that their cytokine swings were more in alignment. 

When patients with VAP were compared to brain injured patients without infection who had spent a 

similar amount of time on the intensive care unit several of the models were unable to differentiate 

the two groups which may reflect the small number of patients in each group. The best model was 

made using a combination of clinical, inflammatory and metabolic data where integrals of the 

metabolic spectra were used and only those variables with a VIP greater than 2.0 were selectively 

used. In this model metabolic data played only a very limited part with only a single, previously 

unidentified metabolite being important. The majority of variables in this model were clinical, mainly 

representing the worse oxygenation in those developing VAP, and higher CRP levels. A combination 

of cytokines and eicosanoids formed part of this model. IL-6, MCP-1, IL-12p70 and IFNγ were all 

higher in those with VAP compared to those without whilst 5,6-DHET was higher in those without. IL-

6 is an important pro-inflammatory mediator in sepsis and has been seen to be higher in VAP (377) 

and pneumonia (298, 299) as has IFNγ (298). 

The use of multivariate methods with clinical and combinations of clinical and ‘omics’ data showed 

promise in building models comparing patients with brain injuries to those with either pneumonia at 

admission or VAP. Combining clinical and ‘omics’ data may also have other advantages beyond 

improving diagnostics by helping to improve understanding of underlying mechanisms of disease 

and the interaction of metabonomics, inflammatory state and easily measured clinical parameters. 

However, there are several limitations to this study. Firstly there was some missing data within the 

clinical data set, which was not a problem with either the metabolic or inflammatory data sets. 

However, on the whole the rate of missing parameters was low. Where rates were higher it was 

usually because certain parameters were only applicable in some situations such as with some 
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modes of ventilation. Missing clinical data is unfortunately not uncommon in the clinical 

environment. It was decided to include all variables within the models, even those with a significant 

proportion of missing data. However, this may become problematic when the number of patients is 

very small. For example when the VAP group was examined there was one patient with VAP who did 

not have a set of laboratory tests sent during the 24h period of interest, it is possible that this 

missing data has a significant impact on the model when there are only five such patients in the 

group. 

Another concern with clinical data is that it was recorded manually at the bedside and is therefore 

open to error or potential subjective assessment. All the bedside clinical data were recorded by hand 

on an hourly basis by the nurses caring for the patients. This meant that for each hour a single value 

for each parameter was taken to represent the clinical situation during that time. Inaccuracy could 

have occurred either if a non-representative value was chosen or if there was a transcription error. 

Further error may have then occurred where this data was transcribed onto the study data sheets 

where the minimum and maximum values for each variable were taken for each 24h period. To 

attempt to detect errors all the clinical data were inspected to find non-physiological values that 

would imply transcription error, very few of these were found suggesting a good rate of 

transcription accuracy.  

Patients were selected for inclusion based on either clinical opinion or CPIS all of which are based on 

clinical data. It was therefore not entirely surprising that clinical data performs well in differentiating 

the groups. However, in the absence of a gold standard test to diagnose either pneumonia or VAP 

clinical features are all that were available by which to allocate groups. The fact that components of 

the CPIS were frequently either not present or not the most important variables in these models 

supports the validity of looking at the clinical data in this fashion. Similarly the fact that predictive 

models could be built even when CPIS components were omitted implies that other discriminant 

features exist in the data set than were initially used to define the groups. 
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Unlike either the metabolic or inflammatory data, clinical data has the added problem that many of 

the measured variables that make up the models also serve as targets or triggers for intervention 

that may not be the same for each group in question. Differentiating variables may then in fact 

represent confounding based on treatment targets and not genuine clinical differences. An example 

of this may be both blood pressure and arterial carbon dioxide tensions. Although vasopressors and 

inotropes would be routinely started to ensure adequate perfusion pressures in both brain injured 

and pneumonia patients, blood pressure targets may be higher in those with brain injuries where 

cerebral perfusion pressure needs to be maintained. Similarly, in patients with brain injuries tight 

carbon dioxide control is desirable to prevent exacerbation of cerebral injury this may lead to more 

aggressive ventilation strategies than may be used in those with pneumonia. It is conceivable that in 

both of these situations blood pressure, carbon dioxide or ventilation parameters may appear as 

differentiating factors in a model when in fact they are confounders brought about by the different 

clinical requirements of the two groups under investigation. In this data set, however, it seemed 

unlikely that confounding was a significant issue. Firstly, when the comparison of pneumonia and 

brain injuries was examined most of the variables that were important either make clinical sense, 

such as the predominance of features suggesting impaired oxygenation, or are laboratory tests that 

are not specifically manipulated such as albumin and CRP levels. Secondly, when the patients with 

