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Abbreviations	

Abbreviation	 Description	
3AT	 3-Amino-1,2,4-triazole	

3.3.12/3.3.14	 Numbered	designation	of	a	transgenic	

wheat	line,	with	the	first	number	being	the	

T0	line,	each	successive	number	

representing	a	plant	from	the	next	

generation		

5FOA	 5-Fluoroorotic	Acid	

18S	 The	structural	ribonucleic	acid	of	the	small	

subunit	of	eukaryotic	cytoplasmic	

ribosomes	

28S	 The	structural	ribonucleic	acid	of	the	large	

subunit	of	eukaryotic	cytoplasmic	

ribosomes	

40S	 The	structural	ribonucleic	acid	and	proteins	

of	the	small	subunit	of	eukaryotic	

cytoplasmic	ribosomes	

60S	 The	structural	ribonucleic	acid	and	proteins	

of	the	large	subunit	of	eukaryotic	

cytoplasmic	ribosomes	

+/+	 Transgenic	wheat	homozygous	for	Blumeria	
Effector	Candidate	1054	

-/-	 Transgenic	wheat	azygous	for	Blumeria	
Effector	Candidate	1054	

ACTB		 Actin	

ANOVA	 Analysis	of	Variance	

APS	 Ammonium	Persulfate	

Ara		 	Arabidopsis	thaliana	Rab	GTPases		
AVR	 Avirulence	

BAC	 Bacterial	Artificial	Chromosome	

BEC(s)	 Blumeria	effector	candidate(s)	
β-gal	 β-galactosidase	

BiFC	 Bimolecular	Fluorescence	Complementation		

BLAST	 Basic	Local	Alignment	Search	Tool	

BLASTp	 Protein	BLAST	

CcdB	 Control	of	Cell	Death	B	(part	of	the	

CcdA/CcdB	Type	II	Toxin-antitoxin	system)	

cDNA	 complementary	DNA	

CDS	 Coding	sequence	

CELP	 Candidate	Effector	Like	Protein	

CI	 Confidence	Interval	

Co-IP	 Co-Immunoprecipitation	

CPRG	 chlorophenolred-β-D-galactopyranoside	

CSEPs	 Candidate	Secreted	Effector	Proteins	
CT	 The	number	of	thermal	cycles	required	for	a	

fluorescent	signal	to	cross	the	threshold	(i.e.	
to	become	greater	than	the	background	
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level)	

cv.	 cultivar	

ddH2O	 double-distilled	water	

DEPC	 Diethylpyrocarbonate	

DNApol	 DNA	polymerase	

DNase	 Deoxyribonuclease	

dNTP	 Deoxyribonucleotide	triphosphate	

dpi	 Days	post	inoculation	

DSF	 Differential	Scanning	Fluorimetry	

dsRED	 Discosoma	species	red	fluorescent	protein	
ECM	 Extracellular	Matrix	

EDTA	 Ethylenediaminetetraacetic	Acid	

eEF	 Eukaryotic	Elongation	Factor	

eIF	 Eukaryotic	Initiation	Factor	

EST	 Expressed	Sequence	Tag	

Fluorescence	Resonance	Energy	Transfer		 FRET	

f.sp.	 forma	specialis;	an	informal	taxonomic	
group	given	to	a	pathogen	adapted	to	a	

specific	host	

GAPDH		 Glyceraldehyde		

3-phosphate	dehydrogenase	

gDNA	 Genomic	DNA	

geNorm	 Gene	Normalisation	Experiments	

GFP	 Green	Fluorescent	Protein	

GLM	 Generalized	Linear	Model	Model	

GLMM	 Generalized	Linear	Model	Mixed	Model	

GST	 Glutathione-S-Transferase	

His	 Histidine	

his3	 A	yeast	gene,	encoding	the	enzyme		

Imidazoleglycerol-phosphate	dehydratase	

which	catalyses	the	sixth	step	of	histidine	

biosynthesis		

hpi	 Hours	post	inoculation	

HSP82	 82	kDa	Heat	Shock	Protein	

H3	 	 histone	3	

IBSC	 International	Barley		

Sequencing	Consortium	

JIP60	 Jasmonate	Induced	Protein	60	

JIP60ml	 JIP60,	with	a	peptide	in	the	N-terminal	

domain	removed	and	replaced	with	a	

methionine-leucine	linker	

kDa	 kilodalton	

lacZ	 The	gene	encoding	β-galactosidase	enzyme	

LB		 Luria	Broth	

LCMS	 Liquid	chromatography–mass	spectrometry		
Leu	 Leucine	

LIC	 Ligation	Independent	Cloning	

logEC50	 The	inflection	point	of	a	sigmoidal	curve	

which	indicates	the	“melting	point”	of	

BEC1054	

LSU	 Large	Subunit	
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M	 The	internal	stability	of	a	control	gene,	

calculated	as	the	average	pairwise	variation	

of	a	particular	gene	with	all	other	control	

genes	

MDH	 Malate	Dehydrogenase	

MGLL	 Monoglyceride	lipase	

MeJA	 Methyl	Jasmonate	

MMA	buffer	 10	µM	MES		

(2-[N-morpholino]ethanesulfonic	acid)	and	

10	µM	MgCl2,	pH	5.7	

mRNA	 Messenger	RNA	

mYFP	 Monomeric	yellow	fluorescent	protein	

NAD+	 Nicotinamide	Adenine	Dinucleotide		

NADH	 Nicotinamide	Adenine	Dinucleotide	plus	

Hydrogen		

NDPK	 Nucleoside	Diphosphate	Kinases	

NIAB	 National	Institute	of	Agricultural	Botany	

Ni-NTA	 nitrilotriacetic	acid	

NIP1	 Necrosis	inducing	protein-1		

OD595	 Optical	density	of	a	sample	measured	at	a	

wavelength	of	595	nm	

PBS	 Phosphate	Buffered	Saline	

PCR	 Polymerase	Chain	Reaction	

PR	 Pathogenesis	Related	

propH	 Proportion	of	conidia	which	germinated	to	

form	at	least	one	haustorium	

PVX	 Potato	Virus	X	

qPCR	 Quantitative	PCR	(Real-time	PCR)	

R		 Resistance	genes	or	proteins	

RALPHs	 RNase	Like	Proteins	associated	with	

Haustoria	

RFP	 Red	Fluorescent	protein	

RIN	 RNA	Integrity	Number	

RIPs	 Ribosome	Inactivating	Proteins	

RNase	 Ribonuclease	

ROS	 Reactive	Oxygen	Species	

rpm	 Revolutions	per	minute	
rRNA	 Ribosomal	RNA	

SC	 Synthetic	Complete	Media	

SRL	 Sarcin-Ricin	Loop	

SSU	 Small	Subunit	

T0	 The	first	generation	grown		

from	transformed	seeds	

T1….Tn	 T1	is	the	first	generation	descended	from	

transformed	seeds/seedlings	which	have	

been	selfed,	with	subsequent	generations	

being	Tn+1	

TBE	 Buffer	solution	containing	Tris	base,	boric	

acid	and	EDTA	

TEMED	 Tetramethylethylenediamine	

Tm	 The	midpoint	(melting	temperature)	of	the	



11	

	

protein	unfolding	

Trp	 Tryptophan		

TUBA		 α-tubulin	

TUBB	 Barley	β-tubulin	

TUBBw	 Wheat	β-tubulin	

U36	 Unique	Identifier	sequence	for	the	database	

HarvEST	

UniProt		 Universal	Protein	Resource	database	

UniRef	 Unique	reference	for	the	database	UniProt	

UniRef90	 a	UniProt	database	identifier	

Ura	 Uracil	

ura3	 A	yeast	research	marker	gene,	encoding	

Orotidine	5'-phosphate	decarboxylase,	

which	catalyzes	the	decarboxylation	of	

orotidine	5-phosphate	to	uridine	

monophosphate	

wBEC	 The	wobble	BECs	are	synthetic	genes	which	

do	not	possess	a	signal	peptide,	and	which	

have	silent	“wobble”	mutations	which	

minimize	the	nucleotide	sequence	identity	

with	the	wild-type	barley	genes	

X-gal	 5-bromo-4-chloro-indolyl-β-D-	

galactopyranoside	

Vi	 Initial	reaction	velocity	(gradient)	of	an	

enzyme	reaction	curve	

Y2H	 Yeast	two	hybrid		

Y3H	 Yeast	three	hybrid	

YFP	 Yellow	Fluorescent	Protein	

zGSTs	 Class	zeta	Glutathione-S-Transferases	
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1. Abstract	

Obligate	biotrophic	pathogens,	for	example	the	powdery	mildew	Blumeria	graminis	f.sp.	

hordei,	 must	 counteract	 the	 host’s	 defenses	 if	 infection	 is	 to	 be	 successful	 and	

maintained.	Effectors	are	secreted	by	fungi	in	order	to	regulate	host	immunity.	One	such	

effector,	BEC1054	possesses	a	structure	similar	to	that	of	an	RNase,	but	the	key	catalytic	

site	for	RNase	activity	is	not	conserved.	A	total	of	247	putative	protein	interactors	were	

identified	solely	with	BEC1054	through	in	vitro	affinity	chromatography.	Comparison	of	

these	sequences	with	an	unrelated	BEC	and	empty	Ni-NTA	columns	demonstrated	that	

a	 significantly	 higher	 percentage	 of	 ribosomal	 large	 subunit	 and	 elongation	 factor	

related	 proteins	were	 found	with	 BEC1054.	 In	 the	 literature,	many	 of	 these	 proteins	

have	also	been	found	to	occur	with	Ribosome	Inactivating	Proteins	(RIP)s.	I	hypothesise	

that	 BEC1054	 competes	 with	 ribosome	 inactivating	 proteins,	 for	 example	 JIP60,	

preventing	them	from	cleaving	host	cell’s	ribosomes.	This	would	prevent	the	host	cell’s	

death,	and	therefore	rejection	of	the	powdery	mildew.	

	

In	this	investigation,	I	found	that	BEC1054	interacted	with	five	proteins	in	yeast	and	in	

planta:	a	Pathogenesis	Related	protein	5	(PR5),	PR10,	Glutathione-S-Transferase	(GST),	

eukaryotic	 Elongation	 Factor	 1	 Alpha	 (eEF1A)	 (1),	 eukaryotic	 Elongation	 Factor	 1	

Gamma	(eEF1G),	 the	 latter	 two	of	which	are	associated	with	ribosomes.	 In	addition,	 I	

identified	 an	 interaction	 between	 GST	 and	 PR10	 in	 yeast	 and	 in	 planta,	 and	 a	 novel	

interacting	 protein	 was	 found	 for	 Jasmonate	 Induced	 Protein	 60	 (JIP60)	 in	 planta:	

eEF1a(3).	
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Control	 genes	were	 assayed,	 to	 determine	 the	 best	 combination	 for	 normalisation	 of	

barley	and	B.	graminis	genes	during	quantitative	real-time	PCR.	The	optimal	B.	graminis	

housekeeping	genes	were	found	to	be	act,	gapdh	and	H3;	and	for	barley	gapdh,	ubi	and	

tuba2b.	The	housekeeping	genes	investigated	were	shown	to	vary	significantly	between	

species	 (B.	 graminis	 and	 barley)	 and	 tissues,	 demonstrating	 the	 necessity	 for	

appropriate	 controls	 for	 each	 qPCR	 assay.	 The	 control	 genes	were	 used	 to	 normalise	

four	 members	 of	 Candidate	 Secreted	 Effector	 Protein	 (CSEP)	 family	 21	 across	 a	 B.	

graminis	infection	time	course	in	both	epidermal	and	epiphytic	material.	The	four	CSEPs	

showed	 an	 early	 peak	 in	 transcript	 abundance	 in	 epiphytic	 material,	 which	 had	 not	

previously	 been	 identified	 in	 the	 literature.	 In	 addition,	 the	 four	CSEPs	demonstrated	

peaks	 in	abundance	at	24-48h	 in	epiphytic	material.	 In	epidermal	material,	 the	CSEPs	

showed	 more	 diverse	 patterns	 of	 expression,	 with	 transcript	 abundance	 peaks	

occurring	at	ca.	24	or	48	hpi.	

	

In	vitro	BEC1054	was	found	to	interact	with	oligo(poly)nucleotides	in	a	concentration-

dependent	manner.	In	addition,	BEC1054	and	JIP60	interacted	with	RNA	in	yeast;	and	

the	selective	media	assay	indicated	that	this	interaction	may	be	specific	for	the	region	of	

the	ribosome	containing	the	ribosomal	SRL.	

	

Expression	of	BEC1054	in	N.	benthamiana	and	wheat	affected	the	resistance	of	the	host	

plants	 to	 the	 biotrophic	 pathogens	 Peronospora	 tabacina	 and	 B.	 graminis	 f.sp.	 tritici	

respectively.	Finally,	we	found	that	B.	graminis	f.sp.	tritici	prevented	degradation	of	the	

ribosome	 by	 ribosome	 inactivating	 proteins;	 and	 that	 BEC1054	 appeared	 to	 partially	

prevent	ribosome	degradation.	



14	

	

2. Introduction	

2.1. Barley	and	Wheat	

Wheat	(Triticum	spp.)	and	barley	(Hordeum	vulgare)	are	economically	important	crops	

belonging	 to	 the	 Poaceae,	 which	 are	 mainly	 grown	 in	 the	 Northern	 Hemisphere	

(Hejgaard	et	al.,	1991,	Gale	and	Devos	1998,	Oerke	and	Dehne	2004).	Their	uses	include	

food,	biofuels,	animal	 feed	(the	main	use	of	barley),	and	alcohol	production	 (Gale	and	

Devos	1998,	Cooper	2009).		

2.2. Crop	protection	

Traditional	crop	protection	strategies,	for	example	crop	rotation,	are	often	unsuccessful	

for	biotrophic	pathogens	such	as	Blumeria	graminis,	as	the	pathogen	spreads	efficiently	

and	with	 great	 rapidity	 (Sanchez-Martin	 et	al.,	 2011).	 Resistant	 crop	 cultivars	 reduce	

the	need	for	chemical	crop	protection	and	therefore	reduce	environmental	damage,	but	

new	pathogen	races	can	occur	which	overcome	resistance	(Marris	et	al.,	2008,	Sanchez-

Martin	et	al.,	2011).	

	

In	 Arabidopsis	C24,	broad-spectrum	 resistance	 to	 downy	mildew	 has	 been	 observed,	

involving	multiple	 resistance	 loci	 (Lapin	 et	al.,	 2012).	 Future	 pathogen	 resistant	 crop	

plants	 may	 involve	 utilizing	 a	 polygenic	 base,	 with	 host	 responses	 selected	 to	 act	 at	

multiple	 stages	 of	 fungal	 infection;	 or	 the	 use	 of	 multiple	 forms	 of	 resistance	 (for	

example	loss	of	susceptibility)	(Prats	et	al.,	2007,	Pavan	et	al.,	2010).	

2.3. Compatible	and	incompatible	interactions	

Compatible	interactions	are	those	that	lead	to	disease.	During	a	compatible	interaction,	

B.	graminis	successfully	penetrates	 the	plant	 cell,	 forms	a	haustorium	 that	 assimilates	
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nutrients	 from	 the	 host,	 and	 secondary	 hyphae	 are	 developed.	 Incompatible	

interactions	occur	when	the	resistance	of	the	host	plant	to	the	pathogen	is	effective.	In	

an	 incompatible	 interaction,	 attempted	 cell	 penetration	 is	 prevented	 through	papillae	

formation,	or	through	the	hypersensitive	response,	which	is	characterized	by	rapid	cell	

death	in	the	sites	surrounding	infection.	The	hypersensitive	response	thus	restricts	the	

pathogen’s	growth,	and	its	spread	to	other	parts	of	the	plant	(Morel	and	Dangl,	1997).	

For	 haustorial	 biotrophs,	 preventing	 cell	 entry	 and	 haustorial	 formation	 precludes	

parasitism	(Morel	and	Dangl	1997,	Huckelhoven	et	al.,	1999,	Heath	2000,	van	der	Hoorn	

and	Kamoun	2008).		

	

The	vast	majority	of	plant	hosts	are	immune	to	most	microbial	pathogens.	Non-host,	or	

race	non-specific	resistance,	is	a	polygenic	broad-spectrum	resistance	that	occurs	in	all	

members	 of	 a	 plant	 species	 to	 all	 isolates	 of	 a	microorganism	 that	 are	 pathogenic	 to	

other	plant	species	(Clifford	et	al.,	,	Jorgensen	1994,	Hammond-Kosack	and	Jones	1996).	

Isolates	of	B.	graminis,	in	the	UK,	which	infect	cereals	have	been	shown	to	be	specialized	

to	their	hosts	for	example,	isolates	of	f.sp.	avenae,	hordei,	secalis	and	tritici	from	the	UK	

are	 only	 able	 to	 infect	 the	 species	 from	 which	 they	 had	 been	 collected	 (Wyand	 and	

Brown	2003).	

2.4. AVR	and	R	genes	

In	 the	 plant-pathogen	 gene-for-gene	 interaction	 model,	 an	 individual	 gene	 for	 plant	

resistance	 (R),	 and	 an	 individual,	 complementary,	 pathogen	 avirulence	 gene	 (AVR),	

account	for	AVR-R	mediated	resistance	and	pathogen	recognition	(Flor	1971,	Jones	and	

Dangl	 2006).	 In	 “effectoromics”,	 AVR	 effectors	 from	 pathogens	 have	 been	 utilised	 to	

help	 identify	natural	 resistance	R	genes	 from	plant	germplasm.	This	method	was	 first	
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used	 for	 Phytophthora	 infestans	 and	 potato,	 and	 has	 allowed	 catalogues	 of	 R	 and	

avirulence	 (Avr)	 genes	 to	 be	 developed	 (for	 a	 review,	 see	 (Vleeshouwers	 and	 Oliver	

2014)).	Functional	assays	have	been	used	to	accelerate	the	cloning	of	R	genes,	through	

transient	 complementation	 tests,	 allowing	 the	 laborious/time	 consuming	 process	 of	

creating	 stable	 transformants	 to	 be	 circumvented,	 with	 methods	 such	 as	

Agroinfiltration	and	Potato	virus	X	(PVX)	agroinfection	being	used	to	deliver	effectors	

(Rietman	et	al.,	2012,	Du	et	al.,	2014).	Effectors	have	been	used	to	identify	homologs	of	

resistance	 genes	 in	 other	 species,	 for	 example	 PVX	 agroinfection	 of	 the	 P.	 infestans	

effector	AVRblb1	in	Solanum	stoloniferum	(which	can	be	crossed	with	cultivated	potato)	

allowed	the	identification	of	Rpi-stol1,	a	functional	homologue	of	Rpi-blb1	(which	occurs	

in	 Solanum	 bulbocastanum,	 which	 cannot	 be	 crossed	 with	 cultivated	 potato)	

(Vleeshouwers	et	al.,	2008).		

	

The	necrotrophic	pathogen	Pyrenophora	tritici-repentis	is	the	causal	agent	of	wheat	tan	

spot	 disease.	 One	 of	 the	 proteinaceous	 effectors	 produced	 by	 this	 pathogen	 is	 ToxA,	

which	is	recognized	by	the	product	of	the	tsn1	gene	(Faris	et	al.,	2010).	Susceptibility	to	

P.	tritici-repentis	was	 found	 to	be	correlated	 to	 the	sensitivity	of	cultivars	 to	 the	ToxA	

effector	(Adhikari	et	al.,	2009,	Faris	et	al.,	2013).	Semipurified	ToxA,	produced	using	E.	

coli	 expression	 systems,	 has	 been	 used	 by	 Australian	 wheat	 breeders	 to	 test	 the	

sensitivity	 of	 wheat	 cultivars	 to	 this	 effector.	 Effector	 assays	 can	 be	 carried	 out	 on	

seedlings	up	to	ca.	six	weeks	old,	and	allows	several	thousand	plants	a	day	to	be	tested	

by	 a	 single	 person,	 producing	 scorable	 results	 within	 one	 week.	 These	 assays	 have	

helped	 efforts	 to	 eliminate	 tsn1,	 allowing	 breeders	 to	 get	 rid	 of	 sensitive	 plants	

immediately,	 saving	 time	 and	 resources	 (Vleeshouwers	 and	Oliver	2014).	Many	more	
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examples	 of	 effector	 use	 in	 translational	 biology	 are	 available	 (for	 a	 review,	 see	

(Vleeshouwers	and	Oliver	2014)).	

2.5. Powdery	mildews	

Powdery	 mildews	 (Erysiphales,	 Ascomycota)	 are	 biotrophic,	 economically	 important	

fungal	 plant	 pathogens	 (Huckelhoven	 2005).	 They	 are	 amongst	 the	 most	 frequently	

encountered	 plant	 pathogenic	 fungi	 worldwide,	 infecting	 nearly	 ten	 thousand	

angiosperms.	(Braun	et	al.,	2006,	Glawe	2008).	Their	spores	spread	over	great	distances	

through	 high-altitude	 air	 currents;	 or	 locally	 through	 wind	 dispersal	 (Limpert	 et	 al.,	

1999,	Vogel	and	Somerville	2002).	They	infect	the	stems,	leaves	and	fruits	of	their	hosts,	

producing	white,	powdery	clumps	of	spores,	from	which	they	derive	their	name	(Jarvis	

et	al.,	2002).		

2.6. Blumeria	graminis	

The	 disease	 powdery	 mildew	 is	 caused	 by	 fungi	 belonging	 to	 the	 genus	 Blumeria.	

Blumeria	graminis	 (DC)	Speer	 infects	grasses	belonging	 to	 the	Poaceae.	 It	possesses	a	

very	high	degree	of	host	specificity,	with	eight	formae	speciales	(f.sp.),	each	infecting	one	

host	genus;	for	example	Blumeria	graminis	f.sp.	hordei	(barley	powdery	mildew)	infects	

barley	and	B.	graminis	f.sp.	tritici	 (wheat	powdery	mildew)	 infects	wheat	 (Wyand	and	

Brown	 2003,	 Braun	 et	 al.,	 2006,	 Dean	 et	 al.,	 2012).	 Blumeria	 graminis	 f.sp.	 hordei	 is	

economically	 important;	 and	of	 the	powdery	mildews	 it	 is	 the	best	 studied	 (Both	and	

Spanu	 2004,	 Bindschedler	 et	al.,	 2009).	 It	will	 be	 referred	 to	 as	B.	graminis	hereafter	

unless	stated	otherwise.		
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2.6.1. Infection	and	life	cycle	

2.6.2. Asexual	reproduction	

Epidemic	 spread	 of	 B.	 graminis	 is	 caused	 by	 asexual	 conidia;	 the	 infection	 cycle	 is	

initiated	by	a	conidium	landing	on	a	susceptible	host	plant	(Figure	1)	(Glawe	2008).	The	

conidia	produce	an	extracellular	matrix	 (ECM)	20	s	 to	1	min	after	 landing	on	 the	 leaf	

surface	(Kunoh	et	al.,	1988,	Carver	et	al.,	1999,	Kunoh	2002).	

	

	

	

Figure	1:	Asexual	lifecycle	of	Blumeria	graminis.	Once	a	conidium	has	landed	on	a	susceptible	host,	initiation	

of	 the	germ-tube	occurs	within	60mins	 to	one	hour.	Following	 the	detection	of	 the	host,	 the	primary	germ-

tube	 initiates	 secondary	 germ-tube	 formation	 (Kunoh	 2002,	 Both	 et	 al.,	 2005).	 Swelling	 at	 the	 apex	 of	 the	

secondary	 germ	 tube	 produces	 an	 appressoria	 by	 around	 8	 h	 of	 infection.	 By	 12	 h	 post	 infection	 (hpi),	 the	

appressoria	has	 formed	a	penetration	peg.	 If	 the	host	cell	wall	 is	successfully	penetrated	by	the	penetration	

peg,	 it	 invaginates	the	host	cell’s	plasma	membrane,	continuing	into	the	cell.	Once	inside,	 it	forms	a	digitate	

haustorium;	these	are	fully	functional	by	24	hpi.	As	the	infection	progresses,	epiphytic	mycelia	are	produced	

on	the	surfaces	of	the	leaf;	and	conidia	are	formed	within	3	to	5	days,	which	upon	release	begin	the	cycle	again	

(Both	et	al.,	2005).	Adapted	from	(Both	et	al.,	2005).	
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2.6.3. Sexual	reproduction	and	variation	of	virulence	

The	 sexual	 reproductive	 stage	 for	B.	 graminis	 f.sp.	 hordei	 increases	 genetic	 diversity.		

Sexual	 reproduction	 occurs	 via	 structures	 named	 chasmothecium	 (formerly	

cleistothecium),	 a	 type	 of	 ascocarp	 that	 can	 survive	 harsh	 conditions.	 The	

chasmothecium	contains	multiple	asci,	each	of	which	can	release	ascospores	(Both	and	

Spanu	 2004).	 Towards	 the	 end	 of	 the	 growing	 season,	 as	 temperatures	 rise,	 random	

intercrossing	occurs	between	compatible	mating	 types	 (Braun	et	al.,	2002).	Combined	

with	 the	 ease	 with	 which	 the	 asexual	 conidia	 are	 dispersed	 by	 the	 wind	 (Wolfe	 and	

McDermot,	 1994),	 this	 allows	 frequent	 gene	 exchange	 amongst	 different	 populations.		

Sexual	reproduction	can	lead	to	variation	in	pathogen	virulence,	with	different	effectors,	

for	example	AVRA1	being	present	amongst	different	B.	graminis	f.sp.	hordei	populations	

(Marris	et	al.,	2008,	Sanchez-Martin	et	al.,	2011,	Hacquard	et	al.,	2013,	Zhu	et	al.,	2015).		

2.6.4. Divergence	and	expansion	of	effector	complements	

The	 genome	 sizes	 of	 the	 powdery	 mildews	 are	 significantly	 larger	 than	 other	

ascomycetes	 (Spanu	 et	 al.,	 2010).	 	 This	 expansion	 is	 believed	 to	 be	 due	 to	

reterotransposons,	which	can	be	observed	as	repetitive	elements	within	the	genome.	In	

contrast,	 the	number	of	 curated	 identified	by	Spanu	et	al.,	(2010)	was	5854,	which	 is	

towards	 the	 smaller	 end	 of	 fungal	 genome	 sizes.	 The	 low	 number	 of	 protein	 coding	

genes	 has	 occurred	 through	 the	 loss	 of	 some	metabolic	 pathways,	 a	 decrease	 in	 the	

number	of	paralogous	genes,	and	an	overall	reduction	in	gene	family	size.	

