
1

Less is More: Estimating Probabilistic Rewards over Partial System
Explorations

ESTEBAN PAVESE, Departamento de Computación, Universidad de Buenos Aires
VÍCTOR BRABERMAN, Departamento de Computación, Universidad de Buenos Aires and CONICET
SEBASTIAN UCHITEL, Departamento de Computación, Universidad de Buenos Aires and Imperial
College London and CONICET

Model-based reliability estimation of systems can provide useful insights early in the development pro-
cess. However, computational complexity of estimating metrics such as mean time to first failure (MTTF),
turnaround time (TAT), or other domain-based quantitative measures can be prohibitive both in time, space
and precision. In this paper we present an alternative to exhaustive model exploration–as in probabilistic
model checking–and partial random exploration–as in statistical model checking. Our hypothesis is that
a (carefully crafted) partial systematic exploration of a system model can provide better bounds for these
quantitative model metrics at lower computation cost. We present a novel automated technique for met-
ric estimation that combines simulation, invariant inference and probabilistic model checking. Simulation
produces a probabilistically relevant set of traces from which a state invariant is inferred. The invariant
characterises a partial model which is then exhaustively explored using probabilistic model checking. We
report on experiments that suggest that metric estimation using this technique (for both fully probabilis-
tic models and those exhibiting non-determinism) can be more effective than (full model) probabilistic and
statistical model checking especially for system models where the events of interest are rare.

CCS Concepts: rSoftware and its engineering→ Software performance; Software reliability;

Additional Key Words and Phrases: Quantitative modelling, probability, model checking, partial verification,
estimation

ACM Reference Format:
Esteban Pavese, Víctor Braberman and Sebastian Uchitel, 2013. Automated Reliability Estimation over
Partial Systematic Explorations. ACM Trans. Softw. Eng. Methodol. V, N, Article 1 (January 2016), 49 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Model-based automated verification for assessing quantitative metrics of systems,
such as system reliability, aims to provide insights early in the development process
that can significantly reduce not only development costs, but also costs associated with
deploying faulty systems. However, traditional metrics such as mean time to first fail-
ure (MTTF) or availability times require models that support describing probabilistic,
non-deterministic and timed behaviour. Unfortunately, models that succeed at effec-
tively conveying all of this information are complex enough that estimating such met-
rics can be prohibitive in time, space and/or precision.

Model checking is emerging as an effective system verification method. In particular,
quantitative guarantees such as those employed for reliability assurance, can be com-

This work was partially supported by grants ANPCyT PICT 2011-1774, ANPCyT PICT 2012-0724,
ANPCyT PICT 2013-2341, ANPCyT 2014-1656, CONICET PIP 11220110100596CO, CONICET PIP
11220130100688CO, UBACYT 036, UBACYT 0384 and MEALS 295261.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1049-331X/2016/01-

ART1 $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:2 Esteban Pavese et al.

puted for complex models using the techniques developed in the area known as prob-
abilistic model checking [Vardi 1985; Bianco and De Alfaro 1995]. These techniques
take probabilistic models as inputs (such as Markov Chains or Segala Automata) and
can assess quantitative properties through exhaustive exploration of the model state
space and subsequent numerical analysis.

Applicability of probabilistic model checking for reliability assessment of complex
models is threatened by the size of the model. Although state space reduction tech-
niques exist [Larsen et al. 1997; Clarke et al. 1999], they may still fail to prevent
state explosion to a manageable extent on complex enough models. Further, even in
the event that the entire state space can be explored in its totality, its size typically
impedes exact numerical calculation (e.g. Gaussian elimination) of reliability metrics.
To overcome this limitation, iterative methods (such as Jacobi or Gauss-Seidel) that
approximate metrics need to be used. However, these methods do not always have con-
vergence guarantees, and when they do converge they may do so slowly; as much as
to become intractable. The latter problem is heightened in the case of metrics related
to rare events (e.g. reliability estimation for models where the probability of failure in
a fixed period lies below 10−5). In this case, since the execution budget time for the
iterative methods is not infinite, exhausting this budget can lead to iterations being
cut short far from the actual value of the metric being estimated. In other words, this
early termination causes probabilistic model checking techniques to report on results
that may not be exact, but rather only an approximation of the actual result. Good
news for reliability assessment is that these approximations are a lower bound on the
actual value. However, the distance between this actual value and the lower bound
obtained is in general unknown.

In summary, although probabilistic model checking may seem to promise exact cal-
culation of quantitative reliability properties, state space explosion and application of
numerical methods can be computationally prohibitive or result in poor approxima-
tions. Despite these limitations, probabilistic model checking can provide bounds with
100% confidence for reliability metrics even though the distance of these bounds to the
real value cannot be known in general.

Numerical analysis and, to some extent, state explosion can be avoided using statis-
tical techniques. These techniques are based on applying statistical inference over a fi-
nite set of sample executions extracted from the model. Variations of these approaches
are usually referred to with the umbrella term of Monte Carlo estimations. When us-
ing these techniques to estimate quantitative metrics, the actual population mean X is
approximated through an estimator such as the sample mean X [Lyu 1996]. Of course,
such estimation is subject to statistical error and thus it is crucial to understand how
far and with what likelihood the estimator deviates from the actual mean. This con-
trasts with probabilistic model checking, which does not suffer from such statistical
imprecision.

The deviations from the actual value that result from the specific samples used while
performing Monte Carlo based estimations is usually conveyed in terms of statistical
errors and confidence intervals. Bounds for statistical error and confidence intervals
can be computed, based partly on the number of samples being analysed. Although sig-
nificant progress for fast generation of random walks over models has been made [Ni-
mal 2010; Rabih and Pekergin 2009], sample generation can be very costly time-wise
even for analyses with modest guarantee requirements, simply due to the sheer num-
ber of samples required [Sawilowsky 2003].

The number of samples required is not the only limiting factor for these approaches:
sample-based reliability estimations must also take into account the length of sam-
ples. Sample length can be particularly problematic, since sampled executions must
reach a state satisfying a—usually unlikely—property (e.g. a failure) in order to allow

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:3

computing an estimator. This may turn sample generation for high-reliability systems
intractable.

In summary, statistical techniques can provide approximations with measurable
confidence intervals and error bounds. However, in the presence of models with rare
events, the required number and length of samples may make such techniques in-
tractable, and attempts to reduce either sample size or length might result in weak-
ened (or downright lost) statistical guarantees over results.

In this paper we present an alternative to exhaustive model exploration—as in
probabilistic model checking—and partial random exploration—as in statistical model
checking—which may counter some of the limitations of existing model-based reliabil-
ity verification techniques. Our hypothesis, inspired on the Pareto principle, is that a
(carefully crafted) partial systematic exploration of system models can be effectively
analysed to provide good bounds on quantitative metrics with lower computation cost.
More specifically, probabilistic model checking of a submodel of the system can bound
the value of these metrics for the complete model, and do so in a cost-effective man-
ner. Furthermore, it can produce better approximations, given equal time and memory
budgets, than those that both probabilistic and statistical model checking can achieve.

We hypothesise that there is a potential gain in identifying a small, but probabilis-
tically significant, portion of the state space, considering all other states as failures
and performing probabilistic model checking on the resulting submodel. The intuition
is that, in contrast to full-model probabilistic model checking, performing a proba-
bilistic check on only a portion of the full model allows for faster iterations of the
numerical analysis methods. Consequently, more iterations can be performed within
the same time budget and, for slowly converging models, a better approximation may
be achieved.

More specifically, in this paper we present a novel automated technique for quantita-
tive metric estimation that combines simulation, invariant inference and probabilistic
model checking. We use model simulation to produce a set of traces that represent
likely behaviour of the full model. These traces are used to infer an invariant that de-
scribes the state space explored during the simulation. A submodel, which restricts the
states by not allowing those that do not satisfy this invariant, is constructed and the
value of the desired metric is computed over this partial model using a probabilistic
model checker.

The technique we propose obtains lower bounds to the actual values of the desired
metrics with 100% confidence (as full-model probabilistic model checking and in con-
trast to statistical model checking). In a more technical note, our technique provides a
lower bound on the expectation of a random variable. This random variable is modelled
as a reward structure over suitable probabilistic models.

Preliminary evidence shows that the lower bounds achieved (for a fixed budget of
time and memory) are higher than those obtained by full model probabilistic and
stochastic model checking, especially for models where the probability of reaching the
interesting property is low given a fixed time. High bounds are of special interest in
reliability, as they allow to argue a reliability case even in the absence of the exact val-
ues. Furthermore, automated invariant generation seems to perform reasonably well
against domain-expert provided invariants, and have the added advantage of being
useful when such expert-provided invariants are unavailable.

The remainder of this paper, which builds and expands our previous work [Pavese
et al. 2013], is organized as follows. In section 2 we provide background on proba-
bilistic systems modelling, verification and metrics such as reliability. In Section 3 we
describe our approach to metric estimation. Section 4 provides case studies illustrat-
ing the approach and comparing results to existing techniques. In Section 5 we present

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:4 Esteban Pavese et al.

a discussion of our results and of related work. Finally we offer our conclusions and
discuss future work in Section 6.

2. BACKGROUND
Quantitative estimation of system metrics has largely focused on reliability estima-
tion, employing measures such as mean time to first failure, mean time between fail-
ures, turnaround time, time to reset and many others [Lyu 1996; Musa et al. 1987],
some of which will be explored in Section 4. Nevertheless, as we shall discuss further
in this paper, the techniques we propose can be applied in a straightforward manner to
several of these metrics. Recall however that the approximations we obtain are lower
bounds on the actual expected value. Therefore, care must be taken in the interpre-
tation of this bound depending on the metric being evaluated. For example, having
a lower bound on mean time to failure is useful for arguing reliability; if the lower
bound surpasses the expected lifetime of the system, reliability can be argued success-
fully. But for metrics such as cost where the aim is in minimisation, assuring a lower
bound on its expected value may not be as useful.

In order to calculate these desired measures, practitioners base their efforts on some
model that captures the quantitative behaviour of the system. Often, these behaviours
are not unique and the choice between them is probabilistic in nature. This stochastic
failure behaviour is usually modelled through formalisms based on Markov chains.

2.1. Probabilistic modelling
There exist several formalisms derived from Markov chains for modelling the prob-
abilistic behaviour of systems and their components. Segala’s Simple Automata
(SSA) [Segala 1995] are one such formalism that—besides allowing for probabilistic
behaviour—also allows for the modelling of non-deterministic behaviour. The introduc-
tion of non-deterministic transitions permits the modelling of underspecified choice,
that is, the option of selecting between several possible actions, but for which the ac-
tual probability may not be actually known. Alternatively, it may be the case that the
component is known to make these choices with several different probabilities, which
may be known to be selected from a set of possible probabilistic distributions. However,
the mechanism by which a distribution is chosen from this set may be left underspeci-
fied. In this case, the distribution choice is made non-deterministically.

Definition 2.1 (Segala Simple Automaton [Segala 1995]). A Segala Simple Au-
tomaton (SSA) is a tuple 〈S, s0, A,R〉 where S ⊆ V → C is a finite set of states, defined
by mapping a finite set of variables V to values on a finite subset of Z, C.

Let D(S) stand for the set of all possible discrete distributions on sample set S.
s0 ∈ S is the initial state. A is a finite set of action labels. The finite relation R ⊆
S× (A∪{τ})×D(S) is the transition relation where the transition target is defined by
a distribution on target states. In particular, R must be such that for every s ∈ S there
exists at least one a ∈ A ∪ {τ} and µ ∈ D(S) such that (s, a, µ) ∈ R.

In the previous definition, τ stands for a distinguished action, internal to the com-
ponent being modelled. In a particular case, the relation R of an SSA M may be such
that, for every state s ∈ S, there exists only one tuple of the form (s, a, µ) ∈ R. In
such a case, there are actually no non-deterministic choices; for every state there is
exactly one possible transition distribution. Segala Simple Automata that show this
absence of non-determinism are known by the name of Discrete Time Markov Chains
(DTMC) [Segala 1995]. A Segala Simple Automata that allows non-determinism, but
restricts to only one transition per state per action label is also known as a Markov De-
cision Process (MDP). As DTMC. MDP and SSA definitions are therefore quite similar,
our work will be based on SSA. However, we shall make some observations that may

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:5

apply only to one formalism or the other. In the case that it is necessary to distinguish
between both, we will make such distinction clear and explicit.

As with other automata-based formalisms, complex SSA can be built composition-
ally using parallel composition on model components that run asynchronously but syn-
chronise on shared actions [Segala 1995]. Note that SSA are deadlock-free, however a
parallel composition could introduce deadlocks. In such cases, these deadlocks are hid-
den by the addition of a new self-transition labelled by a fresh internal action label,
which does not modify the observable behaviour.

Definition 2.2 (Execution traces). Given a Segala Simple Automaton M =
〈S, s0, A,R〉, an execution trace on M is a non-empty and possibly infinite sequence
π = s0

µ0,p0−→ s1
µ1,p1−→ s2 . . ., such that for all i, si ∈ S and there exists some (si, a, µi) ∈ R

such that µi(si+1) = pi > 0.

As additional notation, we will note the existence of a finite execution trace π from
s0 to sn by s0

π−→ sn. We will denote the infinite set of all possible traces through M
as Π(M), and the set of finite traces as Π∗(M). Finally, given an execution trace π and
i ≤ length(π), we will note πsi to refer to the i-th visited state, and πai to refer to the i-th
chosen action.

Because of the presence of non-determinism in Segala Simple Automata, the be-
haviour of an SSA is not uniquely governed by the probabilistic distributions on the
transitions. There is a need for an additional mechanism that can resolve these non-
deterministic choices. To characterise these choices, we introduce the notion of a sched-
uler or adversary.

Definition 2.3 (Scheduler [Segala 1995]). A scheduler for a Segala Simple Automa-
ton M = 〈S, s0, A,R〉 (also called an adversary) is a total function SM : Π∗(M) → R,
such that if S(π) = (a, µ) it must be that (last(π), a, µ) ∈ R. The notation Sched(M)
refers to the set of all possible schedulers for the SSA M ; while S(π)a and S(π)µ re-
fer to the scheduled action and distribution, respectively, by the scheduler function
evaluated over the partial trace π.

In other words, a scheduler is a function that decides, at every step during the exe-
cution of a SSA, and depending on the current execution history, the next distribution
to be employed for determining the next state. It is worth noting that, as a scheduler
resolves non-determinism, the coupling of a SSA with a scheduler effectively results
in a fully probabilistic process, that is, a DTMC. In this paper we will focus on sched-
ulers that are deterministic (they are functions returning a single transition) and non-
Markovian (they depend on execution history). Other types of schedulers exist [Segala
1995], and we will discuss their relationship with our work further in the paper.

Definition 2.4 (Trace probability). Given a Simple Segala Automaton
M = 〈S, s0, A,R〉 and a finite execution trace π on M , the probability in-
duced by π under governance of a scheduler σ is given by Pr(π, σ,M) =∏

0≤i≤length(π) scheduled(σ, s0 . . . si, pi, si+1) ∗ pi, where length(π) is the number of
transitions in π and scheduled denotes the function

scheduled(σ, α, p, s′) =

{
1 if σ(α) = µ and µ(s′) = p
0 otherwise

2.2. Expressing properties over SSA
In order to express and analyse properties over Simple Segala Automata and other
probabilistic models, these automata are coupled with modal logics whose formulae
express said properties. In the case of SSA, the temporal logic pCTL [Aziz et al. 1995],

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:6 Esteban Pavese et al.

which is an extension of the well known temporal logic CTL, can be used to express
properties. Essentially, pCTL replaces path quantifiers present in CTL with proba-
bilistic quantification bounds on the related path formulae.

2.2.1. pCTL Syntax and Semantics. pCTL formulae are built from state and path formu-
lae, just as is the case with CTL. Let AP be a finite set of atomic propositions. If φ
stands for a state formula, and ψ for a path formula, then pCTL formulae are built as
follows

φ→ true | a ∈ AP | ¬φ |φ ∧ φ |P∼pψ
ψ → Xφ |φUφ |φU≤kφ

In the above, ∼∈ {<,≤,=,≥, >} and p ∈ R, p ∈ [0, 1] Given a SSA M and a mapping of
states to atomic propositions V : S → 2AP defining the subset of atomic propositions
that are valid for each state, we can define the satisfiability of pCTL formulae for a
state s ∈ S and an execution trace α ∈ Π(M). Note that since M is a Simple Segala
Automaton, a scheduler σ ∈ Sched(M) is needed to resolve non-determinism. σ is not
necessary in case we are dealing with DTMCs; or else it can be defined trivially as
choosing the only distribution available to it.

s, σ |= true ⇔ true
s, σ |= a ⇔ a ∈ V (s)

s, σ |= ¬φ ⇔ ¬(s, σ |= φ)
s, σ |= φ1 ∧ φ2 ⇔ (s, σ |= φ1) ∧ (s, σ |= φ2)
s, σ |= P∼pψ ⇔

∑
α∈ψsat

µ(Cα, σ, P) ∼ p where α ∈ ψsat iff α, σ |= ψ
and for every other α′ ∈ ψsat neither α ≤ α′ nor α′ ≤ α.

α, σ |= Xφ ⇔ αs1, σ |= φ
α, σ |= φ1U

≤kφ2 ⇔ ∃0 ≤ i ≤ k · αsi , σ |= φ2∧
∀0 ≤ j < iαsj , σ |= φ1

α |= φ1Uφ2 ⇔ ∃0 ≤ k · α, σ |= φ1U
≤kφ2

Informally, given a path formula φ, a typical pCTL state formula takes the form of
a classic CTL state formula, but where path quantifiers have been replaced by the
probabilistic operator P∼p. Thus, a state formula P≤pφ (resp. P≥pφ), is true at a given
state of the system if its possible evolutions from that state, driven by the σ scheduler,
satisfy the formula φ with probability at most (resp. at least) p.

In the case of probabilistic verification of pCTL properties of Simple Segala Au-
tomata, it is usually more interesting to learn about how the property stands when
the SSA is subject to the best and worst possible schedulers, that is, those that con-
vey the extrema probabilities, i.e. the minimum and maximum possible probabilities.
Algorithms exist that can answer these questions effectively [Bianco and de Alfaro
1995] for the class of non-Markovian, deterministic schedulers that we deal with in
this paper.

In addition to pCTL property specification, reward structures are used to convey
some sense of value to traces from probabilistic models such as SSA, that can then be
weighed by their corresponding probability. For example, a transition reward structure
that assigns a value of 1 to each transition is a standard way of defining overall time
steps cost for the traces of a model. This provides a good way to model discrete time,
and reliability measures such as mean time to failure can be easily interpreted over
this notion of time.

The value of a reward is a random variable itself, as the accumulation of rewards
over traces will depend on the probability of the transitions taken. By weighing the
values of this modelling of time over the (possibly infinite) set of traces and their prob-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:7

abilities, we can obtain the expectation –or bounds to this expectation– of running time
for an arbitrary execution.