VAP were used in comparisons they were compared to other patients with brain injuries where 

similar clinical targets would have been employed. Some features, however, were present in these 

models that could imply confounding. Firstly PEEP was an important feature when those with 

pneumonia were examined. This may be a result of the treating doctor being aware of radiological 

changes thus influencing their decision for a higher PEEP setting in an attempt to re-expand 

consolidated or collapsed lung and may not then be an independent predictor of pneumonia. Also 

higher carbon dioxide levels were seen in those with pneumonia which may represent a more 

relaxed carbon dioxide target as part of a long protective ventilation strategy in this group. 
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This data set was limited to only those clinical variables that were routinely recorded in the unit 

where these patients were recruited. It may be possible to build more predictive models by 

incorporating other clinical variables. For example, pro-calcitonin has been used as a diagnostic aid 

in both pneumonia (24, 25) and VAP (91, 93) and it is conceivable that an improved model could be 

made with its incorporation. In the models described here clinical data were confined to 

measureable, numerical variables. This meant that other potentially important variables such as 

secretion colour, radiograph appearances and microbiology data were omitted. The models may 

well be improved if these data could be incorporated. 

Finally these models were made using a slightly smaller group of patients than had been used when 

either the metabolic or inflammatory data were examined alone as only those patients with all three 

sets of data were selected. However, it appears that the slightly reduced number of patients had 

little impact on the models as the features that were important using the inflammatory and 

metabolic data were relatively consistent between the models.  

 

6.7 Conclusions 

Using multivariate techniques, usually applied to ‘omics’ data sets, with clinical data showed promise 

in separating those with both pneumonia and those with VAP from those with brain injuries. The 

features found were not only those used to group the patients in the first place but other variables 

that may not have otherwise been thought of as discriminant. Combining clinical data with both 

metabolic and inflammatory data may have a greater ability to differentiate pneumonia and VAP 

from brain injured patients than using any one data set alone. This seems especially true when only 

the most important variables are used to construct the models. 
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7. FINAL CONLUSIONS 

Pneumonia is a common cause for admission to the critical care unit and development of VAP is the 

most common nosocomial infection occurring whilst patients are ventilated. Clinical features and 

laboratory tests lack sensitivity and specificity for this diagnosis and chest radiographs can be 

abnormal for a number of reasons other than infection. Although microbiological confirmation of 

infection is often sought, these results can take several days to return from the laboratory and are 

not able to distinguish infection from colonisation of the respiratory tract. Often patients with 

severe pneumonia are too unwell to undergo more invasive sampling techniques, such as 

bronchoscopy, which themselves are not without risks. The inability to make an accurate diagnosis 

of pneumonia and specifically VAP leads to both the under and over prescription of antibiotics both 

of which are associated with an increase in morbidity and mortality. New tests are required to 

improve the diagnosis of pneumonia in critically unwell patients and allow more targeted antibiotic 

therapy. This programme of study was an attempt to assess the potential of various profiling 

techniques applied to serum, urine and exhaled breath condensate to aid in the diagnosis of 

pneumonia in a prospectively recruited group of critically unwell patients. 

Metabonomics, the study of global metabolic changes in the context of disease states, has been 

used in a number of clinical conditions with a range of biofluids, however, little work has been done 

previously focusing on either pneumonia or the critically ill. Application of 1H-NMR spectroscopy to 

the serum of patients with pneumonia allowed them to be successfully distinguished from a similar 

cohort of ventilated patients admitted with brain injuries. The metabolites allowing these patients to 

be identified fell into four main classes: lipids, glycoproteins, amino acids and formate. Amino acid 

changes followed previously described patterns with alanine and glutamine being reduced (145, 148, 

281) in those with infection and phenylalanine being increased (145, 148, 281). Explanations for such 

amino acid changes may be many. They may reflect changes in oxidative metabolism, nutritional 
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state, release from skeletal muscle or direct immune activation. The finding that formate was more 

abundant in those with pneumonia has not previously been described.  

Glycoproteins are a non-specific class of molecule that include members of a range of mediator 

classes from hormones to antibodies and major histocompatibility complex molecules so their 

increase in those with pneumonia may have represented immune activation. However, to 

understand these changes more fully and understand the exact glycoproteins involved in class 

differentiation further targeted analysis would have to be performed.  Lipid changes have been 

previously recognised in both infection (149, 265, 267, 269, 270) and brain injury (274-278) so it was 

unsurprising that there was a change in the balance of these species between the two groups in this 

study. However, NMR is unable to differentiate individual lipid species so further lipid identification 

was not possible. 