	

In	contrast	to	the	reduction	in	gene	family	size	and	gene	number,	a	massive	expansion	

has	 occurred	 in	 the	 Candidate	 CSEPs,	which	 represent	 greater	 than	 7%	of	 the	 barley	

powdery	mildew	protein	coding	genes.	 In	contrast	with	other	powdery	mildew	genes,	
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many	of	 the	CSEPs	have	been	found	to	have	paralogs	that	can	be	grouped	into	clearly	

identifiable	 families	 (Spanu	 et	 al.,	 2010).	 Evidence	 of	 strong,	 positive	 diversifying	

selection	 is	 shown	by	 the	CSEPs,	 and	 this	 is	 associated	with	amino	acids	predicted	 to	

occur	on	the	surface	of	proteins	(Pedersen	et	al.,	2012).		

	

The	CSEP	 genes	 are	 closely	 linked	 to	 retro-transposable	 elements,	 indicating	 that	 the	

expansion	of	the	CSEPs	may	have	occurred	through	retro-transposon	driven	illegitimate	

recombination	 (Pedersen	 et	 al.,	 2012).	 This	 gene	 duplication	 would	 allow	 increased	

expression,	through	the	increased	copy	number	of	the	CSEP,	and	would	allow	fivergense	

through	 the	 selection	 of	 mutated	 CSEP	 genes	 (Spanu,	 2013).	 This	 retro-transposon	

based	proliferation	of	CSEPs	may	confer	an	advantage	to	the	pathogen,	by	providing	an	

efficient	means	 for	 the	 generation	 of	 effector	 genes.	 The	majority	 of	 the	 CSEPs	 have	

been	 identified	 solely	 with	 the	 Blumeria,	 as	 poopsed	 to	 with	 the	 pea	 or	 Arabidopsis	

powdery	 mildews,	 demonstrating	 that	 the	 powdery	 mildew	 genomes	 have	 species	

specific	 innovations.	 These	 may	 have	 evolved	 through	 cospeciaton	 of	 the	 pathogens	

with	their	plant	hosts	(Sacristan	et	al.,	2009,	Spanu	et	al.,	2010).	

2.6.5. Blumeria	formae	speciales	

Classically,	eight	formae	speciales	(f.sp.)	are	described,	each	infecting	a	single	host	genus	

(Troch	 et	 al.,	 2014)	 (Agropyron,	 Bromus,	 Dactylis	 and	 Poa	 for	 the	 wild	 grasses,	 and	

Avena,	Hordeum,	Secale	and	Triticum	for	cultivated	grasses)	(Marchal	1902,	Oku	et	al.,	

1985)	 cit.	 in	 (Troch	 et	 al.,	 2014).	 The	 corresponding	 formae	 speciales	 are	 named	

agropyri,	 bromi,	 dactylidis,	 poae,	 avenae,	 hordei	 and	 tritici	 respectively.	 Although	 this	

taxonomy	for	B.	graminis	has	increasingly	been	brought	into	question,	for	example	f.sp.	

avenae,	 hordei	 and	 tritici	 have	 been	 shown	 to	 be	 able	 to	 infect	 wild	 grasses	 from	
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multiple	genera	 in	 Israel	 (Eshed	and	Wahl	1970),	 the	 f.sp.	 for	B.	graminis	 strains	 that	

infect	cultivated	cereals	are	generally	supported	(Troch	et	al.,	2014).	The	cereal	clades	

of	B.	graminis	have	been	shown	to	be	specialized	to	these	hosts,	for	example	isolates	of	

f.sp.	avenae,	hordei,	secalis	and	 tritici	from	the	UK	were	only	able	 to	 infect	 the	species	

from	which	they	had	been	collected	(Wyand	and	Brown	2003).	

2.6.6. Blumeria-pathogen	host	interactions	

During	 B.	 graminis	 infection,	 the	 sole	 part	 of	 the	 fungus	 within	 the	 host	 cell	 is	 the	

haustorium.	 Host	 response	 and	 nutrient	 transfer	 both	 play	 key	 roles	 in	 determining	

whether	infection	is	successful	and	maintained.	The	fungal	pathogen	absorbs	nutrients	

and	photoassimilates	through	the	haustorium,	allowing	secondary	epiphytic	hyphae	to	

grow	 (Green	 et	 al.,	 2002,	 Zhang	 et	 al.,	 2005,	 O'Connell	 and	 Panstruga	 2006).	 Small	

proteins,	 including	fungal	effectors,	are	delivered	at	 the	haustorial	complex,	with	both	

host	 and	 pathogen	 involved	 in	 “secretory	 warfare”.	 The	 extrahaustorial	 matrix	

separates	the	perihaustorial	membrane	from	the	haustorial	wall	matrix	(O'Connell	and	

Panstruga	2006,	Panstruga	and	Dodds	2009).		
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Figure	 2:	 The	 haustorial	 complex	 is	 formed	 from	 the	 perihaustorial	 membrane,	 haustorium	 and	

extrahaustorial	 matrix.	 Infection	 of	 barley	 by	 the	 pathogen	Blumeria	 graminis	 f.sp.	hordei	 causes	 powdery	

mildew	disease.	The	pathogen	penetrates	the	cell	wall,	and	forms	digitate	haustoria	within	the	host	cell.	The	

haustorial	complex	is	formed	from	the	perihaustorial	membrane,	haustorium	and	extrahaustorial	matrix.	The	

perihaustorial	membrane	(or	extrahaustorial	membrane)	is	a	plant	plasma	membrane,	induced	by	the	fungus.	

	

2.7. Why	study	effectors?	

In	 this	 study,	 the	 term	“effector”	has	been	utilised	 to	 indicate	molecules,	produced	by	

pathogens,	which	have	an	effect	on	one	or	more	genotypes	of	plants,	which	are	either	

host	 or	 non-host	 (Vleeshouwers	 and	 Oliver	 2014).	 This	 definition	 does	 not	 vary	 for	

cytoplasmic	 or	 apoplastic	 effectors,	 or	 between	 effectors	 that	 confer	 an	 advantage	 or	

disadvantage	in	the	establishment	of	infection.		
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	Cytoplasmic	effector	proteins	are	secreted	into	host	cells,	and	apoplastic	effectors	into	

extracellular	 spaces,	 by	 microbial	 pathogens,	 including	 nematodes,	 oomycetes	 and	

fungi,	 to	 facilitate	 infection	 (Oliva	 et	 al.,	 2010).	 Insect	 pathogens	 of	 plants,	 such	 as	

aphids,	 have	 also	 been	 shown	 to	 utilise	 effectors	 (Bos	 et	 al.,	 2010b,	 Jaouannet	 et	 al.,	

2014),	 as	 have	 pathogens	which	 infect	 animals	 and	 humans,	 for	 example	 commensal	

bacteria	 utilise	 effectors	 to	 interact	 with	 human	 hosts	 (Cohen	 et	 al.,	 2015),	 and	 the	

mosquito	 bacterial	 symbiont,	 Pantoea	 agglomerans,	 secretes	 effector	 proteins	 in	 the	

mosquito	midgut	 (Bisi	 and	 Lampe	 2011,	Wang	 et	al.,	 2012).	 Various	 crucial	 roles	 are	

played	 by	 these	 effectors,	 including	 targeting	 of	 proteins	 or	 systems	 involved	 in	 host	

immunity.	 This	 has	 been	 shown	 to	 be	 the	 case	 for	 bacterial	 pathogens,	 for	 example	

Pseudomonas	syringae,	which	injects	type	III	effector	(T3E)	proteins	into	host	cells,	and	

uses	 them	 to	 alter	 organelle	 function,	 block	 RNA	 pathways,	 interfere	 with	 immune	

receptor	signaling	and	block	vesicle	 traficking	(Block	and	Alfano	2011,	Deslandes	and	

Rivas	 2012,	 Feng	 and	 Zhou	 2012).	 Filamentous	 pathogens,	 including	 fungi	 and	

oomycetes,	also	subvert	 the	host	 immune	system	using	effectors	 (for	reviews,	see	(de	

Jonge	et	al.,	2011,	Bozkurt	et	al.,	2012,	Dou	and	Zhou	2012,	Rafiqi	et	al.,	2012).		

2.7.1. Blumeria	effector	candidates		

The	 identification	 of	 B.	 graminis	 effector	 candidates	 (BECs)	 occurred	 through	

identification	of	 genes	up-regulated	 specifically	 during	 infection	 (Thomas	et	al.,	 2001,	

Both	 et	 al.,	 2005);	 the	 identification	 of	 RNA	 associated	 specifically	 with	 haustoria	

(Godfrey	 et	al.,	 2010,	 Spanu	 et	al.,	 2010);	 identification	 of	 proteins	 expressed	 only	 in	

haustoria	 (Bindschedler	 et	 al.,	 2009,	 Bindschedler	 et	 al.,	 2011);	 through	 the	 use	 of	

transcriptomic,	 genomic,	 proteomic,	 and	 structural	 prediction	 methods/analyses	 to	

characterize	 effectors	 in	 the	B.	graminis	genome	 (Pedersen	 et	al.,	 2012);	 and	 through	
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identification/characterisation	 of	 avirulence	 (AVR)	 genes,	 the	 products	 of	which	 are	

recognized	by	R	proteins	in	a	gene-for-gene	manner	(Ridout	et	al.,	2006,	Sacristan	et	al.,	

2009).		

2.7.2. BEC1054	

Fifty	Blumeria	 Effector	Candidate	 (BEC)	 genes	were	 chosen	 from	 the	71	 identified	by	

Bindschedler	 et	 al.,	 2011	 and	 screened	 by	 Host-Induced	 Gene	 Silencing	 (HIGS)	 to	

identify	whether	they	played	a	role	in	pathogen	virulence	(Pliego	et	al.,	2013).	Of	the	50,	

8	were	shown	by	Pliego	et	al.,	(2013)	to	contribute	significantly	to	infection	(BEC1005,	

BEC1016,	BEC1018,	BEC1019,	BEC1038,	BEC1040,	BEC1054	and	its	paralog	BEC1011),	

as	 silencing	 of	 these	 genes	 decreased	 the	 relative	 frequency	 of	 full	 haustorial	

development.	The	 remainder	 could	not	be	 shown	 to	be	 significant,	 but	 their	 silencing	

still	 decreased	 the	 haustorial	 index.	 The	 most	 significant	 effects	 on	 virulence	 were	

identified	 for	 BEC1011	 and	 BEC1054.	 Furthermore,	 BEC1011	 suppresses	 host	

programmed	cell	death,	which	occurs	following	pathogen	recognition	by	the	host	(Lamb	

and	Dixon	1997,	Wang	and	Huang	2011,	Pliego	et	al.,	2013).	Most,	but	not	all,	BECs	are	

also	Candidate	Secreted	Effector	Proteins	(CSEPs),	for	example	BEC1011	and	BEC1054.	

The	 CSEPs	 are	 defined	 as	 proteins	 which	 are	 predicted	 to	 be	 secreted,	 which	 lack	

transmembrane	domains,	and	which	 lack	BLAST	hits	outside	of	 the	powdery	mildews	

(Pedersen	et	al.,	2012).	Both	BEC1054	and	BEC1011	are	RNase	like	proteins,	which	are	

expressed	 in	 haustoria;	 whereas	 BEC1005	 (used	 as	 a	 control	 in	 protein-protein	

interactions	throughout	this	study)	is	predicted	to	be	a	β1,3-endoglycosidase,	due	to	its	

similarity	 to	 fungal	 glucosyl	 transferases,	 with	 homologous	 proteins	 in	 yeast	 being	

involved	 in	 cell	 wall	 remodeling. BEC1019	 is	 predicted	 to	 be	 a	 protease,	 and	 the	

functions	of	the	others	are	not	known	(Pliego	et	al.,	2013).	
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2.8. BEC1054	is	an	RNase	like	effector	

Pedersen	et	al.,	(2012)	found	that	many	of	the	B.	graminis	CSEPs	were	similar	to	RNases.	

BEC1054	 is	 a	 CSEP	 (equivalent	 to	 CSEP0064)	 with	 a	 structure	 similar	 to	 microbial	

RNases	(Figure	3),	but	the	catalytic	active	site	residues	required	for	RNase	activity	are	

absent	(Pedersen	et	al.,	2012).	This	structure	of	BEC1054	has	recently	been	confirmed	

experimentally	(R.	Jones,	pers.	comm.).	

	

	

Figure	3:	RNase	Like	Proteins	Expressed	in	Haustoria	and	RNases	possess	an	RNA	binding	fold.	The	PDB	files	

of	 the	 three	experimentally	derived	protein	 structures	were	uploaded	 in	PyMol	Version	1.5.0.4	and	used	 to	

visualise	the	structures	as	“cartoons”.	The	colour	spectrum	indicates	the	N	terminus	(blue)	to	C	terminus	(red),	

where	 A)	 is	 α-sarcin	 from	Aspergillus	 giganteus;	B)	 is	 Ribonuclease	 f1	 from	 Fusarium	moniliforme	and	 C)	 is	

BEC1054	 from	 Blumeria	 graminis	 and	 D)	 Is	 the	 N-terminall	 domain	 of	 Jasmonate	 Induced	 Protein	 60	 from	

barley	(where	the	C-terminal	domain	is	cleaved	off	post-translationally)	(Jones	et	al,	in	preparation).	

	

Almost	 all	 plant	 species	 have	 been	 found	 to	 possess	 a	 subclass	 of	 RNases,	 called	

Ribosome	 Inactivating	 Proteins	 (RIPs).	 They	 have	 been	 found	 to	 occur	 in	 maize	

(Roberts	and	Selitrennikoff	1990),	Sorghum	 (Hey	et	al.,	1995),	Arabidopsis	(De-la-Pena	

et	 al.,	 2008),	 castor	 oil	 plant	 (Sperti	 et	 al.,	 1973),	 jequirity	 pea	 (Olsnes	 et	 al.,	 1975),	

Nicotiana	 tabacum	 (N.	 Sharma	 et	 al.,	 2004)	 and	 many	 more.		

	

The	large	subunit	of	ribosomal	RNA	is	depurinated	by	RIPs	through	the	cleavage	of	an	

A) B) C) D) 
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N-glycosidic	 bond	 of	 an	 exposed	 ribosomal	 large	 subunit	 RNA	 loop,	 the	 Sarcin-Ricin	

Loop	(SRL).	This	causes	a	sugar-phosphate	backbone	phosphodiester	bond	to	become	

exposed	 to	 chemical	 hydrolysis	within	 the	 cell	 (Endo	 et	al.,	 1988a,	 Endo	 and	Tsurugi	

1988,	Endo	et	al.,	1988b,	Barbieri	et	al.,	1993).	If	the	depurinated	rRNA	is	treated	with	

aniline	 in	 vitro,	 aniline	 cleaves	 the	 sugar-phosphate	 backbone	 at	 site	 of	 the	modified	

nucleotide(s),	causing	two	rRNA	fragments	to	be	formed	(Peattie	1979).	Preservation	of	

ribosomal	 integrity	would	help	 to	maintain	a	 living	plant	cell	as	a	 food	source	 for	 the	

fungus.	Binding	of	the	eEF2/GTP	complex	to	the	ribosome	is	prevented	by	the	cleavage	

of	 the	sarcin-ricin	 loop.	This	 inhibits	protein	synthesis	at	 the	elongation	step	(Wool	et	

al.,	1992);	and	the	expression	of	the	barley	RIP	Jasmonate	Induced	Protein	60	(jip60ml)	

in	N.	tabacum	has	previously	been	 shown	 to	 impair	 elongation,	 through	a	 shift	 in	 the	

monosome/polysome	ratio	towards	polysomes	(Gorschen	et	al.,	1997).	The	RIPs,	such	

as	JIP60,	have	been	shown	to	play	a	role	in	host	induced	cell	death	following	pathogen	

detection	(Reinbothe	et	al.,	1994).		

	

2.9. Prior	knowledge	

Prior	to	the	start	of	this	study,	the	genome	of	B.	graminis	had	been	sequenced	(Spanu	et	

al.,	 2010).	The	genomes	of	wheat	 (Mayer	et	al.,	 2014)	and	barley	 (Mayer	et	al.,	 2012)	

had	also	been	sequenced,	but	their	annotation	and	presentation	were	not	yet	complete.	

Before	 the	 B.	 graminis	 genome	 had	 been	 sequenced,	 a	 list	 of	 Blumeria	 Effector	

Candidates	 (BECs)	 was	 created	 through	 genomic,	 transcriptomic	 and	 proteomic	

methods.	Genes	up-regulated	during	haustorial	 formation	were	 identified	 through	 the	

use	 of	 a	 microarray	 (Thomas	 et	 al.,	 2001,	 Both	 et	 al.,	 2005).	 The	 abundance	 of	

transcribed	 RNA	 associated	 specifically	 with	 haustoria	 (compared	 with	 conidia	 or	
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mycelia)	 were	 quantified	 using	 RNAseq,	 and	 included	 as	 BECs	 (Godfrey	 et	 al.,	 2010,	

Spanu	et	al.,	2010).	In	addition,	proteogenomic	approach	was	used	to	identify	Blumeria	

Effector	Candidates	(BECs)	were	identified	which	were	associated	specifically	with	host	

cells	colonized	by	haustoria	(Bindschedler	et	al.,	2009,	Bindschedler	et	al.,	2011).		

	

In	B.	graminis,	a	superfamily	of	candidate	secreted	effector	proteins	(CSEPs)	containing	

491	genes	have	been	identified	which	do	not	possess	a	transmembrane	domain,	which	

have	 no	 significant	 BLAST	 matches	 outside	 of	 the	 Erysiphales,	 and	 which	 possess	 a	

predicted	 signal	 peptide.	 The	 exclusions	 of	 proteins	with	 BLAST	matches	 outside	 the	

Erysiphales	allowed	fungal	proteins	such	as	commonly	secreted	enzymes	to	be	omitted	

(Panstruga	 and	 Dodds	 2009,	 Spanu	 et	 al.,	 2010).	 The	 initial	 characterisation	 of	 the	

Candidate	Secreted	Effector	Proteins	(CSEPs),	specific	to	powdery	mildews,	was	driven	

by	 bioinformatics	 predictions	 (Pedersen	 et	 al.,	 2012).	 The	 CSEPs	 possessed	 features	

typically	 associated	 with	 effectors,	 but	 differ	 from	 the	 previously	 characterized	

avirulence	 proteins	 AVRK1	 and	AVRK10,	which	 have	 no	 signal	 peptide	 (Ridout	 et	al.,	

2006,	Sacristan	et	al.,	2009,	Pedersen	et	al.,	2012).		

	

In	cereals,	17	functional	“powdery	mildew	resistance	3”		(pm3)	alleles	have	been	found	

to	 confer	 race-specific	 resistance	 to	 B.	 graminis.	 Much	 less	 is	 known	 about	 the	

corresponding	 powdery	 mildew	 avr	 genes.	 Recently,	 Bourras	 et	 al.,	 (2015)	

demonstrated	that	pm3	race-specific	resistance	was	multiallelic,	and	controlled	by	three	

genetically	interacting	fungal	loci	“locus_1”,	“locus_2”	and	“locus_3”,	with	locus_1	having	

been	shown	to	be	involved	in	all	interactions	of	AVRPM3	effectors	(which	are	canonical	

CSEPs)	 with	 PM3.	 The	 establishment	 (or	 failure)	 of	 a	 compatible	 infection	 for	 B.	
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graminis	f.sp.	tritici	has	been	shown	to	depend	upon	a	combination	of	avirulence	genes,	

and	 suppressors	 of	 those	 avirulence	 genes.	 The	 B.	 graminis	 f.sp.	 tritici	 AVRPM3A	

effector	 was	 found	 to	 confer	 recognition	 specificity	 in	 a	 manner	 which	 was	 allele	

dependent.	The	gene	avrpm3a2/f2,	 cloned	 from	 locus_2,	was	 found	 to	be	 recognized	by	

the	R	alleles	pm3a	and	pm3f,	 thus	demonstrating	that	AVRPM3A	is	an	AVR	factor.	The	

authors	linked	these	results	to	prior	investigations	of	wheat	pm3	allelic	specificity,	and	

demonstrated	 that	 distinct	 Avr	 loci	 in	 B.	 graminis	 f.sp.	 tritici	 genetically	 controlled	

resistance	specificities.	In	addition,	distinct	Avr	factors	were	found	to	be	recognized	by	

different	 pm3	 alleles.	 Investigation	 of	 the	 expression	 of	 the	 gene	 bcg1,	 encoded	 by	

locus_1,	and	avrpm3a2/f2,	encoded	by	locus_2,	demonstrated	that	differing	levels	of	gene	

expression	occurred	between	differing	isolates,	indicating	a	role	for	expression	levels	in	

avirulence.	Together,	these	results	showed	that	the	B.	graminis	f.sp.	tritici	pathosystem	

is	highly	complex	(Bourras	et	al.,	2015).		
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3. Materials	and	methods	

All	 chemicals	were	 obtained	 from	VWR	 (VWR,	 Chicago,	 USA).	 Primers	were	 obtained	

from	 Invitrogen	 (Invitrogen,	 Carlsbad,	 CA).	 Statistics	 were	 analysed	 using	 R	 v3.0.1	

(http://www.r-project.org/),	unless	stated	otherwise.		

3.1. Protein	interactors	of	BEC1054	

3.1.1. Barley	and	Blumeria	graminis	growth	conditions	

Barley,	Hordeum	vulgare	L.	cv.	Golden	Promise,	was	grown	in	13cm	diameter	pots	filled	

with	Levington®	Seed	and	Modular	Compost	Plus	Sand	F2S	(Everris,	Ipswich,	UK),	with	

ca.30	seeds	per	pot.	Wheat	and	barley	plants	were	watered	every	two	days,	and	grown	

with	 16	 h	 light,	 8	 h	 darkness,	 and	 33%	 humidity	 at	 21oC.	 Light	 intensity	 was	 set	 at	

approximately	 130	 μmol/m/s2	 with	 two	 alternating	 types	 of	 lighting	 tube:	 Philips	

Master	49W	/	830	/	TL5	HO	 (Philips,	Guildford,	UK)	and	Sylvania	Lux	Line	Plus	FHO	

49W/	840	/	T5	(Havells	Sylvania,	NewHaven,	UK).		

	

Uninfected	 plants	 and	 infected	 plants	 were	 maintained	 under	 the	 same	 lighting	 and	

growth	 conditions.	 Seven	 days	 post	 germination,	 wheat	 or	 barley	 seedlings	 were	

transferred	 to	 60cm3	 Perspex	 boxes,	 and	 used	 as	 the	 host	 for	Blumeria	graminis	 f.sp.	

hordei	 var.	 DH14	 or	 Blumeria	 graminis	 f.sp.	 tritici	 respectively.	 Inoculation	 was	

performed,	 and	 the	 B.	 graminis	 lines	 maintained	 by	 shaking	 plants	 infected	 with	 B.	

graminis	 f.sp.	 hordei	 	 or	 B.	 graminis	 f.sp.	 tritici	 over	 seven	 day	 old	 barley	 or	 sheat	

seedlings	respectively.		This	strain	of	barley	was	utilised	due	to	its	susceptibility	to	the	

Blumeria	strain	used.		
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3.1.2. Statistical	analyses	of	in	vitro	liquid	chromatography	pull-downs	

In	vitro	chromatography	was	performed	by	Dana	Gheorghe	and	Laurence	Bindschedler;	

I	performed	statistical	analyses	on	the	results.	

3.1.1.2. Criteria	 used	 to	 count	 proteins	 from	 lists	 generated	 from	 Liquid	

Chromatography	Mass	Spectrometry	data	

In	vitro	chromatography	was	performed	within	the	host	 laboratory	to	 identify	protein	

putative	 interactors	 for	 BEC1054.	 The	 bait	 was	 recombinant	 BEC1054	 with	 an	 N-

terminal	 His-tag,	 which	 had	 been	 expressed	 in	 E.	 coli	 and	 purified	 (Gheorghe,	 pers.	

comm.).	 The	 negative	 control	 was	 BEC1005	 prepared	 in	 the	 same	 manner;	 and	 for	

experiment	iii	(listed	below)	a	magnetic	Ni-NTA	column	with	no	proteins	attached	was	

used	as	an	additional	control	 (Bindschedler,	pers.	comm).	Three	separate	experiments	

were	performed	(Table	1).	
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Table	 1:	 Methodology	 summary	 describing	 the	 affinity	 pull-down	 experiments.	 The	 pull-downs	 were	

performed	as	three	biological	replicates	and	included	two	technical	replicates	for	each	biological	replicates	of	

set	A.	i)	Pull-down	bait	details;	ii)	experimental	sample	and	affinity	column/bead	details.		

i)	

Purpose	 Control	details	

Pull-down	bait	 E.	 coli	 expressed	 BEC1054	 with	 N-terminal	

His	tag	BEC1054	(A,	B,	C)	

Negative	control	1	 E.	 coli	 expressed	 BEC1005	 with	 N-terminal	

His	tag	BEC1005	(A,C)		

Negative	control	2	 Absence	of	bait	(A,	B,C)	

	

ii)	

	

Sample	code	 Substrate	 Affinity	column/bead	

details	

A	 48h	Infected	leaf	epidermis		 magnetic	NTA	agarose	

beads	

B	 Non-infected	leaves		 1ml	NTA		

chromatography	columns	

C	 7	day	Infected	leaves		 magnetic	NTA	agarose	

beads	
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Protein	 extractions	 were	 performed	 on	 the	 harvested	 plant	 material	 as	 per	

Bindschedler	et	al.,	(2011).	Reverse	phase	liquid	chromatography	and	nanoESI	tandem	

mass	 spectrometry	 was	 performed	 in	 the	 collaborating	 laboratory	 as	 described	 by	

(Pennington	 et	 al.,	 2016).	 Proteins	 were	 identified	 using	 Mascot	 (MatrixScience,	

London,	 UK),	 and	 BLASTed	 against	 the	 HarvEST	 (http://harvest.ucr.edu/)	 and	

International	Barley	Sequencing	Consortium	(IBSC)	databases		

(http://www.public.iastate.edu/~imagefpc/IBSC%20Webpage/IBSC%20Template-

home.html).	Binomial	proportion	tests	(Crawley	2005)	were	used	to	determine	whether	

significantly	 more	 RNA-associated	 protein	 peptide	 sequences	 were	 identified	 with	

BEC1054	 through	 in	 vitro	chromatography	 than	with	 negative	 controls.	 Search	 terms	

(Table	2)	were	used	to	determine	the	number	of	RNA-related	sequences	present;	with	

each	 sequence	 being	 counted	 once	 per	 experiment	 to	 prevent	 pseudoreplication	

through	the	recognition	of	different	peptides	within	the	same	protein.	Upper	and	lower	

95%	 confidence	 interval	 (CI)	were	 used	 to	 calculate	 the	 standard	 error	 (Equation	 1)	

(Higgins	and	Green	2011).		