Definition 2.5 (Reward Structures [Qureshi and Sanders 1996]). Given a SSA
M = 〈S, s0, A,R〉, a transition reward structure is a function ρ : S ×A× S → R≥0.

Given a trace π of a SSA M , and a reward structure ρ over M , the path-reward of
π is the sum of the reward of each of its transitions. We will extend this notation and
note ρ(π) to refer to the path-reward of π based on reward structure ρ. It is important
to note that a reward structure assigns a non-negative reward value to transitions.
Therefore, if we were to take any prefix πprefix of a trace π, the path-reward of πprefix
will necessarily be at most that of π.

We will note ΠSend
(M) (where Send is a set of states) to refer to the possibly infinite

set of all execution traces of M , but where they have been pruned so that the last state
of each trace is one of those in Send, and no other state in Send exists in the trace before
the end. Note that ΠSend

(M) may contain traces of infinite length (i.e., those that never
reach a state in Send and therefore have not been pruned). This definition will allow us
to define the value of a reward structure for reachability properties.

Definition 2.6 (Reachability reward values [Qureshi and Sanders 1996]). Let M =
〈S, s0, A,R〉 be a SSA, Sreach ⊆ S be a set of states from M , σ a scheduler for M and ρ a
reward structure overM . The reachability reward value for Sreach under the conditions
above is a random variableXreach(Sreach ,M, σ) on R≥0∪{+∞} such that the probability
p of Xreach = k is defined as Pr(σ,Xreach = k) =

∑
π∈ΠSreach

(M),ρ(π)=k Pr(π, σ,M)

In the definition above, Xreach is a random variable denoting the reward value for a
random execution trace until it reaches a state in Sreach . As such, it may be of interest
to know its expected or mean value, that is, the expected value taking into account
every possible execution trace. We will note this expected value as Xreach . Note that
Sreach may contain states for which there is a non-zero probability that they won’t be
reached at all. In such a case, it will happen that ΠSreach

will contain some infinite
paths. More so, these infinite paths may themselves accumulate infinite reward. In
such cases, the mean Xreach is defined to be∞.

Even though we restrict ourselves to reachability rewards, this more than suffices
for our intended verification setting. For example, consider the mean time to failure
metric. In order to be able to calculate this metric, we first need to be able to describe
what a failure means in our system. In other words, we need to identify which system
states model a failure, or an irrecoverable situation. In the setting of this work, these
states would comprise the interesting Sreach set. Calculating the mean reachability
reward value to this Sreach set effectively calculates the mean time to failure of the
system.

3. APPROACH
This section formally defines an approach to computing bounds to reward values of
probabilistic system models. The approach is based on calculating the reward values
for only a partial systematic exploration of the model’s state space. We first define
what is meant by a partial exploration and show that the mean reward computed over
these partial explorations is indeed a lower bound to the mean reward computed over
the entire system model. We then show how some partial explorations can be specified
declaratively through invariant properties that drive the exploration, discussing at
length the details of the procedure. Finally, we show how these invariant-driven par-
tial explorations can be obtained automatically from any given model, without need
for human intervention. In the next section we will show, via some case studies, that

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:8 Esteban Pavese et al.

given a fixed budget of time and memory, analyses performed over automatically in-
ferred invariant-driven partial explorations perform at least as well as, and sometimes
outperforms, partial explorations driven by manual specification.

3.1. Partial Explorations
We refer to a partial exploration of a system model as a submodel. Intuitively, a sub-
model of a probabilistic process M is a model that retains a subset of the states and
transitions of M and in which all other states in M have been abstracted away into
a new λ trap state. Moreover, the retained states include the initial state, and all
other retained states are reachable from this initial state. Formally, a submodel of a
probabilistic model is defined as follows, where supp(µ) denotes the support set of the
distribution µ, that is, the set of values xi for which µ(xi) > 0:

Definition 3.1 (Submodel). Given a SSA M = 〈S, s0, A,R〉, a submodel of M is an-
other SSA M ′ = 〈S′∪{λ}, s0, A,R

′〉 such that S′ ⊆ S, s0 ∈ S′, and R′ ⊆ (S′∪{λ})× (A∪
{τ})×D(S′ ∪ {λ}) is such that for all a ∈ A

(1) for each (λ, a, µR′) ∈ R′, it must be the case that supp(µR′) = {λ} and a = τ ;
(2) for all s ∈ S′ and a ∈ A ∪ {τ}

a) for all µR′ such that (s, a, µR′) ∈ R′, there exists µR such that i) (s, a, µR) ∈ R,
ii) for all s′ ∈ S′ µR′(s′) = µR(s′), and iii) µR′(λ) = 1−

∑
s′∈S′ µR(s′).

b) for all µR such that (s, a, µR) ∈ R, there exists µR′ such that i) (s, a, µR′) ∈ R′,
ii) for all s′ ∈ S′ µR′(s′) = µR(s′), and iii) µR′(λ) = 1−

∑
s′∈S′ µR(s′).

Clause 1 states that transitions originating on the λ state all lead back to the same
λ state, and that they do so through the model’s internal action τ . Clause 2 states that
action transitions on the submodel are drawn from the original model ones, that is, if
an action transition is possible at a given state in the submodel, that action must have
been possible from the same state in the whole model. Further, it also states that the
probabilities on those transitions are also preserved from the original model, except
for the case of those that were rerouted to the λ state, which accumulates the proba-
bilities of those rerouted transitions. Finally, Clause 2 states that every transition on
the original model is preserved on the submodel for each of the states present in the
submodel, while the λ states accumulates the remaining probability.

There is a close relationship between the schedulers that can be defined for a given
model M and those that can be defined on its submodels M ′. Intuitively, any scheduler
σ for M is still a valid scheduler for M ′, although with some changes. In particular,
transitions that over the original model traverse to states that do not exist in the
submodel are instead rerouted to the λ state. The following definition captures these
changes.

Definition 3.2 (Restricted scheduler). Let M = 〈S, s0, A,R〉 be a SSA, and M ′ =
〈S′, s0, A,R

′〉 one of its submodels. Let σ be a scheduler for M . Also, let α ∈ Π∗(M ′)
which implies that either α ∈ Π∗(M) or last(α) = λ. The restriction of scheduler σ to
M ′ is another scheduler σ′ for M ′ such that

— if last(α) = λ then σ′(α) = (τ, µ) where µ is such that supp(µ) = {λ}.
— if last(α) 6= λ and σ(α) = (a, µ) and (a, µ) ∈ R′(last(α)), then σ′(α) = (a, µ).
— if last(α) 6= λ and σ(α) = (a, µ) and (a, µ) /∈ R′(last(α)) then it must be the case that,

because of Definition 3.1, there must exist (a, µ′) ∈ R′(last(α)) such that
— (supp(µ′) \ {λ}) ⊆ supp(µ);
— for each s′ in supp(µ) ∩ supp(µ′) it holds that µ(s′) = µ′(s′);
— λ ∈ supp(µ′) and is such that µ′(λ) captures the remaining probability.
In such cases, σ′(α) = (a, µ′).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:9

We also say that σ′ is the scheduler σ restricted to M ′.

It is also easy to see that any scheduler for a submodel can be extended to a sched-
uler that is valid for the complete model—in fact, it can be extended to possibly many
schedulers. In other words, every valid scheduler for a submodel is a restriction of one
or more schedulers of the complete model.

Submodels are key to our approach since they conservatively approximate the value
of reward structures for reachability properties. That is, given a reward structure ρ
for a model M and a scheduler σ, the mean reward value of ρ under σ for M until
reaching some state in a distinguished set Sreach ⊆ S is always greater or equal to the
mean reward value of any of its submodels M ′, under the same scheduler restricted to
M ′, until reaching a state in the set S′reach = (Sreach ∩ S′) ∪ {λ}.

THEOREM 3.3. (Submodels bound reward values). Let M = 〈S, s0, A,R〉 and M ′ =
〈S′, s0, A,R

′〉 be two SSA with state spaces S and S′ and such that M ′ is a submodel
of M . Let Sreach ⊆ S be a set of states representing the interesting events and σ a
scheduler for M . Also, let σ′ be the restriction of σ to M ′. Then Xreach(S′reach ,M

′, σ′) ≤
Xreach(Sreach ,M, σ).

PROOF. Note that, for every trace in the complete model, it either exists com-
pletely in the submodel, or the submodel contains only a prefix that is extended by
the λ state. Since reward structures are based on transitions, every trace in the full
model accumulates at least as much reward to each of the interesting states (possi-
bly ∞) as the corresponding trace (or prefix) in the submodel. Hence these prefixes
contribute to Xreach(S′reach ,M

′, σ′) at most what their extensions in M contribute to
Xreach(Sreach ,M, σ).

Alternatively, if the submodel allows a trace that never reaches either λ or one of the
target states in S′ ∩ Sreach , then this trace also exists in the complete model. In such a
case, both Xreach(Sreach ,M, σ) = Xreach(S′reach ,M

′, σ′) =∞.

The above result entails that if computing the value of a reward structure for
a system model is intractable, it can be conservatively approximated on any of its
submodels. In the case of Segala Simple Automata, because of the presence of non-
determinism, it is interesting to examine the case for the extrema schedulers. The
following corollary captures the bounding relation for these extreme values.

COROLLARY 3.4. Let the SSA M as defined in the previous theorem, and its sub-
model M ′, be SSAs. Let σmin and σmax be two schedulers for M such that, for any other
scheduler σ for M

—Xreach(Sreach ,M, σmin) ≤ Xreach(Sreach ,M, σ); and
—Xreach(Sreach ,M, σmax) ≥ Xreach(Sreach ,M, σ).

In turn, let σ′min and σ′max be schedulers for M ′ such that for other schedulers σ′ for M ′
it holds that

—Xreach(S′reach ,M
′, σ′min) ≤ Xreach(S′reach ,M

′, σ′); and
—Xreach(S′reach ,M

′, σ′max) ≥ Xreach(S′reach ,M
′, σ).

Under these conditions, it holds that Xreach(S′reach ,M
′, σ′min) ≤ Xreach(Sreach ,M, σmin)

and also that Xreach(S′reach ,M
′, σ′max) ≤ Xreach(Sreach ,M, σmax).

In a similar manner as Theorem 3.3, this result indicates that estimations for the
minimum and maximum rewards over a submodel yield lower bounds for the actual
minimum and maximum rewards, respectively, for the whole model.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:10 Esteban Pavese et al.

s0

s4

s1

s3

s2

s5

s8

s6

s7
0.25

0.5

0.2

0.05

0.05

0.05

0.9

1.0

0.05

0.95

0.5

0.5

0.05

0.45

0.5

1.0

0.3

0.25

0.45

1.0

s13

s11
s10

s12

s9
1.0

0.15

0.8

0.2

1.0

1.0

0.85

Fig. 1: Example partial exploration of a state space

Key questions are which submodels are cost-effective (i.e. provide good approxima-
tions at reasonable computation cost) and how to find them. Another important ques-
tion to address is whether effective submodels provide reasonable approximations in
general. In the next subsection we discuss one particular way of driving the generation
of submodels that results in cost-effective reward computation. Later, in Section 4 we
will argue that the submodels obtained through our approach are effective at estimat-
ing bounds for reward values.

3.2. Automatic Submodel Generation
Although any submodel will provide a lower bound for the value of a given reward
structure, the key to a tractable reward estimation technique is to identify a submodel
for which its reward value can be computed within a reasonable time budget, and for
which the resulting bound is a useful approximation to the actual reward value of the
full model. In particular, we have already established in previous work [Pavese et al.
2010] that not every submodel is good for estimating the average value of these reward
structures. For example, in that work we have already shown that submodels obtained
as the result of a depth-first search exploration are generally very bad at providing
good reward estimates. Conversely, we have shown that submodels obtained through
breadth-first search explorations outperform DFS ones in general. Nevertheless, they
still do not provide good estimates in general either. In other words, not all submodels
are created equal; two submodels similar in size can obtain wildly different estimates.

Regrettably, and independently of the fact that the reward value for the full model
is unknown, the problem of computing an exact solution (i.e. obtaining the “best” sub-
model for reward computation) is intractable [Jamieson and Dean 2007]. In this section
we discuss a heuristic for automatically constructing submodels that can provide bet-
ter bounds for reliability at lower computation cost than both full model checking and
Monte Carlo approaches.

Our approach adopts a heuristic based on the reasoning that the submodel construc-
tion strategy should aim to identify a portion of the model that is probabilistically
dense, that is, a small submodel for which the probability of reaching the λ trap state
in a given fixed time is low. Such models will contain probabilistically likely loops that
delay the traces from reaching the submodel boundary, hence contributing to a higher
bound for the reward being estimated.

The problem of finding the most probabilistically dense submodel is NP-
hard [Jamieson and Dean 2007]. Our approach attempts to approximate such a sub-
model through bounded simulation. Hence, the basis of our approach involves the sim-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:11

ulation of several traces over the full model. The resulting set of finite traces, if suffi-
ciently large and consisting of sufficiently long traces, is likely to cover a good part of
a probabilistically dense submodel. These traces form the basis for building our sub-
models. The smallest submodel that includes the set of states and transitions covered
by the simulated traces can be constructed easily by simply adding any non-visited
transitions between any two visited states, abstracting all non-visited states into the
λ trap state, and adding transitions to the λ state for whichever state has transitions
that were neither explored nor added in the first step. Figure 1 shows such a construc-
tion, where solid lines represent transitions that were covered by the simulated traces,
while dotted lines are transitions in the model that were not covered. States outside
the boundary have not been covered, and would be abstracted away into the λ state of
the submodel.

However, submodels built through such a procedure are likely to have relatively
short traces that escape the submodel (see path s0, s2, s10, . . . in the figure). These short
traces contribute a relatively high probability of escaping the submodel (in general, the
shorter the prefix, the larger the probability of the set of traces that extend from it), re-
ducing the bound estimated by the submodel. Note that, in our example, s10 falls back
within the boundary to s6 with high probability. If we were to include this state into
our submodel, and according to the submodel completion procedure outlined before,
the result would be that the bound estimated by the submodel would be raised. This is
consistent with our experimentation in [Pavese et al. 2010]. In that work, we observed
that submodels generated with a breadth-first search strategy tend to approximate
reliability measures better, as they delay the chance of escaping traces until the low-
ermost levels of the breadth-first exploration.

In the approach that we detail in this present work, rather than adopting a syntactic
notion of breadth first traversal for extending the submodel determined by a simula-
tion of the full model, we take a more semantic approach based on the attributes of
states visited during the simulation. We compute state invariants based on the states
visited during the simulation and then add to the submodel any states that satisfy
the invariant, as well as the transitions between them. In this way, we expect to add
behaviour that, although not exactly equivalent to what was simulated, represents
variations in terms of symmetries, race conditions, and independent events [Baier and
Katoen 2008], and contributes significantly to the probabilistic weight of the submodel.

We now formally define our submodel construction method. We start with the notion
of invariant of a set of traces.

Definition 3.5 (Invariant). Given a probabilistic processM = 〈S, s0, A,R〉, and a set
of finite execution traces T obtained from said model, an invariant of M through T is
a state predicate ψ on the variables of M such that for every execution trace t = s0

p0−→
s1

p1−→ s2 . . . sn ∈ T , it holds that ∀0 ≤ i ≤ n, si |= ψ.

An invariant then induces a unique submodel as follows:

Definition 3.6 (Invariant-driven submodel). Let M = 〈S, s0, A,R〉 be a SSA and ψ
a state invariant; an invariant-driven submodel induced by ψ is a submodel M ′ =
〈S′ ∪ {λ}, s0, A

′, R′〉 of M such that

a) each state s′ ∈ S′ is such that s′ |= ψ;
b) for each s′1 ∈ S′, s′1 6= s0, s0

π−→ s′1; and finally
c) for all states s′2 ∈ S \ S′ such that there exist s′1 ∈ S, (s′1, a, µR) ∈ R with µR(s′2) > 0,

it is the case that M, s′2 |6= ψ.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:12 Esteban Pavese et al.

a

a

a

a

a

b

b
b

b

a

b

b

0.01

0.99

0.25

0.15

0.60

0.80

0.20

0.35

0.65 0.10

0.90

b

a

a

a

a

a

b

b

b

b

a

b

b

0.01

0.99

0.25

0.15

0.60

0.80

0.20

0.35

0.65

0.10

0.90

τ

0.50

0.50

b
0.50 0.50

...

Determinisation Simulation

Invariant inferenceInvariant-driven verification

Measure

estimation

...

...

...

...

Fig. 2: Workflow for partial exploration analysis

In other words, if a state s′2 not in the submodel is directly reachable from a state s′1 in
the submodel, it must be the case that s′2 violates ψ. The submodel is thus maximally
connected from the initial state through the invariant ψ.

Our approach places a focus on maximising the automation of the estimation pro-
cess. Therefore, we aim at automatically obtaining invariants. To this end, we produce
probabilistically driven walks over the full system model, bounded in length, while we
record the states (i.e. variable valuations) traversed. We use the tool Daikon [Ernst
et al. 2007], an invariant inference engine, to obtain predicates that hold over all tra-
versed states. These invariant predicates, in turn, are used to synthesise an observer
automaton that can drive the generation of a submodel via its parallel composition
with the system model.

It is important to note that for working with Segala Simple Automata it is necessary
to resolve non-deterministic transitions during the probabilistically driven walk gen-
eration. In this paper, we have chosen to replace non-deterministic transitions with an
equiprobable distribution that chooses between the possible target distributions. The
correctness of our approach is not hampered by this choice, as in fact any method of
resolving non-determinism would serve our needs – any non-determinism resolution
approach yields a valid submodel. In turn, reward calculations over these submodels
yield correct bounds. However, it is left to be studied if this is the best way to resolve
non-determinism. That is, whether a different determinisation scheme exists that pro-
duces a DTMC that, when analysed for determining reliability bounds, obtains better
bounds or does so with less computational effort. We discuss on this decision and pos-
sible alternatives in Section 5.

The first step of our approach is then to perform simulation over an equiprobably
determinised version of the original SSA.