In order to explore the role of both immune activation and one class of lipids, experiments were 

conducted to measure fatty acids and their metabolites, the eicosanoids, as well as a panel of 

cytokine and soluble adhesion molecules giving a panel of over fifty inflammatory mediators. Results 

from comparing inflammatory profiles showed that the use of a panel of eicosanoids was able to 

differentiate pneumonia from brain injury with a similar predictive capacity to that using an 

untargeted metabonomic approach. Cytokines alone performed less well but when cytokines and 

eicosanoids were combined predictive capacity was better. The overall pattern of inflammatory 

changes seen showed that the fatty acids and their metabolites were more abundant in those 

patients with brain injuries than pneumonia whereas the converse was true for cytokine species. 

Specifically arachidonic acid, eicosapentanoic acid, 6-keto-PGF1α, 5,6-DHET, docosahexaenoic acid, 

9(S)-HODE, 13(S)-HODE, 10(S),17(S)-DiHDoHE, and 5(S)-HETE were the most important species in 

those with brain injuries and ICAM-1, E-selectin, IP-10, MCP-1, IL-13, TNFα, INFγ and IL-6 in those 

with pneumonia. The greater levels of eicosanoids in those with brain injuries may have arisen as a 
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predisposition to brain injury in these patients (285, 286) or may have been a direct result from the 

injury (290-294) via mechanisms modulating cerebral circulation. It was perhaps not a surprise that 

that cytokines were abundant in those with infection. The most important cytokines were those 

involved in chemoattraction and those recognised to play an active role in inflammation confirming 

the inflammatory nature of this group. 

Unfortunately the application of metabonomic methods to both urine and exhaled breath 

condensate performed less well than serum. Metabolite presence in urine was much more 

heterogeneous from patient to patient than those in serum with a greater degree of peak 

misalignment. This made metabolite identification much more challenging. The patients in intensive 

care were subject to treatment with a large number of therapeutic drugs, with over 200 being 

documented across all recruits, many of which would be excreted either unchanged or as 

metabolites in the urine. This was compounded by the fact that drug metabolism would be altered 

depending patient factors, such as enzyme activity, concomitant use of other drugs that may interact 

or alter metabolisms and potentially different disease states. This made detecting drugs within the 

urine difficult and raised the concern that many of the models that could differentiate clinical groups 

were in fact finding treatment differences and not genuine metabolic differences. 

Exhaled breath condensate was an attractive biofluid to study as it originates directly from the site 

of infection, however, it posed its own challenges with the metabolites it contained being at very 

low concentrations. This meant that NMR had insufficient sensitivity to detect a large enough 

number of metabolites to allow statistical comparison. When a more sensitive MS based 

methodology was applied to these samples it was overly sensitive to both the effects of batch and 

impurities within the solvents used and thus the data required adjustment to attempt to limit these 

effects. Although models could be made that had some ability to differentiate pneumonia from brain 

injury they performed less well than those using metabolic and inflammatory profiling of serum. 
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When only those brain injured patients who did not go on to develop VAP were used as controls it 

became impossible to build a predictive model raising concerns over the validity of the original 

models. In order for EBC to be clinically useful much more work will need to be done, that was 

outside the scope of this project, to establish the best collection and analytical methods for this type 

of sample in this patient group. Technological advances, such as those being used to develop 

intelligent surgical instruments (378) that can analyse vapour in real time, may prove beneficial in 

improving the analysis of EBC. Once these technical issues are resolved this biofluid may still have 

potential to give useful diagnostic information for the critically ill, however, from the data presented 

here its use remains uncertain. 

As clinical tests are rarely used in isolation and are usually combined with clinical data and clinical 

opinion the same multivariate techniques were applied to a large set of clinical data. As may be 

expected, for a diagnosis which is based predominantly on clinical features, the clinical data 

performed well when comparing pneumonia to brain injuries, even when components of the CPIS 

were removed. Many of the discriminating features were expected, including ventilation parameters 

such as PEEP, peak airway pressures and respiratory rate along with general markers of infection, 

such as CRP, and markers of nutritional state including albumin. When clinical data were combined 

with both metabolic and inflammatory data the best model (R2Y 0.70, Q2 0.68, p<0.001) could be 

made by taking the fifteen most important features including minimum and maximum PEEP, 

minimum and maximum CRP, minimum and maximum albumin, glycoproteins, formate, minimum 

and maximum PaO2:FiO2 ratio, maximum Peak airway pressure, maximum respiratory rate and two 

unidentified metabolites. Of note this model only contained clinical and metabolic data, addition of 

inflammasome data were not able to improve classification. 