	

Equation	1:	Calculating	standard	error.	Standard	error	can	be	calculated	from	the	95%	confidence	interval	and	

the	t-value	for	a	given	dataset.	

!"#$%#&% !""#" = 95% !"#$%&'#!' !"#$%&'(
! − !"#$% 	
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Table	 2:	 Search	 terms	 used	 to	 identify	 RNA-related	 sequences	 from	 the	 protein	 descriptions	 of	 proteins	

identified	through	Liquid	Chromatography	Mass	Spectrometry.	The	following	search	terms	were	used	in	Excel	

to	 identify	 RNA-related	 sequences	 from	 the	 gene	 comments	 for	 genes	 from	 the	 International	 Barley	

Sequencing	Consortium	database,	and	from	genes	identified	during	interactions	with	BEC1054.	*	is	a	wildcard	

used	as	a	substitute	for	any	set	of	characters	within	the	search.	The	left	hand	column	contains	the	categories	

that	 the	 search	 terms	 divide	 into;	 for	 example	 28S,	 23S,	 5.8S	 and	 50S	 are	 all	 terms	 used	 to	 refer	 to	 the	

ribosomal	large	subunit,	and	were	treated	as	one	set	of	results.		

Category	 Search	terms	

large	ribosomal	subunit	 28S	
	 23S	
	 5.8S	
	 50S	
small	ribosomal	subunit	 40S	
	 18S	
	 30S	
	 16S	
ribosome	 60S	
	 70S	
	 80S	
	 *ibosom*	
	 elongat*	
	 translation	
	 initiation	
	 RNA	
	

3.1.3. Gene	annotation	and	entry	vector	construction	

3.1.1.3. Complementary	DNA	synthesis	

RNA	was	extracted	from	infected	barley	leaf	material	using	the	QIAGEN	RNeasy	Mini	Kit	

(QIAGEN,	Crawley,	UK).	The	A260/A280	ratio	was	measured	to	determine	the	resulting	

RNA	 concentration	 using	 a	 NanoDrop-1000	 spectrophotometer	 (Thermo	 Scientific,	

Wilmington,	USA).	The	cDNA	was	synthesized	using	the	SuperScript®	Double-Stranded	

cDNA	Synthesis	Kit	(Invitrogen,	cat.	No.	11917-010)	using	3	μg	RNA	as	a	template.	
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3.1.1.3. PCR	

Home-made	Taq	polymerase	was	used	to	perform	PCR	in	a	GS1-thermalcycler	(G-Storm,	

Somerton,	UK).	PCR	was	performed	in	a	25	µl	reaction,	with	5	µl	10xPCR	buffer	(Applied	

Biosystems),	 200	 µM	 dNTPs	 (Applied	 Biosystems),	 1.25U	 Taq	 and	 10	 pmol	 of	 the	

primers	(Supplementary	Table	13).	Amplification	was	3	min	at	95oC,	40	cycles	of	30	s	at	

94oC,	1	min	annealing,	1	min	at	72oC	and	3	min	at	72oC.	Presence	of	PCR	products	was	

confirmed	 by	 gel-electrophoresis,	 with	 SYBR®	 Safe	 -	 DNA	 Gel	 Stain	 (Thermo	 Fisher	

Scientific)	used	 for	band	visualization.	PCR	products	were	purified	using	 the	QIAprep	

Spin	 Miniprep	 Kit	 (QIAGEN).	 Gels	 were	 imaged/analysed	 under	 UV	 light	 using	 the	

InGenius	 Bio-imager	 and	 GeneSnap	 software	 (Syngene,	 Cambridge,	 UK).	 If	 multiple	

bands	were	obtained,	the	desired	band	was	purified	with	a	QIAquick	Gel	Extraction	Kit	

(QIAGEN).	

3.2.1.3. Protein	interactor	identification	and	amplification	

Coding	sequences	for	putative	interactors	were	identified	and	annotated	using	the	work	

flow	described	in	Figure	4.		
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Figure	4:	Flowchart	used	for	the	identification	and	annotation	of	barley	putative	interactors.	Barley	protein	

putative	 interactors,	 identified	 with	 BEC1054,	 were	 identified	 where	 possible	 through	 their	 “Unique	

Reference”	code	on	the	database	UniProt	(http://www.uniprot.org/).	If	they	were	not	present	on	UniProt,	the	

“Unique	 Identifier”	was	used	 to	search	 the	HarvEST	U36	database	 (http://harvest.ucr.edu/).	 If	 the	gene	was	

not	 identified	 on	 either	 database,	 matches	 to	 other	 species	 from	 UniProt	 were	 translated	 to	 the	 protein	

sequence,	and	used	on	GenBank	(http://blast.ncbi.nlm.nih.gov)	to	perform	a	protein-BLAST	(BLASTp).	Where	

barley	sequences	were	available	on	GenBank,	they	were	used	to	perform	a	BLAST	or	BLASTp	against	the	IBSC	

database	 (http://www.public.iastate.edu/~imagefpc/IBSC%20Webpage/IBSC%20Template-home.html).	 If	 a	

match	could	not	be	identified,	sequences	from	multiple	plant	species	were	aligned	and	used	to	select	plausible	

START	and	STOP	codons	and	open	reading	frames.	
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Genes	of	interest,	including	barley	genes,	BEC1054	and	BEC1005,	were	amplified	from	

cDNA	 made	 from	 3	 dpi	 barley	 epidermis	 using	 the	 primers	 listed	 in	 Supplementary	

Table	13.		

3.3.1.3. Entry	vector	construction	

The	 PCR	 products	 were	 inserted	 into	 pCR8	 (Invitrogen),	 and	 transformed	 into	

competent	DH5a	or	TOP10	E.	coli	(Invitrogen).	Colonies	were	grown	overnight	at	37oC	

on	 LB	media	 (5%	 yeast	 extract,	 1	 l	 ddH2O,	 1%	 NaCl,	 1%	 tryptone,	 ±	 1.5%	 agar,	 pH7.5)	

containing	 100µg/ml	 spectinomycin.	 Plasmid	 DNA	 was	 analysed	 by	 directional	 PCR	

using	 M13	 forward	 primer	 5´-GTAAAACGACGGCCAGT-3’	 (a	 sequence	 of	 the	 vector	

pCR8)	 and	 the	 reverse	 primer	 from	 the	 gene	 (Supplementary	 Table	 13).	 Where	 a	

product	 was	 detected,	 clones	 were	 selected,	 grown	 overnight	 at	 37oC	 in	 liquid	 LB	

with100	 µM	 spectinomycin,	 plasmids	 extracted	 using	 the	 QIAGEN	 Plasmid	 Midi	 Kit	

(QIAGEN),	and	sequenced	(GATC,	Cologne,	Germany).		

	

Genes	of	interest	were	re-amplified	from	entry	vectors	using	primers	that	added	either	

a	 START	 or	 a	 STOP	 codon,	 specified	 in	 Supplementary	 Table	 14).	 The	 PCR	 products	

created	 using	 primers	 with	 the	 starting	 sequence	

“GGGGACAAGTTTGTACAAAAAAGCAGGCTTC”	 were	 amplified	 using	 Phusion	 High-

Fidelity	 DNA	 Polymerase	 (Thermo	 Fisher	 Scientific,	 Schwerte,	 Germany),	 as	 per	 the	

manufacturer’s	instructions.	The	PCR	products	were	then	cleaned	using	the	DNA	Clean	

&	 Concentrator™-5	 kit	 (Zymo	 Research,	 Freiburg	 Germany);	 and	 inserted	 into	

pDONR201	(Invitrogen)	using	Gateway®	BP	Clonase®	Enzyme	Mix	(Invitrogen),	as	per	

the	manufacturer’s	instructions.	The	pDONR	entry	constructs	were	miniprepped	using	

the	NucleoSpin®	Plasmid	kit	(Machery-Nagel,	Eupen,	Belgium).	Products	created	using	
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the	remaining	primers	were	inserted	into	pCR8,	as	specified	above.	Following	PCR,	the	

reaction	 mixture	 containing	 the	 product	 from	 pCR8	 was	 digested	 using	 Dpn1	 (New	

England	Biolabs)	as	per	the	manufacturer’s	instructions.	The	selective	antibiotics	were	

spectinomycin	 for	 pCR8	 (final	 concentration	 100	 µM),	 and	 kanamycin	 (final	

concentration	50	µM)	for	pDONR201.	Colony	selection	and	culturing	were	performed	as	

specified	 above.	 Plasmids	 were	 sequenced	 to	 confirm	 that	 the	 genes	 had	 inserted	 in	

frame/sense.	Entry	vectors	created	are	summarised	in	Table	3.		
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Table	3:	Genes	of	interest	and	their	entry	vectors.	Genes	were	inserted	into	either	pCR8,	or	into	pDONR201.	

The	entry	vectors	marked	“*”	was	from	(Morgan	2014)	and	**	from	(Pliego	et	al.,	2013).	

Gene	name	 Genes	 with	
neither	START	nor	
STOP	codon	

Gene	 with	 an	 added	
START	 codon	 (for	 N-
terminal	fusion)	

Gene	 with	 an	 added	
STOP	 codon(for	 C-
terminal	fusion)	

Glutathione-S-
Transferase	

pCR8	 pCR8	 pDONR201	

Malate	Dehydrogenase	
	

pCR8	 pDONR201	 pDONR201	

Pathogenesis	Related	
protein	5	

pCR8	 pDONR201	 pCR8	

Pathogenesis	Related	
protein	10	

pCR8	 pCR8	 pDONR201	

Eukaryotic	Elongation	
Factor	1	Gamma	

pCR8	 pDONR201	 pDONR201	

Eukaryotic	Elongation	
Factor	1	Alpha	(1)	

pCR8	 pCR8	 pDONR201	

Eukaryotic	Elongation	
Factor	1	Alpha	(3)	

pCR8	 pDONR201	 pDONR201	

Ribosomal	40S	protein	16	
	

pCR8	 pCR8	 pDONR201	

Nucleoside	Diphosphate	
Kinase	

pCR8	 pDONR201	 pDONR201	

Blumeria	Effector	
Candidate	1054	

-	 pCR8*	 pCR8**	

N-terminal	Jasmonate	
Induced	Protein	60	ml	

pCR8	 pDONR201	 pDONR201	

	

3.4.1.3. Jasmonate	Inducted	Protein	60	identification	and	amplification	

The	N-terminal	domain	of	Jasmonate	Induced	Protein	60	(jip60)	was	amplified	from	3	

dpi	cDNA,	prepared	as	per	section	3.1.1.3.,	using	the	primers	specified	in	Supplementary	

Table	 15.	 The	 PCR	 product	 was	 inserted	 into	 pCR8	 (Invitrogen)	 according	 to	 the	

manufacturer’s	instructions.	A	peptide	in	the	N-terminal	domain;	the	removal	of	which	

is	 required	 for	 RIP	 activity	 (Chaudhry	 et	 al.,	 1994);	 was	 excised	 by	 our	 collaborator	

Rhian	 Jones.	A	methionine-leucine	 linker	was	used	 to	replace	 the	peptide	via	 the	Q5®	

Site-Directed	Mutagenesis	Kit,	with	the	primers	listed	in	Supplementary	Table	15.	The	

resulting	product	is	referred	hereafter	as	“JIP60ml.”	
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3.1.4. Yeast	two	hybrid	

Cloning	 for	 the	 Y2H	 assay	 was	 performed	 with	 the	 help	 of	 Annabelle	 Damerum	

(Damerum	 2013).	 She	 amplified	 the	 genes	 eef1g	 and	 pr10,	 and	 performed	 an	 LR	

recombination	to	transfer	them	to	the	pDEST	plasmids.	

3.1.1.4. 	Expression	vector	construction	

Expression	 vectors	 were	 created	 using	 the	 entry	 vectors	 specified	 in	 section	 4.3.1.3	

using	 Gateway®	 LR	 Clonase®	 enzyme	 mix	 (Invitrogen)	 as	 per	 the	 manufacturer’s	

instructions.	 Entry	 vectors	 were	 recombined	 with	 the	 yeast	 expression	 plasmids	

pDEST22	 (which	 contained	 a	 C-terminal	 transcription	 factor	 activation	 domain)	 and	

pDEST32	(which	contained	a	C-terminal	transcription	factor	activation	domain),	to	give	

the	expression	vectors	pEXP22	and	pEXP32	respectively	(Table	7).	
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Table	4:	Combinations	of	plasmids	used	to	investigate	protein-protein	interactions	in	yeast-two-hybrid.	The	

following	 plasmid	 pairs	 were	 used	 in	 a	 yeast-two-hybrid	 assay,	 to	 investigate	 the	 interactions	 of	 various	

proteins	with	BEC1054	and	BEC1005.	The	 following	plasmids	were	provided	with	the	commercial	yeast-two-

hybrid	 kit:	 pDEST22,	 pDEST32,	 pEXP32/Krev1,	 pEXP22/RalGDS-wt	 pEXP22/RalGDS-m1,	 and	 pEXP22/RalGDS-

m2.		

Bait	plasmid	(LEU2)	 Prey	plasmid	(TRP1)	 Purpose	

none	 none	 Negative	transformation	control	
pEXP32/Krev1	 pEXP22/RalGDS-wt	 Strong	positive	interaction	control	
pEXP32/Krev1	 pEXP22/RalGDS-m1	 Weak	positive	interaction	control	
pEXP32/Krev1	 pEXP22/RalGDS-m2	 Negative	interaction	control	
pEXP32/BEC1054	 pDEST22	 negative	activation	control	
pEXP32/BEC1005	 pDEST22	 negative	activation	control	

pEXP32/BEC1054	 pEXP22/MDH	 interaction	under	investigation	
pEXP32/MDH	 pEXP22/BEC1054	 interaction	under	investigation	
pEXP32/MDH	 pDEST22	 negative	activation	control	

pEXP32/BEC1054	 pEXP22/GST	 interaction	under	investigation	
pEXP32/GST	 pEXP22/BEC1054	 interaction	under	investigation	
pEXP32/GST	 pDEST22	 negative	activation	control	

pEXP32/BEC1054	 pEXP22/PR5	 interaction	under	investigation	
pEXP32/PR5	 pEXP22/BEC1054	 interaction	under	investigation	
pEXP32/PR5	 pDEST22	 negative	activation	control	

pEXP32/BEC1054	 pEXP22/eEF1G	 interaction	under	investigation	
pEXP32/eEF1G	 pEXP22/BEC1054	 interaction	under	investigation	
pEXP32/eEF1G	 pDEST22	 negative	activation	control	

pEXP32/BEC1054	 pEXP22/40S	16	 interaction	under	investigation	
pEXP32/40S	16	 pEXP22/BEC1054	 interaction	under	investigation	
pEXP32/40S	16	 pDEST22	 negative	activation	control	

pEXP32/BEC1054	 pEXP22/eEF1A_1	 interaction	under	investigation	
pEXP32/eEF1A_1	 pEXP22/B54	 interaction	under	investigation	
pEXP32/eEF1A_1	 pDEST22	 negative	activation	control	

pEXP32/BEC1054	 pEXP22/eEF1A_3	 interaction	under	investigation	
pEXP32/eEF1A_3	 pEXP22/B54	 interaction	under	investigation	
pEXP32/eEF1A_3	 pDEST22	 negative	activation	control	

pEXP32/BEC1054	 pEXP22/PR10	 interaction	under	investigation	
pEXP32/PR10	 pEXP22/B54	 interaction	under	investigation	
pEXP32/PR10	 pDEST22	 negative	activation	control	

pEXP32/BEC1054	 pEXP22/NDPK	 interaction	under	investigation	
pEXP32/NDPK	 pEXP22/B54	 interaction	under	investigation	
pEXP32/NDPK	 pDEST22	 negative	activation	control	
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3.2.1.4. Yeast	transformation	

For	 Y2H	 a	 commercial	 kit	 was	 used	 (Invitrogen).	 Yeast	 strain	 MaV203	 was	 made	

competent	and	transformed	with	plasmid	pairs	specified	in	Table	7.	Transformed	yeast	

was	 plated	 onto	 SC-Leu-Trp	 (20%	 glucose,	 6.7g	 yeast	 nitrogen	 base	 without	 amino	

acids,	1.35g	purine	and	amino	acid	powder	mix	missing	Histidine,	Leucine,	Tryptophan,	

and	Uracil	(Sigma	Aldrich,	St	Louis,	USA),	0.32	mM	uracil	and	0.32	mM	histidine,	±1%	

agar)	and	incubated	at	30oC	for	two	days.	

3.3.1.4. Quantitative	β-galactosidase	assay	

Expression	 of	 the	 lacZ	 reporter	 gene	 can	 be	 quantified	 through	 its	 β-galactosidase	

activity.	The	maximum	conversion	rate,	Vi	(Figure	5)	at	the	start	of	the	hydrolysis	of	the	

yellow	substrate	CPRG	to	the	red	product	chloramphenicol	red	(and	D-galactose),	was	

used	as	a	quantitative	indicator	of	the	interaction	between	bait	and	prey	(Figure	12).	

	

Lines	under	 investigation	were	streaked	out	onto	SC-Leu-Trp,	 incubated	(48	h,	32oC),	

aspirated	and	suspended	in	1	ml	phosphate-buffered	saline.	Samples	were	centrifuged,	

supernatant	removed,	and	cells	re-suspended	in	200	µl	phosphate-buffered	saline.	Cell	

density	 was	 measured	 for	 each	 sample	 by	 measuring	 the	 OD595.	 A	 CPRG	 assay	 was	

performed	 as	 described	 by	 (Simon	 and	 Lis	 1987)	 and	 the	 Y2H	 manufacturer	

(Invitrogen);	but	with	50	µl	of	 the	supernatant	added	to	100	µl	of	CPRG	buffer2	(2.23	

mM	CPRG	in	Buffer1)	 in	a	96-well	microtitre	plate	(instead	of	100	µl	supernatant	and	

900	 µl	 Buffer2	 in	 a	 1	ml	 cuvette).	 The	 OD595	was	measured	 and	 used	 to	 calculate	 β-

galactosidase	activity	for	each	time	point,	(Equation	2).	The	β-galactosidase	activity	was	

used	to	calculate	the	relative	β-galactosidase	activity	(Equation	3).	
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An	 asymptotic	 exponential	model	 (Equation	 4)	was	 fitted	 using	 the	 nls	 function	 in	 R	

v3.0.2,	and	used	to	calculate	the	β-gal	activity	within	the	first	minute	(for	an	example,	

see	 Figure	 5)(Miller	 1972,	 Miller	 1992).	 The	 asymptotic	 exponential	 model	 was	

differentiated	(Equation	5)	to	calculate	the	maximum	gradient,	i.e.	the	gradient	at	time	

zero	(Equation	6).	

	
	Equation	2:	β-galactosidase	activity	equation.	The	OD595	cell	density	is	the	OD595	reading	taken	at	the	beginning	of	

the	assay	as	an	approximation	of	cell	density;	OD595	CPRG	is	the	OD595	absorbance	by	chloramphenicol	red	(and	

light	scattering	by	cell	debris).		

β− galactosidase activity = 1000× !"!"! !"#$
!"!"! !"## !"#$%&'×!"#$%&

	

	

Equation	 3:	 Relative	 β-galactosidase	 (β-gal)	 activity,	 where	 “sample	 β-gal	 activityt=n”	 is	 the	 current	 β-

galactosidase	 activity	 and	 “sample	 β-gal	 activityt=0”	 is	 the	 β-galactosidase	 activity	 at	 time	 zero	 (or	 the	 first	

reading).	

!"#$%&'" ! − !"# !"#$%$#&

= !"#$%& ! − !"# !"#$%$#&!!! − [!"#$%& ! − !"# !"#$%$#&!!!]
!"#$%&'" !"#$%"& ! − !"# !"#$%$#&!!!

	

	

Equation	 4:	 β-galactosidase	 activity	 model.	 An	 asymptotic	 exponential	 model	 fitted	 to	 the	 relative	 β-

galactosidase	activity,	where	“y”	is	the	observed	value,	“a”	is	the	asymptotic	value	of	y,	and	“c”	is	the	inflection	

point	of	the	curve.		

! = ! − !!! × !	

	

Equation	5:	Calculating	β-galactosidase	activity.	Differentiation	of	the	equation	y=a-e-cx	can	be	used	to	find	the	

gradient	“m”,	where,	“a”	is	the	asymptotic	value	of	y,	and	“c”	is	the	inflection	point	of	the	curve.	

! = !×!(!!!×!)	
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Equation	6:	Maximum	β-galactosidase	activity.	The	gradient	at	time	zero	was	calculated	for	a	curve	with	the	

equation	using	the	following	equation,	where	“m”	is	the	gradient,	“a”	is	the	asymptotic	value	of	“y”,	and	“c”	is	

the	inflection	point	of	the	curve	(note	that	when	x=0,	e-c	x	χ	=1).		

! = !×!	

	

Figure	 5:	 Calculating	 the	 relative	 β-galactosidase	 gradient.	 The	 black	 curve	 indicates	 the	 asymptotic	

exponential	 fitted	 to	 the	 data.	 The	 diagonal	 dotted	 line	 indicates	 the	 maximum	 reaction	 rate,	 Vi,	 (i.e.	 the	

gradient	at	time	zero)	for	the	relative	β-galactosidase	activity	curve	(in	this	case,	Vi=1841.90).	The	horizontal	

dashed	line	indicates	the	asymptote.		
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3.4.1.4. Selective	media	plate	assays	

I	transformed	yeast	with	bait-prey	pairs	specified	in	Table	4.	Single	yeast	colonies	were	

picked	using	a	20	µl	pipette	tip,	and	resuspended	in	1	ml	of	PBS	to	create	a	1X	dilution.	

This	 stock	 was	 then	 used	 to	 create	 10X,	 100X,	 1000X	 and	 10,000X	 dilutions	 in	

phosphate	 buffered	 saline	 (PBS).	 From	 these,	 10	 µl	 was	 plated	 onto	 selective	 media	

containing	SC-Leu-Trp;	SC-Leu-Trp-Ura;	SC-Leu-Trp-His+10	mM,	25	mM	or	50	mM	3AT;	

and	SC-Leu-Trp	+	2%	5FOA.		

	

The	 yeast	 lines	 were	 analysed	 through	 plating	 onto	 selective	 media	 containing	 5-

fluoroorotic	acid	(5FOA),	or	onto	media	containing	3AT,	but	lacking	histidine	(Figure	12	

and	Table	10).	Yeast	line	MaV203	shows	a	baseline	level	of	histidine	synthesis,	which	I	

was	able	to	select	against	using	10	mM	3-Amino-1,	2,	4-triazole	(3AT).	The	addition	of	

3AT	 suppressed	 basal	 HIS3	 expression,	 allowing	 colonies	 to	 grow	 in	 the	 presence	 of	

3AT.	 The	 URA3	 gene	 allows	 both	 positive	 and	 negative	 selection,	 acting	 as	 both	 an	

auxotrophic	marker,	 and	 resulting	 in	 the	 conversion	 of	 5FOA	 to	 the	 toxic	 product	 5-

fluorouracil,	(Boeke	et	al.,	1987).	

3.1.5. Bimolecular	fluorescence	complementation	(BiFC)	

3.1.1.5. Expression	vector	construction	

Gateway	 entry	 vectors	 were	 recombined	 with	 Gateway	 expression	 plasmids,	 all	 of	

which	 contained	 a	 35S	 promoter,	 using	 the	 Gateway®	 LR	 Clonase®	 enzyme	 mix	

(Invitrogen),	to	produce	the	plasmids	in	Table	5.	Plasmids	were	grown	overnight	on	LB	

with	100	µM	ampicillin,	and	a	single	colony	picked	and	used	to	prepare	a	200	µl	culture	

for	 midiprep.	 Midipreps	 were	 performed	 using	 the	 NucleoBond®	 Xtra	 Midi	 kit	
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(Machery-Nagel)	as	per	the	manufacturer’s	instructions.	Vectors	were	sequenced	using	

the	plasmids	listed	in		

Supplementary	table	16	to	confirm	the	presence	of	the	insert.	
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Table	5:	Combinations	of	 plasmids	used	 for	 protein	 expression	 and	protein-protein	 interactions	 in	 barley.	
The	 following	 plasmid	 pairs	were	 used	 in	 for	 bimolecular	 fluorescence	 complementation,	 to	 investigate	 the	
expression	 patterns	 of	 Blumeria	 Effector	 Candidate	 1054	 (bec1054),	 Jasmonate	 Induced	 Protein	 60	 (jip60),	
Nucleoside	 Diphosphate	 Kinase	 (ndpk),	 Glutathione-S-Transferase	 (gst),	 Malate	 Dehydrogenase	 (mdh),	
eukaryotic	Elongation	Factor	One	Alpha	(eef1a),	eukaryotic	Elongation	Factor	One	Gamma	(eef1g),	ribosomal	
40S	protein	16	 (40s	16),	Pathogenesis	Related	protein	5	 (pr5),	PR5	without	signal	peptide	Δpr5,	and	pr10.	A	
plasmid	 expressing	 dsred	 was	 used	 to	 determine	 which	 cells	 had	 been	 transformed;	 pESPYCE	 was	 used	 to	
produce	N-terminal	fusions	of	the	C-terminal	fragment	of	YFP;	pESPYNE	was	for	N-terminal	fusions	of	the	N-
terminal	fragment	of	YFP;	pUCSPYNE	was	for	C-terminal	fusions	of	the	N-terminal	fragment	of	YFP.	Expression	
controls	were	performed	using	plasmids	encoding	C-terminal	monomeric	YFP	(35S-GWY-mYFP)	or	N-terminal	
monomeric	YFP	(35S-mYFP-GWY)	respectively.	