Definition 3.7 (Equiprobably Determinised Segala Simple Automaton). Let M =
〈S, s0, A,R〉 be a Segala Simple Automaton. The equiprobably determinised Segala
Simple Automaton of M is a DTMC Mdet = 〈Sdet, s0, A, Rdet〉 constructed in such a
way that S ⊆ Sdet, and for every (s, a, µ) ∈ R:

— If (s, a, µ) is the only transition for s in M , add the transition to Rdet;

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:13

p=0

q=0

p=1

q=0

p=1

q=1

p=3

q=1

p=2

q=1

p=1

q=2

p=2

q=0

p=2

q=2

p=4

q=0

p=3

q=2

p=4

q=2

p=2

q=4

0.60

0.15
0.25

1.00

0.50
0.50

0.70

0.30

0.25

0.75

0.50

0.15
0.35

0.70

0.05

0.25

1.00

0.70

0.30

1.00

(a) Model to be explored

p=0

q=0

p=1

q=0

p=1

q=1

p=3

q=1

p=2

q=1

p=1

q=2

p=2

q=0

p=2

q=2

p=4

q=0

p=3

q=2

p=4

q=2

p=2

q=4

0.60

0.15
0.25

1.00

0.50
0.50

0.70

0.30

0.25

0.75

0.50

0.15
0.35

0.70

0.05

0.25

1.00

0.70

0.30

1.00

(b) Simulation traversal

p=0

q=0

p=1

q=0

p=1

q=1

p=3

q=1

p=2

q=1

p=1

q=2

p=2

q=0

p=2

q=2

p=4

q=0

p=3

q=2

p=4

q=2

p=2

q=4

0.60

0.15
0.25

1.00

0.50
0.50

0.70

0.30

0.25

0.75

0.50

0.15 0.35

0.70

0.05

0.25

1.00

0.70

0.30

1.00

(c) Invariant-driven submodel

Fig. 3: Stages to obtain an invariant-driven submodel

— otherwise, take all (s, ai, µi). Add i states ts1, . . . , tsi to Sdet. Add a transition (s, τ, µ) to
Rdet where µ(tsj) = 1/i for each of those added states, and 0 everywhere else. Finally,
add transitions (tsi , ai, µi) to Rdet for each of the added states.

Once the invariant is inferred through the simulations, it is used to generate the
partial submodel of the original SSA. Figure 2 depicts the workflow of this approach
while in Figure 3 we show the intermediate stages of the submodel generation.

The first step in Figure 2 is model determinisation. Applying determinisation to the
original model yields another one where some intermediate states have been added
to account for the replacement of non-deterministic transitions for probabilistic ones
(these added states appear shaded in the second model of Figure 2). The second part
of the workflow consists of simulation, invariant inference and obtaining a submodel.

The stages through which we accomplish this goal are detailed in Figure 3. We start
out with the simple model shown in Figure 3a where the states are identified by two
integer variables p and q. We have omitted action labels in this case to aid readability
of the example. The first step of the approach is to perform a set of length-bounded
simulations of the model. For the sake of this small example, we have obtained two
simulation traces, the first shown in a blue dotted line, while the second one is shown
with solid red transitions.

The result of this simulation phase is that we have witnessed those states and tran-
sitions contained in the C-shaped area delimited by the dotted line. From these states,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:14 Esteban Pavese et al.

we infer the invariant that describes them all, which turns out to be p ≤ 3∧q ≤ 2. Note
that there other states that satisfy this invariant (shown greyed out in Figure 3b) but
that were not traversed by the simulations. However, our notion of invariant-based
submodel includes some of these states. The submodel resulting from the invariant
p ≤ 3 ∧ q ≤ 2 is shown in Figure 3c. Note that the state (p = 3, q = 1) does satisfy the
invariant, yet it is not included in the submodel. The reason for the exclusion of this
state is that the only way to reach it from the initial state is through states that do not
satisfy the invariant and therefore cannot be part of the submodel.

Note that the addition of states (p = 1, q = 1) and (p = 2, q = 1) to the submodel
has resulted in several loops being incorporated into the submodel. These loops were
partially explored by the simulation, but not fully captured by them. There is a big
gain in including loops such as these within our submodels, since the addition of these
few states results in an increase of the probability of the behaviours that lie within
this submodel. For example, if we analyse the submodel consisting only of the states
explored by the simulations, we find that for this very simple example, the average
number of transitions necessary for a trace to escape the submodel is 3.0133. However,
if we consider the final submodel, the expected number of transitions necessary to
escape quickly climbs to 6.9500, that is, more than double the previous time.

Finally, once the submodel has been obtained, we perform a full probabilistic veri-
fication over this submodel. As we explained earlier, this yields correct bounds to the
rewards of interest.

4. VALIDATION
In this section we set out to answer three questions in order to validate our approach.

Q1: can our approach, when compared to model checking over full explorations, pro-
duce better bounds, in less time, for the reward values of system models? Here we also
answer related questions: first, whether submodels obtained through our approach
perform better than similarly-sized submodels obtained through other approaches
such as predetermined exploration criteria (e.g., BFS or DFS); and second, whether
the bounds we obtain are good, especially in the cases where we can actually obtain
the real reward value, and therefore we can contrast our estimated bounds to the ac-
tual value.

Q2: can our approach, when compared to Monte Carlo approaches, produce better
bounds, in less time, for the reward values of system models? Can the Monte Carlo
approach benefit from our partial exploration techniques, that is, do Monte Carlo ap-
proaches perform better over partial explorations?

Q3: how do the reward value estimations for submodels compare when these sub-
models are generated from automatically inferred invariants as in our approach
against manually generated ones?

Q1 and Q2 aim at comparing our proposal with established approaches to estimation
of reward values, to evaluate if our approach can complement existing techniques. The
cases where the interesting states to be reached are rare events are of special interest,
and we will discuss these at length. Q3 aims at assessing the added value of automatic
techniques for obtaining submodels, against the cost of gaining a deep understanding
of the model to be verified and developing a good submodel manually.

4.1. Methodology
We analysed three different systems from the literature, and properties that can be ex-
pressed in terms of reward values. These systems are especially amenable to be speci-
fied in either DTMC or SSA form, depending on their reliance on non-determinism. In
the following sections we provide a description of each of these systems.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:15

For each case study, we built probabilistic system models accordingly, in order to de-
scribe behaviour. We modelled the properties of interest as state formulae, and defined
appropriate reachability reward structures. We used the same input for all reward
estimation techniques.

We put our approach to the test for all case studies for several automatically gener-
ated invariants varying the number and length of traces used for invariant inference.
We used Daikon v4.6.4 [Ernst et al. 2007] configured to produce invariants that are
conjunctions of terms of the form x ∼ y, where x and y are either variables in the
model, or integer constants, and ∼∈ {<,≤,=,≥>}. The invariants we obtained were
used to automatically build an observer automaton O, that monitors the validity of
the invariant. This observer, when composed with the system model M , synchronises
with all actions and forces transitioning into the λ trap state whenever the destination
state of the intended transition would result in an invariant violation. Because of this
manner of construction, the resulting subsystem is guaranteed to be a submodel of the
original system model.

For Q1 we used a modified version of PRISM v4.0.3 [Hinton et al. 2006] to perform
probabilistic model checking to estimate the reward values for both the full state space
and for its invariant-driven submodels. Modifications allow for batch trace generation
on a format understandable by Daikon (used for invariant inference) and time and
memory-use tracking (used for generating intermediate reward results and for timing
out when time budget is up). Intermediate reward results were generated for visualis-
ing convergence rates. PRISM was deployed on an 8x Core Intel Xeon CPU @1.60 GHz
with 8 GB RAM.

As was noted before, probabilistic verification and calculation of rewards entails
solving a linear equation system as well as the model exploration. PRISM provides dif-
ferent numerical methods for this equation solving phase. We compared reward value
computation of the full and partial explorations for the Jacobi, Gauss-Seidel and Power
iterative methods, as well as several optimisations over the Jacobi and Gauss-Seidel
methods. Due to space limitations, we only report on results obtained with the back-
wards variation of the Gauss-Seidel method (BGS), which proved to be the most effec-
tive method for full model probabilistic model checking in terms of bounds obtained
for time budget, making it the best competitor against our technique. This is consis-
tent with the fact that BGS and other relaxation based iterative methods consistently
outperform other methods such as Jacobi or Power iterations [Woźnicki 2001; Kalambi
2008].

PRISM runs were considered complete when any of the following criteria held: ei-
ther a) the absolute difference between results of successive iterations of the numerical
method was less than 0.01 (relative differences are not an adequate stopping criteria
because of slow convergence, which causes iterative methods to cut too early). Alter-
natively, b) running time reached 24 hours; or c) available memory, which was limited
to 1 GB for each run as they were deployed concurrently, was exhausted. Note that the
time measured includes only the execution of the numerical methods. This allows for
convergence analysis and favours full-model exploration as the time spent on construc-
tion of the model state space is not considered. In the case of the bigger models, this
construction takes as much as 6 hours of execution time. We comment on execution
time for submodel generation later in the Experimental Results subsection.

For Q2 Monte Carlo simulations were generated using the same version of PRISM
and the same hardware as Q1. However, note that while our approach produces lower
bounds to actual reward values with 100% confidence but for which precision (per-
centual difference between the estimation and the actual value) is unbounded, Monte
Carlo produces estimations with varying degrees of confidence but for which precision

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:16 Esteban Pavese et al.

can be bounded. Consequently, we aimed at performing Monte Carlo-based estimations
for a range of confidence and precision values.

A critical precondition for applying Monte Carlo approaches is that all randomly
generated traces must eventually reach the target states, and enough traces must be
generated in order to guarantee estimations with a fixed precision and confidence. Set-
ting a trace length horizon for the simulator to ensure all traces reach their target is
typically done based on a rough estimation of the actual reward value, or an estimate
of the underlying probability distribution [Sen et al. 2005a]. This seemingly circular
procedure can, however, work in practice. In our particular setting, we used the esti-
mations obtained in Q1 as the basis for setting this horizon for each case study. The
reason for choosing such an estimate are twofold: first, the actual rewards are guar-
anteed to be at least as much; and second, we will already have a measure of how
much effort is needed to arrive at such an estimation. We will see that even under this
setting, Monte Carlo approaches require excessive effort to arrive to similar results.

In addition to comparing probabilistic model checking of submodels against Monte
Carlo simulations of the complete model, we compared probabilistic model checking
against Monte Carlo simulations over the same submodels. In other words, starting
from the hypothesis that submodel generation does provide an added value, we wanted
to further establish which approach was best for the second phase of the analysis;
that is, whether probabilistic model checking or Monte Carlo evaluations should be
employed.

Finally, Q3 uses the same setup and reward estimation approach based on inferred
invariants as in Q1. The key difference is in the method for submodel generation.
Manually produced invariants for submodel generation were put forth before any of
the experiments were performed. Therefore, the manually proposed invariants were
not tainted by knowledge gained from the automatic approach. The main heuristic for
coming up with the invariants was analysing the model and identifying necessary (and
more likely) conditions for reaching the target states.

The cost of manually generating an invariant is not simple to estimate. However,
coming up with invariants that are useful for a partial exploration does demand from
the user a deep understanding of the model under analysis. This is in general not triv-
ial. In the context of this work, the cost of manually generating invariants, although
non-trivial, was mitigated by the fact that the authors are familiar with the models
under analysis. Eliminating this author bias would require further validation, possi-
bly involving a well-designed user study. Such a study falls outside the scope of this
paper and remains future work.

4.2. Case Studies
Tandem Queueing Network. The first case study is a tandem queueing network, based

on [Hermanns et al. 1999]. Queueing systems have been extensively studied in queue-
ing theory, and analytical solutions for some variants exist. However, due to the com-
plexity of this particular model and its different queueing modes, general analytical
queueing models are not easily applicable. Generating an ad-hoc analytical formula-
tion would require extensive expertise and time, and it would not be easily adaptable
to modifications in the design of the queueing system; even if these modifications are
smaller ones.

The system consists of two process queues C and M of given (and in this particular
case equal) capacities. Clients queue processes for execution in the first queue while
it is not full. This first queue may either route a process to the second queue after a
probabilistically chosen time elapses, or it might choose to deal with the request itself.
The behaviour of this first queue is governed by two different phases. The difference
between the phases is given by the probability with which it will choose to route its

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:17

requests to the second queue or deal with them directly. The second queue has no other
queue on which to unload its processes. Therefore, all it can do is service its requests,
and it does so after a probabilistically chosen time elapses. A failure is observed when
both queues are full, as at this time, clients cannot do anything but wait until some
requests have been serviced and there is room in the first queue for another process.

In our specific scenario devised for experimentation in this paper, the capacity of
the queues is fixed at 1200 each. Clients are less inclined (i.e., they take more time in
average) to enqueue processes as the free capacity of the queues decreases.

The reliability metric that we wish to estimate is the the mean time to failure
(MTTF) of the system. Mean time to first failure is a widely accepted metric for re-
liability. This metric represents for how much time a client can expect to operate a
system until it experiences its first failure. In this case, the failure is represented by
the moment where a client cannot push any more tasks in the queues, and the first
queue cannot offload any more work to the second. That is, a failure is met when both
queues are full.

Consequently, the reward structure ρ we choose to model assigns the value 1 to
every timing transition. It is generally accepted to employ execution time rather than
calendar time for MTTF estimations [Lyu 1996]. While calendar time measures real
time in terms of hours, weeks, etc., execution time is the time actually spent in system
execution. This distinction is important for reactive systems which may have long idle
times.

In our model, the state predicate that captures failure is cliC = 1200 ∧ cliM = 1200,
and computing the mean time to failure amounts to calculating the expectation of the
accumulated reward before reaching a state satisfying this predicate.

Bounded Retransmission Protocol. The second case study [D’Argenio et al. 2001] models
a robust communication protocol that attempts to ensure delivery of data, the bounded
retransmission protocol (BRP) [Helmink et al. 1994].

BRP is a variant of the alternating bit protocol, which allows for a bounded num-
ber of retransmissions of a given chunk (i.e., a part of a file). The protocol consists
of a sender, a receiver, and two lossy channels, used for data and acknowledgements
respectively. The sender transmits a file composed of a number of chunks, by way of
frames. Each frame contains the chunk itself and three bits. The first bit indicates
whether the chunk is the first one; the second one if it is the last chunk; and the third
bit is the alternating one, used for avoiding data duplication.

The sender waits for acknowledgement of each frame sent. The sender may timeout
if either the frame or the corresponding acknowledgement are dropped which could be
caused, for example, by either the frame or the corresponding acknowledgement being
dropped. When this happens, the sender resends the frame and does so repeatedly up
to a specified retry limit. If the limit is reached and the transmission is terminated,
the sender may be able to establish that the file was not sent (if some chunks were
left unsent) or it may not know the outcome (if the last frame was sent but no ac-
knowledgement was received). In any case, the sender may send a new file, resetting
the retry count. A maximum of 256 retransmissions are attempted per file before the
sender gives up and aborts transmission of the file, regardless of the size of the file
being sent, Once a file is sent successfully or its transmission fails, the system waits
for another file to be sent.

Protocol clients send files one at a time. Each of these files is of a different size (in
number of chunks). This size may be different for each file, varying between just a few
and 1500 chunks. We developed two SSA models for this problem, and analysed them
separately. First, we assumed complete knowledge about the distribution of the sizes
of the file being sent. Therefore, the choice of file size was modelled probabilistically,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:18 Esteban Pavese et al.

yielding a DTMC as system model, where exceedingly large or small files are modelled
to be less likely to be sent than those of average size. In the second model we developed,
we introduced uncertainty regarding this knowledge, and kept the size choice non-
deterministic, representing this absence of information. Under this modelling choice,
the second case yielded an SSA rather than a DTMC.

In this case, we also wish to estimate the mean time to the first failure, where failure
is defined as the sender failing to send a complete file (incomplete) or not being able to
establish if a file was sent successfully (unknown). Consequently, the state predicate
describing failures is incomplete ∨ unknown. The definition of time for this case study
aims at establishing how many data packets can be expected to be sent successfully
before failure. For the DTMC model we obtained the mean number of packets being
sent before experiencing failure, while for the SSA model we obtained both the mini-
mum and maximum mean number of packets, which represent the worst case and best
case scenarios respectively.

IEEE 802.11 Wireless LAN.. The third case study depicts the Carrier Sense Multiple Ac-
cess with Collision Avoidance (CSMA/CA) mechanism of the IEEE 802.11 protocol [In-
stitute of Electrical and Electronic Engineers 1997]. The protocol uses a randomised
exponential backoff rule to minimise the likelihood of transmission collision. That is,
whenever a collision was averted by a component sensing the busy carrier when trying
to send data over busy media, the component is backed off (it needs to wait until trying
to resend) for a time. This time is chosen randomly from a specified range of possible
delays, and successive failures cause this range to increase exponentially. The goal of
the protocol is to divide, as equally as possible, the access to the channel between all
participants that may collide.

The model used depicts a two-way handshake mechanism of the IEEE 802.11
medium access control scheme, operating in a fixed network topology. The SSA model
itself was extracted verbatim from [Henriques et al. 2012]. This model exhibits both
stochastic behaviour (for example, in the randomised backoff procedure, that allows up
to seven exponential backoff levels) and non-deterministic behaviour (for example, in
modelling the interleaving of actions between the two independent emitter stations).
Therefore, the model is an SSA.

In this case, the protocol is probabilistically guaranteed to never fail, that is, both
stations will eventually be able to send their packets. However, it is interesting to know
for how long they will have to wait, in average, to achieve this objective. Turnaround
time is a measure for both reliability of systems, as it may include time necessary
for error correction or recovery, as well as a measure for performance. In general, the
turnaround time for a process refers to the time that elapses between it starting its
task until it finishes or provides some result. The starting and finishing times may
be arbitrarily defined (for example, start time may be either the moment the process
takes control of execution, or rather the moment it is sent a request). In general, we
may refer to turnaround as the time it takes a process to produce the required results
after it is started.

In this case, we are interested in estimating the turnaround time for two stations
to be able to successfully send their packets and advance to their done state, while
avoiding potential collisions. As such, the state predicate that describes this final state
is station1 = done ∧ station2 = done. Note that, unlike the previous case study, both
stations managing to send their messages is not a rare event at all if the protocol works
correctly. However, the sheer size of the model does hamper direct estimation.

Network virus infection. In this case, we analyse the behaviour of a virus infection on a
computer network. This case study is based on [Kwiatkowska et al. 2009; De Nicola
et al. 2006] but is heavily expanded as we will detail further on.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:19

223

333

323

313

332

322

312

331

321

311

233

213

232

222

212

231

221

211

133

123

113

132

122

112

131

121

111

Fig. 4: A 3 × 3 × 3 network cube. On the lower right the infected node 111, the target
node is 333 in the upper left.

The network is a cubic grid of nodes, as opposed to the original case study
in [Kwiatkowska et al. 2009] which was based on a plane grid; a cubic grid allows
more virus paths as well as customising the model to sizes that quickly grow to be
intractable. The size of the network is given by N , the number of nodes in any given
edge of the cube. Each node is connected to the nodes at its left, right, up and down,
as well as to those behind and in front of it. Nodes in the outer faces may have less
connections. Figure 4 depicts a 3× 3× 3 cubic grid.

We model the behaviour of a virus infection on a firewalled, self-healing network. In
this setting, once a node is infected, it tries to propagate to its neighbouring nodes. In
order to succeed, it needs to first defeat the node’s firewall, and then attempt infection
once the firewall is down. The network is self-healing, as healthy nodes will try to
repair its infected neighbours.

The scheduling between these actions is completely non-deterministic. On the other
hand, we built a SSA model of the environment that describes the probabilities of
success when trying to break a firewall, infect a vulnerable node, or repair an infected
node.

In each case we start with a healthy network, save for one of the corner nodes, which
starts infected. The properties of interest we analyse in this case are the expected
minimum time to total infection of the network, and the expected minimum time to
infection of the node at the opposite corner of the initially infected one.