Across all profiling methodologies prediction of brain injured patients developing VAP from other 

brain injured patients was more difficult than differentiating patients with pneumonia on admission. 
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There were a number of reasons to explain this. Firstly those admitted with pneumonia were likely 

to have been unwell for longer in the community prior to hospital admission having implications for 

their nutritional and inflammatory state. Also the number of patients developing VAP was small 

compared to both those with brain injuries and those admitted with pneumonia, making any 

changes potentially more difficult to detect. Finally it may be expected that the clinical difference 

between a patient with only pneumonia compared to one with only a brain injury may be much 

greater than that between one with both a brain injury and VAP and a brain injury alone and this 

may have been reflected in the limited differences in the inflammatory and metabolic profiles. 

Serum metabolic data had only a week ability to differentiate patients with VAP from those without 

and the metabolites that showed the most discriminant potential were similar to those when a 

primary diagnosis of pneumonia was considered with lipids, glycoproteins and phenylalanine 

showing a small amount of discriminant potential. When the inflammatory data were considered, 

eicosanoids showed no ability to differentiate VAP and cytokines only a weak ability. However, when 

these modalities were combined the predictive capacity improved, although still with a non-

significant p-value, perhaps a reflection on the small number of patients involved. In this comparison 

important inflammatory mediators were again most abundant in the VAP patients, this time being a 

combination of the cytokines and soluble adhesion molecules. The differences between those with 

VAP and brain injuries were more pronounced, although again with a non-significant p-value, when 

samples were compared from similar time points. Most mediators were more abundant in those 

with VAP and included IL-6, MCP-1, IL-12p70, IFNγ,  IL-17A, IFNα, IL-10, ICAM-1, G-CSF, IL-1beta, IP-

10, TNFα, 12-oxo-LTB4 and lipoxin A4 demonstrating the inflammatory nature of pneumonia. 

Clinical variables once again performed well to differentiate those with VAP from those with brain 

injuries, however, in this comparison some unsuspected clinical features including alkaline 

phosphatase, perhaps relating to cholestasis relating to sepsis (367-369), and fibrinogen, acting as an 
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acute phase reactant (360, 361), levels were important in those with VAP. The best models could be 

made to either distinguish VAP from brain injured patients at the start of ventilation (R2Y 0.72, Q2 

0.68, p<0.001) or VAP from brain injured patients who had spent a similar amount of time on 

intensive care (R2Y 0.97, Q2 0.89, p=0.014) by combining clinical, metabolic and inflammatory data 

into a single model and selecting only the most important variables.  

Sequential sampling of all of the enrolled patients allowed some interesting findings regarding the 

metabolic and inflammatory changes over time. Patients with brain injuries were seen to have a 

reduction in glucose and mannitol with an increase in phenylalanine and glycoproteins over the 

course of their ICU stay combined with a shift in the dominance of fatty acids at the first time point 

towards the metabolites of arachidonic acid, in the form of 5,6-DHET, 8,9-DHET and 14,15-DHET and 

16(R)-HETE, 12(R)-HETE, 15(S)-HETE and 11(R)-HETE. Cytokine levels seemed generally to be at 

higher concentrations at the beginning of the ICU stay and fall over time with the exception of IL-13, 

IL-4, IL-1β, TNFα and IP-10 levels which increased.  

This study was limited by the relatively small numbers of patients included, especially when VAP was 

being considered. However, it would have been difficult in the time available to recruit many more 

patients from a single centre. Another limitation was the lack of a gold standard test by which to 

make a diagnosis of pneumonia or VAP. In attempt to address this we used a diagnosis based on CPIS 

scoring to allow a homogenous patient group with a limited amount of diagnostic bias from clinical 

opinion. Unfortunately two features of the CPIS were not routinely measured in our institution 

leading to some scores that were borderline. Patients with such scores were assessed by an 

independent assessor who was blinded to all other analysis and, where possible, these were used as 

a small validation group or to explore disease models in more detail. The use of broncheoalveolar 

lavage as a diagnostic tool was considered for this study, however, the fact that it is invasive, not 

routine practice in the critical care unit where the study was performed and not feasible to repeat 
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on a daily basis made CPIS scoring a more attractive daily screen for infection. The lack of a gold 

standard test meant that some of the patients identified as cases and controls may have been 

misclassified in the original groups prior to sample analysis adding bias to the multivariate models. 

