Recovery of cardiac function in cardiomyopathy due to titin truncation

Leanne E Felkin, PhD1, Roddy Walsh, MSc2, James S Ware, PhD MRCP1, Magdi H Yacoub, FRS1, Emma J Birks, PhD FRCP3, Paul JR Barton, PhD2*, Stuart A Cook, PhD MRCP4*

2. NIHR Biomedical Research Unit in Cardiovascular Disease at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, England.
3. University of Louisville, Louisville, Kentucky, USA.

*These authors contributed equally to the work.

Corresponding Author

Professor Stuart A Cook
National Heart Centre Singapore
5 Hospital Drive
Singapore, 169609
Tel: +65 60748000
Email: stuart.cook@duke-nus.edu.sg

Word count = 577
Introduction: Dilated cardiomyopathy (DCM) is a frequent cause of heart failure and a common indication for heart transplantation. DCM has a strong genetic basis and the most common disease-causing mutations are variants that truncate the sarcomeric protein titin (TTN truncating variants (TTNtvs); prevalence in familial or idiopathic DCM 25%1 and 13%2, respectively). The prognosis of DCM is poor, but functional recovery from end-stage failure has been reported following both optimal medical therapy3 and left ventricular assist device (LVAD) support4,5, though the determinants of successful recovery are unknown. It has been proposed that recovery from genetic cardiomyopathy may not be expected since the underlying cause is irreversible; whereas recovery may be more likely when DCM is due to reversible, non-genetic factors (e.g. myocarditis)6. To address this directly, we sequenced TTN in end-stage DCM patients who either recovered or did not recover following LVAD support.

Methods: We sequenced TTN in 70 cases referred to the Royal Brompton and Harefield National Health Service Trust between 1998 and 2010 for LVAD implantation due to non-ischaemic, medically refractory, end-stage DCM. Of these, 29 patients recovered cardiac function during LVAD support and had their LVAD explanted. The other 41 patients did not recover cardiac function and were transplanted or died while on LVAD support. A pharmacological regime designed to promote recovery (combination therapy4,5) was used in 35/70 patients and continued after explantation. The study was approved by institutional ethics committees, with written informed consent from participants. Targeted next-generation sequencing (NGS) was performed using an assay designed to assess all
known coding exons in TTN\(^2\). Genetic variants in NGS data were identified as previously described\(^2\) and were confirmed independently. Statistical comparisons between groups were tested using Fisher's exact test, ANOVA and unpaired t-test as appropriate. Differences in survival rates were tested using the Mantel-Cox test. Statistical significance was defined as a P-value of <0.05.

Results: We identified TTNtv in 10 out of 70 cases (14% of total; Table 1). All TTNtv were either novel or very rare \(\alpha\) and located in exons constitutively expressed in the heart and, as such, considered disease-causing\(^2\). Of the patients with a TTNtv, 6/10 recovered sufficient cardiac function to enable LVAD explanation. There was no statistical difference in TTNtv frequency between recovery cases and those who were transplanted or died on the device (6/29 [21%] vs. 4/41 [10%] respectively, \(P=0.30\)), and no evidence of clinical differences between TTNtv-positive and TTNtv-negative cases at the time of LVAD implantation (Table 1). Comparing the transplant-free survival rate in recovered patients, we found no difference between TTNtv-positive and TTNtv-negative cases; at three years post-explant, 4/6 (67%) TTNtv-positive cases were free from death and transplantation compared to 17/23 (74%) TTNtv-negative cases (Figure 1; \(P=0.74\)).

Discussion: Sustained improvement in cardiac function is observed in end-stage DCM following medical therapy and LVAD support, but it was previously unknown whether recovery could be achieved in DCM due to a genetic cause. Here, we show that recovery is possible in DCM due to a truncating mutation in the TTN gene. We also present the preliminary findings that DCM with a TTNtv is as equally recoverable
as DCM without a TTNtv and that the long-term durability of recovery is also comparable. These observations now require replication in multi-centre prospective studies. Since TTNtvs are the most common genetic cause of DCM these results have important implications for patient selection for recovery programs.

“Nine TTNtvs were not present in ExAC, whilst one variant had a minor allele frequency of 0.0000166 (http://exac.broadinstitute.org/).
Author contributions
Dr Felkin had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Funding/Support
This work was supported by the Fondation Leducq, Heart Research UK, the Wellcome Trust and the National Institute for Health Research Cardiovascular Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London.