4.3. Experimental Results
We now present the experimental results obtained for the three research questions
presented above. Table I provides a quick overview and comparison of all results given
all the different techniques employed, as follows

— Full is a model checking effort over the full model. We always report on bounds on
rewards obtained, if any. Bounds on probabilities are only reported if convergence
was attained.

— Partial denotes our approach, ignoring simulation times. Since we also perform a
model checking step, we omit probabilities that did not converge in time.

— Monte Carlo denotes the statistical estimation based on trace simulation.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:20 Esteban Pavese et al.

Table I: Summary of (best) results for each technique and case study. TO denotes time-
out at 24 hours. N/A denotes results that could not be obtained before timeout or were
erroneous due to technique shortcomings.

Tandem Queue (mean time to failure)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

Unknown 4.2× 105 TO 7× 107 TO N/A TO 5.5× 107 TO
Fully probabilistic BRP (mean time to failure)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

Unknown OOM TO 2.5× 107 TO N/A TO 1.69× 107 TO
Non-deterministic BRP (minimum mean time to failure)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

Unknown OOM TO 5.6× 106 TO N/A TO 9999 126.25 s
Non-deterministic BRP (maximum mean time to failure)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

Unknown OOM TO 9.8× 106 TO N/A TO 9965.87 46.26 s
WLAN (minimum mean turnaround time)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

1725.00 1725.00 628.00 s 1725.00 0.98 s N/A N/A 1665.63 490.05 s
WLAN (maximum mean turnaround time)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

4301.65 4301.65 54149 s 4300.67* 2 s* N/A N/A 3846.17 1085.87 s
Constrained Virus (minimum mean time to total infection)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

5200.00 OOM TO 500.54 2771 s N/A N/A 999.32 414 s
Constrained Virus (minimum mean time to corner infection)

Actual value Full Partial Monte Carlo Manual
Result Time Result Time Result Time Result Time

1200.00 OOM TO 599.54 1452 s N/A N/A 999.32 1242 s

— Manual describes the best result obtained by any of the manual invariants posed
for the case study.

When possible, we also report on the actual reward values. This was either obtained
analytically or through a full model check that converged, as described in each case
study section.

For each experimental case, we highlight the best performer, taking into account
both the quality of the result obtained as the time taken to arrive to this result. In
the case of ties, or very close results with very disparaging running times, we opted to
report the fastest performer as the best result. We mark these cases with an asterisk.

Question 1. When comparing probabilistic model checking of both full and partial
models we are interested in considering the relationship between the inferred invari-
ant, the size of the resulting submodel, and the value of the reward estimation obtained
from it. We are also interested in gaining insight on combinations of trace length and
number of traces that are likely to yield the best overall result.

Tandem Queue analyses. For the Tandem Queue case study the estimated mean time
to failure, calculated using probabilistic model checking, in 24 hours over the full model
was 4.20 × 105. This full model comprises ∼ 1.5 × 107 states. Regarding computations
over submodels, we report on MTTF estimation (Figure 5), submodel sizes (Figure 6)
and invariants obtained (Table II) for various settings of sample size and individual
trace length. We report here on a subset of the values obtained, however non-reported
data is in-line with the trends shown. Note that our best MTTF estimation is about

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:21

 0
 5000

 10000
 15000

 20000
 25000

 30000
 35000 0

 10000
 20000

 30000
 40000

 50000
 60000

 70000
 80000

 90000
 100000

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

Estimated MTTF
(operational time)

Tandem Queue MTTF estimation

Submodel size
(states)

Verification time
(seconds)

Estimated MTTF
(operational time)

Fig. 5: Results of analysis of Tandem Queue for different sized submodels, Backwards
Gauss-Seidel method.

7×107, a full two orders of magnitude larger than what could be estimated through full
model checking. Even if this is not the actual MTTF, this jump in estimation quality
could make a difference in establishing a case for reliability assurance of the system.

The first figure shows, for different automatically generated sized submodels, the es-
timated MTTF (shown over a logarithmic scale for convenience) along with how much
time it took for the calculation to finish. Executions that finished before the 24 hour
timeout are flattened on the MTTF axis at the time the result was reached. It is note-
worthy that none of the automatically obtained submodels is larger than 35000 states,
comprising roughly 0.25% of the states of the complete model. Despite having explored
only such a small percentage of the full model, the obtained lower bound for MTTF
is quite large in some cases, possibly sufficient to argue for high system reliability –
MTTF is at least in the order of 1.0×107. Although very small submodels do not provide
good bounds, larger submodel MTTF estimations increase dramatically, quickly rising
to the 7 × 107 maximum MTTF witnessed, which is a full two orders of magnitude
beyond the estimation for the full model.

An important question is whether good submodels can be obtained in a consistent
fashion by parameterising trace quantity and length parameters of the simulation
phase. As we have seen above, the size of the submodels is an initial indicator that the
estimation procedure will result in good bounds. Figure 6 shows that such submodels
can be obtained automatically in a consistent way for this example. Focusing on the
upper-right corner of the figure, it can be seen that choosing values for trace length
and sample size in that region consistently results in appropriate submodels.

The charts in Figure 7 expand on this. Figure 7a shows submodel sizes for different
parameters, in a way similar to Figure 6. Figure 7b shows the estimated bounds for
said parameters. It can easily be seen that submodel size and estimations correlate.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:22 Esteban Pavese et al.

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 10000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

Submodel size
(states)

Tandem Queue submodel sizes

Sample size
(number of traces)

Trace length

Submodel size
(states)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

Fig. 6: Tandem Queue submodels sizes for different sample size and trace length pa-
rameters.

Table II: Selection of Tandem Queue submodel sizes and invariants for different pa-
rameter configurations.

Traces Length States Invariant
10000 1 14 cliC = cliM ∧ cliC ≤ 0 ∧ state ≤ 2 ∧ cliC ≤ state
10000 501 12690 cliC ≤ 73 ∧ cliM ≤ 15 ∧ state ≤ 9
5000 1000 14134 cliC ≤ 69 ∧ cliM ≤ 18 ∧ state ≤ 9

10000 1000 16086 cliC ≤ 83 ∧ cliM ≤ 17 ∧ state ≤ 9
5000 2000 23388 cliC ≤ 100 ∧ cliM ≤ 21 ∧ state ≤ 9

10000 2000 22486 cliC ≤ 92 ∧ cliM ≤ 22 ∧ state ≤ 9
5000 3000 20932 cliC ≤ 98 ∧ cliM ≤ 19 ∧ state ≤ 9

10000 3000 25228 cliC ≤ 108 ∧ cliM ≤ 21 ∧ state ≤ 9
5000 4000 24538 cliC ≤ 105 ∧ cliM ≤ 21 ∧ state ≤ 9

10000 4000 24882 cliC ≤ 94 ∧ cliM ≤ 24 ∧ state ≤ 9
5000 5000 26424 cliC ≤ 104 ∧ cliM ≤ 23 ∧ state ≤ 9

10000 5000 23686 cliC ≤ 97 ∧ cliM ≤ 22 ∧ state ≤ 9
5000 6000 26182 cliC ≤ 99 ∧ cliM ≤ 24 ∧ state ≤ 9

10000 6000 31902 cliC ≤ 121 ∧ cliM ≤ 24 ∧ state ≤ 9
5000 7000 29926 cliC ≤ 123 ∧ cliM ≤ 22 ∧ state ≤ 9

10000 7000 30674 cliC ≤ 121 ∧ cliM ≤ 23 ∧ state ≤ 9
5000 8000 23910 cliC ≤ 107 ∧ cliM ≤ 20 ∧ state ≤ 9

10000 8000 29424 cliC ≤ 116 ∧ cliM ≤ 23 ∧ state ≤ 9
5000 9000 29924 cliC ≤ 118 ∧ cliM ≤ 23 ∧ state ≤ 9

10000 9000 29926 cliC ≤ 123 ∧ cliM ≤ 22 ∧ state ≤ 9
5000 10000 27174 cliC ≤ 107 ∧ cliM ≤ 23 ∧ state ≤ 9

10000 10000 27460 cliC ≤ 100 ∧ cliM ≤ 25 ∧ state ≤ 9

It can be observed that experiments with trace length below 3000 do not consistently
produce rich enough models that yield good MTTF estimates. Unsurprisingly, small

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:23

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
ra

c
e
 l
e
n
g
th

Sample size
(number of traces)

Tandem Queue submodel sizes

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

(a) Submodel sizes by parameters

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
ra

c
e
 l
e
n
g
th

Sample size
(number of traces)

Tandem Queue MTTF by parameter combination

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

(b) Estimations by parameters

Fig. 7: Tandem queue submodel sizes and estimations for different parameters

sample sets are also inconsistent in their results. However, once the sample set size
parameter is set to at least 6000 samples, the submodels produced consistently yield
large MTTF estimates. In summary, for this case study a minimum of 6000 samples of
traces at least 4000 steps long are necessary for consistent results. Furthermore, in-
creasing these parameters does not yield clear advantage in terms of the final MTTF
estimation. Both figures also show that results become more stable as these parame-
ters are increased.

State space size alone is not the only important factor when evaluating the effective-
ness of the approach. For a given size expressed in number of states, many submodels
of that size exist, and not all of them may be effective. Preliminary work [Pavese et al.
2010] has shown that submodels obtained through depth first search (DFS) explo-
rations yield very poor results, as they allow short traces to escape the submodel to
the λ state. Although breadth first search (BFS) obtains higher MTTF lower bounds
than DFS when used as a submodel generator, it performs poorly against our approach,
as the state space that it explores is not as relevant. For example, our approach using
10000 traces 10000 states long (one of the best performers) obtains a 27460 state sized
submodel, which is characterised by the invariant cliC ≤ 100 ∧ cliM ≤ 25 ∧ state ≤ 9.
Consider a similarly sized BFS generated submodel of 28000 states. The Tandem
Queue model allows four different actions (push, fwd, svc1,svc2). Conservatively as-
suming at most two actions enabled at each state, an equal sized BFS submodel would
explore at most dlog2(27460)e = 15 levels deep. Such a submodel would only allow for
very limited behaviour. If each transition level generated a new state, queues of no
more than 15 elements could be generated by such a submodel. Of course, it is not al-
ways the case that a new state is generated. In fact, a BFS exploration that allows for
50 elements per queue results in a 32000 state submodel. The MTTF obtained through
such a submodel is ∼ 70000, very far from the results we obtain.

Regarding potential overhead of trace generation and invariant inference, memory
consumption is negligible with respect to representing the state space of the full model,
as only one relatively short trace needs to be kept in memory at a time. Time-wise,
analysis of 10000 traces of length 10000 took less than an hour. Accounting for this
hour in the verification time budget, the submodel that yielded the highest MTTF
lower bound would have achieved a result of ∼ 6×107 in 23 hours, still a large increase
against the estimation obtained via full model verification.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:24 Esteban Pavese et al.

 0
 100000

 200000
 300000

 400000
 500000

 600000 0
 10000

 20000
 30000

 40000
 50000

 60000
 70000

 80000
 90000

 100000

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

Estimated MTTF
(packages sent)

BRP MTTF estimation

Submodel size
(states)

Verification time
(seconds)

Estimated MTTF
(packages sent)

Fig. 8: Results of analysis of BRP (probabilistic file size choice) for different sized sub-
models, Backwards Gauss-Seidel method.

Table III: Selection of BRP submodel (probabilistic file size choice) sizes and invariants
for different parameter configurations.

Traces Length States Invariant

10000 1 35
srep = nrtr ∧ srep = fileSize ∧ srep = r ∧ srep = rrep ∧ srep = k ∧
srep = l∧bs = s_ab∧bs = fs∧bs = ls∧bs = fr∧bs = lr∧bs = br∧bs =
r_ab∧ bs = recv∧s ≤ 7∧srep ≤ 0∧ i ≤ 1∧s ≥ srep∧s ≥ i∧srep ≤ i

10000 501 66282

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 84 ∧ r ≤
4∧ rrep ≤ 3∧ k ≤ 2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤
i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

10000 5000 333099

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 833 ∧ r ≤
4∧ rrep ≤ 3∧ k ≤ 2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤

i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ fileSize ∧ fileSize ≥
r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

10000 10000 392786

s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤
4∧ rrep ≤ 3∧ k ≤ 2∧ l ≤ 2∧ s ≥ k∧ s ≥ l∧ srep ≤ fileSize∧ srep ≤
i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤ fileSize ∧ nrtr ≤ i ∧ fileSize ≥

r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

Although not intended to be shown to developers, we report on some of the automat-
ically inferred invariants in Table II. The discovered invariants deal with bounding
the size of both queues, while the variable state encodes whether the queues are full
or not, and the phase the system is in at the time. It is noteworthy that although it is
intuitive that an invariant should bound the queue sizes, it is unlikely that a human
would come up with the particular bounding values used.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:25

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 10000

 0

 100000

 200000

 300000

 400000

 500000

 600000

Submodel size
(states)

BRP submodel sizes

Sample size
(number of traces)

Trace length

Submodel size
(states)

 0

 100000

 200000

 300000

 400000

 500000

 600000

Fig. 9: BRP submodels (probabilistic file size choice) sizes for different sample size and
trace length parameters.

Bounded Retransmission Protocol - fully probabilistic model version. For the BRP
case study in its fully probabilistic variation, similar results were obtained and are
shown in Figures 8 and 9, and Table III.

In contrast to the prior case study, we were unable to obtain the MTTF for the full
model due to state explosion that exhausted available memory. However, observations
prior to running out of memory showed that the full model contains at least 30 million
states, which means that the submodels we analysed represent at most 2% of the size
of the full model, still a very low percentage. Furthermore, the highest MTTF bounds
were obtained for submodels with a size starting from 400000 states (less than 1.33%
of the full model), which turned out to yield an MTTF in the order of 2.5 × 107. This
result is most significant, because of the impossibility of estimating MTTF for the full
model.

Note that for submodels whose size is around the 400000 and 500000 states mark,
there are both estimations that provide very good bounds and those that yield not so
useful ones. Interestingly enough, those that do not perform well arise from submodels
obtained through invariants inferred from sample sets where generated traces were
shorter than 7000 states long, while sets of longer traces perform very well. This shows
that appropriate trace length, as well as sample size, is critical to the final MTTF esti-
mation. As before, a similarly sized submodel obtained through BFS does not provide
such higher MTTF lower bounds. One of our best performers, at 10000 traces 10000
states long, produces a submodel 392786 states in size which (with eight BRP actions
and conservatively assuming three enabled at any time) results in a BFS submodel of
depth dlog3(392786)e = 12, which models very few frames being sent. In fact, a BFS-like
submodel that allows only for 5 frames to be sent per file comprises ∼ 400000 states
and yields an MTTF of only 40.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:26 Esteban Pavese et al.

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
ra

c
e
 l
e
n
g
th

Sample size
(number of traces)

BRP submodel sizes

 0

 100000

 200000

 300000

 400000

 500000

 600000

(a) Submodel sizes by parameters

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
ra

c
e
 l
e
n
g
th

Sample size
(number of traces)

BRP MTTF by parameter combination

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

(b) Estimations by parameters

Fig. 10: BRP submodel sizes and estimations for different parameters

The charts in Figure 7 expand on this. Figure 7a shows submodel sizes for different
parameters, in a way similar to Figure 6. Figure 7b shows the estimated bounds for
said parameters. It can easily be seen that submodel size and estimations correlate.

Figures 9 and 10 depict information related to the possibility of obtaining useful
submodels, in a manner similar as we did for the Tandem Queue case study. It can
be seen that it is quite easy to obtain such submodels, without many restrictions on
experiment configuration. Again, there is a correlation between submodel size and es-
timation quality. However, model size is not as good an indicator in this case, since sub-
models obtained through simulations of lengths 7000 and 9000 are similar in size, but
the resulting estimations are much better in the latter, even with as little as 2000 sam-
ples. Further increases of these parameters yield larger and slightly better-performing
models, and this increase is much smoother (hence predictable) than is the case for the
Tandem Queue submodels.

As in the other case study, trace generation and invariant inference incurs an over-
head. In this case, since the model is more complex, this analysis can take up to 2 ad-
ditional hours. Reducing the verification time by these 2 hours, the estimated MTTF
would have been still large, about 2 × 107. Recall that this overhead was not included
in measured time to allow graphs to show convergence speed of numerical analysis.

As before, we show for reference some of the inferred invariants. The variables
fileSize, i and nrtr describe the size of the file being sent, how many frames have been
sent for that file, and the number of retries attempted, respectively. Other variables
such as sab, rab, bs and fs encode the bit alternation in the protocol. The invariants
obtained establish relationships between variables that seem unrelated, making them
quite unintuitive even for a domain expert.

Bounded Retransmission Protocol - non-deterministic model version. As we ex-
plained before, we also developed a version of the BRP model that leaves the file size
choice to a non-deterministic process. Recall that introducing non-determinism into a
model requires a scheduler function to solve this non-determinism, and that we focus
on those that yield the minimum and maximum probabilities or reward values. There-
fore we turned our attention to finding out the minimum and maximum possible mean
times to failure. We performed the same verifications as for the DTMC model, but
effectively twice, as we require both extreme values. As was the case for the DTMC
model, we were unable to obtain an estimation for the MTTF for the full model via
probabilistic model checking, because of memory being exhausted due to state explo-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:27

Table IV: Selection of BRP submodel (non-deterministic file size choice) MTTF evalua-
tion results for different simulation parameter configurations.

Simulation for invariant inference and submodel
generation Model checking

Traces Length States Min. MTTF Time Max. MTTF Time
7000 7000 362818 7012.95 416.03s 5189082.31 TO
7000 8000 486334 8009.98 310.63s 4131821.02 TO
7000 9000 392786 3562408.74 TO 6057239.73 TO
7000 10000 392786 3520812.45 TO 3836886.45 TO
8000 7000 467078 7012.98 311.74s 2696445.38 TO
8000 8000 377758 8009.93 283.59s 3436473.71 TO
8000 9000 393127 3228676.48 TO 4189020.09 TO
8000 10000 392786 3957488.92 TO 3985846.34 TO
9000 7000 363159 7012.98 166.43s 6672088.97 TO
9000 8000 377758 8009.93 284.88s 3988798.52 TO
9000 9000 392786 3099149.50 TO 3081547.39 TO
9000 10000 392786 3173533.40 TO 3414618.29 TO

10000 3000 276133 3007.00 63.38s 5779075.77 TO
10000 7000 362818 7012.95 192.54s 4006598.92 TO
10000 8000 486334 8009.98 344.00s 2910151.56 TO
10000 9000 393127 3979433.22 TO 4069637.98 TO
10000 10000 506672 3199985.39 TO 3149986.63 TO

sion. After the 24 hours of allotted time elapsed for each extreme value estimation,
the results yielded a model comprising nearly 29 million states, while the reward esti-
mation set a minimum MTTF value of 60297 and, surprisingly, a maximum MTTF of
50819. This discrepancy of the maximum estimation being actually less than the mini-
mum one can be explained as an unintended consequence of the numerical verification
procedure. The verification algorithm for extreme probabilities involves solving an op-
timisation problem for each extreme value. In the case of the minimum time to failure,
the optimisation converges much faster. Indeed, the minimisation procedure actually
performed about 20% more iterations than its maximisation counterpart, a factor that
can explain this discrepancy.