Thus it was possible that the multivariate models could have had a better classification accuracy 

than the data used to define the groups. This study has only been able to separate those with 

pneumonia or VAP from controls with brain injuries, we have not been able to make any attempts to 

differentiate pneumonia from other types of infection or patients with acute lung injury, both 

frequent clinical problems. 

Future work based on this study would involve replicating these findings in a larger cohort of 

patients, including a larger validation set and another patient group with infection of a non-

pulmonary origin to establish if these techniques have the ability to distinguish pneumonia from 

other causes of sepsis. Further analytical work would include more detailed exploration of the serum 

metabolome with the use of MS methods to detect metabolites not seen with NMR and the 

application of lipidomic and proteomic methods to further identify the lipids and acetylated 

glycoproteins that appear important in identifying pneumonia patients. In order for these 

techniques to become useful clinical tests some adaption may need to be made to the modalities 

used for sample processing as, for example, NMR is not routinely available in the clinical setting. 

Once a robust panel of biomarkers is established it may be necessary to find other, more accessible, 

analytical platforms by which to measure them. 

In summary this study has added to the field by demonstrating the potential of serum metabolic and 

inflammatory profiles to aid the diagnosis of pneumonia and VAP in intensive care patients 

especially when combined with clinical data. 
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Appendix II a. Personal Consultee Assent Form 

Mechanisms of Monocyte Priming & Tolerance 
 

Ethics committee: North London REC 3 
 
REC reference: 10/H0709/77 

 
Name of Principal Investigator: Dr Anthony Gordon 
 
ASSENT FORM FOR PERSONAL CONSULTEES 
 
Please initial box 
 
1. I confirm that I have read and understood the Personal Consultee Information Sheet dated August 
2011 version 1.7 for the above study and have had the opportunity to ask questions which have been 

answered fully.          � 
 
2. I understand that I am giving this assent based on what I believe would be my 

relative/friend/partner’s wishes. In my opinion they would wish to participate.  � 
 
3. I understand that my relative/friend/partner’s participation is voluntary and I am free to change my 
advice about their wish to participate and to withdraw assent at any time, without giving any reason 

and without their medical care or legal rights being affected.     � 
 
4. I understand that sections of any of my relative/friend/partner’s medical notes may be looked at by 
responsible individuals from Imperial College/Imperial College Healthcare NHS Trust or from 
regulatory authorities where it is relevant to my taking part in this research. 
 
I assent to these individuals accessing my relative/friend/partner’s records that are relevant to this 

research.          � 
 
5. I assent to the use of my relative/friend/partner’s samples for future ethically approved research 
projects and for their blood to be used for DNA testing in inflammation research. I understand that this 

information will be kept confidential at all times.                  � 

6. The compensation arrangements have been discussed with me.    � 

7. I assent to my relative/friend/partner taking part in the above study.    � 
 
 
 
 
 
Monocyte Priming & Tolerance     PerCon assent v1.7 August 2011 
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8. I realise that my relative/friend/partner’s consent will override my assent when they are able to give 

informed consent.         � 
 
9. I assent to data being stored in anonymous form for up to 10 years & used in future, ethically 

approved, projects         � 
 
 
 
 
________________________  I am the patient’s ________________________________ 
Name of patient    (please write your relationship to the patient e.g. wife / brother etc.) 
 
 
 
_______________________   ________________   ________________ 
Name of personal consultee   Signature    Date 
 
 
 
________________________  ________________  ________________ 
Name of researcher taking assent Signature    Date   
 
 
1 copy for subject; 1 copy for Principal Investigator; 1copy to be kept with hospital notes 
 

 

 

 

 

 

 

 

 

 

 

 

Monocyte Priming & Tolerance     PerCon assent v1.7 August 2011  
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Appendix II b. Professional Consultee Assent Form 

 
 

 
Mechanisms of Monocyte Priming & Tolerance 

 
 

Name of Principal Investigator:  Dr Anthony Gordon 
 
Ethics committee: North London REC 3 
REC reference: 10/H0709/77 
 
PROFESSIONAL CONSULTEE ASSENT FORM 
 
 
Regarding patient _____________________________________________ 
 
 
This form should be completed by a doctor who is unconnected with the research study only in 

situations where the patient is temporarily unable to provide informed consent for themselves and if 

there is no relative / friend / partner willing and capable to act as the nominated personal consultee. 