Plasmid	1	 Plasmid	2	 Plasmid	3	 Purpose	

dsRED	 NA	 NA	 autofluorescence	control	
dsRED	 pESPYCE	 pESPYNE	 autofluorescence	control	
dsRED	 pESPYCE	 pUCSPYNE	 autofluorescence	control	
dsRED	 pESPYCE/BEC1054		 pUCSPYNE	 negative	interaction	control	
dsRED	 pESPYCE/BEC1054		 pESPYNE	 negative	interaction	control	
dsRED	 35S-mYFP-BEC1054		 NA	 positive	expression	control	
dsRED	 35S-BEC1054-mYFP	 NA	 positive	expression	control	
dsRED	 35S-mYFP-JIP60		 NA	 positive	expression	control	
dsRED	 35S-JIP60-mYFP	 NA	 positive	expression	control	
dsRED	 pESPYCE/BEC1054		 pUCSPYNE/GST	 interaction	
dsRED	 pESPYCE/BEC1054		 pUCSPYNE/PR10	 interaction	
dsRED	 pESPYCE/BEC1054		 pUCSPYNE/NDPK	 interaction	
dsRED	 pESPYCE/BEC1054		 pUCSPYNE/eEF1a(1)	 interaction	
dsRED	 pESPYCE/BEC1054		 pUCSPYNE/eEF1a(3)	 interaction	
dsRED	 pESPYCE/BEC1054		 pUCSPYNE/eEF1G	 interaction	
dsRED	 pESPYCE/BEC1054		 pUCSPYNE/40S	16	 interaction	
dsRED	 pESPYCE/BEC1054		 pUCSPYNE/MDH	 interaction	
dsRED	 pESPYCE/JIP60ml		 pUCSPYNE/GST	 negative	interaction	control	
dsRED	 pESPYCE/JIP60ml		 pUCSPYNE/PR10	 negative	interaction	control	
dsRED	 pESPYCE/JIP60ml		 pUCSPYNE/NDPK	 negative	interaction	control	
dsRED	 pESPYCE/JIP60ml		 pUCSPYNE/eEF1a(1)	 negative	interaction	control	
dsRED	 pESPYCE/JIP60ml		 pUCSPYNE/eEF1a(3)	 negative	interaction	control	
dsRED	 pESPYCE/JIP60ml		 pUCSPYNE/eEF1G	 negative	interaction	control	
dsRED	 pESPYCE/JIP60ml		 pUCSPYNE/40S	16	 negative	interaction	control	
dsRED	 pESPYCE/JIP60ml		 pUCSPYNE/MDH	 negative	interaction	control	
dsRED	 35S-GST-mYFP	 NA	 expression	control	
dsRED	 35S-MDH-mYFP	 NA	 expression	control	
dsRED	 35S-PR5-mYFP	 NA	 expression	control	
dsRED	 35S-ΔPR5-mYFP	 NA	 expression	control	
dsRED	 35S-eEF1G-mYFP	 NA	 expression	control	
dsRED	 35S-40S	16-mYFP	 NA	 expression	control	
dsRED	 35S-eEF1a(1)-mYFP	 NA	 expression	control	
dsRED	 35S-eEF1a(3)-mYFP	 NA	 expression	control	
dsRED	 35S-PR10-mYFP	 NA	 expression	control	
dsRED	 35S-NDPK-mYFP	 NA	 expression	control	
dsRED	 pESPYCE/BEC1054		 pESPYNE/PR5		 interaction		
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3.2.1.5. Preparation	of	micro-carriers	

Micro-carriers	(Gold	powder,	spherical,	APS	0.8-1.5	micron,	99.96+%	(metals	basis,	Alfa	

Aesar)	 were	 prepared	 as	 previously	 described	 (Elliott	 et	 al.,	 2005;	 Schweizer	 et	 al.,	

1999).	In	summary,	micro-carriers	were	weighed	out	in	30	mg	aliquots.	They	were	then	

coated	whilst	being	vortexed	with	5	μl	of	DNA	(1	μl	of	dsRED,	2	μl	of	bait	plasmid	and	2	

μl	 of	 prey	 plasmid;	 or	 for	 the	 positive	 expression	 controls,	 1	 μl	 of	 dsRED	 and	2	 μl	 of	

expression	control	plasmid;	see	Table	3	for	details);	followed	by	50	µl	of	2.5	M	CaCl2	and	

20	µl	 of	 spermidine	 (Sigma-Aldrich,	Munich,	Germany).	Micro-carriers	were	 stored	 in	

60	µl	100%	ethanol	and	kept	on	ice	until	bombardment.	

3.3.1.5. Bombardment	

Primary	leaves	were	harvested	from	eight	day	old	H.	vulgare	c.v.	Golden	Promise,	which	

had	been	grown	under	 long	day	 conditions	 (16	h	 light,	8	h	darkness,	25oC)	 in	 square	

10cm	 pots	 filled	 with	 soil	 (Einheitserde,	 Frondenberg,	 Germany).	 Leaves	 were	

bombarded	with	the	DNA	coated	micro-carriers.	Bombardments	were	performed	using	

a	PDS-1000	/	He™	System	with	a	with	Hepta™	Adaptor	(Bio-Rad,	Munich,	Germany).	For	

each	micro-carrier,	7	μl	aliquots	were	pipetted	from	a	continuously	vortexed	eppendorf	

onto	a	macro-carrier	disc	(Bio-Rad)	and	the	ethanol	allowed	to	evaporate.	The	macro-

carrier	holder	was	 inverted,	 intercalated	with	 the	stopping	screen	holder,	and	a	clean	

stopping	screen	inserted.	Rupture	disks	used	were	900psi	(Bio-Rad);	with	a	vacuum	of	

27	inches	of	mercury.		

3.4.1.5. Fluorescence	microscopy	

Barley	 leaves,	 three	 days	 post	 bombardment,	 were	 treated	 with	 perfluorodecalin,	

(Sigma-Aldrich)	 for	 at	 least	 30	 min	 before	 imaging,	 to	 enhance	 in	 vivo	microscopy	
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resolution	by	 filling	 the	 air	 spaces	 in	 the	mesophyll.	 Perfluorodecalin	has	 a	 refractive	

index	closer	to	the	cytosol	than	water,	is	non-toxic	and	non-fluorescent	(Littlejohn	et	al.,	

2010).	 A	 Leica	 TCS	 SP8-X	 laser	 scanning	 microscope,	 (Leica,	 Wetzlar,	 Germany)	

mounted	with	 a	20x	0.75	numerical	 aperture	water-immersion	objective	was	used	 to	

analyze	the	leaf	samples.	For	fluorescent	protein	detection	and	localisation,	dsRED	was	

excited	at	561	nm	using	the	560	diode	laser	and	the	fluorescence	emission	was	detected	

between	600	and	640	nm	using	a	photomultiplier	tube	detector.	The	YFP	fluorescence	

was	 excited	 at	 514	 nm	with	 an	 argon	 laser	 and	 fluorescence	 emission	 was	 detected	

between	 520	 and	 560	 nm	 using	 a	 hybrid	 detector	 (Leica).	 Images	 and	 data	 captures	

were	analyzed	with	Leica	SP8	software.	

3.2. Expression	profiling	of	Candidate	Secreted	Effector	Protein	family	21	

Quantitative	real-time	PCR	(qPCR)	work,	and	control	optimization,	was	performed	with	

the	help	of	Linhan	Li	(Li	2014).	Linhan	collected	and	extracted	the	RNA	for	the	majority	

of	the	experiments,	performed	repeats	of	the	control	optimization	assay,	and	performed	

the	qPCR	reactions	for	the	CSEPs,	conidia-specific	gene,	and	barley	genes.		

3.2.1. Sample	collection	

A	 vacuum	 pump	 was	 used	 for	 conidia	 collection.	 Epiphytic	 material	 was	 collected	

through	 immersion	 of	 barley	 leaves	 in	 5%	 cellulose	 acetate	 dissolved	 in	 anhydrous	

acetone;	evaporation	of	the	acetone;	and	then	collection	of	the	cellulose	acetate	(which	

contained	epiphytic	material).	 Epidermal	peels	were	 then	performed	 to	obtain	barley	

epidermal	material	(and	the	B.	graminis	material	within	it).	Samples	were	flash-frozen	

in	liquid	nitrogen,	and	stored	at	-80oC	until	further	use.	
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3.2.2. Selected	time-points	

The	 samples	 for	 the	 gene	 normalisation	 (geNorm)	 experiments	were	 collected	 at	 the	

following	 time-points,	which	 represent	 the	 beginning,	middle	 and	 end	 of	B.	graminis”	

asexual	life	cycle:	0	h	post	inoculation	(hpi;	ungerminated	conidia);	16	hpi	(penetration	

peg	 formation);	 two	 days	 post	 inoculation	 (dpi;	 new	 colony	 formation);	 and	 five	 dpi	

(colonies	become	abundant	on	the	leaf	surface).	The	members	of	CSEP	family	21,	and	a	

conidia-specific	 gene,	 were	 also	 measured	 at	 four	 additional	 time	 points:	 four	 hpi	

(germinated	conidia	with	primary	and	secondary	appressoria);	 six	hpi	 (appressorium	

formation);	 24	 hpi	 (haustorial	 formation)	 and	 3	 dpi	 (colonies	 become	 visible	 to	 the	

naked	eye)	(Both	and	Spanu	2004).	Two	biological	replicates	were	used	for	the	geNorm	

assay,	as	recommended	by	PrimerDesign,	and	three	for	the	assays	involving	the	CSEPs	

and	conidia-specific	gene.	

3.2.3. Extraction,	and	analysis	of	RNA	

Quartz	sand	(50-70	mesh,	Sigma	Aldrich,	St	Louis,	USA)	was	added	to	the	RNA	samples	

(prepared	as	per	3.2.1),	which	were	then	ground	in	 liquid	nitrogen	with	a	mortar	and	

pestle.	The	RNA	was	extracted	using	the	QIAGEN	RNeasy	Mini	Kit	(QIAGEN)	as	per	the	

manufacturer’s	instructions,	but	with	the	following	modifications,	which	were	found	to	

provide	a	higher	RNA	yield:	ground	samples	were	incubated	in	buffer	RLT	for	20	min;	

centrifuged	(4oC,	8000g,	20	min);	and	then	transferred	to	the	QIA	shredder	spin	column.	

Two	washes	were	performed	using	buffer	RW1	(QIAGEN).	

3.2.4. RNA	quality	control	

A	NanoDrop-1000	spectrophotometer	 (Thermo	Scientific,	Wilmington,	USA)	was	used	

to	 determine	 the	 quantity	 of	 RNA	 post-extraction.	 Only	 RNA	 with	 an	 OD	 260/230	

greater	 than	 1.5,	 and	 an	 OD260/280	 greater	 than	 1.8	 were	 used	 for	 further	 work	
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(Manchester	1996,	Sambrook	and	Russell	2001).	Further	analysis	was	performed	using	

the	Agilent	RNA	6000	Nano	Kit	(Agilent	Technologies,	Santa	Clara,	USA),	with	an	Agilent	

2100	Bioanalyzer	(Agilent).	Samples	with	an	RNA	Integrity	Number	(RIN;	a	measure	of	

RNA	integrity	between	one	and	10)	greater	than	6.5	were	used	for	further	work	(Fleige	

and	Pfaffl	2006)	(Supplementary	Table	41).		

3.2.5. Reverse	transcription	

A	 Precision	 DNase	 Kit	 (PrimerDesign,	 Southampton,	 United	 Kingdom)	 was	 used	 to	

remove	genomic	DNA	(gDNA)	from	the	RNA	samples.	Complementary	DNA	(cDNA)	was	

synthesized,	with	 a	 1:1	mixture	 of	 Oligo-dT	 and	 random	nonamer	 primers,	 using	 the	

NanoScript	2	Reverse	Transcription	Kit	(PrimerDesign).	Samples	of	cDNA	were	stored	

at	-20oC	until	further	use.		

	

A	7500-Fast	Thermocycler	(ThermoScientific,	Loughborough,	UK)	was	used	to	perform	

qPCR,	with	the	primers	described	in		
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Supplementary	Table	17,	Supplementary	Table	18,	Suplplementary	Table	19	and		

Supplementary	 Table	 20.	 The	 PrecisionFAST	 Mastermix	 SYBR	 green	 detection	 kit	

(PrimerDesign)	was	used	with	1	μl	primer/probe	mix;	and	25ng	of	cDNA	template	in	a	

20	µl	reaction.	The	reaction	mix	and	primers	were	manually	added	to	BrightWhite	Real-

Time	PCR	plates	(PrimerDesign).	The	thermocycle	program	used	was:	95oC	 for	2	min,	

followed	 by	 40	 cycles	 of	 95oC	 for	 5	 s,	 and	 59oC	 for	 60s.	 The	 working	 concentration	

utilised	 for	 the	CSEP	primers	(Suplplementary	Table	19)	was	300	nM;	with	3	pmol	of	

probe.	 The	 CSEP	 and	 barley	 gene	 primers	 were	 ordered,	 with	 desalting	 purification,	

from	 Invitrogen	 (Invitrogen,	 Carlsbad,	 CA).	 Validation	 of	 the	 control	 primers	 was	

performed	by	PrimerDesign.	The	optimal	annealing	temperature	for	the	CSEP	primers	

and	 barley	 gene	 primers	 was	 determined	 through	 gradient	 PCR;	 with	 an	 average	

temperature	 of	 59oC	 being	 used.	 All	 primers	 utilised	 gave	 a	 single	 clean	 band	 of	 the	

expected	 size,	 which	 corresponded	 with	 the	 predicted	 length	 of	 the	 amplicon.	 The	

primer	pairs	were	also	found	to	give	a	single	melt-curve	peak	with	no	shoulder.	

	

3.3. Ribonucleic	Acid	interactors	of	BEC1054	

Optimisation	 and	 troubleshooting	 of	 DSF	 was	 initially	 performed	 by	 Giulia	 Bonciani	

(Bonciani	2014).	

3.3.1. Creating	a	model	for	barley	rRNA	

A	model	 for	 the	 barley	28S	 rRNA	 could	 not	 be	 identified	 online	 or	 in	 publications.	 A	

wheat	model	was	 identified	on	GenBank	(Sequence	 ID:	PDB:	3IZ9_A).	This	model	was	

used	to	perform	a	BLAST	search	of	the	454BacContigs	available	from	the	International	

Barley	Sequencing	Consortium	(IBSC)(http://webblast.ipk-gatersleben.de/barley/).	An	

alignment	 was	 created	 using	 ClustalΩ	 (http://www.ebi.ac.uk/Tools/msa/clustalo/	 )	
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with	 sequences	 from	wheat	 (T.	aestivum;	 GenBank	 accession:	 AY049041),	 rye	 (Secale	

cereale;	accession:	JF489233),	maize	(Zea	mays;	accession:	NR_028022),	and	a	fragment	

of	 28S	 barley	 rRNA	 which	 had	 incorrectly	 been	 labelled	 as	 mRNA	 (accession:	

AK248318;	data	not	shown).	The	alignment	was	used	to	predict	plausible	beginning	and	

end	points	for	the	28S	rRNA.	The	28S	RNA	was	located	within	the	top	BacContig	match	

(HVVMRXALLeA0264I01_c1;	IBSC).	

	

The	 program	 RNAfold	 (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi)	 was	 used	 to	

predict	 secondary	 structures	 of	 the	 28S	 rRNA.	 Models	 created	 were	 viewed	 using	

PseudoViewer	v3.0	(http://pseudoviewer.inha.ac.kr/PVWebService/WSPV_input.asp).		

3.1.3.1. Defining	the	SRL	loop	

The	eukaryotic	model	for	the	28S	sarcin-ricin	loop	(Endo	et	al.,	1988a)	from	rat	(Rattus	

rattus)	was	aligned	with	barley	28S	rRNA	using	ClustalW	to	identify	the	barley	SRL,	and	

used	 to	 design	 RNA	 fragments	 (Table	 6).	 The	 MEGAshortscript	 T7	 Kit	 (Applied	

Biosystems,	Paisley,	UK)	was	used	to	synthesise	the	RNA	fragments	in	vitro	from	primer	

templates	(Table	6).	
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Table	 6:	 RNA	 sequences	 and	 their	 secondary	 structures.	 The	 RNAfold	 web	 server	

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi)	was	used	 to	predict	 the	 thermodynamic	ensemble	 secondary	

structures	 of	 the	 28S	 rRNA.	 Models	 created	 were	 viewed	 using	 PseudoViewer	 version	 3.0	

(http://pseudoviewer.inha.ac.kr/PVWebService/WSPV_input.asp).	The	conserved	“loop”	part	of	the	ribosomal	

Sarcin-Ricin	Loop	is	highlighted	in	yellow	for	the	rat	and	barley	sequences.		

Name	 Sequence	 Secondary	

structure	

prediction	

Rat	SRL	+T7	 ACCUGCUCAGUACGAGAGGAACCGCAGGU	

	

Barley	 SRL	 3014-3044	
+T7	

AUUCAACCUAGUACGAGAGGAACCGUUGAUU	

	

Barley	76-114	+T7	 UCCCCUAGUAACGGCGAGCGAACCGGGAACAGCCCAGC	

	

	

RNA	synthesis	reactions	were	terminated	after	24	h,	and	phenol-chloroform	extractions	

performed	(Applied	Biosystems),	with	the	addition	of	one	extra	chloroform	extraction	

step.	 Samples	 were	 precipitated	 (-80oC	 ≥30mins),	 centrifuged	 (≥10,000g,	 45mins),	

ethanol	 removed,	 and	RNA	 re-suspended	 in	DEPC	water.	 Synthesized	RNA	 fragments	

were	run	on	17%	polyacrylamide	gels	(6.4ml	40%	acrylamide:	bisacrylamide	(37.5:1),	

0.75ml	 10xTBE,	 4.2ml	DEPC	water	 and	 8	M	urea;	with	 7.5	 µl	 TEMED	 and	 30	 µl	 25%	

APS).	
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3.3.2. Yeast-three-hybrid	assay	

3.3.3. Construction	of	RNA	expression	plasmids	

For	 the	RNA	 expression	 plasmids,	 synthesis	 of	 cDNA	was	 performed	 from	uninfected	

barley	rRNA	as	in	chapter	3.1.1.3,	using	primer	pairs	specified	in	(	

Supplementary	Table	22).	Phusion®	High-Fidelity	DNA	Polymerase	(NEB)	was	used	to	

perform	PCR	of	 the	RNA	products.	Primers	were	designed	using	 the	online	NEBuilder	

assembly	 tool	 (http://nebuilder.neb.com/	 ,	 NEB).	 The	 RNA	 expression	 plasmid,	

pIIIA/MS2-2,	was	 linearized	using	 the	 restriction	 enzymes	XmaI	 and	 SphI	 (NEB),	 and	

cleaned	 using	 the	 QIAquick	 PCR	 Purification	 Kit	 (QIAGEN),	 before	 insertion	 of	 the	

product	through	Ligation	Independent	Cloning	(LIC)	(New	England	Biolabs,	MA,	US)	as	

per	the	manufacturer’s	instructions.	For	Y3H,	strain	YBZ1	was	transformed	as	described	

in	 the	 Invitrogen	protocol	using	 the	plasmids	 in	Table	7;	 and	plated	onto	SC-Leu-Ura.	

Protein	plasmid	construction	was	described	in	section	3.1.1.3.		

3.3.4. Testing	reporter	genes	

Colonies	 were	 assayed,	 and	 statistical	 analyses	 performed,	 as	 described	 in	 the	

Quantitative	β-galactosidase	assay	(6.1.3.6.).	Selective	media	assays	were	performed	as	

per	section	3.4.1.4,	but	with	plates	containing	SC-Trp-Ura	(tests	transformation)	and	SC-

Trp-Ura-His+10	mM	3AT	(tests	histidine	synthesis).		
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Table	7:	Combinations	of	plasmids	used	 to	 investigate	protein-RNA	 interactions	 in	yeast-three-hybrid.	The	

following	 plasmid	 pairs	 were	 used	 in	 a	 yeast-three-hybrid	 assay,	 to	 investigate	 the	 interactions	 of	 various	

proteins	with	BEC1054	and	JIP60.	

Bait	plasmid	 Prey	plasmid	 Purpose	

pEXP32/BEC1054	 pIIIA/rRNA2989_3139-
MS2	

interaction	under	investigation	

pEXP32/BEC1054	 pIIIA/rRNA13_363-MS2	 interaction	under	investigation	
pEXP32/BEC1054	 pIIIA/IRE-MS2	 negative	interaction	control	
pEXP32/JIP60	 pIIIA/rRNA2989_3139-

MS2	
interaction	under	investigation	

pEXP32/JIP60	 pIIIA/rRNA13_363-MS2	 interaction	under	investigation	
pEXP32/JIP60	 pIIIA/IRE-MS2	 negative	interaction	control	
pAD-IRP		 pIIIA/IRE-MS2	 positive	control	
pEXP32/BEC1054	 pIIIA/IRE	 negative	activation	control	
	

3.3.5. Differential	Scanning	Fluorimetry	(DSF)	

Expression	and	purification	of	BEC1054	was	performed	by	R.	Jones	using	the	pET28a-

LIC	expression	vector	(Structural	Genomics	Consortium,	Toronto,	CA)	in	Escherichia	coli	

strain	Shuffle	(New	England	Biolabs,	MA,	US).	DSF	was	performed	with	10	µM	BEC1054,	

1	µl	SYPRO	Orange	(Sigma)(1:250	dilution	in	20	mM	Sodium	Acetate	(NaAc)	pH	4.6,	150	

mM	NaCl),	 one	 to	 20	 µM	 template	 and	 buffer	 (20	mM	NaAc,	 pH	 4.6,	 150	mM	NaCl),	

reaction	volume	40	µl;	in	a	7500-Fast	Thermocycler	(ThermoScientific,	Loughborough,	

UK);	temperature	gradient	from	25-99oC,	1%	ramp	rate	(i.e.	where	the	temperature	is	

increased	by	1%	of	 the	 total	 temperature	gradient	 for	each	percentage	of	 the	allotted	

time).	 Templates	 were	 either	 a)	 synthesized	 RNA,	 b)	 DNA	 primers	 used	 in	 RNA	

synthesis	 or	 c)	 an	 82	 kDa	 Heat	 Shock	 Protein	 primer	 (HSP82):	 5’-

GCGTCGGACGTGCAGATGGGC-3’.	
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SigmaPlot	v10.1	(Windows)	was	used	to	fit	a	“sigmoidal	dose-response	(variable	slope)”	

(Equation	9)	and	derive	the	inflection	point	of	the	sigmoidal	(logEC50)	which	indicates	

the	“melting	point”	of	BEC1054	(Figure	31).	

	

Equation	7:	Calculating	 the	 inflection	point	of	a	 sigmoidal	curve.	Where	“y”	is	the	observed	value,	“max”	is	

the	maximum	observed	value,	“min”	is	the	minimum	observed	value,	and	“Hillslope”	gives	the	largest	absolute	

value	of	the	slope	of	the	curve.		

! = min+ (max−min)
1+ 10(!"#!"!"!!)!"##$#%&' 	

3.3.6. Expression	of	BEC1054	in	wheat	

Wheat,	Triticum	aestivum	L.	cv.		Cerco,	was	grown	as	per	section	3.1.1.	It	was	used	as	the	

host	for	an	unnamed	Fielder	wheat-compatible	Blumeria	graminis	f.sp.	tritici	strain,	and	

was	provided	by	the	NIAB	(UK).	

3.4. Stable	expression	of	the	Blumeria	effector	BEC1054	as	a	transgene	in	

wheat		

Genotyping	 and	 wheat	 non-host	 infection	 work	 was	 conducted	 with	 Peggy	 Luong	

(Luong	 2014).	 Chlorophyll	 senescence	 assays	 and	 RNA	 extraction/analysis	 were	

conducted	 with	 Thomas	 Chandler	 (Chandler	 2015)	 and	 Hannah	 Thieron.	 Nicotiana	

benthamiana	non-host	infection	assays	were	performed	with	Hannah	Thieron.	

3.4.1. Genotyping	

Triticum	aestivum	 cv.	 Fielder	had	previously	been	 transformed	with	wobble	BEC1054	

(wbec1054)	 or	 wobble	 BEC1011	 (wbec1011)	 through	 Agrobacterium-mediated	

transformation	at	the	National	Institute	of	Agricultural	Botany	(NIAB,	Cambridge).	The	

wobble	 BECs	 do	 not	 possess	 a	 signal	 peptide,	 so	 that	 they	 remain	 within	 the	 plant	

cytosol.	The	wobble	BECs	are	synthetic	genes	which	do	not	possess	a	signal	peptide,	and	
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which	have	silent	“wobble”	mutations	which	minimize	the	nucleotide	sequence	identity	

with	 the	wild-type	B.	graminis	 genes	 (Pliego	 et	al.,	 2013).	 All	 transgenic	wheat	 seeds	

were	 sown	 in	 two	 by	 2	 cm	 chambered	 propagation	 trays	 in	 Levington®	 Seed	 and	

Modular	 Compost	 Plus	 Sand	 F2S	 (Everris)	 and	 2	 g/l	 Osmocote	 Patterned	 Release	

Fertiliser	 (Everris).	 Once	 they	 had	 begun	 to	 develop	 the	 second	 leaf,	 they	 were	

transferred	to	9x9	cm	square	plastic	pots	containing	the	same	mixture.	

	

Work	done	at	NIAB	determined	the	copy	number	of	the	transgene	in	the	T0	generation.	

The	T1	lines	PS1.16,	PS2.4,	PS3.3	and	PS4.4	were	selected	for	further	investigation	by	Giulia	

Bonciani	 because	 they	 were	 one-copy	 lines	 with	 the	 highest	 expression	 (as	 determined	

through	qPCR	 relative	 to	wheat	 β-tubulin,	 TUBBw).	 This	was	 further	 repeated	 for	 the	T2	

generation.	The	lines	3.3.7	and	3.3.14	were	homozygous	(+/+)	for	wBEC1054	and	had	the	

highest	amount	of	transcript	relative	to	tubulin.	The	lines	3.3.11	and	3.3.12	were	found	to	

be	homozygous	null	plants,	 and	will	be	henceforth	 referred	 to	as	azygous	 (-/-),	 and	were	

used	as	negative	controls	for	further	work	(Bonciani	2014).		

	

Seeds	 from	the	T3	and	T4	generations	of	 lines	3.3.14	and	3.3.12	were	planted	 in	work	

conducted	 with	 undergraduate	 student	 Peggy	 Luong.	 Seed	 dormancy	 was	 broken	

through	five	days	of	incubation	at	32°C	during	the	day	and	4oC	at	night.	Leaf	disks	were	

removed	from	the	primary	leaves	using	a	flat-ended	blunt	1mm	diameter	sterile	needle.		