After failing to obtain an exact value for the MTTF extreme values, we turned our
attention to the estimation over partial explorations. We report on these experiments
in Table IV, which summarises the results obtained while estimating the minimum
and maximum MTTF.

It is interesting to note several things about these results. First, the submodels anal-
ysed represent, similarly to the fully probabilistic case, at most 2% of the size of the full
model, a very low percentage. It also quickly becomes evident that there is a strange
phenomenon taking place with the estimation of the minimum rewards. Almost all
results are polarised either on the 3.25 × 106 - 4.0 × 106 range; or either in the 7000 -
8000 range. Further, the length of traces simulated is critical, particularly in the case
of estimating the minimum MTTF. Note that simulating traces less than 9000 actions
long, results in the smaller estimations for minimum MTTF. This seems to have its
correlation with the invariants that were inferred in each case, depicted in Table V.
Note that, in the invariants obtained with traces less than 9000 steps long, the vari-
able i is restricted to no more than 1333. Recall that i indicates the number of packets
of the file that have already been set. These invariants show that, for the traces anal-
ysed, some times the maximum file size (1500) was chosen, but never completely sent.
For our approach, such situations would lie in the unknown set of the state space,
and thus conservatively evaluated as failing states. However, invariants obtained for
longer traces do allow i to reach its maximum of 1500, which explains the dramatic in-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:28 Esteban Pavese et al.

Table V: Selection of BRP submodel (non-deterministic file size choice) sizes and in-
variants for different parameter configurations.

Traces Length Invariant

8000 8000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤

2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤
fileSize ∧ nrtr ≤ i ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

8000 10000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤

2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤
fileSize ∧ nrtr ≤ i ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

9000 8000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤

2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤
fileSize ∧ nrtr ≤ i ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

9000 10000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 2 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤

2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤
fileSize ∧ nrtr ≤ i ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

10000 8000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 1333 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤

2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤
fileSize ∧ nrtr ≤ i ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

10000 10000
s ≤ 7 ∧ srep ≤ 3 ∧ nrtr ≤ 3 ∧ fileSize ≤ 1500 ∧ i ≤ 1500 ∧ r ≤ 4 ∧ rrep ≤ 3 ∧ k ≤ 2 ∧ l ≤

2 ∧ s ≥ k ∧ s ≥ l ∧ srep ≤ fileSize ∧ srep ≤ i ∧ srep ≤ r ∧ srep ≤ rrep ∧ nrtr ≤
fileSize ∧ fileSize ≥ r ∧ fileSize ≥ rrep ∧ fileSize ≥ k ∧ fileSize ≥ l ∧ r ≥ l

crease of the estimations. Even more, increasing the simulation length to 10000 actions
does pay off in some cases, although the increase is not nearly as dramatic.

In the case of the maximum MTTF estimation, all submodels behave more or less
uniformly. Although there are of course differences, even the worst results are still
much better than those obtained by full model evaluation. In fact, when compared with
the result obtained for full model estimation, it can clearly be seen that estimation over
submodels pays off – the maximum MTTF estimated for submodels is, in all cases, at
least 50 times as much than those obtained for the full model.

Figure 11 illustrates these results in a manner similar to the previous case studies.
Note that while there are two different charts for minimum and maximum MTTF
estimations, the submodels remain the same in both cases.

There is a final point that needs to be noted. As we discussed earlier, the submodels
obtained by analysing shorter simulations are not very good for minimum MTTF esti-
mation. However, they are the best performers for estimating maximum MTTF. This
is a consequence of the state space being smaller, as this allows for more numerical it-
erations in the same time budget. Another important factor is that choosing a smaller
file size allows for a larger Mean Time to Failure. This is because when transmitting
a smaller file, the chance that the protocol will deplete its allowed retries is smaller
than with a bigger file, simply because it has less chances to fail. This contrasts with
the minimum MTTF calculation, which becomes larger just as bigger files are allowed
in the model.

WLAN collision avoidance protocol. Finally, we turn our attention to the analysis of
the WLAN collision protocol model. In this case study, we are interested in estimat-
ing the turnaround time (TAT) for both emitting stations to complete sending their
intended data. That is, we wish to know the mean time from the moment the first sta-
tion intends to send data until both of them have successfully sent their data, including
all necessary backoff time.

For this case study we also attempted to produce an estimate for the full model.
Contrasting with the previous case studies, the event under analysis is not a rare event
at all. On the contrary, it is desirable that in every instance both stations are able to
send their data in a reasonable time. During this analysis, we obtained a full model
comprising about 75 million states. The minimum TAT was estimated at 1725 after

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:29

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
ra

c
e
 l
e
n
g
th

Sample size
(number of traces)

BRP (non-deterministic) submodel sizes

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

(a) Submodel sizes by parameters

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
ra

c
e
 l
e
n
g
th

Sample size
(number of traces)

BRP (non deterministic) minimum MTTF by parameter combination

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

(b) Minimum estimations by parameters

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
ra

c
e
 l
e
n
g
th

Sample size
(number of traces)

BRP (non deterministic) maximum MTTF by parameter combination

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

(c) Maximum estimations by parameters

Fig. 11: BRP (non deterministic) submodel sizes and estimations for different parame-
ters

executing for just 10 minutes, while the maximum one was calculated to be 4301.65,
after 15 hours into the verification process execution. Turnaround time is measured in
microseconds (µs).

Again, we compared this performance with our approach, with the results obtained
depicted in Tables VI and VII.

In this case, the results are much easier to interpret. First, note the TAT estimations
themselves from Table VI. The minimum turnaround time estimated is the same for
all submodels evaluated and coincides with that obtained through the full model eval-
uation. In the case of the maximum turnaround estimation, they are not all the same,
but they are all around the same value, and differ in no more than 2% from the actual
value estimated through full model evaluation. However, the verification times that
were necessary for estimating these results are what are most significant. For every
submodel, both for the minimum TAT estimation as for the maximum, all reward esti-
mations finished in less than 10 seconds, with most of those estimations taking much
less time. This marks a stark contrast with the time needed for the full model verifi-
cation: minimum TAT estimation required no more than 1 second in all cases (except
one where it required 4.5 seconds) while full model estimation required 10 minutes. In
the case of maximum reward estimation, doing so for the full model required 15 hours,
while partial model estimations were mostly completed within 1.5 seconds, except in

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:30 Esteban Pavese et al.

Table VI: Selection of WLAN submodel TAT evaluation results for different simulation
parameter configurations.

Simulation for invariant inference and submodel
generation Model checking

Traces Length States Min. TAT Time Max. TAT Time
500 100 117976 1725.00 0.72s 4213.90 1.15s
500 150 117976 1725.00 0.74s 4213.90 1.28s
500 200 118252 1725.00 0.76s 4278.24 1.16s
500 250 118252 1725.00 0.80s 4278.24 1.24s

1000 100 117976 1725.00 0.80s 4213.90 1.33s
1000 150 118252 1725.00 0.73s 4278.24 1.12s
1000 200 118232 1725.00 0.74s 4278.24 1.12s
1000 250 118252 1725.00 0.71s 4278.24 1.21s
1500 100 118104 1725.00 0.69s 4246.08 1.07s
1500 150 118252 1725.00 0.75s 4278.23 1.14s
1500 200 118252 1725.00 0.78s 4278.23 1.19s
1500 250 472809 1725.00 4.47s 4286.21 7.87s
2000 100 118240 1725.00 0.70s 4247.08 1.18s
2000 150 118252 1725.00 0.71s 4278.23 1.11s
2000 200 118252 1725.00 0.70s 4278.23 1.11s
2000 250 118232 1725.00 0.94s 4278.24 1.34s

one case where it required a time short of 8 seconds. Further, the estimated maximum
turnaround times are very close to the actual value, deviating at most a 0.02% from
the actual value, and most estimations staying within 0.005% of this actual result.

The size of the submodels evaluated is also striking. In all cases, this size is about
0.15% to 0.50% of the size of the whole model. This seems to suggest that the full model
has a very large portion of behaviour that is largely irrelevant in regards to their actual
contribution to the system’s TAT. In fact, it is easy to see from Table VII that although
the waiting slots (slot1 and slot2) can be increased to as much as 128 different slots,
the simulations only observed waiting times up to 4 of these slots. Since the slot is
chosen equiprobably within the same backoff level, this seems to suggest that only the
first two backoff levels were taken on all of the simulated executions. In other words,
it was never necessary to increase the backoff to more than this second level.

As in the previous case study, the choice of parameters for the number of traces to
simulate and the length of the simulated paths also plays a role. However, this is not as
clear-cut as in the previous case. Note that the size of the submodels evaluated seems
to lie either near the 120000 state mark except for one that lies near the 460000 state
mark, yielding a partial state space that is roughly 4 times as large as the others. This
also explains the discrepancy on the estimation times. When the larger submodel was
analysed, the estimation took nearly 7 times as much time as the other estimations.
The estimated values, however, were not much better than the ones estimated over
smaller partial state spaces. They all yielded an estimate equal to the actual value in
the case of the minimum turnaround time. In the case of the maximum turnaround
time, estimations over the larger partial state space did produce a value that is closer
to the actual value than the other estimations, but this difference is only marginal.

We may, however, find an explanation for such a disparity in the invariants inferred–
see Table VII. In the cases where a bigger submodel was generated, it turns out that
the second sender station was allowed to take the slot number 3 in some of the exe-
cutions, while in the smaller ones it never did. Since the choice of slot is uniform, and
whenever the slot 2 is available the slot 3 also is, we can only conclude that these dif-
ferences are only a coincidental artefact of the stochasticity of the sampling procedure.

Virus Infection. Finally, we study the network virus infection scenario. As we de-
scribed earlier, this network has a cubic grid topology. For these experiments we chose

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:31

Table VII: Selected WLAN inferred invariants for different parameter configurations.

Traces Length Invariant

1000 100

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤ 31 ∧ bc1 ≤
2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥
slot1 ∧ col ≤ s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 >
bc1 ∧ s1 > slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ slot1 ≤ bc2 ∧ bc1 < s2 ∧ bc1 ≥

slot2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1000 150

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤ 31 ∧ bc1 ≤
2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥

slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 < s2∧s1 > slot1∧s1 > bc1∧s1 >
slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1000 200

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤ 31 ∧ bc1 ≤
2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥

slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 < s2∧s1 > slot1∧s1 > bc1∧s1 >
slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1000 250

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤ 31 ∧ bc1 ≤
2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥

slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 < s2∧s1 > slot1∧s1 > bc1∧s1 >
slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1500 100

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤ 2∧x2 ≤
10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤
s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 < s2∧s1 > slot1∧s1 > bc1∧s1 > slot2∧s1 >
bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ bc1 ≥ slot2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1500 150

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤ 31 ∧ bc1 ≤
2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥

slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 < s2∧s1 > slot1∧s1 > bc1∧s1 >
slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1500 200

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤ 31 ∧ bc1 ≤
2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥

slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 < s2∧s1 > slot1∧s1 > bc1∧s1 >
slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

1500 250

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 3 ∧ backoff1 ≤ 31 ∧ bc1 ≤
3 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 3 ∧ col ≤ s1 ∧ col ≤
s2 ∧ col ≥ slot2 ∧ c1 < s1 ∧ c1 ≤ s2 ∧ c2 ≤ s1 ∧ c2 < s2 ∧ s1 > slot1 ∧ s1 ≥ bc1 ∧ s1 >

slot2 ∧ s1 ≥ bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ s2 > slot2 ∧ s2 ≥ bc2 ∧ slot2 ≤ bc2

2000 100

col ≤ 2∧c1 ≤ 2∧c2 ≤ 2∧x1 ≤ 10∧s1 ≤ 12∧s1 ≥ 1∧slot1 ≤ 1∧backoff1 ≤ 31∧bc1 ≤ 2∧x2 ≤
10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥ slot1 ∧ col ≤
s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 < s2∧s1 > slot1∧s1 > bc1∧s1 > slot2∧s1 ≥
bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ slot1 ≤ bc2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 150

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤ 31 ∧ bc1 ≤
2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥

slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 < s2∧s1 > slot1∧s1 > bc1∧s1 >
slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 200

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤ 31 ∧ bc1 ≤
2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥

slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 < s2∧s1 > slot1∧s1 > bc1∧s1 >
slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 ≤ s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

2000 250

col ≤ 2 ∧ c1 ≤ 2 ∧ c2 ≤ 2 ∧ x1 ≤ 10 ∧ s1 ≤ 12 ∧ s1 ≥ 1 ∧ slot1 ≤ 1 ∧ backoff1 ≤ 31 ∧ bc1 ≤
2 ∧ x2 ≤ 10 ∧ s2 ≤ 12 ∧ s2 ≥ 1 ∧ slot2 ≤ 1 ∧ backoff2 ≤ 31 ∧ bc2 ≤ 2 ∧ col ≤ s1 ∧ col ≥

slot1∧col ≤ s2∧col ≥ slot2∧c1 < s1∧c1 ≤ s2∧c2 ≤ s1∧c2 < s2∧s1 > slot1∧s1 > bc1∧s1 >
slot2 ∧ s1 > bc2 ∧ slot1 ≤ bc1 ∧ slot1 < s2 ∧ bc1 < s2 ∧ s2 > slot2 ∧ s2 > bc2 ∧ slot2 ≤ bc2

to set the number N of nodes per edge to be 3; that is, the network is comprised of a
total of 27 nodes. This is more than enough to quickly deplete all available memory be-
fore reaching a full state space. The total potential state space is 327 ∼ 7× 1012 states.
The actual reachable states are less. For example, a state where every node has its
firewall down is unreachable (there should be at least one infected node responsible
for having broken the firewall of the last node). However, the reachable states are still
enough to make a complete analysis infeasible.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:32 Esteban Pavese et al.

This is a similar situation to that of the BRP case study, so we focus on partial
explorations only. We will show, however, that in this case we have a way of computing
the values of interest in an analytical manner.

We start out with a non-deterministic model of the network, since we do not know
which distribution (if any) governs the races between the different nodes. At any given
point any of the nodes can choose to perform its action. However, the internal be-
haviour of each node is modelled probabilistically.

According to the behaviour we modelled, the nodes are quite resistant to attack. An
infected node has a 0.01 chance to break a neighbour’s firewall. Once this firewall is
down, it has a further 0.01 chance to infect it. A healthy node is much more efficient
and has a 0.98 chance of repair success. However, all nodes are agnostic respect the
status of their neighbours. This means that an infected node may attempt to reinfect
an already infected node, and a healthy node may attempt to repair a non-infected one.

The first property of interest is the minimum expected time to total infection of the
network. The maximum expected time is uninteresting, as it is infinite: a scheduler
may choose to alternatively infect a node, and once it is infected, have a neighbour
repair it, and do so indefinitely. Therefore, there exist valid schedulers that avoid at-
taining total infection. Following the same reasoning, we also wish to calculate the
minimum expected time to propagating infection from one corner of the cubic grid to
the opposite corner, without requiring full infection

Even though we cannot perform a complete model check over the whole system, we
can calculate the values of the interesting properties in an analytical manner.

For the first property, the fastest way to achieve total infection is to infect each of
the remaining 26 nodes, without allowing for any recovery from the healthy nodes.
Recall that infection of a node implies first lowering its firewall. Since the probability
of breaking the firewall and infecting a vulnerable node is the same (0.01), the previous
analysis amounts to studying a Negative Binomial distribution with parameter 0.99.
In order to witness total infection, we need to see 52 (26 firewall breaks + 26 infections)
failure events. Therefore the expected time to total infection is 52/0.01 = 5200.

The case for corner infection is similar. We can calculate the mean time to corner
infection, since the worst scheduler is the one that takes the fastest vector of infection
from one corner to another. This involves infecting just 6 nodes to reach the opposite
corner. The expected time to corner infection follows the same distribution as before.
Following this known distribution, it turns out that the expected time to infection of
the opposite corner is 1200.

Partial exploration approach results. As we did with the other case studies, we put
our approach to the test. Although we managed to obtain correct results, in this case
the values obtained turned out to lie far from the actual values. Using our standard
simulation parameters of simulating 1000-10000 traces of 1000-10000 steps each, we
always obtained submodels for which the bound to mean time of both total infection
and corner infection was ∼ 200.

These results are a consequence of the simulated traces not capturing enough of the
system’s behaviour. This is caused, in turn, by the strongly non-deterministic nature
of the model. It happens that, at any given point in simulation, there exist several
possible actions to take. Namely, since each node is unaware of its neighbours status,
each node can try to break or infect its neighbours (if itself is infected), or repair it (if
it is not infected). At each point, there are in excess of 27 choices possible, each with
a simulation probability of 1/27 = 0.03737. This makes it extremely unlikely that a
simulation will even infect 2 nodes. In fact, the probability of a simulation immediately
infecting two nodes is (0.03737 × 0.01)4 = 1.95 × 10−14. Even taking into account that
a simulation can take up to 10000 steps, the probability still remains extremely small.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:33

 200

 400

 600

 800

 1000

 2000 4000 6000 8000 10000

T
ra

c
e

 l
e

n
g
th

Sample size
(number of traces)

Virus submodel sizes

OOM OOM

OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

Fig. 12: Sizes of submodels of the Virus infection model for different simulation param-
eters. OOM denotes submodels that exceeded available memory.

This results in submodels that describe very little behaviour. However, the results are
still correct, although arguably not as useful as in the other cases. In any case, recall
that obtaining results based on a full exploration is infeasible and, as we will see later,
Monte Carlo approaches do not help either.

In order to be able to perform a more meaningful analysis, we modelled a second
version of the virus infection where we restricted some behaviour. This second model
introduces two changes. First, the nodes do not perform repair operations. Therefore,
once a node is infected, it stays infected. Second, nodes are aware of their neighbours
status. As a result, infected nodes do not try to break broken neighbours, and do not
try to infect infected neighbours. These two changes significantly constrain the model,
and reduce both the number of reachable states as well as available transitions. Inter-
estingly enough, the analytical results for the extreme case still hold the same values,
as the analysis is still valid under this constrained model.

From initial experimentation it was clear that running simulations as long as those
we performed for the previous case studies yielded submodels that were still large
enough to be infeasible to analyse. Therefore, we reduced the length of simulations for
this case study. The results we present in this section were obtained by performing
simulations where the number of traces varied between 1000 and 10000 (stepping size
by 1000), and the traces were between 100 and 1000 steps long (stepping size 100).
Even with this model simplification and simulation parameters adjustment, we also
ran into cases where memory was not enough to hold the submodel. Figure 12 shows
these results.

As a result we only report results on those submodels that we could analyse. Fig-
ures 13 and 14 show the bounds on minimum expected time to total and corner infec-
tion, respectively, along with the time taken to arrive to those results. The results are

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:34 Esteban Pavese et al.