Role of the Funders/Sponsors
The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions
We thank all the patients who participated in this study as well as Rachel Buchan (Royal Brompton Hospital), for technical support and Paula Rogers (Harefield Hospital) for assistance in the collection of patient data. These contributors received no compensation for their assistance aside from employment at the institutions where the study was conducted.
References

Table 1: TTNtv status and clinical features of LVAD-supported, end-stage DCM patients who either recovered cardiac function and were successfully explanted (recovered), or who were transplanted or died with the device in situ (not recovered).

Figure 1. TTNtv and survival in recovered DCM patients. In the three years following successful LVAD explanation, the actuarial rate of survival and freedom from transplantation at 1, 2 and 3 years post-explant in TTNtv-positive cases was 83%, 83% and 67%. In TTNtv-negative cases, the rate was 88%, 88% and 75%. Differences between the survival rates were tested using the Mantel-Cox test.
Table 1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>TTNtv, n=10</th>
<th>No TTNtv, n=60</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>6 (100)</td>
<td>23 (78)</td>
<td>0.30<sup>A</sup></td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>6 (100)</td>
<td>18 (78)</td>
<td>0.29<sup>A</sup></td>
</tr>
<tr>
<td>Clinical comments</td>
<td>-</td>
<td>2 PPCM</td>
<td></td>
</tr>
<tr>
<td>Family history, n (%)</td>
<td>2 (33)</td>
<td>2 (8.7)</td>
<td>1.0<sup>A</sup></td>
</tr>
<tr>
<td>Survived > 30 days post LVAD implant, n (%)</td>
<td>6 (100)</td>
<td>23 (100)</td>
<td>0.13<sup>A</sup></td>
</tr>
<tr>
<td>Received combination therapy*, n (%)</td>
<td>6 (100)</td>
<td>23 (100)</td>
<td>0.69<sup>A</sup></td>
</tr>
<tr>
<td>Age at diagnosis, mean (SD), years</td>
<td>31.7 (10.8)</td>
<td>31.6 (12.5)</td>
<td>0.77<sup>B</sup></td>
</tr>
<tr>
<td>Age at implant, mean (SD), years</td>
<td>33.0 (12.2)</td>
<td>35.5 (12.8)</td>
<td>0.83<sup>B</sup></td>
</tr>
<tr>
<td>Implant LVEF, mean (SD), %</td>
<td>25.6 (13.3)</td>
<td>20.8 (10.1)</td>
<td>0.58<sup>B</sup></td>
</tr>
<tr>
<td>Implant FS, mean (SD), %</td>
<td>10.3 (4.6)</td>
<td>8.3 (3.4)</td>
<td>0.90<sup>B</sup></td>
</tr>
<tr>
<td>Implant LVEDD, mean (SD), mm</td>
<td>69.8 (6.6)</td>
<td>73.1 (14.3)</td>
<td>0.95<sup>B</sup></td>
</tr>
<tr>
<td>Time on LVAD, mean (SD), days</td>
<td>214 (125)</td>
<td>317 (151)</td>
<td>0.11<sup>B</sup></td>
</tr>
<tr>
<td>Explant LVEF, mean (SD), %</td>
<td>64.0 (4.2)</td>
<td>65.9 (9.5)</td>
<td>0.64<sup>C</sup></td>
</tr>
<tr>
<td>Explant FS, mean (SD), %</td>
<td>29.5 (3.3)</td>
<td>31.9 (7.3)</td>
<td>0.53<sup>C</sup></td>
</tr>
</tbody>
</table>

TTNtv's in cohort who recovered: c.87624C>A*; c.49346-1G>A*; c.76383_76386delTAAT*; c.46782C>A*; c.81518delC*.
TTNtv's in cohort who did not recover: c.69976G>T; c.67495C>T*; c.41641C>T; c.58172delA*.

Titin variant position is given according to locus reference genomic (LRG) sequence 391_t1. A detailed overview of TTN gene structure, including the isoforms and protein domains affected by the TTNtv's described here, can be found at http://cardiodb.org/titin. *Variants reported in Roberts et al². P-values calculated with Fisher's exact test^A, ANOVA^B and unpaired t-test^C.

Abbreviations: TTNtv=titin truncating variant, LVAD=left ventricular assist device, DCM=dilated cardiomyopathy, PPCM=peri-partum cardiomyopathy, LVEF=left ventricular ejection fraction, FS=fractional shortening, LVEDD=left ventricular end diastolic dimension, n/a=not applicable.
Event-free survival, %

Years post successful explant

- Non-TTNtv
- TTNtv

p=0.74