Leaf	disks	were	used	as	the	substrate	for	direct	PCR,	using	the	KAPA3G	Plant	Direct	PCR	

kit	(KAPA	Biosystems,	London,	UK).	Following	experimental	optimization,	the	following	

conditions	were	used:	KAPA	PCR	mix	contained	25	µl	2xKAPA	Plant	PCR	buffer,	1.5	mM	

MgCl2,	0.3	µM	FWD	primer,	0.3	µM	REV	primer,	0.5	µl	KAPA	Plant	PCR	enhancer	and	1U	
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KAPA3G	Plant	DNApol.	Amplification	was	performed	in	a	GS1-thermalcycler	(G-Storm),	

with	2	min	at	95oC,	30	cycles	of	40	s	at	95oC,	20	s	annealing	at	50oC,	30	s	at	72oC	and	1	

min	at	72oC.	Transgene	expression	was	confirmed	in	the	T4	plants	via	endpoint	reverse	

transcription.	 The	 total	 RNA	was	 extracted,	 and	 cDNA	made	 as	 per	 section	 (3.1.1.3).	

This	 cDNA	was	 then	 used	 as	 the	 template	 for	 PCR,	 as	 per	 section	 (3.2.1.3),	 using	 the	

primers	specified	above	for	wbec1054	and	for	tubbw	(Luong	2014).		

3.4.2. Phenotyping	

Transgenic	 wheat	 from	 the	 T4	 generation	 of	 lines	 homozygous	 for	 wBEC1054;	 or	

azygous	(3.3.14	and	3.3.12	respectively);	was	assayed	to	determine	whether	wBEC1054	

had	 an	 effect	 on	 the	 phenotypic	 characteristics	 of	 adult	wheat	 (Figure	 6).	 The	 eleven	

characteristics	 assayed	 were	 the	 total	 number	 of	 leaves	 (for	 all	 tillers);	 maximum	

height;	 subcrown	 length;	 ear	 length	 (including	 whiskers);	 peduncle	 (internode	 1)	

length;	 the	 length	of	 the	 three	 remaining	 internodes;	 the	number	of	 fertile	 tillers;	 the	

mass	of	the	tillers;	and	the	number	of	grains.		
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Figure	6:	Characteristics	of	wheat	investigated	in	a	phenotyping	assay.	The	stylized	wheat	diagram	indicates	

the	main	characteristics	investigated	for	wheat	plants	during	a	phenotyping	assay.		

3.4.3. Non-host	Blumeria	infection	assay	

Blumeria	graminis	f.sp.	tritici	was	used	to	infect	either	T4	plants	grown	for	three	weeks,	

or	T3	plants	grown	for	11	weeks,	under	the	growth	conditions	 listed	 in	3.1.1.	One	 leaf	

was	removed	from	each	plant,	and	3	2	cm-long	segments	taken	from	the	tip,	middle	and	

base	of	the	leaf	using	a	flat	blade.	Segments	were	placed	onto	wet	paper,	and	inoculated	
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with	Blumeria	graminis	f.sp.	tritici	on	the	adaxial	leaf	surface.	Even	dispersal	of	conidia	

was	 achieved	using	 a	Hair	Design	1000	hairdryer	 (Philips,	Amsterdam,	Holland).	One	

hour	following	inoculation,	 leaf	segments	were	transferred	to	water	agar	plates	(0.5%	

agar	supplemented	with	16mg/L	benzimidazole)	with	the	adaxial	side	up.	Plates	were	

stored	 for	 three	days	within	 the	 same	conditions	as	 for	Blumeria	graminis	f.sp.	hordei	

(3.3.6).	

	

The	 infected	 leaf	 segments	 were	 stained	 in	 0.1%	 trypan	 blue	 stain	 in	 ethanolic	

lactophenol	(1:3.35)	(RAL	Diagnostics,	Martillac,	France),	and	incubated	for	2	h	at	80oC;	

followed	by	destaining	in	2	mg	per	ml	of	chloral	hydrate	for	2	h.	The	fungal	structures	

were	viewed	using	a	Carl	Zeiss	Axioskop	2	plus	microscope	(Zeiss,	Cambridge,	UK).	The	

number	of	colonies,	which	formed	epiphytic	hyphae,	was	measured	as	a	proxy	for	the	

presence	of	 at	 least	one	 functional	haustorium.	The	proportion	of	 germinated	 conidia	

that	formed	at	least	one	haustorium	(propH)	was	calculated	using	Equation	8.	

	

Equation	 8:	 Calculating	 the	 proportion	 of	 conidia	 which	 formed	 at	 least	 one	 haustorium.	 Where	 the	

abbreviation	“propH”	refer	to	the	proportion	of	germinated	conidia	that	formed	at	least	one	haustorium;	“H”	

to	the	number	of	haustoria;	and	“NH”	to	the	number	which	did	not	form	haustoria.	

!"#!$ = !/(! + !")	

3.4.4. Chlorophyll	senescence	assay	

Transgenic	 wheat	 from	 the	 T5	 generations	 of	 wheat	 lines	 3.3.7	 (+/+),	 3.3.14	 (+/+),	

3.3.11	(-/-)	and	3.3.12	(-/-)	was	grown	in	the	conditions	described	in	section	3.1.1	for	

seven	days.	The	wheat	plants	were	then	infected	on	three	consecutive	days	via	shaking	

B.	graminis	 f.sp.	 tritici	 infected	 plants	 over	 them,	 to	 ensure	 a	 heavy	 infection,	 or	 they	

were	left	uninfected	as	a	control.		
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Senescence	 was	 induced	 in	 the	 10	 day	 old	 seedlings	 through	 floating	 the	 detached	

primary	leaves	in	100ml	of	45	µM	MeJA	(Chou	and	Kao	1992,	Hung	et	al.,	2006),	or	 in	

water,	 for	 a	 further	 five	 days	 in	 a	 14cm	 diameter	 petri-dish.	 Petri-dishes	 were	 kept	

within	the	same	controlled	growth	chambers	as	the	wheat	lines.	

	

Leaf	protein	concentration	was	determined	through	the	homogenization	of	a	1	cm	leaf	

segment	 in	 50	 mM	 sodium	 phosphate	 buffer,	 pH	 6.8.	 Samples	 were	 centrifuged	

(14,000g,	 15	 min,	 4oC),	 and	 the	 supernatant	 used	 for	 protein	 quantification	 in	 a	

Bradford	assay	(Bradford	1976),	but	with	5	μl	of	supernatant	being	added	to	250	µl	in	a	

96-well	microtitre	plate.	Absorbance	was	measured	at	595nm	in	a	Tecan	3000	(Tecan	

Group	Ltd,	Männedorf,	Switzerland).	The	pellets	produced	through	centrifugation	were	

re-suspended	 in	96%	ethanol	 to	 extract	 the	 chlorophyll;	 and	 re-centrifuged	 (14,000g,	

15	min,	4oC).	Absorbance	was	measured	at	649,	665	and	750nm;	and	used	to	calculate	

the	 concentration	 of	 chlorophyll	 a	 and	 b	 (Equation	 9	 and	 Equation	 10;	 from	

(Wintermans	and	de	Mots	1965,	Nakanishi	et	al.,	 2001)	also	using	a	Tecan	3000.	The	

chlorophyll	concentrations	were	normalised	using	the	results	from	the	Bradford	assay.	

	

Equation	9:	Calculating	chlorophyll	a	concentration.		

!ℎ!"#"$ℎ!"" ! (µ!/!")  =  13.70(!665 –  !750) –  5.76(!649− !750)	

	

Equation	10:	Calculating	chlorophyll	b	concentration.		

!ℎ!"#"$ℎ!"" ! (µ!/!")  =  25.80(!649 –  !750) –  7.60(!665− !750).	
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A	GLM	was	 performed	 in	R	 (Equation	 16).	 Following	model	 simplification,	 a	minimal	

model	was	produced	(Equation	17).	

	

Equation	11:	A	maximal	Generalised	 Linear	Mixed	Model	 for	 chlorophyll	 a	data	before	 simplification.	The	

model	contains	all	possible	interactions	for	the	explanatory	factors	“Water_MeJA”	(referring	to	treatment	with	

water	or	methyl	 Jasmonate),	 “infection”	 referring	 to	 infection	with	Blumeria	graminis	 f.sp.	 tritici,	 and	 “line”	

referring	to	which	seed	line	was	used.		

!"#(!ℎ!"#"$ℎ!""_!~!"#$%_!"#$ ∗ !"#$%&'(" ∗ !"#$)	

	

Equation	 12:	 A	 minimal	 Generalised	 Linear	 Mixed	 Model	 for	 chlorophyll	 b	 data	 after	 simplification.	 The	

model	contains	all	possible	interactions	for	the	explanatory	factors	“Water_MeJA”	(referring	to	treatment	with	

water	or	methyl	Jasmonate).		

!"#(!ℎ!"#"$ℎ!""_! ~ !"#$%_!"#$)	

3.4.5. RNA	extraction	and	analysis	

Total	RNA	was	extracted	from	primary	wheat	leaf	material.	Extractions	were	performed	

using	 the	 Qiagen	 RNeasy	 Mini	 Kit	 (QIAGEN)	 according	 to	 the	 manufacturer’s	

instructions.	Up	to	1	μg	of	extracted	RNA	was	treated	with	10	µl	of	1	M	aniline	(≥99.5%,	

Sigma)	 at	 60°C	 for	 3	min.	 Following	 this,	 2	 μl	 of	 five	molar	 ammonium	 acetate	 stop	

solution	with	100	mM	EDTA	(Life	Technologies,	2012)	was	added.	Samples	were	mixed	

with	1	ml	of	99.9%	ethanol;	frozen	at	-80oC	for	at	least	20	min;	and	precipitated	through	

centrifugation	at	4oC	for	45	min.	The	concentration	of	RNA	post-aniline	treatment	was	

determined	using	a	NanoDrop-1000	spectrophotometer	(Thermo	Scientific);	and	the	total	

RNA	 analysed	 using	 an	Agilent	 Bioanalyzer	 2100	 (Agilent	 Technologies,	 Santa	 Clara,	 CA),	

with	the	Bioanalyzer	RNA	Nano	6000	kit.	Peak	area	assignment	was	performed	manually,	as	

per	Figure	7,	using	Agilent	Technologies	2100	Expert	Software	(2100	Expert,	2009).	
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Figure	7:	Measuring	Bioanalyzer	 RNA	peaks.	Extracted	 total	RNA	was	 run	on	a	Bioanalyzer	RNA	Nano	6000	

chip,	and	analysed	using	Agilent	Bioanalyzer	2100.	Peak	areas	were	assigned	manually.	The	abbreviations	“FU”	

stands	for	fluorescence	units,	“nt”	for	nucleotides”,	“kit	marker”	for	a	25nt	marker	provided	with	the	kit.	The	

three	peaks	of	interest	are	labelled	“small”	for	the	small	diagnostic	peak,	“18S”	for	the	18S	ribosomal	subunit,	

and	“28S”	for	the	large	ribosomal	subunit.	

	

3.5. Transient	expression	of	BEC1054	in	Nicotiana	benthamiana		

Nicotiana	 expression	 assays	 were	 performed	 with	 the	 help	 of	 Hannah	 Thieron	 and	

Michal	Przydacz.	Cloning	was	done	with	the	help	of	Sian	Morgan	(Morgan	2014)	and	Joe	

Yu.	

3.5.1. Nicotiana	benthamiana	growing	conditions	

Levingtons	 F2+S	 seed	 compost	 was	 mixed	 2:1	 with	 2-5	 mm	 Vermiculite	 (Sinclair,	

Lincolnshire,	UK),	and	used	 to	grow	Nicotiana	benthamiana	in	9	cm	square	pots,	with	

one	plant	per	pot.	Plants	were	watered	once	every	four	days,	and	grown	with	16	h	light,	

8	h	darkness,	33%	humidity	at	25oC.	
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3.5.2. Nicotiana	expression	vector	construction	

Expression	 vectors	 were	 created	 using	 the	 entry	 vectors	 specified	 in	 section	 3.3.1.3	

using	 the	 Gateway®	 LR	 Clonase®	 enzyme	 mix	 (Invitrogen).	 Entry	 vectors	 were	

recombined	with	the	Agrobacterium	expression	plasmids	pK7FWG2	(which	contains	C-

terminal	 GFP),	 pK7WGF2	 (which	 contains	 N-terminal	 GFP),	 or	 pB7RWG2	 (which	

contains	N-terminal	RFP)	to	give	the	expression	vectors	listed	in	Table	8.	

	

Table	8:	Agrobacterium	 fluorescent	expression	plasmids.	The	Agrobacterium	expression	plasmids	pK7FWG2	

contains	C-terminal	GFP,	pK7WGF2	contains	N-terminal	GFP,	and	pB7RWG2	contains	N-terminal	RFP.	Vectors	

marked	“*”	were	already	available	at	the	beginning	of	this	project.	The	plasmid	pK7FWG2	strongly	expresses	

GFP.	

Gene	 Expression	vector	

Blumeria	Effector	Candidate	1054	 pB7RWG2/BEC1054	
Blumeria	Effector	Candidate	1054	 pK7FWG2/BEC1054*	
Blumeria	Effector	Candidate	1054	 pK7WGF2/BEC1054*	
Ribosomal	40S	protein	16	 pK7FWG2/40S	16	
Jasmonate	induced	protein	60	with	methionine-leucine	linker	 pK7FWG2/JIP60ml	
-	 pK7FWG2*	
	

3.5.3. Transformation	of	Agrobacterium	

Agrobacterium	 tumifecans	 strain	 GV3101	 was	 transformed	 with	 the	 constructs	 of	

interest	 (Table	 8);	 and	 colonies	were	 grown	 for	 two	 to	 four	 days	 at	 28oC	 on	 LB-agar	

media	 containing	 100µg/ml	 spectinomycin	 for	 the	 plasmids	 pB7RWG2,	 pK7FWG2,	 or	

pK7WGF2;	 or	50µg/ml	 ampicillin	 for	 the	 colocalisation	 vectors	 listed	 in	 section	3.5.3.	

Agrobacterium	was	 aspirated	 from	 the	 surface	 of	 the	 plate,	 and	 suspended	 in	 MMA	

buffer	(10	µM	MES	(2-[N-morpholino]	ethanesulfonic	acid)	and	10	µM	MgCl2,	pH	5.7).	

Bacteria	were	centrifuged	(8000g,	5	min),	and	re-suspended	in	10	mM	MMA	buffer.	The	

OD600	was	measured,	and	used	to	create	2	ml	of	bacterial	suspension,	with	a	final	OD600	

of	0.2	for	GFP	constructs,	or	0.5	for	RFP	constructs.	
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3.5.4. Agroinfiltration	

Healthy-looking,	 Nicotiana	 benthamiana	 plants,	 with	 suitable-sized	 leaves	 were	

infiltrated	 with	Agrobacterium,	 for	 transient	 gene	 expression,	 at	 around	 three	 weeks	

old.	A	1	ml	 syringe	was	used	 to	 infiltrate	 the	 suspension	 into	 the	underside	of	 leaves	

three	 and	 four;	 as	 these	 provided	 the	 best	 expression	 for	 transient	 Agrobacterium	

mediated	 gene	 expression	 (T.	 Bozkurt,	 pers.	 comm).	 Two	 to	 4	 dpi,	 leaves	 were	

harvested.	Harvested	leaves	were	maintained	for	agroinfiltration	in	clear	plastic	boxes	

on	damp	paper	towel,	with	16	h	light,	8	h	darkness,	at	18oC.	Transformed	areas	of	leaves	

were	 mounted	 in	 water,	 and	 analysed	 using	 a	 Leica	 SP5	 resonant	 inverted	 confocal	

microscope	with	63x	objective.	Excitation	and	emission	wavelengths	were	488	nm	and	

495	nm	respectively	for	GFP,	488	nm	and	680	nm	for	plastid	autofluorescence,	and	543	

nm	and	588	nm	 for	RFP.	The	GFP	and	autofluorescence	were	excited	using	a	helium-

neon	laser,	and	RFP	with	an	argon	laser.	Image	analysis	was	performed	using	Leica	LAS	

X	(Leica	Microsystems,	Milton	Keynes,	UK)	and	Fiji	(Schindelin	et	al.,	2012).	

3.5.5. BEC1054	colocalisation	assay	

Colocalisation	was	performed	 for	 the	 fluorescence	signal	 from	BEC1054-GFP	with	 the	

fluorescence	 signal	 of	 RFP	 tagged	 subcellular	markers	 for	 Golgi,	 mitochondria,	 ARA6	

and	 ARA7	 (Geldner	 et	 al.,	 2009);	 and	 the	 mitochondrial	 marker	 with	 40S	 16-GFP.	

Colocalisation	experiments	were	also	performed	for	the	RFP	mitochondrial	marker	and	

40S	16-GFP.	

3.5.6. Peronospora	tabacina	non-host	pathogenicity	assay	

The	 barley	 proteins	 JIP60	 and	 BEC1054	 were	 Agroinfiltrated	 into	 one	 half	 of	 an	 N.	

benthamiana	leaf;	and	a	GFP	only	construct	into	the	other	(Figure	8),	using	the	plasmids	

in	Table	8.	Agrobacterium	was	used	at	an	OD600	of	0.5.	The	plants	were	infected	within	2	
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h	 of	 infiltration	 using	 Peronospora	 tabacina.	 For	 the	 infection,	 an	 infected	 leaf	 was	

shaken	in	5	ml	of	H2O;	and	the	number	of	sporangia	 in	0.004	mm3	counted.	Sporangia	

were	diluted	to	25,000	in	10	μl,	and	the	sporangia	dilution	was	then	pipetted	onto	six	

spots	on	each	 leaf	 (Figure	8).	Nine	dpi,	 three	punches	were	 taken	 from	each	 leaf	 and	

shaken	 gently	 in	 1	 ml	 of	 H2O.	 Sporangia	 were	 counted	 via	 microscopy,	 with	 five	

biological	replicates	(separate	leaves	from	separate	plants)	being	used	for	each	pair	of	

infiltrations.	

	

	

Figure	 8:	 Infiltration	 of	 Nicotiana	 benthamiana	 with	 Agrobacterium	 and	 infection	 with	 Peronospora	

tabacina.	Half	of	each	N.	benthamiana	 leaf	was	infiltrated	with	Agrobacterium	transformed	with	the	protein	

of	 interest,	 i.e.	 BEC1054,	 in	 the	 plasmid	 pK7FWG2.	 The	 other	 half	 of	 the	 leaf	 was	 infiltrated	 with	

Agrobacterium	 transformed	with	 the	plasmid	pK7FWG2	containing	GFP	only.	 The	black	 central	 line	denotes	

the	divide	between	 the	 two	halves.	Within	2	h	of	 infiltration,	 leaves	would	be	 infected	with	 sporangia	of	P.	

tabacina	suspended	in	H2O.	Nine	days	post	infection,	1	cm	punches	were	taken	from	the	leaves	(black	circles),	

the	spores	suspended	in	H2O,	and	counted.	
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4. Protein	interactors	of	BEC1054	

4.1. Introduction	

Fungi	 (Panstruga	 and	 Dodds	 2009,	 Spanu	 et	 al.,	 2010),	 oomycetes	 (Ellis	 et	 al.,	 2009,	

Tyler	2009),	bacteria	(Block	et	al.,	2008)	and	other	pathogens	secrete	effector	proteins	

into	 host	 plant	 cells	 in	 order	 to	 aid	 parasitism.	 The	 vast	 majority	 of	 the	 targets	 and	

activities	of	these	effectors	are	unknown	(Alfano	2009).		

	

The	 discovery	 of	 effector	 targets,	 and	 their	 confirmation	 requires	 multiple,	

complementary	 approaches	 (Alfano	 2009).	 Protein-protein	 interaction	 assays	 are	 the	

main	 method	 used	 for	 the	 identification	 of	 the	 host	 plant	 targets	 of	 effectors;	 for	

example	 the	 Arabidopsis	 RIN4	 protein	 was	 identified	 as	 a	 target	 of	 Pseudomonas	

syringae	AvrB	 through	 a	 yeast-two-hybrid	 (Y2H)	 assay	 (Mackey	 et	 al.,	 2002).	 The	 P.	

syringae	effectors	AvrPto	and	AvrPtoB	have	been	shown	through	Y2H	to	 interact	with	

Solanum	lycopersicum	 Pto	kinase	 (Tang	et	al.,	 1996,	Kim	et	al.,	 2002);	 and	protein	 co-

immunoprecipitation	 or	 affinity	 purification	 (also	 known	 as	 pull-down)	 assays	 have	

been	 used	 to	 show	 that	 these	 effectors	 interact	 with	 pathogen-associated	 molecular	

pattern	receptors	(Zhang	et	al.,	2007).	

	

In	 vitro	 approaches,	 such	 as	 pull-down	 assays,	 can	 be	 used	 to	 screen	 for	 putative	

interactors	 of	 effectors.	 The	 bait	 protein	 is	 expressed	 with	 a	 tag,	 for	 example	 a	

polyhistidine-tags	(Hochuli	et	al.,	1987,	Hochuli	et	al.,	1988);	purified;	and	bound	with	

an	 affinity	 resin	 containing	 a	 chelator	 such	 as	 nickel	 nitrilotriacetic	 acid	 (Ni-NTA)	

(Bornhorst	 and	 Falke	 2000).	 Following	 this,	 the	 effector	 bound	 beads	 are	 incubated	

with	plant	lysate,	washed,	and	the	bound	proteins	eluted.	Protein	interactors	can	then	
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be	identified	through	liquid	chromatography	mass	spectrometry	(LCMS).	Affinity-LCMS	

techniques	 have	 a	 number	 of	 strengths:	 they	 can	 be	 used	 to	 isolate	 complexes	 of	

proteins	 from	 cell	 lysates;	 and	 they	 can	 be	 used	 to	 identify	 post-translational	

modifications	which	may	be	required	for	the	interaction	(Gingras	et	al.,	2007).	Affinity	

purification	 is,	however,	 associated	with	 false	positive	 results.	Frequent	 contaminants	

include	proteins	which	 interact	with	the	affinity	matrix;	proteins	which	bind	unfolded	

peptides;	 and	 abundant	 proteins	 (for	 example	 ribosomal	 proteins,	 tubulin	 and	 actin)	

(Plocinski	 et	 al.,	 2014).	 Ribosomal	 proteins,	 along	 with	 other	 abundant	 proteins,	 are	

common	 false	 positives	 identified	 in	 protein	 affinity-LCMS	 studies	 (Plocinski	 et	 al.,	

2014).	This	is	a	problem	when	it	is	believed	that	the	true	interactors	for	the	bait	could	

be	ribosomal	proteins.	In	this	study,	three	in	vitro	LCMS	experiments	were	performed	to	

identify	putative	protein	 interactors	of	BEC1054,	BEC1005	(a	putative	glycosidase)	or	

empty	Ni-NTA	columns,	and	the	results	compared	using	proportion	tests.		

	

The	 Y2H	 assay	 provides	 a	 useful	 method	 for	 the	 binary	 identification/validation	 of	

proteins	and	their	 interacting	partners	(Brueckner	et	al.,	2009).	 Interaction	of	the	two	

hybrid	proteins	leads	to	the	reconstitution	of	a	functional	GAL4	transcription	factor,	and	

expression	 of	 reporter	 genes	 (Figure	 9)(Fields	 and	 Song	 1989).	 The	 three	 reporter	

genes	(his3,	lacZ	and	ura3)	each	possess	an	independent	promoter	(MacDonald	2001),	

which	 helps	 to	 reduce	 false	 positives:	 only	 fairly	 strong	 transcriptional	 up-regulation	

will	 lead	 to	 the	 expression	 of	 all	 three	 genes.	 This	 can,	 however,	 lead	 to	 the	 missed	

detection	 of	 weak	 interactions.	 False	 positives	 can	 occur	 through	 the	 bait	 and	 prey	

proteins	 being	 strongly	 expressed	within	 the	 same	 yeast	 cell	 compartment;	 they	 can	

interact	 with	 the	 reporter	 proteins,	 or	 the	 DNA	 binding	 protein;	 or	 they	 can	 bind	
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proteins	in	a	non-specific	manner.	False	positives	can	occur	due	to	a	lack	of	interacting	

partners	or	post-translational	modification,	misfolding	of	the	protein	of	interest	due	to	

the	 fused	 yeast	 protein,	 the	 reaction	 involving	 a	 membrane	 protein,	 or	 due	 to	 the	

interaction	 being	 too	 weak/transient	 to	 detect	 (for	 a	 review,	 see	 (Brueckner	 et	 al.,	

2009)).		

	

	

Figure	 9:	 Basis	 of	 the	 yeast-two-hybrid	 screen.	 Yeast	 line	 MaV203	 is	 transformed	 with	 plasmids	 carrying	

Leucine	(LEU1)	and	Tryptophan	(TRP1)	selectable	markers.	The	first	plasmid	encodes	the	first	hybrid	protein,	

the	bait,	which	 is	composed	of	a	DNA-binding	domain	(DB)	 fused	to	the	protein	of	 interest	 (X)	 to	give	DB-X.	

The	second	plasmid	encodes	the	prey,	which	is	composed	of	an	activation	domain	(AD)	fused	to	the	putative	

interactor	 (Y)	 to	 give	 DB-Y.	 interaction	 of	 DB-X	 and	 AD-Y	 leads	 to	 the	 reconstitution	 of	 an	 active	 GAL4	
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transcription	 factor,	 leading	 to	 the	 transcription	 of	 reporter	 genes	 his3,	 lacz	 and	 ura3	 within	 the	 yeast	

chromosome	(Fields	and	Song	1989).	

	

Bimolecular	 fluorescence	 complementation	 (BiFC),	 also	 known	 as	 split-Yellow	

Fluorescent	 Protein	 (split	 YFP),	 is	 a	 powerful	 method	 used	 for	 the	 identification	 of	

protein-protein	 interactions	 in	 the	 host	 plant.	 The	 assay	 is	 based	 upon	 the	

reconstitution	of	a	fluorescent	protein,	for	example	YFP,	through	the	interaction	of	two	

proteins	 fused	 to	 the	 two	halves	of	 the	 fluorescent	proteins	 (Figure	10)	 (Ghosh	et	al.,	

2000).	This	method	can	be	used	to	tell	where	proteins	interact	within	the	cell	(Hu	et	al.,	

2002),	removing	the	requirement	for	exogenous	staining	.	One	of	the	main	drawbacks	of	

BiFC	is	the	tendency	for	the	two	halves	of	the	fluorescent	protein	to	reassemble	in	the	

absence	 of	 interacting	 protein	 partners.	 This	 can	 be	 overcome	 through	 the	 use	 of	

appropriate	controls	(Horstman	et	al.,	2014).		