Table VIII: Selection of virus infection submodel sizes and invariants for different pa-
rameter configurations.

Traces Length States Invariant

1000 100 7728

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 = s231 ∧ s123 =
s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 = s322 ∧ s123 =
s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤

2 ∧ s113 ≤ 1 ∧ s121 ≤ 2 ∧ s122 ≤ 1 ∧ s123 ≤ 0 ∧ s131 ≤ 1 ∧ s211 ≤ 2 ∧ s212 ≤ 2 ∧ s221 ≤
1 ∧ s311 ≤ 1 ∧ s111 ≥ s112 ∧ s111 > s113 ∧ s111 ≥ s121 ∧ s111 > s122 ∧ s111 >

s123∧ true∧ s111 > s131∧ s111 ≥ s211∧ s111 ≥ s212∧ s111 > s221∧ s111 > s311∧ s112 ≥
s113 ∧ s112 ≥ s122 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥

s123 ∧ s123 ≤ s131 ∧ s123 ≤ s211 ∧ s123 ≤ s212 ∧ s123 ≤ s221 ∧ s123 ≤ s311 ∧ s211 ≥ s311

5000 100 17378

s123 = s132 ∧ s123 = s133 ∧ s123 = s213 ∧ s123 = s222 ∧ s123 = s223 ∧ s123 = s231 ∧ s123 =
s232 ∧ s123 = s233 ∧ s123 = s312 ∧ s123 = s313 ∧ s123 = s321 ∧ s123 = s322 ∧ s123 =
s323 ∧ s123 = s331 ∧ s123 = s332 ∧ s123 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤

2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤ 1 ∧ s123 ≤ 0 ∧ s131 ≤ 1 ∧ s211 ≤ 2 ∧ s212 ≤ 2 ∧ s221 ≤
2 ∧ s311 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥ s113 ∧ s111 ≥ s121 ∧ s111 > s122 ∧ s111 >

s123∧ true∧ s111 > s131∧ s111 ≥ s211∧ s111 ≥ s212∧ s111 ≥ s221∧ s111 > s311∧ s112 ≥
s113 ∧ s112 ≥ s123 ∧ s113 ≥ s123 ∧ s121 ≥ s123 ∧ s121 ≥ s131 ∧ s122 ≥ s123 ∧ s123 ≤

s131 ∧ s123 ≤ s211 ∧ s123 ≤ s212 ∧ s123 ≤ s221 ∧ s123 ≤ s311 ∧ s211 ≥ s311

1000 400 3128661

s133 = s223 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 =
s333∧s111 ≤ 2∧s111 ≥ 2∧true∧s112 ≤ 2∧s113 ≤ 2∧s121 ≤ 2∧s122 ≤ 2∧s123 ≤ 1∧s131 ≤

2 ∧ s132 ≤ 2 ∧ s133 ≤ 0 ∧ s211 ≤ 2 ∧ s212 ≤ 2 ∧ s213 ≤ 1 ∧ s221 ≤ 2 ∧ s222 ≤ 2 ∧ s231 ≤
1∧ s232 ≤ 1∧ s311 ≤ 2∧ s312 ≤ 1∧ s321 ≤ 1∧ s322 ≤ 1∧ s111 ≥ s112∧ s111 ≥ s113∧ s111 ≥
s121∧ s111 ≥ s122∧ s111 > s123∧ s111 ≥ s131∧ s111 ≥ s132∧ s111 > s133∧ true∧ s111 ≥

s211 ∧ s111 ≥ s212 ∧ s111 > s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s231 ∧ s111 >
s232 ∧ s111 ≥ s311 ∧ s111 > s312 ∧ s111 > s321 ∧ s111 > s322 ∧ s112 ≥ s113 ∧ s112 ≥
s133 ∧ s112 ≥ s232 ∧ s112 ≥ s322 ∧ s113 ≥ s133 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥
s232 ∧ s121 ≥ s322 ∧ s122 ≥ s133 ∧ s122 ≥ s232 ∧ s122 ≥ s322 ∧ s123 ≥ s133 ∧ s123 ≥
s322 ∧ s131 ≥ s133 ∧ s131 ≥ s322 ∧ s132 ≥ s133 ∧ s132 ≥ s232 ∧ s133 ≤ s211 ∧ s133 ≤
s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤ s231 ∧ s133 ≤ s232 ∧ s133 ≤
s311 ∧ s133 ≤ s312 ∧ s133 ≤ s321 ∧ s133 ≤ s322 ∧ s211 ≥ s231 ∧ s211 ≥ s311 ∧ s211 ≥

s321 ∧ s211 ≥ s322 ∧ s212 ≥ s213 ∧ s212 ≥ s312 ∧ s221 ≥ s232 ∧ s222 ≥ s232 ∧ s222 ≥ s322

4000 400 13385277

s223 = s232 ∧ s223 = s233 ∧ s223 = s313 ∧ s223 = s322 ∧ s223 = s323 ∧ s223 = s331 ∧ s223 =
s332 ∧ s223 = s333 ∧ s111 ≤ 2 ∧ s111 ≥ 2 ∧ true ∧ s112 ≤ 2 ∧ s113 ≤ 2 ∧ s121 ≤ 2 ∧ s122 ≤
2 ∧ s123 ≤ 2 ∧ s131 ≤ 2 ∧ s132 ≤ 2 ∧ s133 ≤ 1 ∧ s211 ≤ 2 ∧ s212 ≤ 2 ∧ s213 ≤ 2 ∧ s221 ≤

2 ∧ s222 ≤ 2 ∧ s223 ≤ 0 ∧ s231 ≤ 2 ∧ s311 ≤ 2 ∧ s312 ≤ 2 ∧ s321 ≤ 1 ∧ s111 ≥ s112 ∧ s111 ≥
s113 ∧ s111 ≥ s121 ∧ s111 ≥ s122 ∧ s111 ≥ s123 ∧ s111 ≥ s131 ∧ s111 ≥ s132 ∧ s111 >
s133 ∧ s111 ≥ s211 ∧ s111 ≥ s212 ∧ s111 ≥ s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 >

s223∧ true∧ s111 ≥ s231∧ s111 ≥ s311∧ s111 ≥ s312∧ s111 > s321∧ s112 ≥ s113∧ s112 ≥
s133 ∧ s112 ≥ s223 ∧ s113 ≥ s223 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥ s223 ∧ s122 ≥
s133 ∧ s122 ≥ s223 ∧ s123 ≥ s133 ∧ s123 ≥ s223 ∧ s131 ≥ s133 ∧ s131 ≥ s223 ∧ s132 ≥
s223 ∧ s133 ≤ s211 ∧ s133 ≥ s223 ∧ s211 ≥ s223 ∧ s211 ≥ s311 ∧ s212 ≥ s223 ∧ s213 ≥

s223 ∧ s221 ≥ s223 ∧ s222 ≥ s223 ∧ s223 ≤ s231 ∧ s223 ≤ s311 ∧ s223 ≤ s312 ∧ s223 ≤ s321

1000 500 10495696

s133 = s232 ∧ s133 = s233 ∧ s133 = s313 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 =
s333∧s111 ≤ 2∧s111 ≥ 2∧true∧s112 ≤ 2∧s113 ≤ 2∧s121 ≤ 2∧s122 ≤ 2∧s123 ≤ 2∧s131 ≤
2∧s132 ≤ 2∧s133 ≤ 0∧s211 ≤ 2∧s212 ≤ 2∧s213 ≤ 2∧s221 ≤ 2∧s222 ≤ 2∧s223 ≤ 1∧s231 ≤
1∧s311 ≤ 2∧s312 ≤ 2∧s321 ≤ 1∧s322 ≤ 1∧s111 ≥ s112∧s111 ≥ s113∧s111 ≥ s121∧s111 ≥
s122∧ s111 ≥ s123∧ s111 ≥ s131∧ s111 ≥ s132∧ s111 > s133∧ true∧ s111 ≥ s211∧ s111 ≥

s212 ∧ s111 ≥ s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s223 ∧ s111 > s231 ∧ s111 ≥
s311 ∧ s111 ≥ s312 ∧ s111 > s321 ∧ s111 > s322 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥
s213 ∧ s112 ≥ s223 ∧ s113 ≥ s133 ∧ s113 ≥ s223 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥
s223 ∧ s121 ≥ s322 ∧ s122 ≥ s133 ∧ s122 ≥ s223 ∧ s123 ≥ s133 ∧ s123 ≥ s223 ∧ s131 ≥
s133 ∧ s132 ≥ s133 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤
s222 ∧ s133 ≤ s223 ∧ s133 ≤ s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤ s321 ∧ s133 ≤

s322 ∧ s211 ≥ s311 ∧ s211 ≥ s322 ∧ s212 ≥ s223 ∧ s212 ≥ s322 ∧ s213 ≥ s223 ∧ s312 ≥ s322

2000 500 21603820

s133 = s232 ∧ s133 = s233 ∧ s133 = s322 ∧ s133 = s323 ∧ s133 = s331 ∧ s133 = s332 ∧ s133 =
s333∧s111 ≤ 2∧s111 ≥ 2∧true∧s112 ≤ 2∧s113 ≤ 2∧s121 ≤ 2∧s122 ≤ 2∧s123 ≤ 2∧s131 ≤
2∧s132 ≤ 2∧s133 ≤ 0∧s211 ≤ 2∧s212 ≤ 2∧s213 ≤ 2∧s221 ≤ 2∧s222 ≤ 2∧s223 ≤ 1∧s231 ≤
2∧s311 ≤ 2∧s312 ≤ 2∧s313 ≤ 1∧s321 ≤ 2∧s111 ≥ s112∧s111 ≥ s113∧s111 ≥ s121∧s111 ≥
s122∧ s111 ≥ s123∧ s111 ≥ s131∧ s111 ≥ s132∧ s111 > s133∧ true∧ s111 ≥ s211∧ s111 ≥

s212 ∧ s111 ≥ s213 ∧ s111 ≥ s221 ∧ s111 ≥ s222 ∧ s111 > s223 ∧ s111 ≥ s231 ∧ s111 ≥
s311 ∧ s111 ≥ s312 ∧ s111 > s313 ∧ s111 ≥ s321 ∧ s112 ≥ s113 ∧ s112 ≥ s133 ∧ s112 ≥
s223 ∧ s112 ≥ s313 ∧ s113 ≥ s133 ∧ s113 ≥ s313 ∧ s121 ≥ s131 ∧ s121 ≥ s133 ∧ s121 ≥
s223 ∧ s121 ≥ s313 ∧ s122 ≥ s133 ∧ s122 ≥ s223 ∧ s123 ≥ s133 ∧ s131 ≥ s133 ∧ s132 ≥
s133 ∧ s133 ≤ s211 ∧ s133 ≤ s212 ∧ s133 ≤ s213 ∧ s133 ≤ s221 ∧ s133 ≤ s222 ∧ s133 ≤
s223 ∧ s133 ≤ s231 ∧ s133 ≤ s311 ∧ s133 ≤ s312 ∧ s133 ≤ s313 ∧ s133 ≤ s321 ∧ s211 ≥

s223 ∧ s211 ≥ s311 ∧ s211 ≥ s312 ∧ s211 ≥ s313 ∧ s213 ≥ s313 ∧ s221 ≥ s223 ∧ s222 ≥ s223

still not close to the actual values, but are much more informative than in the more
relaxed case.

Perhaps a yet more interesting result from these graphs is that the obtained values
are exactly the same both for the total infection property as well as the corner infection,
although verification times are higher for the total infection case due to the added
complexity of the formula that describes this total infection. This suggests that the
bound is being calculated to the point of reaching the trap state rather than the actual
infection states. This is confirmed by the invariants obtained, that effectively prune
the infection states out of the partial state space. Table VIII shows a subset of the
invariants for the submodels where partial verification was feasible.

Summary of results. What all case studies and experiments indicate is that, through
careful partial exploration of the model, we can obtain bounds for reward estimation

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:35

 0

 200

 400

 600

 800

 1000

1
0

0
0

,1
0

0

1
0

0
0

,2
0

0

1
0

0
0

,3
0

0

1
0

0
0

,4
0

0

1
0

0
0

,5
0

0

2
0

0
0

,1
0

0

2
0

0
0

,2
0

0

2
0

0
0

,3
0

0

2
0

0
0

,5
0

0

3
0

0
0

,1
0

0

3
0

0
0

,2
0

0

3
0

0
0

,3
0

0

3
0

0
0

,4
0

0

4
0

0
0

,1
0

0

4
0

0
0

,2
0

0

4
0

0
0

,3
0

0

4
0

0
0

,4
0

0

5
0

0
0

,1
0

0

5
0

0
0

,2
0

0

5
0

0
0

,3
0

0

6
0

0
0

,1
0

0

6
0

0
0

,2
0

0

7
0

0
0

,1
0

0

7
0

0
0

,2
0

0

7
0

0
0

,3
0

0

8
0

0
0

,1
0

0

8
0

0
0

,2
0

0

8
0

0
0

,3
0

0

9
0

0
0

,1
0

0

9
0

0
0

,2
0

0

1
0

0
0

0
,1

0
0

1
0

0
0

0
,2

0
0

 0

 1000

 2000

 3000

 4000

 5000

 6000

M
in

im
u

m
 m

e
a

n
 t

im
e

 t
o

 c
o

rn
e

r
in

fe
c
ti
o

n
 e

s
ti
m

a
ti
o

n

V
e

ri
fi
c
a

ti
o

n
 t

im
e

 (
s
)

Sample size (Traces, Length)

Minimum mean time to corner infection estimation
Verification time (s)

Fig. 13: Minimum mean time to total infection. Bounds calculated on submodels ob-
tained through combinations of traces and trace lengths.

 0

 200

 400

 600

 800

 1000

1
0

0
0

,1
0

0

1
0

0
0

,2
0

0

1
0

0
0

,3
0

0

1
0

0
0

,4
0

0

1
0

0
0

,5
0

0

2
0

0
0

,1
0

0

2
0

0
0

,2
0

0

2
0

0
0

,3
0

0

2
0

0
0

,5
0

0

3
0

0
0

,1
0

0

3
0

0
0

,2
0

0

3
0

0
0

,3
0

0

3
0

0
0

,4
0

0

4
0

0
0

,1
0

0

4
0

0
0

,2
0

0

4
0

0
0

,3
0

0

4
0

0
0

,4
0

0

5
0

0
0

,1
0

0

5
0

0
0

,2
0

0

5
0

0
0

,3
0

0

6
0

0
0

,1
0

0

6
0

0
0

,2
0

0

7
0

0
0

,1
0

0

7
0

0
0

,2
0

0

7
0

0
0

,3
0

0

8
0

0
0

,1
0

0

8
0

0
0

,2
0

0

8
0

0
0

,3
0

0

9
0

0
0

,1
0

0

9
0

0
0

,2
0

0

1
0

0
0

0
,1

0
0

1
0

0
0

0
,2

0
0

 0

 1000

 2000

 3000

 4000

 5000

 6000

M
in

im
u

m
 m

e
a

n
 t

im
e

 t
o

 c
o

rn
e

r
in

fe
c
ti
o

n
 e

s
ti
m

a
ti
o

n

V
e

ri
fi
c
a

ti
o

n
 t

im
e

 (
s
)

Sample size (Traces, Length)

Minimum mean time to corner infection estimation
Verification time (s)

Fig. 14: Minimum mean time to corner infection. Bounds calculated on submodels ob-
tained through combinations of traces and trace lengths.

with very low percentages (< 1.5%) of the actual state space explored, and that these
bounds are more useful than those obtained through an analysis of the complete state
space. Further, submodels that yield these results also converge very quickly (much
before the 24 hour timeout) to good estimation results. While the estimation does con-
stantly improve during the rest of the 24 hours, it does so at a slower pace. This is
good news, as even with the trace analysis, good results can still be attained under the
same time budget. From these results it follows that, for these case studies, effort into
estimating reward values through automatically obtained submodels through model
invariants of the full model pays off.

It must be noted that it is possible that the actual value of the reward being esti-
mated is much larger than any of those obtained. Of course, we are always limited by
the fact that the actual reward value cannot be calculated, neither with partial nor full
models. It can be argued, though, that it is often the case that the exact value is not
needed as such; rather, satisfying a minimum threshold value is a sufficient guarantee
for the reliability measure being analysed. Hence, methods which provide higher lower
bounds faster are useful.

It is also interesting to note that the efficiency of our proposed approach does not
seem to depend on whether the states tested for reachability are actually reachable
in the submodels or not. For example, in both the Tandem Queue and BRP cases,
the inferred invariants preclude the failure states from appearing in the submodels.
However, in the case of the WLAN protocol the interesting state which describes the
protocol success (and for which we aim at calculating its turnaround time) is not cut
out from the submodels by the invariant, so states that do satisfy the property exist in

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:36 Esteban Pavese et al.

the submodels (although it is possible that not all states that satisfy the property are
in the submodel).

We also found evidence that the degree of non-deterministic behaviour present in the
model plays a role on the quality of the estimations as well. This is a consequence of the
simulation phase, as non-determinism is simulated via an equiprobable distribution.
The result of this non-determinism resolution is that non-deterministic behaviour will
tend to be explored in a flat manner, not unlike a BFS exploration. The end result is
that complex, deep behaviour is not witnessed as frequently, which yields models that
are poor in describing rich behaviour.

Question 2. Contrasting to the previous experimentation that aimed to compare our
approach with probabilistic model checking, Q2 aims to establish a comparison with
Monte Carlo techniques. Experimentation to answer this question is not straightfor-
ward due to the problem of generating sufficient failing simulations to ensure given
precision and confidence parameters. We first aimed at performing a straightforward
statistical analysis of the model. A first experiment was designed requiring a result
precision of 99%. As is standard for statistical analyses, we also required a 95% confi-
dence.

A straightforward calculation of the necessary sample size based on the Chernoff
bound [Chernoff 1952] determines that a total of ∼ 60000 samples are necessary, which
does not seem excessive. However recall that each sample must eventually reach a
state where the property can be determined to be true or false. For systems where
witnessing this behaviour is rare, this means that samples may be extremely long.
Through trial and error, and based on the bounds obtained in Q1, we tried to determine
the minimum length for samples to consistently reach failure states. For the Tandem
Queue full model—for which its MTTF was already estimated to be at least 7 × 107—
even samples as long as 4 × 108 do not consistently reach the failure state where the
queues are both full. Considering that generating a sample of such length takes 15
minutes, generation of the full 60000 traces required leads to a 2 year period for sample
generation. A similar situation is found upon analysis of the BRP model.

Relaxing the precision requirement to 95% reduces the sample generation cost to 1
month. Further relaxation to 90% still requires a week of execution. In fact, if we were
to set a 24 hour budget for sample generation, the precision obtained would be of just
70%. That is, the MTTF estimate would be up to ±30% away from the true MTTF value
with a 95% guarantee. Note that this is a very conservative estimate as it is unlikely
that all traces of length 4× 108 generated in the 24 hour period will consistency reach
failure states, and possibly much lengthier traces will be needed.