The doctor primarily responsible for the medical treatment of the patient, or a person nominated by 

the relevant health care provider, can act as a professional consultee for the patient provided that 

they are not connected with the conduct of this study. 

 

I, Dr / Mr / Ms / Prof______________________________ as the clinician treating this patient 

declare by signing this form that I have read the Professional Consultee Information Sheet version -

___ dated ___________ and have no objection for this patient to be entered into this research 

study. I also understand that should the patient regain consciousness they will be fully informed of 

the decision to enter them into this research study and consent will be sought from them for their 

continued participation. I agree that the patient’s consent will override my assent when the patient is 

able to give consent. 

 
 
 
 
_______________________  ________________  ________________ 
Name of Professional Consultee  Signature    Date 
 
 
 
 
 
________________________  ________________  ________________ 
Name of researcher taking assent Signature    Date 
 
 
 
1 copy for ProCon; 1 copy for Principal Investigator; 1copy to be kept with hospital notes 
Monocyte Priming & Tolerance    ProCon assent version 1.6 November2010  
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Appendix II c. Retrospective Consent Form  
 

Mechanisms of Monocyte Priming & Tolerance 
 

Name of Principal Investigator: Dr Anthony Gordon 
 
Ethics committee: North London REC 3 
REC reference: 10/H0709/77 
 
PATIENT REGAINING CAPACITY CONSENT FORM 
Please initial each box 
 
1. I confirm that I have read and understand the Patient Regaining Capacity Information Sheet 
dated August 2011 version 1.7 for the above study and have had the opportunity to ask questions 

which have been answered fully.�� � � � � � ��
 
2. I understand that my continued participation is voluntary and I am free to withdraw at any time, 

without giving any reason, without my medical care or legal rights being affected.  ��
 
3. I understand that sections of any of my medical notes may have been looked at by responsible 
individuals from Imperial College London/Imperial College Healthcare NHS Trust or from 
regulatory authorities where it is relevant to my taking part in this research. 
 
I give permission for these individuals to access/continue to access records that are relevant to 

this research.          � 
 

4. I agree to the use of my samples for future ethically approved research projects and for my 
blood to be used for DNA testing in inflammation research. I understand that this information will 

be kept confidential at all times.        ��
5. The compensation arrangements have been discussed with me.   ��
6. I agree to my continued participation in the above study.    ��
�
7. I agree that data can be stored in anonymous form for up to 10 years & used in future, ethically 

approved projects.         ��
�
____________________ ________________________                 ________________ 
Name of Subject   Signature     Date 
____________________ _________________________  ________________ 
Name of Person  Signature     Date 
taking consent  
1 copy for subject; 1 copy for Principal Investigator; 1copy to be kept with hospital note 

Monocyte Priming & Tolerance     Patient consent v1.7 August 2011 
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Appendix III Bedside Clinical Data Collection Sheet 

Date: 

Sample Code: 

Serum 
Taken 

Time on 
Ice 

Time 
off Ice 

Time 
Centrifuge 

Time 
Out 

Time 
Cryotube 

Time 
-80 

RTube 
On 

RTube 
Off 

Time 
Cryotube 

Time 
-80 

           
Urine 
Taken 

Time  
Centrifuge 

Time 
Out 

Time 
Cryotube 

Time 
-80 

 

     

 

  

 Data for 24h prior to 8:00am 
 Before Collection During Collection After Collection Min Max 
Ventilation Mode      
PEEP      
FiO2      
RR set      
RR measured      
Insp TV      
Exp TV      
PS/PC      
Exp MV      
PPeak      
PPlat      
Pmean      
I:E      
HR      
SBP      
MAP      
DBP      
Sats      
GCS - - -   
Temp - - -   
CVP - - -   
U/O      
U/O Total      
Total IV Fluid input      
Total Oral Input      
PaO2      
FiO2      
PaCO2      
pH      
HCO3      
BE      
Lactate      
Glucose      
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Total Secretions:  Secretion Character  Clinical Examination Findings: 

Feed: 

Clinical opinion of VAP: 

Significant Events inc timing: 

Significant Procedures inc Timing: 

Drug Started Dose Frequ Last Dose Stopped 
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
 

Fluid Start Stop Rate Total volume in 
24h 

     
     
     
     
 

Blood Product Start Stop Rate Total Volume in 
24h 

     
     
 