	

Figure	10:	Basis	of	Bimolecular	Fluorescence	Complementation	(BiFC).	Two	proteins	of	interest	(i.e.	BEC1054	

and	GST)	are	expressed	fused	to	two	fragments	of	a	fluorescent	reporter	protein.	The	interaction	of	the	two	

proteins	 of	 interest	 brings	 the	 two	 fluorescent	 fragments	 together.	 This	 allows	 the	 fluorescent	 reporter	 to	

reform,	causing	it	to	emit	a	fluorescence	signal	following	excitation.	
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4.2. Aims	and	Objectives	

AIM:	To	determine	whether	a	greater	proportion	of	ribosomal	proteins	were	identified	

with	BEC1054	in	vitro	than	with	an	unrelated	BEC,	BEC1005.	

OBJECTIVE:	 To	 produce	 count	 data	 for	 the	 frequency	 of	 occurrence	 of	 ribosomal	

proteins	in	a	list	of	proteins	identified	through	LCMS,	and	to	determine	the	proportion	

of	ribosomal	proteins	in	comparison	with	the	negative	controls.	

	

AIM:	 To	 investigate	 the	 interaction	 of	 BEC1054	 with	 putative	 protein	 interactors	

through	the	use	of	a	yeast-two-hybrid	assay	(Y2H).		

OBJECTIVE:	To	utilise	a	Y2H	assay	to	validate	a	series	of	protein	interactors	previously	

identified	 in	 the	 host	 laboratory	 through	 Liquid	 Chromatography	Mass	 Spectrometry	

(LCMS).	

	

AIM:	 To	 investigate	 the	 interaction	 of	 BEC1054	 with	 protein	 putative	 interactors	 in	

barley	through	the	use	of	Bimolecular	Fluorescence	Complementation	(BiFC)	analysis.	

OBJECTIVE:	To	carry	out	experimental	work	in	the	laboratory	of	our	collaborators,	 in	

Aachen,	to	determine	whether	BEC1054	interacts	with	the	protein	interactors	in	barley.	

4.3. Individual	Contributions	

The	leaf	and	epidermal	material	for	the	pull-down	assays	were	harvested	and	processed	

by	Dana	Gheorghe.	The	LCMS,	and	analysis,	were	performed	by	Laurence	Bindschedler.	

	

I	completed	the	Y2H	work	with	the	help	of	Masters	Student	Annabelle	Damerum,	whom	

I	co-supervised.	Annabelle	cloned	the	barley	genes	eef1g	and	pr10	into	the	entry	vector	

pCR8,	and	recombined	them	into	the	expression	vectors	pDEST32	and	pDEST22.	
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4.4. Results	

4.4.1. Analysis	of	LCMS	data	

At	the	beginning	of	this	study,	pull-down	assays	and	LCMS	had	already	been	performed	

for	BEC1054,	with	an	unrelated	effector,	BEC1005	as	a	negative	control	(Bindschedler,	

pers.	comm.).	I	validated	a	number	of	these	interactors	through	Y2H	and	BiFC,	using	the	

combination	of	the	three	different	methods	to	confirm	their	interaction	with	BEC1054.	

	

A	list	of	putative	interactors	for	BEC1054	(Supplementary	Table	38)	was	generated,	via	

a	macro	 in	Excel,	 comtaining	proteins	with	at	 least	 two	 significant	peptides.	 from	 the	

LCMS	data.	Proteins	were	included	which	occurred	across	two	of	the	three	datasets	(A,	

B	or	C,	 see	Table	1	 for	definitions)	or	which	occurred	at	 least	 twice	 in	 the	 replicates.	

Proteins	 highlighted	 in	 grey	 were	 selected	 for	 further	 validation	 via	 Y2H.	 Dark	 grey	

indicates	that	the	protein	was	found	in	some	negative	controls,	because	groups	of	U36	

HarvEST	 accessions	 were	 associated	 in	 the	 BEC1054	 pull-downs	 with	 the	 same	

UniRef90	 UniProt	 accessions	 (Supplementary	 Table	 39).	 Interactors	 for	 further	

validation	 were	 initially	 selected	 from	 Supplementary	 Table	 38.	 Included	 in	 this	 list	

were	NDPK	(accession	Q9LKM0);	eEF1A	(accession	Q9LN13)	and	40S	16	(Q0IQF7).	Re-

analysis	 of	 the	 pull-down	 data,	 using	 the	 U36	 accessions	 (Supplementary	 Table	 40),	

identified	these	proteins	as	occurring	in	the	negative	controls.	Therefore	they	may	not	

represent	specific	interactors.	

	

Many	 of	 the	 putative	 interactors	 identified	 through	 the	 UniRef90	 database	

(Supplementary	Table	38)	were	also	identified	as	occurring	solely	with	BEC1054	when	
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using	 the	 U36	 accessions	 (Supplementary	 Table	 38).	 We	 further	 investigated	 the	

interaction	of	BEC1054	with	proteins	from	this	list	including	the	ribosomal	elongation	

factors	 eEF1A	 (accession	 Q9ZSW2),	 and	 eEF1G	 (accession	 Q5Z627);	 a	 thaumatin-like	

PR5	protein	(accession	O23997);	a	PR10	protein	(accession	Q84QC7)	and	a	zeta	class	

glutathione-S-transferase	 (zGST	 IN2-1,	 accession	 Q8H8U5).	 A	 malate	 dehydrogenase	

(MDH,	Q6YWL3)	was	also	included	as	a	possible	interactor,	despite	being	identified	in	a	

few	negative	controls,	as	it	occurred	in	most	BEC1054	pull-downs.	

	

Further	 re-analysis	 of	 the	 data	 was	 performed,	 by	 our	 collaborators,	 using	 the	 IBSC	

barley	 database	 (Supplementary	 Table	 40).	 This	 analysis	 was	 performed	 using	more	

stringent	criteria	than	those	used	for	the	U36	(HarvEST),	with	all	proteins	found	in	any	

negative	 control	 being	 excluded	 from	 the	 dataset.	 The	 putative	 interactors	 identified	

included	a	number	of	the	targets	under	investigation	(Supplementary	Table	38	and/or	

39),	for	example	eEF1G,	and	the	thaumatin-like	PR5.	

4.4.2. Statistical	analysis	of	U36	HarvEST	LCMS	results	

Statistical	analyses	were	performed	on	the	proportions	of	barley	proteins	identified	via	

BLAST	searching	 the	 identified	peptides	against	 the	U36	HarvEST	database.	A	 total	of	

2508	 sequences	 were	 identified	 through	 in	 vitro	 chromatography	 across	 the	 three	

experiments	(Pennington	et	al.,	2016).	Of	 these,	247	occurred	only	with	BEC1054	and	

1241	were	found	solely	with	BEC1005.		

	

A	 greater	 percentage	 of	 ribosomal	 large	 subunit	 (LSU)-related	 sequences	 were	

identified	with	BEC1054	for	non-infected	leaf	material	(Table	9);	BEC1054	with	whole	

leaf	 infected	 material;	 and	 for	 BEC1054	 as	 a	 whole.	 Similarly,	 a	 greater	 number	 of	
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ribosomal	 small	 subunit	 (SSU)-related	 sequences	 were	 identified	 with	 BEC1054	 for	

infected	epidermal	material;	non-infected	whole	 leaf	material;	and	 infected	whole	 leaf	

material.	 This	 increase	was	 highly	 significant	 (p<0.005)	 for	 the	 total	 number	 of	 SSU-

related	 sequences	 identified	with	 BEC1054	when	 the	 empty	 agarose	 bead	 sequences	

were	 excluded.	 Furthermore,	 a	 greater	 number	 of	 elongation-related	 sequences	 was	

identified	for	non-infected	whole-leaf	material;	infected	whole-leaf	material;	and	for	the	

total	number	of	sequences	identified	with	BEC1054.		

	

Greater	 numbers	 of	 RNA-related	 sequences	 were	 identified	 with	 BEC1005	 for	 the	

search-terms	 “RNA”,	 “initiation”	 and	 “ribosome”	 for	 nearly	 all	 experiments.	 The	

exceptions	are	for	search	term	“RNA”	with	seven	day	infected	leaves	with	magnetic	Ni-

NTA	agarose	beads	and	“ribosome”	 for	non-infected	 leaf	material	with	one	ml	Ni-NTA	

chromatography	columns	(no	sequences	were	 identified	 in	 this	category	 for	BEC1005	

or	BEC1054).	Interestingly,	there	was	no	difference	more	significant	than	p<0.1	for	any	

of	the	experiments	for	these	three	search	terms.		
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Table	 9:	 Barley	 RNA-related	 sequences	 identified	 with	 Blumeria	 Effector	 Candidate	 1054	 (BEC1054)	 and	

BEC1005.	The	proportions	of	Blumeria	effector	candidates	identified	with	BEC1054	and	1005	were	calculated;	

and	 used	 to	 perform	 a	 proportion	 test	 in	 Rv3.0.2.	 Three	 separate	 experiments	 were	 performed:	 “A’:	 48h	

infected	 leaf	epidermis	with	magnetic	Ni-NTA	agarose	beads;	“B’:	non-infected	 leaf	material	with	one	ml	Ni-

NTA	chromatography	columns;	and	“C’:	seven	day	 infected	 leaves	with	magnetic	Ni-NTA	agarose	beads.	The	

term	 “95%CI”	 refers	 to	 the	 95%	 confidence	 interval;	 and	 “Chi	 sq”	 to	 the	 Chi	 squared	 value.	 Significantly	

different	proportions	are	highlighted	in	blue.	Significant	difference	is	indicated	by	“.”	for	p≤0.1,	“*”	for	p≤0.05,	

“**”	for	p≤0.01	and	“***”	p≤0.005.	

Search	term	 Experiment	 BEC1054	
percentage	

BEC1005	
percentage	

Upper	
95%	CI	

Lower	
95%	CI	

Chi	sq	 Standard	
error	

p-value	 Significance	

Large	 ribosomal	
subunit	

A	 3.21	 3.41	 -0.034	 0.030	 0.00	 1.49	 1.0000	 	

	 B	 7.41	 3.77	 -0.086	 0.159	 0.15	 1.67	 0.6994	 	
	 C	 10.94	 2.94	 -0.038	 0.198	 0.98	 5.47	 0.3229	 	
	 total	 5.67	 3.46	 -0.011	 0.055	 2.15	 1.53	 0.1427	 	

Small	 ribosomal	
subunit	

A	 3.85	 3.41	 -0.032	 0.040	 0.47	 0.87	 0.4927	 	

	 B	 14.81	 4.18	 -0.051	 0.263	 3.54	 7.30	 0.0598	 .	
	 C	 21.88	 11.76	 -0.070	 0.272	 0.91	 7.94	 0.3389	 	
	 total	 10.93	 3.79	 0.018	 0.100	 14.66	 1.90	 0.0001	 ***	

elongation	 A	 0.64	 1.76	 -0.030	 0.008	 0.47	 0.87	 0.4927	 	
	 B	 11.11	 1.26	 -0.041	 0.239	 6.65	 6.51	 0.0099	 **	
	 C	 18.75	 0.00	 0.069	 0.306	 5.62	 5.49	 0.0177	 *	
	 total	 6.48	 1.61	 0.015	 0.083	 18.65	 1.58	 0.0000	 ***	

RNA	 A	 4.49	 4.75	 -0.040	 -0.001	 1.60	 0.92	 0.2054	 	
	 B	 0.00	 0.84	 -0.050	 0.016	 0.00	 1.54	 1.0000	 	
	 C	 7.81	 2.94	 -0.061	 0.158	 0.27	 5.09	 0.6067	 	
	 total	 1.64	 2.07	 -0.024	 -0.001	 3.01	 0.52	 0.0829	 .	

initiation/	 A	 0.64	 2.69	 -0.040	 0.035	 0.00	 1.76	 1.0000	 	
translation	 B	 0.00	 1.67	 -0.028	 0.012	 0.00	 0.93	 1.0000	 	
	 C	 6.25	 11.76	 -0.201	 0.091	 0.32	 6.79	 0.5744	 	
	 total	 2.43	 2.50	 -0.028	 0.033	 0.00	 1.42	 0.9883	 	

ribosome	 A	 0.00	 0.72	 -0.016	 0.002	 0.27	 0.42	 0.6051	 	
	 B	 0.00	 0.00	 0.000	 0.000	 0.00	 0.00	 NA	 	
	 C	 0.00	 2.94	 -0.109	 0.050	 0.10	 3.69	 0.7465	 	
	 total	 3.24	 0.00	 -0.013	 0.000	 0.62	 0.32	 0.4302	 	

	

4.4.3. BEC1054	affects	yeast	growth	

The	maximum	 reaction	 rate	 (Vi)	 of	many	 of	 the	 negative	 activation	 control	 lines	was	

lower	 than	 the	 Invitrogen	 negative	 interaction	 control.	 In	 addition,	 during	

transformation	 of	 the	 yeast	 lines,	 it	 was	 observed	 that	 yeast	 transformed	 with	

constructs	 containing	 BEC1054	 produced	 fewer,	 smaller	 colonies	 than	 constructs	

containing	an	unrelated	BEC,	BEC1005.		
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The	growth	of	MaV203	yeast	lines	containing	pEXP32/BEC1054	and	pEXP32/BEC1005	

were	 assayed	 in	 liquid	 culture,	 to	 find	 out	 whether	 BEC1054	 had	 an	 effect	 on	 yeast	

growth	(Figure	11).	Yeast	transformed	with	effector	BEC1054	had	a	shorter	lag	time	(λ)	

than	yeast	containing	BEC1005,	although	this	effect	was	not	significant.	The	presence	of	

BEC1054	was	found	to	significantly	decrease	the	maximum	growth	rate	(µ)	of	the	yeast;	

and	to	produce	a	significantly	lower	maximum	cell	density	(Α).		
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Figure	11:	Blumeria	Effector	Candidate	1054	(BEC1054)	affects	the	growth	of	yeast	line	MaV203.	The	fungal	

effector	BEC1054	was	expressed	in	yeast	fused	with	a	DNA-binding	domain,	on	the	plasmid	pEXP32.	The	thick	

line	denotes	 the	median	of	each	boxplot,	 the	boxes	 represent	 the	quartiles,	maximum	and	minimum	values	

are	 shown	by	 the	error	 bars,	 and	outliers	 are	 indicated	by	 circles.	Generalized	 Linear	Model	Modelling	was	

used	 to	 determine	 the	 significance,	 which	 is	 indicated	 by	 “**”	 for	 p≤0.01	 and	 “***”	 for	 p≤0.005.	 Five	

independently	transformed	colonies	were	assayed	for	pEXP32/BEC1054,	and	six	for	pEXP32/BEC1005.	
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4.4.4. Yeast-two-hybrid	

A	yeast-two-hybrid	(Y2H)	approach	was	used	to	further	validate	a	number	of	putative	

interactors	identified	through	in	vitro	chromatography.	The	proteins	investigated	were	

NDPK,	GST,	PR5,	MDH,	PR10,	eEF1A(1),	eEF1A(3)	and	40S	16.		

	

Prior	 to	 the	start	of	 this	PhD,	 the	genome	of	barley	had	been	sequenced	(Mayer	et	al.,	

2012),	 but	 the	 annotation	 and	presentation	was	not	 yet	 complete.	Gene	models	were	

not	 available	 for	 the	 genes	 of	 interest	 at	 the	 time.	 I	 therefore	 created	models	 for	 the	

putative	 interactor	 proteins	 selected	 for	 Y2H	 analysis.	 Primers	 were	 designed	 to	

amplify	 the	 genes	 (Supplementary	Table	 13),	 and	 the	 PCR	products	 inserted	 into	 the	

entry	 vector	 pCR8.	 The	 gene	 products	 were	 recombined	 into	 pEXP	 yeast	 expression	

plasmids.	Following	insertion	into	pCR8,	three	colonies	containing	the	PCR	product	for	

eEF1A	 were	 sequenced.	 These	 were	 found	 to	 represent	 three	 different	 eEF	 proteins	

(Supplementary	 Figure	 52;	 proteins	 identified	 by	 BLASTn	 and	 BLASTp),	 labeled	

eEF1A(1)	to	eEF1A(3)	in	all	subsequent	results.	One	(eEF1A(2))	was	later	found	to	be	a	

B.	graminis	eEF,	and	so	was	excluded	from	the	analysis.		

	

	

Yeast	 lines	containing	 the	plasmids	pDEST22	and	pEXP32/BEC1054	were	used	as	 the	

negative	control.	The	effector	BEC1005	was	initially	used	as	a	control,	but	I	found	that	it	

showed	β-galactosidase	activity	in	all	plasmid	combinations,	and	it	had	previously	been	

predicted	 to	 be	 a	 glycohydrolase	 (Pliego	et	al.,	 2013).	 It	was	 therefore	 excluded	 from	

further	 analysis.	 For	 each	putative	 interactor,	 an	 additional	 negative	 control	was	 also	
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used,	 consisting	 of	 yeast	 transformed	 with	 empty	 pDEST22,	 and	 the	 bait	 bound	 to	

pDEST32	(See	Table	4	for	the	combinations	of	bait	and	prey	proteins	investigated).	

4.4.5. β-galactosidase	assay	statistical	analyses	

Bartlett	 tests	were	 performed	 to	 determine	whether	 the	 variance	 of	 the	 data	 for	 the	

yeast	 lines	 was	 homogeneous	 (Crawley	 2005).	 All	 but	 three	 datasets	 showed	 non-

homogeneous	 variance	 (Supplementary	 Table	 28).	 For	 the	 sake	 of	 consistency	 all	

datasets	 were	 treated	 as	 though	 non-homogeneous.	 Generalized	 Linear	 Model	

Modelling	 (GLM)	allows	 the	 specification	of	 error	distributions,	 for	 example	 “gamma”	

distribution	 where	 the	 variance	 is	 assumed	 to	 increase	 faster	 than	 linearly	 with	 the	

mean	(Crawley	2005).	Response	variables	for	datasets	containing	negative	values	were	

transformed	 to	 remove	negative	 values	 through	 the	 addition	of	 a	 constant	 to	 all	 data	

points	 (+4	 for	 activity,	 and	 +205	 for	 gradient).	 Datasets	 for	 the	 cell	 lines	 were	 each	

analysed	 separately	 with	 the	 controls,	 i.e.	 the	 strong,	 weak,	 negative,	 BEC1054	 only,	

eEF1A(1)	 only,	 BEC1054+eEF1A(1)	 and	 eEF1A(1)+BEC1054	 lines	 were	 analysed	

together,	 and	 are	 referred	 to	 hereafter	 as	 a	 dataset.	 Once	 GLMs	 had	 been	 created	

(Equation	 7),	 and	 it	 had	 been	 determined	 that	 the	 yeast	 line	 had	 an	 effect,	 Games-

Howell	 post-hoc	 tests	 (Crawley	 2005)	 were	 performed	 to	 determine	 which	 pairs	 of	

means	were	significantly	different.	

	

Equation	13:	A	Generalized	Linear	Model	Model	used	to	determine	whether	the	response	variable	(gradient)	

changed	 with	 the	 yeast	 line	 under	 investigation.	 A	 “gamma”	 error	 family	 was	 used	 to	 account	 for	 the	

overdispersion	in	the	variance.	

!"#(!"#$%&'(~!"#$%_!"#$, !"#$%& = "!"##"")	
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The	 Vi	 for	 BEC1054-MDH,	 BEC1054-zGST	 and	 BEC1054-PR5	 was	 higher	 than	 the	

negative	 controls	 in	 both	 bait-prey	 orientations	 (Figure	 12	 and	 Supplementary	 Table	

29),	 indicating	 that	 BEC1054	 interacts	 with	 these	 proteins	 in	 yeast.	 The	 Vi	 was	 also	

significantly	elevated	in	one	bait-prey	orientation,	compared	with	the	negative	controls,	

for	BEC1054	with	eEF1A(1),	eEf1G	and	40S	16	(pEXP32/BEC1054	with	pEXP22/prey-

protein).	 The	 Vi	 was	 not	 higher	 in	 the	 other	 bait-prey	 orientation	 (Figure	 12	 and	

Supplementary	Table	29).		

	

The	 proteins	 eEF1A(3)	 and	 PR10	 did	 not	 show	 an	 increase	 in	 Vi	 in	 either	 bait-prey	

orientation	(Supplementary	Figure	51).	In	contrast,	NDPK	did	show	an	elevation	in	Vi,	

compared	 with	 the	 BEC1054	 negative	 control,	 but	 the	 NDPK	 negative	 control	

(pEXP32/NDPK	with	pDEST22)	was	also	elevated.		
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Figure	 12:	 Yeast-two-hybrid	 shows	 the	 interaction	 of	 fungal	Blumeria	 Effector	 Candidate	 1054	 (BEC1054)	
with	multiple	plant	proteins.	The	protein	interactors	abbreviations	are:	GST,	glutathione-S-transferase;	MDH,	
malate	dehydrogenase;	PR5,	pathogenesis-related	protein	5;	eEF1G,	elongation	factor	1	gamma;	and	40S	16,	
40S	ribosomal	subunit	protein	16.	Left:	 Inhibition	 in	 the	presence	of	5FOA	(5-Fluoroorotic	Acid)	 indicates	an	
interaction;	 whereas	 growth	 promotion	 in	 the	 presence	 of	 3AT	 (3-Amino-1,2,4-triazole)	 indicates	 an	
interaction.	Right:	 A	 CPRG	 galactosidase	 assay	was	 used	 to	 quantify	 the	 interaction	 between	 BEC1054	 and	
putative	 interacting	 plant	 proteins	 in	 a	 yeast-two-hybrid	 assay.	 Yeast	 lines	were	 lysed	 through	 freeze-thaw	
lysis,	and	the	lysis	supernatant	added	to	buffer	containing	chlorophenolred-ß-D-galactopyranoside	(CPRG).	The	
names	of	the	interactors	are	given	first	for	the	bait,	and	then	for	the	prey,	with	a	space	referring	to	an	empty	
plasmid,	i.e.	“BEC1054”	is	pEXP32/BEC1054	and	pDEST22;	whereas	“BEC1054+eEF1G	is	pEXP32/BEC1054	and	
pEXP22/eEF1G.	 The	 thick	 line	 denotes	 the	 median	 of	 each	 boxplot,	 the	 boxes	 represent	 the	 quartiles,	
maximum	 and	minimum	 values	 are	 shown	 by	 the	 error	 bars,	 and	 outliers	 are	 indicated	 by	 circles.	 Games-
Howell	posthoc	tests	were	used	to	determine	whether	 the	mean	Vi	(the	maximum	rate	of	conversion	of	 the	
yellow	substrate	CPRG	to	 the	 red	product	chloramphenicol	 red	 (and	D-galactose))	was	significantly	different	
for	different	 yeast	 lines	 (line	1	 and	 line	2).	 Significant	difference	 is	 indicated	by	 the	 letters	 “a”,	 “b”	 and	 “c”	
(p>0.05),	with	bars	 labelled	with	different	 letters	being	significantly	different.	Six	 independently	transformed	
colonies	were	used	for	each	yeast	line.	Only	yeast	lines	which	showed	evidence	of	an	interaction	are	displayed	
here;	the	full	set	is	presented	in	Supplementary	Figure	51.		
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Growth	 on	media	 containing	 3AT,	 or	 inhibition	 of	 growth	 on	media	 containing	 5FOA	

indicated	 the	 interaction	 between	 the	 bait	 and	 prey	 proteins.	 Yeast	 lines,	 which	 co-

expressed	 BEC1054	 with	 MDH,	 PR5	 or	 GST	 showed	 a	 decrease	 in	 growth	 on	 media	

containing	 5FOA,	 and	 grew	 on	media	 containing	 3AT	 (Table	 10).	 These	 results	 agree	

with	those	of	the	β-galactosidase	assay	(Figure	12),	confirming	that	BEC1054	interacted	

weakly	with	these	proteins	in	yeast.	Yeast	containing	BEC1054	and	40S	16	in	the	bait-

prey	orientation	pEXP32/BEC1054	pEXP22/40S	16	showed	reduced	growth	on	media	

containing	 5FOA,	 and	 grew	 on	 media	 containing	 3AT	 (Table	 10).	 In	 contrast,	 yeast	

containing	the	opposite	bait-prey	pairing	grew	well	on	media	containing	5FOA	and	did	

not	 grow	 on	 media	 containing	 3AT.	 These	 results	 corroborate	 those	 seen	 in	 the	 β-

galactosidase	assay,	demonstrating	that	BEC1054	interacts	with	40S	16	in	yeast	in	one	

bait-prey	 orientation.	 Yeast	which	 expressed	 BEC1054	 and	 eEF1G	 showed	 decreased	

growth	 on	 5FOA	 in	 both	 bait-prey	 orientations	 (Table	 10).	 Yeast	 lines	 containing	

BEC1054-eEF1G	 grew	 on	 3AT,	 but	 the	 opposite	 bait-prey	 pairing	 did	 not	 Figure	 12.	

Taken	together	with	the	β-galactosidase	assay	(Figure	12),	these	results	indicated	that	

eEF1G	 may	 interact	 weakly	 with	 BEC1054	 in	 one	 bait-prey	 orientation.	 The	 four	

remaining	 proteins:	 eEF1A(1),	 eEF1A(3),	 NDPK	 and	 PR10	 did	 not	 show	 evidence	 of	

interaction	with	BEC1054	 in	yeast,	 i.e.	 they	grew	well	on	media	 containing	5FOA	and	

did	 not	 grow	on	media	 containing	 3AT.	 Except	 for	 eEF1A(1),	 these	 results	 confirmed	

those	 seen	 in	 the	 β-galactosidase	 assay.	 None	 of	 the	 cell	 lines	 investigated	 grew	 on	

media	 lacking	 uracil,	 indicating	 only	 a	 weak	 interaction	 between	 the	 bait-prey	 pairs	

(Table	10).	
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Table	 10:	 Yeast-two-hybrid	 selective	 media	 assays	 indicate	 Blumeria	 Effector	 Candidate	 1054	 (BEC1054)	

interacts	 with	 multiple	 plant	 proteins	 in	 yeast.	 Inhibition	 in	 the	 presence	 of	 5FOA	 (5-Fluoroorotic	 Acid)	

indicates	an	interaction;	whereas	growth	promotion	with	3AT	(3-Amino-1,2,4-triazole)	indicates	an	interaction.	