To overcome this limitation of standard Monte Carlo verification, we tried carrying
out a variation of Wald’s sequential testing [Nimal 2010]. This procedure generates
samples while at the same time it determines whether more samples are necessary
or not. As a result of this online estimation, it might require less samples than those
mandated by the Chernoff bound, although it cannot be stated beforehand how many
samples will be needed exactly. This optimization does not eliminate the need for sam-
ples to reach property-determining states, so sample length remains a problem. We
attempted to perform this analysis truncating generated samples at length 4×108 and
treating them as failing samples once they reached this threshold. This is a similar
strategy as the one used in our approach (anything beyond the submodel is a failure).
However, this procedure yielded no results after 24 hours of execution, indicating that
the sequential testing still needed more evidence in order to produce a reasonable es-
timate.

Furthering this strategy of over-approximation of failures in Monte Carlo verifica-
tion, we generated samples over the submodels with highest MTTF obtained in Q1

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:37

rather than over the full model. However, the problem of producing samples that con-
sistently fail persisted, failing to provide an estimate for MTTF in the budgeted time.
These results suggest that Monte Carlo approaches may be unsuitable to answer reli-
ability questions in systems with high MTTF (i.e., rare failures).

Monte Carlo analysis of non-rare events. The WLAN and Virus infection case stud-
ies, as opposed to the previous ones, do not depict rare events. As we have already
seen, the expected times to the interesting properties are short enough that they
should be attainable by a reasonable simulation. However, both of these models are
non-deterministic, and we will see in this section that this characteristic introduces a
second problem for Monte Carlo approaches.

As a way to illustrate this problem, we first set out to estimate the minimum and
maximum turnaround times for the WLAN collision avoidance protocol. Recall that we
already analysed this model completely and found these times to be 1725 and 4301.65
for the minimum and maximum cases respectively. In the previous section, we already
established that 60000 samples would be necessary for a robust estimation. Since we
know that the maximum expected turnaround time is ∼ 4300, we set the trace horizon
to 10000 in order to have a reasonable confidence that every trace would hit the success
state (i.e., one where both stations have sent their data successfully).

The obtained results are disconcerting, however. In both cases, the estimation proce-
dure was efficient, as it only required 80 seconds of execution in both cases. The reason
for this fast sample generation is that not only is the bound low, but the required prop-
erty is reached on an average of 25 steps as well. This is because, unlike the other case
studies, the reward structure for the WLAN case assigns a reward of at least 50 to
transitions. Because of these reasons, most samples are very short and are generated
very quickly.

The estimations themselves are the problem in this case. For the minimum
turnaround estimation, we obtained a time of 2729.45 ± 0.1929 with 95% confidence.
Surprisingly enough, the estimation for the maximum turnaround is extremely simi-
lar: 2731.06± 0.1915 with 95% confidence. Not only are both results the same, they are
equally incorrect.

The estimation analysis for the Virus infection case does not fare better. We have
already noted that we could calculate the minimum time to complete infection and the
minimum time to infection of the opposite corner network node in an analytical way.
We already calculated these expected times to be 5200 and 1200 respectively. Addition-
ally, we know that the maximum expected time is actually infinite. This makes the
setting of a trace horizon as difficult as in the Tandem Queue and BRP cases. In fact,
experimentation showed that traces as long as 107 steps long do not consistently reach
the target state. This situation renders the estimation analysis as infeasible as in the
BRP and Tandem Queue cases.

On the other hand, since the minimum bounds are low enough, we set out to use
them as bounds for a bounded probability analysis. We performed Monte Carlo esti-
mations of the probability of reaching total infection before the expected 5200 steps,
and the probability of infecting the opposite node before the 1200 steps expected in
that case. The actual values can be easily obtained by analysing the negative binomial
distribution.

The results for these analyses are included in Table IX. Again, it can easily be seen
that these results cannot be correct.

These (incorrect) results can be easily explained, however. Unfortunately, Monte
Carlo approaches are not very good at dealing with non-determinism [Henriques
et al. 2012]. Statistical simulation approaches are based on the fact that each sim-
ulated sample can be unequivocally quantified with its probability of being witnessed.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:38 Esteban Pavese et al.

Table IX: Monte Carlo estimations for the WLAN collision avoidance protocol and
Virus infection systems.

Property Known value Time to estimation Estimation
WLAN minimum turnaround 1725.00 81.67 sec. 2729.45± 0.1929
WLAN maximum turnaround 4301.65 80.22 sec. 2731.06± 0.1915

Max. prob. of total network
infection before 5200 steps 0.51872 20 hours 0.00± 0.00

Max. prob. of corner infection
before 1200 steps 0.53898 4 hours 0.00± 0.00

Max. prob. of total network
infection before 5200 steps

(constrained model)
0.51872 693.34 sec. 0.54200± 9.8× 10−4

Max. prob. of corner infection
before 1200 steps (constrained

model)
0.53898 166.23 sec. 0.00± 0.00

This is not true once non-determinism is introduced into the model, since the non-
deterministic choices cannot be quantified. We have attempted to quantify these
choices in a way equivalent to that of our partial exploration approach, that is, con-
sidering non-deterministic choices as equiprobable. This, however, introduces a bias
that is difficult in general to remove at the moment of performing the actual estima-
tion.

This uniform choice explains why both minimum and maximum estimations re-
sulted in the same values. Since the neither the best nor the worst schedulers are
uniform in their choice, these extreme behaviours are not witnessed, and therefore
cannot be estimated. The second problem is that turning a non-deterministic choice
into a probabilistic one introduces a bias that cannot be estimated itself. As a result,
estimation results when non-determinism is present are meaningless.

Surprisingly, this uniformity also explains why the Monte Carlo approach yielded a
result close to the actual one in the case of total virus infection, but not in the case of
corner infection. In the case of total infection, since every node needs to be infected,
every non-deterministic choice needs to be taken. Since the Monte Carlo simulations
are more or less uniform in resolving non-determinism, they turn out to actually be
selected, and therefore provide a result close to the true one. However, in the case
of corner infection, only non-deterministic options that lead to advance towards the
corner have to be selected. This is not the case for uniform non-determinism resolution,
and therefore the (wrongly) estimated probability is 0.

Question 3. In this section, we compare the results obtained while answering Q1 with
the results a practitioner might obtain by specifying invariants herself, based on her
knowledge of the model. Prior to experimenting on automatically generated invariants,
we analysed the models and came up with at least one invariant for each one. These
invariants were selected based on our understanding that their negation is a necessary
condition for reaching failure states.

For the Tandem Queue case study, we established the invariant to be that the total
number of enqueued processes globally in both queues is less than c, and ran experi-
ments for different values of c ranging up to the total capacity of the queueing system
(2 × C). A failure entails that the invariant does not hold for c < 2 × C, and that
for c = 2 × C the resulting invariant-driven submodel is exactly the whole model. In
our experiments we found that there exist multiple c values for which the invariant
resulted in a significantly higher MTTF than the MTTF estimated for the full model.

In Table X results are presented for various invariant-driven submodel parameter
values together with estimated MTTF and computation time using the BGS method.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:39

Table X: Experimental results for tandem queue (2 × 1200 processes) and BRP (256
retries) mean times failure times.

c Size BGS
MTTF Time

20 2398 st
0.83·103 68.75 s6560 tr

40 8778 st
1.12·104 82.72 s24280 tr

60 19158 st
1.25·105 276.69 s53200 tr

80 33538 st
1.36·106 64.06 m93320 tr

100 51918 st
1.49·107 17.93 h144640 tr

120 74298 st
5.50·107 TO207160 tr

140 100678 st
4.63·107 TO280880 tr

160 131058 st
3.17·107 TO365800 tr

180 165438 st
2.31·107 TO461920 tr

200 203818 st
1.66·107 TO569240 tr

900 4067118 st
8.41·105 TO11381440 tr

1600 11219198 st
4.20·105 TO31407194 tr

2400 14362898 st
4.20·105 TO40213194 tr

retries Size BGS
MTTF Time

1 366915 st
1.50·106 21.06 h489574 tr

2 480460 st
1.69·107 TO646758 tr

5 821095 st
1.08·107 TO1118310 tr

10 1388820 st
6.29·106 TO1904230 tr

50 5930620 st
1.39·106 TO8191590 tr

150 17285120 st
4.86·105 TO23909990 tr

250 28639620 st
2.73·105 TO39628390 tr

256 N/A st N/A OOMN/A tr

From the table it follows that the best MTTF is obtained for the submodel which
considers up to 120 processes queued (MTTF > 5.5 ∗ 107).

In the case of the Bounded Retransmission Protocol case study, a parametric invari-
ant chosen was that the number of retries performed while transmitting a single file
was less than maxretries. We ran experiments for different values of maxretries ranging
up to the true maximum number of retries (256). A failure entails that the invariant
does not hold for maxretries < 256. For retries = maxretries the resulting invariant-
driven submodel is the whole model.

Again, we show a selection of submodels, ranging from the very small upwards to
almost the complete model. Results for these experiments are depicted in Table X.
Estimation results are even more significant than for the previous case study con-
sidering that analysis of the full model with 256 retries was not possible within the
memory budget. However, the trend indicates that augmenting the number of retries
considered does not yield better MTTF and in fact, a very low number of retries gives
a much higher MTTF.

Although the WLAN collision avoidance protocol could be verified in its totality, we
nevertheless ventured an invariant that we thought would be useful in reducing the
state space. It turns out in this case that our proposed invariant is much simpler than
those inferred by the automatic approach, as our initial belief was that bounding the
time a sending station is forced to backoff, the model would be reduced. This interpre-
tation, however, turned out to be erroneous. In fact, regardless of how many times a
sending station found a collision, the backoff time is chosen uniformly over the whole
possible range. The results we obtained by applying these invariants are presented in
Table XI. Note that even restricting the backoff time to just one value (zero) does not

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:40 Esteban Pavese et al.

Table XI: Selection of WLAN submodel TAT evaluation results for different manual
invariants.

backoff1 and backoff2 bounding Model checking
Max. backoff time States Min. TAT Time Max. TAT Time

0 59185713 465.97 109.36s 1201.71 176.88s
5 64160812 559.68 206.37s 1273.44 224.98s
10 68239697 686.78 304.47s 1460.94 286.30s
15 71431132 901.65 440.29s 1764.45 364.90s
20 73735117 1157.81 614.94s 2244.19 435.67s
25 75151652 1392.19 641.49s 2922.23 781.37s
30 75680737 1665.63 490.05s 3846.17 1085.87s

Table XII: Experimental results for mean times to total infection with manual invari-
ants.

infected Size Min. time to infection
Value Time

1 74 st 199.88 ∼ 0.00 s222 tr

2 1269 st 399.69 0.07 s5233 tr

3 19181 st 599.55 0.64 s99607 tr

4 351990 st 799.43 17.88 s2215026 tr

5 6035220 st 999.32 414.1444517828 tr

≥ 6
N/A st N/A OOMN/A tr

really reduce the size of the model. Although for smaller values of this bound the ver-
ification time is reduced drastically, these execution times are still much larger than
those that result from the automatically inferred invariants. Further, the turnaround
times obtained, both minimum and maximum, are very poor contrasted with those
that resulted from the automatic approach.

Finally, we turn our attention to the Virus infection model. The manually stated
invariants in this case deal with limiting the number of infected nodes that can coexist
at once. We first applied these invariants to the original, unconstrained model. As
was the case with the results obtained with our approach, these manually inferred
invariants can’t restrict the model size enough. Setting the limit to just two infected
nodes, we quickly obtained a bound to minimum mean time to failure of ∼ 200, the
same value obtained with our approach. However, raising this limit to three infected
nodes makes analysis infeasible.

Consequently, we applied these same manual invariants to the constrained infection
model. The results of these analyses are pictured in Tables XII and XIII.

In this case, it can be seen that these manually posed invariants perform slightly
better than the automatically inferred ones. More specifically, increasing the limit of
infected nodes by one results in model size increases that do not grow as dramatically
as in the case of growing the number of traces and their length in the automatic ap-
proach. This allows for better submodels to be obtained and therefore better bounds,
up to 5 infected nodes. On the other hand, the obtained bounds on times to failure and
probabilities are still far from the actual values.

Summary of manual invariants analyses. In the cases where the manual invariants
did succeed, it is interesting to note that for relatively small submodels (e.g. c = 80

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:41

Table XIII: Experimental results for mean times to corner infection with manual in-
variants.

infected Size Min. time to infection
Value Time

1 74 st 199.88 ∼ 0.00 s222 tr

2 1269 st 399.68 0.07 s5233 tr

3 19181 st 599.55 2.79 s99607 tr

4 351990 st 799.43 51.71 s2215026 tr

5 6035220 st 999.32 1241.86 s44517828 tr

≥ 6
N/A st N/A OOMN/A tr

on the Tandem Queue case study, and maxretries < 2 for BRP) the estimated MTTF
is much higher than the MTTF computed over the complete model. Still, while the
manual invariant approach did provide useful bounds, it turns out that the best MTTF
values generated by the automatic approach obtains slightly higher bounds for the
same time budget. For the Tandem Queue study, the best automatically estimated
MTTF is of ∼ 7 × 107 against ∼ 5.5 × 107. For the BRP case study the best automatic
estimation is ∼ 2.5× 107 versus ∼ 1.69× 107 when manual intervention is applied. The
case of the Virus infection model is atypical, as the manually posed invariants slightly
outperformed the automatically inferred ones.

An initial interpretation of the results would suggest that, except for the WLAN
case study, automatically inferred invariants do not have an added advantage over
manually suggested ones. However, there is an added cost in understanding a protocol
model and being able to suggest which factors are the most relevant in increasing a
model size or in making numerical computation infeasible. This cost is in general not
trivial, and requires a thorough understanding of the modelling formalisms as well as
the verification procedures under the hood. These are not, a priori, traits that every
engineer can be reasonably expected to have.

5. DISCUSSION AND RELATED WORK
In this paper, we have presented a fully automated technique for reward estimation
of system models. Experimental results have shown that this approach may provide
more useful estimations than both standard probabilistic model checking and Monte
Carlo verification, at a fraction of the cost required by such techniques. The strength
of our technique lies on the fact that our simulation approach identifies the states
which are more likely to be traversed over real executions. Moreover, the inclusion
of all states satisfying the invariant results in the addition of many execution loops
to the submodel, which further increase the probability that an arbitrary execution
is captured by the inferred submodel. This results in submodels that, with a reduced
number of states, still capture a large part of the probabilistic behaviour of the sys-
tem. This reduced size, in turn, allows the iterative verification of pCTL properties to
perform, in the same time budget, an increased number of iterations than are possible
for the larger, complete model. This increased iteration results in faster convergence
to the actual values that are being sought, and therefore in better approximations.
We have also observed that these results are especially notorious when the properties
under analysis are probabilistically rare.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:42 Esteban Pavese et al.

However, some parameters exist that need to be set for the approach to work. First,
there is the matter of the size of the simulation set and the length of the simulated
traces; and second, in the case where non-determinism is present in the model under
analysis, a strategy is necessary for solving these non-deterministic choices during the
simulation phase.

Regarding the size of the simulation set and its traces, good news is that our exper-
imentation has shown that, at least for the examples studied, very good results can
be obtained through a relatively small set of short traces. Although the elaboration of
guidelines on how to set the number and length of traces is beyond the scope of this
paper, results show that there may be a broad combination of parameter values for
which high estimation results are obtained in reasonable time. Further, overshooting
these parameters does not have a dramatic impact in the resulting submodel size, so
erring in the side of caution and choosing larger parameters does not seem to be a
cause for concern.

It is important to note that exploration of an appropriate parameter space can be
done concurrently, taking as the final reward estimation the highest of the bounds ob-
tained. Such an approach would leverage on the fact that, as can be seen from Figures 5
and 8, the estimation of results over partial explorations quickly converges to a value,
while it refines this value over the rest of the alloted time. Note from these Figures that
an initial good estimation can be obtained in less than an hour. Future work is focused
on taking advantage of this fact to estimate good trace and trace length parameters.
This approach would call for an initial spawning of several concurrent estimation pro-
cesses, each with a different valuation for trace and trace length generation. Given the
initial estimation, we can quickly compare which parameter combinations outperform
the others. These parameters could then be further refined and compared, and then
settling with the best parameters obtained after a given set-up time has elapsed. This
approach could also be enhanced with heuristic searches that look for the best param-
eter combination. All of this requires additional experimentation and remains future
work.

Note that this set-up time can also be set low enough to still be much less than the
time required to build the full model. We also recall that full model probabilistic check-
ing cannot exploit concurrent computation in such a way. Monte Carlo verification can
be applied concurrently. However, as we have seen in our experimentation in this sec-
tion, the number of traces and their length are so large that massive parallelisation
would be required to diminish its impact. This significant time cost for sample gener-
ation would not be outweighed by concurrent execution. Further experimentation is
needed to address this point.

A second point that merits additional attention is the invariant inference proce-
dure. In the work presented in this paper, the invariants were produced by letting the
Daikon tool analyse linear relationships between any pair of variables in the model
and additional fixed bounds. However, Daikon provides other criteria for invariant in-
ference that were not explored in the course of the work presented in this paper, such as
checking the variable values for specific set membership or common value sequences.
Although the results we present in this work are very positive, it remains further work
to perform a deep comparison with other invariant inference configuration. Different
configurations may not only yield various invariants and therefore different submod-
els, but also may take more (or less) time to be computed. This point merits further
work and experimentation.

As was previously mentioned, most probabilistic model checkers [Katoen et al. 2011;
Hinton et al. 2006; Sen et al. 2005b; Younes 2005; Sun et al. 2009] provide functional-
ity that may either reduce the time required to obtain results, or reduce the memory
footprint required for verification, such as symmetry reductions [Kwiatkowska et al.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:43

2006], lumping [Dean and Givan 1997] and several numerical methods. All these op-
timizations are orthogonal to the model checking procedure itself. Our work relies on
probabilistic model checking and the experiments were run on PRISM, which imple-
ments some of these optimizations.

In those settings where exhaustive probabilistic model checking of models is in-
tractable due to required memory size or verification time, statistical simulation has
proven to be an effective technique. As was mentioned in section 4, an important issue
with simulation approaches is that they tend to work well mostly in the case that the
specified properties are bounded in time, i.e. when these properties can be written in
the form ψU≤T ρ for a fixed T . This is so because estimation of the random variable Xφ

by means of a sample of traces σi requires that the question of whether M,σi |= φ or
not be answered in a definite way for each trace σi in the sample set. If the formula φ
is temporally bounded, then termination is guaranteed when evaluating its truth for
the traces, but for temporally unbounded formulae such termination is threatened. In
such cases, generating traces within acceptable length bounds that answer the prop-
erty definitively can be very unlikely. To address this problem biased sampling [Sen
et al. 2005a; Rabih and Pekergin 2009; Lassaigne and Peyronnet 2006; Basu et al.
2009] has been studied. However, bias to sampling must be done manually resulting
in an impact on the analysis results that cannot be quantified in general. The result
obtained by our approach is guaranteed to be a true bound to the reward values being
sought after.

Recent work by Younes et. al. [Younes et al. 2011] proposes two novel Monte Carlo
approaches that do not rely on biased sampling. However, one of them may require an
inordinate number of samples to produce results; while the other relies on reachabil-
ity analysis, which requires the full model to be constructed, relinquishing one of the
key advantages of Monte Carlo model checking over probabilistic model checking. The
work in [He et al. 2010] also presents a bounded statistical approach for checking un-
bounded properties that does not need the full model to be constructed. However, the
bound on the necessary trace length is excessively large, as traces may be as long as the
total number of states in the model. Other works [Kaufman et al. 2002] acknowledge
the problem of generating traces exhibiting the failure (or guaranteeing its absence).
This approach relies on extreme value theory to produce results. Unfortunately, ex-
treme values techniques still require a good number of actual samples exhibiting the
property, as these techniques require the inference of a fitting distribution. Having
too few samples to work with usually results in fitting distributions that are actually
different than the one being analysed [Coles 2001].

As noted, an additional point for analysis lies in the solving of non-deterministic
choices during simulation. Several works have attempted to solve this problem, espe-
cially in the context of generating simulations for Monte Carlo estimation. In these
cases, it is critical that the simulation of non-deterministic transitions is performed
in such a way that there is no bias in the generation (or alternatively, in such a way
that this bias can be controlled and quantified), as doing so otherwise would introduce
errors in the final estimation. In [Henriques et al. 2012] the authors leverage on the
fact that, usually, verification is performed while looking for the worst and best cases.
In that sense, only the two schedulers that induce the best and worst results are of
interest, and the authors propose a self-adjusting simulation algorithm that converges
to these extremes.

In [Bogdoll et al. 2011], rather than focusing on the problem of biasing scheduler
selection, the authors aim at detecting whether non-determinism can be ignored safely.
As the authors point out, it is often the case that non-deterministic choices are actually
behaviour-equivalent. By detecting these situations via partial order methods, it can

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:44 Esteban Pavese et al.

be used to identify situations where non-determinism can be ignored while keeping
only one of the possible choices when performing simulation.

In our present work, we have opted to resolve non-determinism by simply assum-
ing an equiprobable distribution over the possible non-deterministic choices at a given
state. However, it must be noted that, in the context of our work, any method of resolv-
ing non-determinism would have been acceptable, as we always produce a lower bound
to the actual reward value, regardless of the procedure used for simulation. This is not
to say that any non-determinism resolution method will produce the same outcome,
as different choices may lead to different invariants. Although the results presented in
this paper are promising, it still remains to be seen if different approaches to the initial
simulation might produce even better results. In particular, the choice of simulating
via equiprobable distribution of non-deterministic transitions is a double-edged sword.
On the one hand, by establishing a balanced choice, it maximises the chance of explor-
ing most of the non-deterministic alternatives so that verification of all of them is car-
ried out at a later step. But, on the other hand, some of this explored behaviour might
possibly be irrelevant when calculating the maximum (or minimum) rewards, as the
best and/or worst schedulers might never take some of the explored non-deterministic
transitions. In this sense, adapting the approach of [Henriques et al. 2012] to the sim-
ulation step of our framework might prove to be beneficial. Although that proposed
approach is geared towards model checking of probabilistic properties rather than re-
ward calculations, it may be adapted to our needs. It is worth noting, however, that
such an approach would need to carry out two simulation steps as opposed to one. This
is because the approach in [Henriques et al. 2012] aims at simulating executions that
resemble those of the extreme scheduler that is of interest, which may be either the
one providing the minimum value, or the maximum, but not both at the same time.
In that sense, if we are interested in calculating both extreme values, we would need
different simulation sets, one for each extreme.

The analysis of system behaviour that exhibits rare yet relevant events (e.g. failures)
is the subject of focused study within the simulation community as well. A technique
that is usually used in conjunction with stochastic processes that have rare events
is that of importance sampling [Rubinstein and Kroese 2008]. Roughly speaking, the
idea of importance sampling is to replace the original process’s distribution for another
more likely to generate the (originally) rare event during the sample generation. The
distribution replacement is chosen so that results from analyses for the new distri-
bution can be translated back to results valid for the original distribution. Although
this is a promising approach, finding suitable replacement distributions is a complex
and ad-hoc task for which further research and expertise is necessary, as different
system models possibly require different sampling distributions. Further, special care
is required when proposing importance sampling distributions. In fact, it is possible
to choose a replacement distribution such that it makes the simulation process more
costly and requiring even more samples than the original one. In practice, choosing
optimal replacement distributions is extremely difficult and not suitable for a general,
complex process model.

Another promising simulation technique that also focuses on rare events is that
of sample splitting [Rubinstein and Kroese 2008; Robert and Casella 2005], most no-
tably the RESTART implementation [Villén-Altamirano and Villén-Altamirano 1994]
which, roughly, rather than starting each simulation from the initial state, it does
so from a state s visited in a previous simulation and from which reaching a rare
event is more likely. The likelihood of reaching state s from the initial state is taken
into account for producing the final analysis results. Key to the application of these
techniques is making appropriate decisions on where to restart simulations. These de-
cisions demand deep understanding of both the model and the underlying splitting

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:45

technique, as naïve splitting may not help the verification effort. Worse, it could even
hamper the effort if the splits are not done in such a way that they are incrementally
closer to fulfilling the rare event. Another interesting approach is that of [Reijsber-
gen et al. 2013], which is geared toward simulating rare events, although restricted to
Stochastic Petri Nets.

Finally, common to both the Monte Carlo approach and the simulation techniques
discussed is the fact that they are inherently statistical results. As such, there is al-
ways a non-zero probability that the results obtained are completely off the mark. Fur-
ther reducing this error probability may require excessive amount of additional traces
to be sampled in order to obtain the guarantee. Our technique, though conservative in
the bounds it obtains, is definitive in its answers.

The work we present in this paper is concerned with the verification of systems that
are specified through the use of automata-like languages. We believe our approach can
be extended in order to analyse source code as well. In this regard, there have been
promising advances similar to our work. For example in [Filieri et al. 2013; Borges
et al. 2014], symbolic execution is used to analyse the source code, and that informa-
tion is used to direct a sampling approach towards interesting portions of the source
code. The setting for this work is different and complementary, though, as it focuses on
non-reactive, non-probabilistic software (by quantifying the usage profile of program
variables); and the inference of conditions for reaching a given portion of the code. Fur-
ther, this approach requires the solution space to be built and available for analysis;
we argue that this, in our setting, is prohibitive in size.

On a related note, [Luckow et al. 2014] has tackled the problem of synthesising
appropriate schedulers for attaining a desired probability, a goal that is closely related
to finding the extrema probabilities in the presence of non-determinism. Approaches
such as this could benefit our technique by resolving non-determinism in a way that
later directs verification to the more extreme (and interesting) values.

As a final note, we point out that the technique presented in this paper is not, and
is not intended to be, effective for every possible probabilistic model and probabilistic
property. Although in this we work we have pushed the feasibility boundary further by
allowing the analysis of models that are too big to tackle with current techniques, there
are still models and properties for which our technique does not provide satisfactory
bounds. In particular, it might be the case that the inferred invariants are too general,
and therefore the submodels too big; or else that the invariants are too restrictive,
resulting in small submodels that yield small, not very informative bounds. For these
cases, future work is focused on submodel refinement techniques that can identify
states that can be cut away from models that are too large, or added to those that are
too small.

6. CONCLUSIONS AND FURTHER WORK
In this paper we have proposed an approach to estimating mean reward values for
probabilistic system models. The approach is a novel combination of simulation, in-
variant inference and probabilistic model checking. We report on experiments that
suggest that reward estimation using this technique can be more effective than (full
model) probabilistic and statistical model checking for system models. This increase in
effectiveness is most evident in the case of models where the properties under analysis
are rare events, or else are unbounded in time. In addition, our estimation approach
also supports non-determinism besides probabilistic behaviour.

We believe the notion of reliability analysis over partial yet systematic explorations
offers an alternative to, and hence complements, exhaustive model exploration–as in
probabilistic model checking–and partial random exploration–as in statistical model
checking.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:46 Esteban Pavese et al.

The experimental results presented in this paper are promising. Our experiments
show that, for system models extracted from reliability and probabilistic verification
literature, lower bounds can be obtained with little effort compared to full model ver-
ification. More specifically, we have shown that we can obtain reliability values that
allow for strong dependability arguments, while only performing an exploration of at
most 5% of the projected total state space of the system. These savings also translate
into verification time as well, and the additional effort required for inferring submodels
remains a good trade-off taking into account the quality of the obtained results.

The obtained results are more striking when the behaviours under analysis are rare
events, and they have not been witnessed in the (already small) submodel being ex-
plored. However, experiments have also shown that our technique is effective even in
the case of systems where the behaviour of interest is not rare, and even when some
of the states exhibiting this behaviour are present in the obtained submodels. This
evidence provides encouragement towards arguing for generalisation of results.

We also believe that further experimentation is required to achieve a better under-
standing of the influence of parameter choices in the process. In particular, an area
that calls for future work is looking for a better understanding of the relationship be-
tween the simulated set of traces (both its size as the trace length) and the submodels
that result from them, as well as the estimations that can be expected from them.
This understanding should lead to heuristics for setting appropriate values to these
parameters in order to achieve more cost-effective submodels.

REFERENCES
A. Aziz, V. Singhal, F. Balarin, R.K. Brayton, and A. Sangiovanni-Vincentelli. 1995. It Usually Works: The

Temporal Logic of Stochastic Systems. Lecture Notes in Computer Science (1995), 155–155.
C. Baier and J.P. Katoen. 2008. Principles of model checking. MIT press.
S. Basu, A. Ghosh, and R. He. 2009. Approximate model checking of PCTL involving unbounded path prop-

erties. ICFEM’09 (2009), 326–346.
A. Bianco and L. De Alfaro. 1995. Model checking of probabilistic and nondeterministic systems. In Founda-

tions of Software Technology and Theoretical Computer Science. Springer, 499–513.
A. Bianco and L. de Alfaro. 1995. Model checking of probabilistic and nondeterministic systems. Proc. Foun-

dations of Software Technology and Theoretical Computer Science 1026 (1995), 499–513.
J. Bogdoll, L.M. Ferrer Fioriti, A. Hartmanns, and H. Hermanns. 2011. Partial Order Methods for Statistical

Model Checking and Simulation. In FMOODS/FORTE. 59–74.
Mateus Borges, Antonio Filieri, Marcelo d’Amorim, Corina S. Păsăreanu, and Willem Visser. 2014. Com-

positional Solution Space Quantification for Probabilistic Software Analysis. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’14). ACM,
New York, NY, USA, 123–132. DOI:http://dx.doi.org/10.1145/2594291.2594329

H. Chernoff. 1952. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observa-
tions. Annals of Mathematical Statistics 23, 4 (1952), 493–507.

Edmund M Clarke, Orna Grumberg, Marius Minea, and Doron Peled. 1999. State space reduction using
partial order techniques. International Journal on Software Tools for Technology Transfer 2, 3 (1999),
279–287.

S. Coles. 2001. An Introduction to Statistical Modelling of Extreme Values. Springer.
P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. 2001. Reachability analysis of probabilistic systems by

successive refinements. In PAPM/PROBMIV (LNCS), Vol. 2165. Springer, 39–56.
Rocco De Nicola, Joost-Pieter Katoen, Diego Latella, and Mieke Massink. 2006. Towards a logic for perfor-

mance and mobility. Electronic Notes in Theoretical Computer Science 153, 2 (2006), 161–175.
T. Dean and R. Givan. 1997. Model minimization in Markov decision processes. In Proceedings of the Na-

tional Conference on Artificial Intelligence. 106–111.
Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz,

and Chen Xiao. 2007. The Daikon system for dynamic detection of likely invariants. Sci. Comput. Pro-
gram. 69, 1-3 (Dec. 2007), 35–45.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

Automated Reliability Estimation over Partial Systematic Explorations 1:47

Antonio Filieri, Corina S. Pasareanu, and Willem Visser. 2013. Reliability analysis in symbolic pathfinder. In
35th International Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013. 622–631. http://dl.acm.org/citation.cfm?id=2486870

Ru He, Paul Jennings, Samik Basu, Arka P Ghosh, and Huaiqing Wu. 2010. A bounded statistical approach
for model checking of unbounded until properties. In Proceedings of the IEEE/ACM international con-
ference on Automated software engineering. ACM, 225–234.

L. Helmink, M. Sellink, and F. Vaandrager. 1994. Proof-checking a data link protocol. In Proc. International
Workshop on Types for Proofs and Programs (TYPES’93) (LNCS), Vol. 806. Springer.

D. Henriques, J. Martins, P. Zuliani, A. Platzer, and E. Clarke. 2012. Statistical Model Checking for Markov
Decision Processes. In QEST. 84–93.

H. Hermanns, J. Meyer-Kayser, and M. Siegle. 1999. Multi Terminal Binary Decision Diagrams to Represent
and Analyse Continuous Time Markov Chains. In Proc. NSMC’99. Prensas Universitarias de Zaragoza,
188–207.

A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. 2006. PRISM: A tool for automatic verification of
probabilistic systems. In TACAS’06 Proceedings, Vol. 3920. Springer, 441–444.

Institute of Electrical and Electronic Engineers. 1997. IEEE Standard for Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. (1997).

L.H. Jamieson and B.C. Dean. 2007. Weighted alliances in graphs. Congressus Numerantium 187 (2007), 76.
IB Kalambi. 2008. A comparison of three iterative methods for the solution of linear equations. Journal of

Applied Sciences and Environmental Management 12, 4 (2008).
Joost-Pieter Katoen, Ivan S Zapreev, Ernst Moritz Hahn, Holger Hermanns, and David N Jansen. 2011. The

ins and outs of the probabilistic model checker MRMC. Performance evaluation 68, 2 (2011), 90–104.
L.M. Kaufman, B.W. Johnson, and J.B. Dugan. 2002. Coverage estimation using statistics of the extremes

for when testing reveals no failures. IEEE Trans. Comput. (2002), 3–12.
M. Kwiatkowska, G. Norman, and D. Parker. 2006. Symmetry reduction for probabilistic model checking. In

Computer Aided Verification. Springer, 234–248.
Marta Kwiatkowska, Gethin Norman, David Parker, and Maria Grazia Vigliotti. 2009. Probabilistic mobile

ambients. Theoretical Computer Science 410, 12 (2009), 1272–1303.
Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. 1997. Efficient verification of real-

time systems: compact data structure and state-space reduction. In Real-Time Systems Symposium,
1997. Proceedings., The 18th IEEE. IEEE, 14–24.

R. Lassaigne and S. Peyronnet. 2006. Probabilistic verification and approximation. ENTCS 143 (2006), 101–
114.

Kasper Luckow, Corina S. Păsăreanu, Matthew B. Dwyer, Antonio Filieri, and Willem Visser. 2014. Exact
and Approximate Probabilistic Symbolic Execution for Nondeterministic Programs. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software Engineering (ASE ’14). ACM,
New York, NY, USA, 575–586. DOI:http://dx.doi.org/10.1145/2642937.2643011

Michael R. Lyu. 1996. Handbook of software reliability engineering. McGraw-Hill, Inc., Hightstown, NJ,
USA.

J.D. Musa, A. Iannino, and K. Okumoto. 1987. Software Reliability: Measurement, Prediction, Application.
McGraw-Hill.

V. Nimal. 2010. Statistical Approaches for Probabilistic Model Checking. M.Sc. Dissertation. Oxford Univer-
sity Computing Laboratory.

Esteban Pavese, Víctor Braberman, and Sebastian Uchitel. 2010. My model checker died!: how well did it
do?. In QUOVADIS/ICSE’10. ACM, 33–40. DOI:http://dx.doi.org/10.1145/1808877.1808884

Esteban Pavese, Víctor Braberman, and Sebastian Uchitel. 2013. Automated reliability estimation over
partial systematic explorations. In Proceedings of the 2013 International Conference on Software Engi-
neering. IEEE Press, 602–611.

Muhammad A Qureshi and William H Sanders. 1996. A new methodology for calculating distributions of
reward accumulated during a finite interval. In Fault Tolerant Computing, 1996., Proceedings of Annual
Symposium on. IEEE, 116–125.

D. Rabih and N. Pekergin. 2009. Statistical Model Checking Using Perfect Simulation. In Proc. ATVA’09.
Springer-Verlag, 120–134.

Daniël Reijsbergen, Pieter-Tjerk de Boer, Werner Scheinhardt, and Boudewijn Haverkort. 2013.
Automated Rare Event Simulation for Stochastic Petri Nets. In Quantitative Evaluation
of Systems, Kaustubh Joshi, Markus Siegle, Mariëlle Stoelinga, and Pedro R. D’Argenio
(Eds.). Lecture Notes in Computer Science, Vol. 8054. Springer Berlin Heidelberg, 372–388.
DOI:http://dx.doi.org/10.1007/978-3-642-40196-1_31

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

1:48 Esteban Pavese et al.

C. P. Robert and G. Casella. 2005. Monte Carlo Statistical Methods. Springer-Verlag New York.
R.Y. Rubinstein and D.P. Kroese. 2008. Simulation and the Monte Carlo method (Series in Probability and

Statistics). Vol. 707. Wiley.
Shlomo S Sawilowsky. 2003. You think you?ve got trivials? Journal of Modern Applied Statistical Methods

2, 1 (2003), 21.
R. Segala. 1995. Modelling and verification of randomized distributed real time systems. Ph.D. Dissertation.

Massachusetts Institute of Technology.
K. Sen, M. Viswanathan, and G. Agha. 2005a. On statistical model checking of stochastic systems. In Proc.

CAV’05. Springer, 266–280.
K. Sen, M. Viswanathan, and G. Agha. 2005b. VESTA: A statistical model-checker and analyzer for proba-

bilistic systems. In QEST’05. IEEE, 251–252.
Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. 2009. PAT: Towards Flexible Verification under Fairness.

Proceedings of the 21th International Conference on Computer Aided Verification (CAV’09) 5643 (2009),
709–714.

M. Vardi. 1985. Automatic verification of probabilistic concurrent finite state programs. In SFCS 1985.
IEEE, 327–338.

Manuel Villén-Altamirano and José Villén-Altamirano. 1994. RESTART: a straightforward method for fast
simulation of rare events. In Proc. WSC’94. San Diego, USA, 282–289.

Zbigniew I. Woźnicki. 2001. On performance of {SOR} method for solving nonsymmetric linear systems. J.
Comput. Appl. Math. 137, 1 (2001), 145 – 176. DOI:http://dx.doi.org/10.1016/S0377-0427(00)00705-6

H. Younes. 2005. Ymer: A statistical model checker. In Computer Aided Verification. Springer, 171–179.
H. Younes, E. Clarke, and P. Zuliani. 2011. Statistical Verification of Probabilistic Properties with Un-

bounded Until. Formal Methods: Foundations and Applications (2011), 144–160.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article 1, Pub. date: January 2016.