Four	 independently	 transformed	 lines	were	plated	out	onto	media	at	 serial	dilutions	of	1:10,	1:100,	1:1000,	

and	 1:10000,	 and	 compared	 with	 negative	 controls	 to	 determine	 whether	 growth	 was	 affected.	 The	

abbreviation	“Y”	stands	for	“yes,	there	was	an	interaction”,	“N”	for	“no,	there	was	no	interaction”	and	“W”	for	

“there	 was	 weak	 evidence	 for	 an	 interaction”,	 and	 “P”	 for	 “partial	 evidence	 of	 interaction”.	 Assays	 were	

performed	with	 BEC1054	 as	 the	 bait,	 and	 the	 plant	 protein	 as	 the	 prey,	 and	 vice	 versa,	 which	 is	 why	 two	

results	are	shown	for	each	cell.		

Putative	BEC1054	interactor	 5FOA	 3AT	 -URA	 Summarised	Y2H	evidence	

GST	 W/Y	 Y/Y	 N/N	 Yes	(weak)	
MDH	 Y/Y	 Y/Y	 N/N	 Yes	(weak)	
PR5		 W/Y	 W/Y	 N/N	 Yes	(weak)	
eEF1G	 W/W	 Y/N	 N/N	 Yes	(weak)	
40S	16	 W/N	 Y/N	 N/N	 No	
eEF1A(1)	 N/N	 N/N	 N/N	 No	
eEF1A(3)	 N/N	 N/N	 N/N	 No	
PR10	 N/N	 N/N	 N/N	 No	
NDPK	 N/N	 N/N	 N/N	 No	

 
	

Taken	 together,	 the	 Y2H	 results	 indicate	 that	 BEC1054	 interacted	 directly	 with	 GST,	

PR5	 and	 MDH	 in	 yeast	 in	 both	 bait-prey	 orientations	 (Figure	 12	 and	 Table	 10).	

Furthermore,	BEC1054	interacted	with	40S	16	and	eEF1G	in	one	bait-prey	orientation,	

demonstrating	 that	 BEC1054	 was	 able	 to	 interact	 directly	 with	 a	 number	 of	 barley	

proteins.	 These	 results	 largely	 agreed	 with	 those	 seen	 in	 the	 LCMS	 pull-downs	

(Supplementary	 Table	 25,	 Supplementary	 Table	 26,	 Supplementary	 Table	 27),	where	

eEF1G,	 GST	 and	 PR5	 were	 identified	 solely	 with	 BEC1054	 (and	 not	 in	 the	 negative	

controls);	MDH	was	found	repeatedly	in	the	pull-downs	with	BEC1054,	and	only	rarely	

with	 the	 negative	 controls	 (Supplementary	 Table	 25,	 Supplementary	 Table	 26,	
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Supplementary	Table	27).	The	greatest	discrepancy	was	 that	40S	16	was	 identified	 in	

numerous	negative	controls	from	the	in	vitro	pull-downs,	but	showed	a	consistent	weak	

interaction	 with	 BEC1054.	 Direct	 interactions	 were	 not	 confirmed	 for	 PR10,	 NDPK,	

eEF1A(1)	or	eEF1A(3),	all	of	which	were	observed	 in	some	of	 the	pull-down	negative	

controls	in	the	U36	HarvEST	database	(Supplementary	Table	26).		

	

An	 association	 was	 found	 in	 the	 literature	 between	 GST	 and	 PR10:	 PR10	 undergoes	

post-translational	S-glutathiolation	in	birch	(Koistinen	et	al.,	2002).	I	therefore	decided	

to	investigate	the	interaction	of	GST	with	PR10	(Table	25	and	Figure	12).	A	CPRG	assay	

was	performed,	 as	described	above,	 to	determine	whether	 the	 interaction	of	GST	and	

PR10	 led	 to	 an	 increase	 in	β-galactosidase	 activity.	 I	 performed	a	Bartlett	 test	 on	 the	

data,	 to	 determine	whether	 the	 variance	 of	 the	 yeast	 Vi	 was	 homogeneous	 (Crawley	

2005).	It	was	not	(Bartlett's	K-squared=28.62,	p-value<0.0001).	

	

I	found	that	the	interaction	of	GST	and	PR10	elevated	the	Vi	above	that	of	the	negative	

interaction	 controls	 (Figure	 25).	 This	 elevation	 was	 significant	 in	 both	 bait-prey	

orientations.	This	increase	in	Vi	was	significant	(Table	25).		

	

Yeast	 lines,	which	 co-expressed	GST	 and	PR10,	 showed	no	 growth	 in	 the	presence	of	

5FOA,	but	they	did	not	grow	on	3AT.	The	5FOA	results	agree	with	the	β-galactosidase	

assay,	indicating	that	the	two	proteins	interacted	in	yeast,	whereas	the	3AT	results	did	

not.	The	Y2H	results	 for	the	 interaction	of	GST	and	PR10	were	therefore	 inconclusive.
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Figure	 13:	 Yeast-two-hybrid	 shows	 the	 interaction	 of	 barley	 Glutathione-S-Transferase	 (GST)	 and	

Pathogenesis	 Related	 protein	 10	 (PR10).	 Left:	 Inhibition	 in	 the	 presence	 of	 5FOA	 (5-Fluoroorotic	 Acid)	

indicates	an	interaction;	whereas	growth	promotion	in	the	presence	of	3AT	(3-Amino-1,2,4-triazole)	indicates	

an	interaction.	Right:	A	CPRG	galactosidase	assay	was	used	to	quantify	the	interaction	between	BEC1054	and	

putative	 interacting	 plant	 proteins	 in	 a	 yeast-two-hybrid	 assay.	 Yeast	 lines	were	 lysed	 through	 freeze-thaw	

lysis,	and	the	lysis	supernatant	added	to	buffer	containing	chlorophenolred-ß-D-galactopyranoside	(CPRG).	The	

names	of	the	interactors	are	given	first	for	the	bait,	and	then	for	the	prey,	with	a	space	referring	to	an	empty	

plasmid,	 i.e.	 “GST”	 is	 pEXP32/GST	 and	pDEST22;	whereas	 “GST+PR10	 is	 pEXP32/GST	 and	pEXP22/PR10.	 The	

thick	 line	 denotes	 the	median	 of	 each	 boxplot,	 the	 boxes	 represent	 the	 quartiles,	maximum	 and	minimum	

values	are	 shown	by	 the	error	bars,	 and	outliers	 are	 indicated	by	 circles.	Games-Howell	 posthoc	 tests	were	

used	to	determine	whether	the	mean	Vi	(the	maximum	rate	of	conversion	of	the	yellow	substrate	CPRG	to	the	

red	product	chloramphenicol	red	(and	D-galactose))	was	significantly	different	for	different	yeast	lines	(line	1	

and	line	2).	Significant	difference	is	indicated	by	the	letters	“a”,	“b”	and	“c”	(p<0.05),	with	bars	labelled	with	

different	letters	being	significantly	different.	Six	independently	transformed	colonies	were	used	for	each	yeast	

line.	Only	yeast	lines	which	showed	evidence	of	an	interaction	are	displayed	here;	the	full	set	is	presented	in	

Supplementary	Figure	51.		
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4.4.6. Bimolecular	fluorescence	complementation	(BiFC)	

I	cloned	the	bait	proteins,	BEC1054	and	JIP60ml	(see	footnote	[1])	 ,	 into	the	pESPYCE	

plasmid,	which	encoded	a	C-terminal	fusion	of	the	C-terminal	domain	of	the	YFP	protein	

(Table	 5).	 I	 also	 cloned	 the	 plant	 prey	 proteins	 into	 pUCSPYNE	which	 encoded	 an	 C-

terminal	fusion	of	the	YFP	N-terminus;	and	PR5	into	pESPYNE,	which	has	an	N-terminal	

fusion	of	the	YFP	N-terminus.	An	interaction	of	the	bait	and	prey	proteins	leads	to	the	

formation	 of	 a	 competent	 YFP	 protein	 (Ghosh	 et	 al.,	 2000).	 In	 addition,	 BEC1054,	

JIP60ml	and	the	putative	plant	interactors	were	cloned	into	a	plasmid	with	either	an	N,	

or	a	C	terminal	fusion	of	a	complete	YFP	protein,	to	determine	their	expression	patterns	

in	planta.	

	

The	fluorescent	tags	of	the	bait	proteins,	BEC1054	and	JIP60ml,	could	be	weakly	seen	in	

the	 nucleus	 and	 the	 cytoplasm	 (Figure	 14).	 A	 Z-stack	 maximum	 projection	 view,	

demonstrated	 the	 presence	 of	 puncta	 (seen	 as	 faint	 yellow	 dots	 superimposing	 the	

yellow	 colour	 seen	 throughout	 the	 cytoplasm	 and	 nucleus).	 Only	 two	 epidermal	 cells	

were	seen	expressing	JIP60ml,	one	of	which	is	shown	in	Figure	14.	The	vast	majority	of	

cells	in	which	the	signal	for	JIP60’s	fluorescent	tag	was	observed	were	guard	cells.	

	

	

The	chloroplasts	present	 in	the	mesophyll	cells	autofluoresce	at	the	wavelengths	used	

to	 detect	 YFP	 fluorescence	 (see	 Figure	 14,	 Figure	 16	 and	 Figure	 18	 for	 examples).	 I	

performed	a	spectral	scan	to	demonstrate	that	this	signal	was	distinct	from	that	of	the	

YFP	(Figure	15).	Fluorescence	of	YFP	can	be	seen	represented	in	green,	and	chlorophyll	

autofluorescence	 in	 red.	 The	 round	 shape	 of	 the	 mesophyll	 cells	 can	 be	 observed	

[1]	Jasmonate	Induced	Protein	60	(JIP60)	had	an	internal	peptide	removed,	the	removal	of	which	is	required	for	RIP	activity,	

and	replaced	with	a	methionine-leucine	(ml)	linker	(Chaudhry	et	al.,	1994).	This	protein	was	used	as	a	negative	control	in	the	

split-YFP	experiments.	
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through	the	location	of	the	chloroplasts,	as	they	are	effectively	outlining	the	cells	Figure	

15.	 The	 maximum	 intensity	 wavelength	 shown	 in	 Figure	 15	 corresponds	 to	 the	 cell	

image	in	Figure	15,	taken	from	within	the	Z-stack.	The	maxima	for	YFP	and	chloroplasts	

can	be	seen	as	the	first	and	second	peaks	respectively.	We	measured	YFP	between	520	

and	560	nm,	and	the	maximum	fluorescence	falls	within	this	range.		
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Figure	14:	Blumeria	Effector	 Candidate	 BEC1054	 (BEC1054)	 and	 Jasmonate	 Induced	 Protein	 60	 (JIP60)	 are	

expressed	in	the	cytoplasm	and	the	nucleus	of	the	host	plant,	barley.	The	2D	image	is	a	single	confocal	image	

of	the	cell,	whereas	the	“Max	scan”	shows	the	Z-stack	maximum	projection	view.	Scale	bars	are	20	µm.	Both	

BEC1054	and	JIP60	were	cloned	into	the	vector	35S-GWY-mYFP,	and	tagged	at	the	C-terminus	with	monomeric	

yellow	fluorescent	protein.		
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Figure	15:	 The	 fluorescence	of	Yellow	Fluorescent	Protein	 (YFP)	 fused	 to	eukaryotic	elongation	 factor	one	

alpha,	and	chloroplasts	autofluorescence	occur	at	differing	wavelengths.	The	plant	protein	eEF1A	was	cloned	

into	pUCSPYNE	which	encoded	an	C-terminal	 fusion	of	 the	YFP	N-terminus.	A)	YFP	 fluorescence	 is	 shown	 in	

green,	and	chloroplast	autofluorescence	in	red.	Two	regions	of	interest,	one	across	the	transformed	cell,	and	

one	across	a	chloroplast	are	marked	by	white	lines.	A	20	μm	scale	bar	is	also	shown	in	white.	B)	Mean	intensity	

at	differing	wavelengths.	C)	YFP	relaive	signal	intensity	across	the	cell	wall	and	nucleus	of	the	transformed	cell.	

D)	Chloroplast	autofluorescence	signal	intensity	actoss	the	marked	chloroplast.	
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Figure	 16:	 Blumeria	 Effector	 Candidate	 1054	 (BEC1054)	 interacts	 with	 multiple	 proteins	 in	 planta.	 A	

bimolecular	 fluorescence	 complementation	 assay	 was	 performed	 in	 the	 host-plant,	 barley.	 The	 left-hand	

column	 “Expression	 control”	 demonstrates	 the	 expression	 patterns	 of	 the	 five	 proteins	 of	 interest.	 The	

proteins	 listed	down	 the	 left	 hand	 side	were	 cloned	with	 an	N-terminal	 fusion	of	 the	 complete	monomeric	

yellow	fluorescent	protein	(YFP).	For	the	central	column	“BEC1054”	indicates	the	interaction	of	proteins	with	

BEC1054.	 For	 the	 right	hand	 column,	 “JIP60”	 indicates	 the	 interaction	with	 the	negative	 control,	 Jasmonate	

Induced	Protein	60.	BEC1054	and	JIP60ml	were	cloned	into	the	pESPYCE	plasmid,	which	encoded	a	C-terminal	

fusion	of	the	C-terminal	domain	of	the	YFP	protein.	The	plant	prey	proteins	were	cloned	into	pUCSPYNE	which	

eEF1A(1)	

PR5	

GST	

eEF1G	

PR10	

Expression		
control	 BEC1054	 JIP60	

eEF1A(3)	
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encoded	an	C-terminal	fusion	of	the	YFP	N-terminus;	and	PR5	into	pESPYNE,	which	has	an	N-terminal	fusion	of	

the	YFP	N-terminus.	The	barley	proteins	were:	eukaryotic	Elongation	Factor	One	Alpha	(eEF1A)	homologs	one	

and	three,	eukaryotic	Elongation	Factor	One	Gamma	(eEF1G)	Pathogenesis	Related	protein	5	(PR5),	PR10	and	

Glutathione-S-Transferase	(GST).	Scale	bars	are	20	µM.		

	

Five	of	 the	prey	proteins:	 eEF1A(1),	 eEF1A(3),	PR5,	PR10	and	NDPK	were	expressed,	

and	their	fluorescent	tag	was	visible	in	a	pattern	of	cytoplasmic	and	nuclear	expression	

(Figure	 16	 and	 Figure	 17).	 One	 protein,	 eEF1G,	 showed	 strong	 expression	 in	 the	

cytoplasm,	and	weak	expression	 in	 the	nucleus.	The	expression	of	MDH	was	strong	 in	

the	cytoplasm,	weak	 in	 the	nucleus	and	 in	 filaments	across	 the	cell.	The	 two	proteins,	

GST	and	40S	16,	were	expressed	in	a	very	weak	and	diffuse	manner	in	the	nucleus	and	

cytoplasm,	 with	 the	 majority	 of	 the	 fluorescence	 occurring	 in	 the	 nucleolus,	 and	 in	

puncta	throughout	the	cytoplasm.	

	

There	was	evidence	of	 interaction	between	BEC1054	and	the	prey	proteins	eEF1A(1),	

eEF1G,	 PR5,	 PR10	 and	 GST	 (Figure	 16).	 These	 proteins	 did	 not	 interact	 with	 the	

negative	 control	 protein,	 JIP60ml.	 In	 all	 cases,	 the	 interaction	 occurred	mainly	 in	 the	

nucleus,	 and	 weakly	 in	 the	 cytoplasm,	 matching	 the	 expression	 patterns	 for	 the	 bait	

proteins.	 I	 found	 that	 the	 negative	 control	 protein,	 JIP60ml,	 interacted	 weakly	 with	

eEF1A(3)	 in	 the	 cytoplasm	 and	 the	 nucleus.	 The	 interactions	 observed	 in	 barley	

supported	 those	 seen	 during	 the	 Y2H	 assay.	 All	 five	 interactions	 confirmed	 through	

BiFC	showed	at	least	partial	evidence	for	an	interaction	in	yeast.		

	

I	investigated	the	interaction	of	GST	and	PR10,	with	PR10	expressed	with	a	C-terminal	

fusion	of	 the	C-terminus	of	YFP,	and	GST	with	an	N-terminal	 fusion	of	 the	N-terminus	
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(Figure	18).	I	found	that	the	two	proteins	interacted	in	the	host	plant,	barley.	This	result	

further	supported	that	seen	in	the	Y2H	assay	(Table	11).	

	

Figure	 17:	 Three	 plant	 proteins	 show	 diverse	 expression	 patterns.	 The	 proteins	 Nucleoside	 Diphosphate	

Kinase	(NDPK),	Malate	Dehydrogenase	(MDH),	and	ribosomal	Subunit	40S	protein	16	(40S	16)	were	expressed	

with	an	N-terminal	whole,	monomeric	YFP	tag	in	the	host	plant,	barley.	Scale	bars	are	20	µm.	
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Figure	18:	The	barley	proteins	Glutathione-S-Transferase	(GST)	and	Pathogenesis	Related	protein	10	(PR10)	

interact	weakly	 in	the	nucleus	and	cytoplasm.	Jasmonate	Induced	Protein	60	(JIP60)	was	used	as	a	negative	

interaction	control	with	both	PR10	and	GST.	The	white	dashed	lines	indicate	the	nucleus	and	cytoplasm.	The	

first	protein	stated	 in	each	pair	was	cloned	 into	the	pESPYCE	plasmid,	which	encoded	a	C-terminal	 fusion	of	

the	C-terminal	domain	of	the	YFP	protein.	The	second	protein	was	cloned	into	pUCSPYNE,	which	encoded	an	

C-terminal	fusion	of	the	YFP	N-terminus.	Scale	bars	are	20	µm.	
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4.4.7. Summary	table	for	both	BiFC	and	Y2H	results	

Table	 11:	 Blumeria	 Effector	 Candidate	 interacts	 with	 multiple	 plant	 proteins	 in	 yeast	 and	 in	 planta.	 The	

abbreviation	“Y”	stands	for	“yes,	an	interaction	was	seen”,	and	“P”	for	a	“partial	interaction	was	seen”,	and	“I”	

for	“Inconclusive”.		

Bait	protein	 Prey	protein	 	 Y2H	 Split	YFP	

BEC1054	 PR5	 Y	 Y	

BEC1054	 GST	 Y	 Y	

BEC1054	 eEF1G	 Y	 Y	

BEC1054	 PR10	 I	 Y	

BEC1054	 MDH	 Y	 -	

BEC1054	 40S	16	 P	 -	

BEC1054	 eEF1A(1)	 P	 Y	

BEC1054	 NDPK	 -	 -	

PR10	 GST	 I	 Y	

	

The	Y2H	and	BiFC	assays	are	summarised	in	Table	11.	For	the	Y2H	assay,	I	found	that	

five	 proteins	 interacted	 with	 BEC1054	 in	 yeast,	 and	 four	 further	 proteins	 showed	

possible	evidence	for	interaction.	For	the	BiFC	assay,	five	proteins	showed	evidence	of	

interaction	in	the	host	plant,	barley.	All	of	interactions	detected	through	BiFC	were	with	

proteins	 also	 detected	 through	 Y2H.	 In	 addition,	 PR10	 and	 GST	 interacted	weakly	 in	

both	Y2H	and	BiFC.	
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4.5. Discussion	

4.1.5.1. The	 ribosome	binding	hypothesis	and	 ribosomal	proteins	 identified	

through	LCMS	

A	significantly	greater	total	number	of	ribosomal	small-subunit	proteins	were	identified	

with	BEC1054	(Table	9).	Furthermore,	a	significantly	greater	proportion	of	elongation	

factor-related	 sequences	 were	 identified	 with	 BEC1054	 for	 two	 of	 the	 three	

experiments	 (non-infected	 whole-leaf	 material	 “B”	 and	 infected	 whole-leaf	 material	

“C”);	 and	 a	 significantly	 greater	 number	 of	 elongation-related	 sequences	 identified	

overall.	These	results	indicated	that	BEC1054	may	indeed	be	binding	to	the	ribosomal	

proteins.	

	

A	 literature	 search	 was	 used	 to	 identify	 the	 roles	 of	 the	 different	 RNA-associated	

protein	interactors.	A	number	of	them	(for	example	S31)	extend	into	the	A-site;	others	

(for	example	S6,	S14	and	 the	elongation	 factors)	are	 located	close	 to	 the	SRL,	or	bind	

close	 to	 it	 (Klinge	et	al.,	2011,	Rabl	et	al.,	2011).	 It	may	therefore	be	that	 the	40S,	60S	

and	eEF	proteins	identified	do	indeed	interact	with	BEC1054.	Alternatively,	if	BEC1054	

bound	 to	 the	 rRNA	 or	 other	 ribosomal	 proteins,	 the	 40S	 and	 60S	 proteins	 could	 be	

identified	as	interactors	by	also	being	bound	to	the	ribosome.		

4.2.5.1. Validation	of	interactors	through	Y2H	

I	 used	 a	 targeted	 Y2H	 approach	 to	 further	 investigate	 the	 putative	 barley	 interactors	

identified,	by	our	collaborators,	through	LCMS.	The	interactors	investigated	were	PR5,	

PR10,	 MDH,	 GST,	 eEF1A(1),	 eEF1A(3),	 eEF1G,	 40S	 16	 and	 NDPK.	 The	 ribosome	

associated	proteins	eEF1A	and	eEF1G	were	selected	because	they	are	involved	in	with	
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the	 translation	 of	 mRNA	 (a	 process	 which	 we	 believe	 the	 RNase	 Like	 Proteins	

associated	 with	 Haustoria	 (RALPH)	 effectors	 may	 target);	 and	 40S	 16	 was	 selected	

because	 it	 is	an	 intrinsic	 ribosomal	protein.	Although	chromatography	had	given	only	

marginal	 evidence	 for	 BEC1054	 interacting	 with	 PR10	 in	 vitro,	 PR10	 was	 selected	

because	it	is	an	RNase	(where	BEC1054	is	an	RNase	like	protein).	The	protein	MDH	was	

selected	 as	 it	 occurred	 in	most	 pull-downs,	 despite	 being	 identified	 in	 a	 few	negative	

controls.	The	proteins	PR5,	GST	and	eEF1G	were	identified	only	with	BEC1054,	not	with	

any	of	the	negative	controls.	

	

	

Expression	 of	 the	 lacZ	 reporter	 gene	 can	 be	 quantified	 through	 its	 β-galactosidase	

activity.	The	maximum	conversion	rate,	Vi	(Figure	5),	at	the	start	of	the	hydrolysis	of	the	

yellow	substrate	CPRG,	was	used	as	a	quantitative	indicator	of	the	interaction	between	

bait	 and	 prey	 (Figure	 12).	 Yeast	 containing	 the	 plasmids	 pEXP32/BEC1054	 and	

pDEST22	were	used	as	a	negative	control;	as	was	the	barley	putative	interaction	protein	

bound	 to	 the	 bait	 protein	 (pEXP32/barley	 protein).	 In	 addition,	 lines	 expressing	

BEC1054	 showed	 decreased	 growth	 when	 compared	 with	 the	 controls	 provided	 by	

Introgen.	 The	 decrease	 in	 growth	 may	 be	 due	 to	 BEC1054	 binding	 ribosomes	 and	

altering	 their	 activity.	 Comparison	 with	 lines	 containing	 BEC1054	 may	 therefore	 be	

more	 biologically	meaningful	 than	 comparison	with	 the	 negative	 control	 provided	 by	

Invitrogen.		
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It	 was	 not	 possible	 to	 use	 BEC1005	 as	 a	 negative	 control	 for	 the	 CPRG	 assay,	 as	 it	

showed	evidence	of	endogenous	β-galactosidase	activity.	The	negative	control	protein,	

BEC1005,	is	a	putative	glycosidase	(Pliego	et	al	2013)	and	may	therefore	hydrolyze	the	

CPRG	 substrate.	No	previous	β-galactosidase	 activity	had	been	detected	 for	BEC1005,	

although	 this	 had	 been	 tested	 extensively	 within	 the	 host	 laboratory	 (Spanu,	 pers.	

comm.),	which	 is	why	 it	was	 initially	 included.	The	CPRG	assay	 is	more	sensitive	 than	

the	traditionally	used	ONPG	assay	(Eustice	et	al.,	1991)	which	had	previously	been	used.	

Moreover,	 for	 the	 ONPG	 assay	 previously	 conducted	 in	 the	 laboratory	 (Spanu,	 pers.	

comm),	BEC1005	was	 expressed	 in	 E.	 coli.	 Its	 expression	 in	 a	 eukaryote	 (yeast)	may	

have	 provided	 a	more	 conducive	 environment	 for	 its	 enzyme	 activity.	 It	may	 be	 that	

BEC1005	 is	 post-translationally	modified	 in	 eukaryotes,	 or	 other	 proteins	 present	 in	

yeast/plant	cells	but	not	in	prokaryotes	may	be	required	for	the	interaction.		

	

Yeast	 transformation	with	pEXP32/BEC1054	had	a	 low	success	rate,	and	grew	poorly	

(Figure	 11).	 A	 low	 transformation	 rate	 for	 yeast	 containing	 a	 particular	 bait	 plasmid,	

and	 noticeable	 poor	 growth,	 are	 both	 phenotypic	 effects	 associated	 with	 toxic	 bait	

proteins	 (Serebriiskii	2010).	The	decrease	 in	growth	may	be	due	 to	BEC1054	binding	

ribosomes	 and	 altering	 their	 activity.	 It	 is	 possible	 that	 in	 the	 host	 cell	 BEC1054	

decreases	 ribosomal	 activity,	 but	 prevents	 it	 from	 being	 completely	 lost.	 This	 may	

explain	why	the	Vi	of	many	of	the	negative	activation	control	lines	was	lower	than	the	

Invitrogen	 negative	 interaction	 control.	 The	 increase	 in	 Vi	 for	 lines	 containing	 the	

putative	interactors	and	BEC1054	may	therefore	be	more	biologically	meaningful	than	

comparison	with	the	negative	control	provided	by	Invitrogen.		
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The	Vi	for	BEC1054-GST,	BEC1054-MDH,	and	BEC1054-PR5	were	elevated	in	both	bait-

prey	 orientations,	 when	 compared	 with	 the	 negative	 controls	 (Figure	 12	 and	

Supplementary	 Table	 29).	 In	 addition,	 the	 Vi	was	 higher	 in	 one	 bait-prey	 orientation	

(pEXP32/BEC1054	 pEXP22/barley	 protein)	 for	 40S	 16,	 eEF1G	 and	 eEF1A(1)	 with	

BEC1054,	when	compared	with	the	negative	controls	(Figure	12,	Supplementary	Table	

29	and	Figure	13).	No	significant	increase	in	Vi	was	seen	for	BEC1054	with	PR10,	NDPK	

or	 eEF1A(3)	 (Figure	 13	 and	 Supplementary	 Table	 29).	 Both	 PR10	 and	 NDPK	

demonstrated	 an	 increased	 Vi,	 when	 expressed	 with	 the	 DNA	 binding	 domain	

(pEXP32/PR10	or	pEXP32/NDPK),	indicating	that	they	may	affect	transcription.	

	

The	 auxiliary	 domains	 of	 many	 RNA	 binding	 proteins	 undergo	 post-translational	

modification	(see	Glisovic	et	al	1996,	for	a	review).	The	protein	PR10	undergoes	post-

translational	 S-glutathiolation,	 catalyzed	by	GST	 in	 birch;	 but	 the	 glutathiolation	does	

not	 affect	 its	 RNase	 activity	 (Koistinen	 et	 al.,	 2002).	 Both	 PR10	 and	 a	 GST	 were	

identified	in	the	LCMS	assay,	and	I	investigated	whether	the	two	proteins	interacted	in	

yeast.	 The	 Vi	 for	 PR10	 and	 GST	 in	 both	 bait-prey	 pairings	 was	 significantly	 elevated	

above	that	of	the	controls	(Figure	13),	indicating	an	interaction.		

	

Transformed	 yeast	 lines	 were	 further	 investigated,	 through	 plating	 onto	 media	

containing	3AT	or	5FOA.	Growth	on	3AT,	or	 inhibition	on	5FOA,	when	compared	with	

the	 control	 lines,	 indicates	 an	 interaction	 between	 the	 bait	 and	 prey	 proteins	

(MacDonald	 2001).	 Yeast	 expressing	 both	 PR10	 and	 GST	 did	 not	 grow	 on	 media	

containing	 5FOA,	 or	 on	media	 containing	 3AT.	 The	 lack	 of	 growth	 on	 5FOA	 indicates	

that	 an	 interaction	 between	 the	 proteins	 may	 have	 occurred;	 whereas	 the	 lack	 of	
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growth	on	3AT	does	not	support	this	conclusion.	As	a	result	PR10	and	GST	could	not	be	

confirmed	to	interact	through	Y2H.	

	

Yeast	 lines	 which	 co-expressed	 BEC1054	 with	 MDH,	 PR5	 or	 GST	 demonstrated	

decreased	growth	on	media	containing	5FOA,	and	showed	increased	growth	on	media	

containing	3AT	(Table	10	and	Figure	12).	These	results	agree	with	the	β-galactosidase	

assay,	further	demonstrating	that	these	proteins	interact	with	BEC1054	in	yeast.	Yeast	

expressing	 BEC1054	 as	 the	 bait,	 and	 40S	 16	 as	 the	 prey	 (pEXP32/BEC1054	 and	

pEXP22/40S	 16)	 showed	 reduced	 growth	 on	 media	 containing	 5FOA,	 and	 grew	 on	

media	 containing	 3AT	 (Table	 10).	 The	 opposite	 bait-prey	 pair	 did	 not	 show	 altered	

growth.	These	results	support	those	seen	in	the	β-galactosidase	assay,	confirming	that	

in	yeast	BEC1054	interacted	with	40S	16	solely	in	one	bait-prey	orientation.	Yeast	co-

expressing	 BEC1054	 and	 eEF1G	 in	 either	 bait-prey	 orientation,	 did	 not	 grow	

reproducibly	 on	 3AT	 media.	 The	 lines	 co-transformed	 with	 the	 plasmids	

pEXP32/BEC1054	 and	 pEXP32/eEF1G	 demonstrated	 decreased	 growth	 on	 5FOA	

media;	but	this	was	not	observed	for	the	opposite	bait-prey	pair	(Table	10	and	Figure	

12).	 This	 result	 confirms	 the	 weak	 interaction	 seen	 in	 one	 orientation	 for	 the	 β-

galactosidase	assay.		

	

The	 proteins	 PR10,	 NDPK,	 and	 both	 eEF1A	 homologues,	 did	 not	 show	 evidence	 of	

interaction	within	yeast	 in	 the	selective	media	assays,	 i.e.	 they	did	not	grow	on	media	

containing	3AT,	and	they	grew	well	on	media	containing	5FOA	(Table	10).	The	proteins	

eEF1A(1)	and	NDPK	showed	evidence	of	a	weak	interaction	in	the	β-galactosidase	assay	

in	 one	 bait-prey	 orientation	 (Supplementary	 Figure	 51),	 but	 for	 NDPK,	 this	 result	
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cannot	 be	 relied	 upon	without	 further	 evidence,	 due	 to	 its	 increased	 β-galactosidase	

activity;	and	for	eEF1A(1),	it	could	not	be	validated	in	yeast	by	any	other	means	utilised.	

If	BEC1054	interacts	with	ribosomes,	it	may	be	that	ribosomal	proteins	(including	eEFs,	

40S	 and	 60S	 proteins)	 do	 not	 interact	 directly	 with	 BEC1054,	 but	 instead	 were	

identified	 as	 components	 of	 an	 interaction	 complex	 in	 the	 in	 vitro	 chromatography	

through	being	bound	to	the	ribosome.	

	

Yeast	 lines	were	also	plated	onto	 selective	media	 lacking	uracil,	 but	none	of	 the	 lines	

tested	 grew	 (except	 for	 the	 strong	 and	 weak	 controls	 supplied	 by	 commercial	 kit	

(Invitrogen)),	indicating	that	the	interactions	between	BEC1054	and	the	plant	proteins	

are	weak,	 at	 best	 (Table	 10).	Whilst	 the	 use	 of	 a	 sensitive	 β-galactosidase	 assay	may	

make	 it	 possible	 to	 detect	 weak	 interactions,	 it	 may	 also	 increase	 the	 rate	 of	 false-

positive	 interactions	 identified.	 The	 use	 of	 other,	 complementary,	 assays	 such	 as	 the	

selective	 media	 growth	 assays	 is	 therefore	 essential	 to	 help	 determine	 whether	 an	

interaction	has	taken	place.	

	

The	his3	marker	is	reported	to	be	more	sensitive	than	the	ura3	marker.	The	promoter	

for	ura3	strongly	represses	transcription,	as	it	contains	the	URS1	sequence	(Gietz	et	al.,	

1997,	Vidal	1997,	Pierce	et	al.,	1998).	This	helps	to	explain	the	lack	of	growth	on	media	

lacking	uracil,	seen	for	the	weak	positive	control,	and	for	any	of	our	interactions	(data	

not	 shown).	 These	 results	 demonstrate	 the	 importance	 of	 considering	 not	 only	 the	

quantitative	CPRG	data,	but	also	 the	qualitative	selective	plate	assay	data	(MacDonald	

2001).	
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4.3.5.1. Validation	of	interactions	in	planta	

One	of	the	main	limitations	of	BiFC	is	that	the	two	halves	of	the	fluorescent	protein	can	

reassemble	in	the	absence	of	a	true	protein-protein	interaction.	The	use	of	appropriate	

controls	can	help	to	overcome	this	problem.	Ideally,	the	interacting	proteins	should	be	

expressed	with	 a	mutated	 or	 truncated	 binding	 partner	 (Horstman	 et	al.,	 2014).	 This	

approach	requires	 that	 the	 interacting	amino	acids/domains	had	been	 identified.	This	

has	not	 yet	been	achieved	 for	BEC1054.	Alternatively,	 a	protein	 could	be	used	 that	 is	

related	 to	 the	protein	of	 interest,	 but	which	does	not	 interact	with	 the	prey	proteins.	

The	 protein	 JIP60ml	 was	 used	 as	 a	 control	 for	 the	 split	 YFP	 assay,	 as	 it	 is	 a	 RIP	

expressed	in	barley,	whose	function	as	a	RIP	has	been	validated	(Chaudhry	et	al.,	1994,	

Reinbothe	et	al.,	1994).	I	used	it	as	a	control,	as	it	belongs	to	the	class	of	proteins	that	

we	predict	BEC1054	may	be	outcompeting.		

	

The	protein	JIP60	has	previously	been	reported	to	be	cytosolic	(Hause	et	al.,	1994),	and	

its	N-terminal	region	shares	sequence	homology	with	type	I	and	type	II	RIPs	(Chaudhry	

et	al.,	1994,	Reinbothe	et	al.,	1994).	The	N-terminal	region	has	been	shown	to	act	as	a	

RIP,	with	the	ability	to	cleave	RNA	in	both	animal	and	plant	polysomes	(Reinbothe	et	al.,	

1994).	 It	 is	 believed	 to	 be	 synthesised	 as	 an	 inactive	 precursor,	 which	 requires	 the	

removal	of	a	peptide	 from	the	N-terminus	before	activation	(Chaudhry	et	al.,	1994).	 It	

also	 possesses	 a	 C-terminal	 domain	 similar	 to	 eukaryotic	 initiation	 factors	 of	 type	

4E(Chaudhry	et	al.,	1994,	Reinbothe	et	al.,	1994)	and	an	S19	protein	and	GTP-binding	

elongation	 factors	 (Chaudhry	 et	 al.,	 1994),	 indicating	 that	 the	 C-terminal	 region	may	

associate	with	ribosomes	(Chaudhry	et	al.,	1994,	Reinbothe	et	al.,	1994).	This	 tail	also	

requires	 removal	 for	 activation	of	 JIP60.	Both	N-	 and	C-terminal	processing	 steps	 are	
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needed	for	near	complete	inhibition	of	translation	(Chaudhry	et	al,	1994).	Our	JIP60ml	

construct	expressed	only	the	N-terminal	domain,	with	the	N-terminal	inhibitory	peptide	

replaced	 by	 a	 methionine-leucine	 linker.	 Maize	 Ribosome-lnactivating	 Protein	 (b-32)	

also	 requires	 the	 removal	 of	 a	 peptide	 for	 activation,	 and	 its	 replacement	 with	 a	

methionine-leucine	 linker	 has	 been	 shown	 to	 produce	 an	 active	 product	 (Mak	 et	 al.,	

2007).	Both	N-terminal	and	linker	boundaries	were	selected	based	on	Chaudhry	et	al.,	

(1994).	

	

In	barley,	BEC1054	had	a	diffuse	accumulation	pattern	 throughout	 the	cytoplasm	and	

nucleus	(Figure	14);	as	did	JIP60ml.	Both	of	these	proteins	were	expressed	weakly,	with	

only	a	low	level	of	visible	YFP	fluorescence.	This	may	be	due	either	to	low	expression,	

possibly	 caused	 by	 their	 inhibiting	 translation,	 or	 due	 to	 mis-folding	 of	 the	 YFP	 C-

terminus	when	expressed	 fused	 to	 these	proteins.	Max	 scans	performed	 for	BEC1054	

and	 JIP60ml,	 created	 through	 combining	 the	 maximum	 pixel	 intensity	 of	 the	 images	

obtained	 in	 a	 Z-stack,	 demonstrated	 the	 presence	 of	 weak	 puncta	 in	 the	 cytoplasm.	

These	 puncta	 may	 well	 represent	 sub	 cellular	 compartments,	 for	 example	 p-bodies,	

early	or	late	endosomes,	mitochondria,	Golgi		or	vesicles.	

	

Only	 two	 epidermal	 cells	 were	 identified	 expressing	 JIP60ml	 tagged	 with	 C-terminal	

YFP.	The	majority	of	the	cells	identified	were	guard	cells	(more	of	which	are	generally	

identified,	 as	 the	 nucleus	 occupies	 a	 much	 larger	 proportion	 of	 the	 cell,	 making	 the	

chances	of	hitting	it	with	the	gold	bombardment	particle	rather	higher);	but	there	were	

still	 few	 of	 these	 observed,	 when	 compared	 with	 lines	 containing	 BEC1054	 or	 other	

plant	proteins.	This	result	cannot	be	explained	simply	by	JIP60ml’s	low	fluorescence,	as	
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all	 cells	were	 cotransformed	with	 an	 RFP	marker,	 so	 that	 transformed	 cells	 could	 be	

identified	even	in	the	absence	of	an	interaction.	It	may	be	that	JIP60ml	was	toxic,	killing	

the	majority	of	cells	that	it	was	expressed	in,	or	that	it	affected	translation	of	both	the	

transformation	marker	and	the	YFP	vectors.		

	

The	barley	proteins	showed	a	range	of	accumulation	localizations.	Five	were	expressed	

in	 the	 cytoplasm	 and	 the	 nucleus	 (eEF1A(1),	 eEF1A(3),	 PR5,	 PR10	 and	 NDPK),	 one	

accumulated	 in	 the	 cytoplasm,	 but	 very	 little	 in	 the	 nucleus	 (eEF1G);	 two	were	 seen	

mainly	 in	 the	 nucleolus,	 and	 as	 puncta	 throughout	 the	 cytoplasm	 (GST	 and	 40S	 16)	

(Figure	16	and	Figure	17).	

	

Five	 proteins	 were	 found	 to	 interact,	 by	 BiFC,	 with	 BEC1054	 in	 planta:	 PR5,	 PR10,	

eEF1A(1),	eEF1G	and	GST	(Figure	16).	All	of	 the	 interactions	were	seen	weakly	 in	the	

cytoplasm,	 and	more	 strongly	 in	 the	 nucleus,	 matching	 the	 accumulation	 patterns	 of	

BEC1054	 and	 JIP60ml.	 The	 GST,	 tagged	 with	 the	 YFP	 N-terminus,	 may	 well	 still	 be	

present	 in	 puncta	 throughout	 the	 cytoplasm,	 but	 unless	 BEC1054	 were	 also	 within	

those	 compartments,	 then	 an	 interaction	would	 not	 be	 seen	 there.	 The	 interaction	 of	

BEC1054	 with	 these	 five	 proteins	 supported	 the	 results	 of	 both	 the	 in	 vitro	

chromatography,	and	the	Y2H	assay	(Table	11).		

	

The	 fluorescence	 from	 the	 complementation	 of	 tagged	 eEF1A(1)	 and	 BEC1054	 was	

strongest	 when	 compared	 with	 the	 other	 interactions	 indicating	 the	 possibility	 of	 a	

direct	 interaction.	In	contrast,	 the	fluorescence	seen	for	the	eEF1G-	 ,	PR5-	 ,	PR10-	and	

GST-	 BEC1054	 pairs	were	much	weaker.	 This	 result	 is	 particularly	 surprising,	 as	 the	
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Y2H	 assay	 provided	 the	 weakest	 evidence	 for	 the	 interaction	 of	 BEC1054	 with	

eEF1A(1),	when	compared	with	the	other	interactors	identified	through	BiFC.	It	may	be	

that	 other	 proteins,	 or	 post-translational	 modifications	 that	 occur	 in	 the	 plant,	 were	

required	for	the	interaction	of	eEF1A(1)	with	BEC1054.	Post-translational	modification	

of	 eEF1A	 has	 been	 shown	 to	 occur	 in	 a	wide	 range	 of	 species,	 including	 prokaryotes	

such	 as	 Escherichia	 coli	 (Litalien	 and	 Laursen	 1979),	 protists	 for	 example	 Euglena	

gracilis	 (Toledo	and	 Jerez	1990),	 fungi	 (Mucor	racemosus	 (Hiatt	et	al.,	1982)),	 animals	

(rabbits,	 (Dever	 et	 al.,	 1989),	 and	 plants	 (Ransom	 et	 al.,	 1998).	 In	 planta	 post-

translational	modification	of	BEC1054	itself	may	have	been	required	for	the	interaction	

to	 take	 place.	 Alternatively,	 the	 interaction	 with	 eEF1A(1)	 in	 BiFC	 may	 have	 been	 a	

false-positive	(Huang	and	Bader	2009).	

	

The	 interaction	between	GST	and	PR10	was	 investigated	 in	planta,	 to	 further	validate	

the	Y2H	results,	and	the	aforementioned	association	between	the	proteins	identified	in	

the	 literature	 (Koistinen	et	al.,	 2002).	The	 two	barley	proteins	were	 found	 to	 interact	

weakly	in	planta	(Figure	18).	These	results	indicated	that	PR10	and	GST	may	be	part	of	

a	 complex	 pulled	 down	 during	 the	 LCMS	 assay.	 The	 lack	 of	 interaction	 of	 GST	 with	

JIP60ml	indicated	that	it	was	not	simply	modifying	proteins	which	possess	RNA	binding	

fold	(which	PR10,	JIP60	and	BEC1054	share).		

	

In	the	Y2H	assay,	I	found	partial	evidence	for	the	interaction	of	BEC1054	with	40S	16.	

The	interaction	with	BEC1054	in	the	LCMS	was	not	entirely	specific;	and	it	could	not	be	

repeated	in	the	BiFC	assay,	indicating	that	40S	16’s	identification	in	the	Y2H	assay	may	

have	 been	 a	 false	 positive.	 The	 interaction	 of	MDH	 also	 could	 not	 be	 repeated	 using	
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BiFC.	These,	and	the	positive	results	above,	highlight	the	need	for	multiple	methods	of	

analysis	when	 investigating	protein-protein	 interactions.	 If	 any	 single	 assay	had	been	

utilised,	the	conclusions	drawn	would	have	been	different.	

	

The	barley	RIP	 JIP60ml	 interacted	with	eEF1A(3)	 in	barley.	Cleavage	of	rRNA	by	ricin	

has	been	shown	to	be	much	slower	for	naked	rRNA	than	for	intact	ribosomes	(Endo	and	

Tsurugi	1988).	These	results	indicate	that	ribosomal	proteins	play	a	role	in	the	binding	

and	 activity	 of	 RIPs,	 a	 concept	 which	 is	 supported	 by	 evidence	 of	 RIPs	 binding	

ribosomal	 proteins:	 the	 ricin	 A-chain	 has	 previously	 been	 chemically	 cross-linked	 to	

ribosomal	 proteins	 L9	 and	 P0	 (also	 known	 as	 L10e)	 (Vater	 et	 al.,	 1995);	 pokeweed	

antiviral	 protein	 interacted	 with	 L3	 in	 yeast	 (Hudak	 et	 al.,	 1999,	 Rajamohan	 et	 al.,	

2001);	and	trichosanthin	interacted	with	P0,	P1	and	P2	in	a	Y2H	and	in	vitro	pull-down	

assay	(Chan	et	al.,	2001,	Chan	et	al.,	2007).	The	ribosomal	stalk	is	composed	of	acidic	P-

proteins	 (including	 P0,	 P1	 and	 P2),	 and	 plays	 a	 significant	 role	 in	 the	 binding	 of	

elongation	 factors	 to	 the	 ribosome.	 Anti-P-protein	 antibodies	 can	 be	 used	 to	 prevent	

binding	 of	 eEF1A	 and	 eEF2	 to	 the	 ribosome	 (Uchiumi	 et	al.,	 1990).	 It	 is	 possible	 that	

JIP60,	and	BEC1054,	interact	with	ribosomal,	and	ribosome	associated,	proteins	in	vivo.	

4.4.5.1. Concluding	remarks	for	protein	interactions	with	BEC1054	in	vitro,	in	

yeast	and	in	planta	

Multiple	 proteins	 were	 identified	 interacting	 with	 BEC1054	 in	 vitro,	 in	 yeast	 and	 in	

planta	 (Table	 11;	 Figure	 12	 and	 Figure	 16).	 Three	 approaches	were	 used	 to	 validate	

these	 interactions:	 primary	 identification	 through	 affinity	 precipitation	 and	 mass	

spectrometry;	 Y2H;	 and	 BiFC.	 Three	 of	 these	 proteins	 were	 validated	 using	 all	 three	

approaches	(PR5,	eEF1G	and	GST).	Only	partial	evidence	was	obtained	through	Y2H	for	
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two	 further	 proteins:	 eEF1A(1)	 and	 PR10	 interacting	 with	 BEC1054	 (Table	 11),	

although	both	were	identified	through	LCMS	and	BiFC.		

	

Fungal	and	oomycete	effectors	have	been	found	to	target	more	than	one	host	protein;	

for	 example,	 the	 Cladosporium	 fulvum	 AVR2	 targets	 both	 Rcr3	 and	 PIP1	 of	 tomato	

(Rooney	 et	 al.,	 2005,	 Shabab	 et	 al.,	 2008);	 the	 Phytophthora	 infestans	 AVR3a	 has	 13	

putative	 interactors	 of	 potato	 (Bos	 et	 al.,	 2010a).	 Similarly,	 an	 investigation	 of	 three	

taxonomically	 unrelated	 pathogens	 identified	 effectors	 with	 multiple	 host	 protein	

targets;	 a	 number	 of	 which	 overlapped	 (Mukhtar	 et	 al.,	 2011,	Wessling	 et	 al.,	 2014).	

Surprisingly	 for	 such	 a	 small	 protein	 with	 a	 simple	 domain	 structure,	 BEC1054	may	

have	multiple	targets	amongst	the	identified	protein	putative	interactors.		

	

Proteins	 that	 bind	RNA	do	 so	with	 differing	 affinities	 and	 specificities	 (Glisovic	 et	al.,	

2008).	The	activity	of	the	RNA	binding	domains	is	altered	by	RNA	binding	scaffolds;	and	

can	 be	 further	 changed	 by	 auxiliary	 domains.	 The	 auxiliary	 binding	 domains	 of	 RNA	

binding	proteins	are	able	to	mediate	their	interaction	with	other	proteins,	affecting	the	

generation	of	RNA	binding	protein	complexes.	The	auxiliary	domains	of	BEC1054	and	

JIP60	may	mediate	their	interaction	with	their	protein-binding	partners.		

	

The	identification	of	multiple	interactors	for	BEC1054	has	produced	a	further	challenge:	

identifying	 the	mechanistic	 roles	 or	 biological	 significance	 of	 the	 interaction	 between	

these	 host	 proteins	 and	 BEC1054.	 The	 known	 activities	 and	 possibilities	 for	 the	 five	

validated	proteins	(PR5,	PR10,	eEF1A(1),	eEF1G	and	GST)	are	discussed	below.	
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4.5.5.1. Pathogenesis	Related	(PR)	proteins	

The	 PR	 proteins	 are	 inducible,	 defense	 related	 proteins	 expressed	 or	 up-regulated	 in	

response	to	pathogen	invasion	(Gregersen	et	al.,	1997,	van	Loon	et	al.,	2006,	Gjetting	et	

al.,	2007).	They	are	up-regulated	in	response	to	viruses	(Pierpoint	et	al.,	1981),	bacteria	

(Pieterse	et	al.,	1996),	oomycete	(Alexander	et	al.,	1993),	insect	attack	(Fidantsef	et	al.,	

1999),	viroids	(Garcia	Breijo	et	al.,	1990)	and	fungi	(Cordero	et	al.,	1994).		

	

The	 PR	 protein	 families	 are	 defined	 based	 on	 common	 biological	 (or	 biochemical)	

properties,	 and	 many	 are	 associated	 with	 limiting	 the	 spread,	 activity	 or	 growth	 of	

pathogens	 (Loon	et	al.,	 1994,	 van	Loon	1999).	The	 functions	of	 some	PR	proteins	 are	

understood,	for	example	chitinases	(Legrand	et	al.,	1987),	endoglucanases	(Ward	et	al.,	

1991),	and	proteinase	inhibitors	(Fidantsef	et	al.,	1999),	whereas	others	are	unknown.	

The	B.	graminis	 effector	 protein	 CSEP0055	 has	 been	 shown	 to	 interact	with	 PR1	 and	

PR17,	 indicating	 a	 role	 in	 the	 suppression	 of	 plant	 defense	 (Zhang	 et	 al.,	 2012).	 It	 is	

possible	 that	 BEC1054	 and	 CSEP0055	 may	 moderate	 the	 antifungal	 activity	 of	 PR	

proteins.	

4.6.5.1. Pathogenesis	Related	Protein	5	(PR5)	

The	 PR5	 protein,	 identified	 through	 in	 vitro	 chromatography,	 is	 a	 thaumatin-like	 PR	

protein.	Little	is	known	about	the	specific	roles	of	PR5	protein(s),	including	barley	PR5.	

They	possess	a	range	of	 functions	 including	antifungal	activity	 (Hejgaard	et	al.,	1991).	

Some	 are	 expressed	 in	 healthy	 developing	 barley	 seeds	 in	 a	 tissue-specific	 manner	

(Skadsen	et	al.,	2000),	but	they	also	accumulate	in	the	leaves	of	barley	infected	with	B.	

graminis	(Bryngelsson	and	Green	1989).	Some	have	been	shown	to	bind	1,3-β-D-glucan,	

and	 to	 induce	 hyperpolarization	 of	 the	 Fusarium	 graminearum	membrane	 (Osmond	
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2000),	and	this	activity	also	occurs	in	other	plant	hosts	(Hejgaard	et	al.,	1991,	Anzlovar	

et	al.,	1998).	

	

The	induction	of	PR5	requires	salicylic	acid	signaling,	which	is	associated	with	defense	

against	 biotrophs	 (as	 opposed	 to	 necrotrophs)	 (Thomma	 et	 al.,	 1998,	 Kessler	 and	

Baldwin	2002,	Glazebrook	2005).		

4.7.5.1. Pathogenesis	Related	Protein	10	(PR10)	

The	PR10	proteins	are	cytosolic	 small	highly	conserved	proteins	 (15-18	kDa)(Loon	et	

al.,	 1994,	 Markovic-Housley	 et	 al.,	 2003)	 which	 possess	 antifungal	 and	 antibacterial	

activities	(Flores	et	al.,	2002).	Expression	of	PR10	genes	 is	activated	through	infection	

and	 through	 the	 jasmonic	 acid	 and	 salicylic	 acid	 pathways	 (Fristensky	 et	 al.,	 1988,	

Somssich	 et	al.,	 1988,	 Pinto	 and	Ricardo	 1995,	McGee	 et	al.,	 2001);	 the	 induction	 can	

occur	during	developmental	stages	in	a	tissue-	or	organ-	specific	manner	(Apold	et	al.,	

1981,	 Crowell	 et	 al.,	 1992,	 Warner	 et	 al.,	 1994),	 (Markovic-Housley	 et	 al.,	 2003).	 In	

barley,	PR10	expression	 is	epidermis	specific,	and	occurs	as	a	 result	of	epidermal	cell	

perception	of	a	small	phytotoxic	protein	(Steiner-Lange	et	al.,	2003)	produced	by	barley	

pathogen	 Rhynchosporium	 secalis	 (Rohe	 et	 al.,	 1995).	 The	 PR10	 proteins	 possess	 a	

number	 of	 activities,	 including	 binding	 brassinosteroids	 (Markovic-Housley	 et	 al.,	

2003),	 cytokinins	 (Fujimoto	 et	al.,	 1998),	 flavonoids	 and	 fatty	 acids	 (Mogensen	 et	al.,	

2002).		

	

Protein	PR10	is	part	of	the	Betv	1/PR10/MLP	family.	This	family	contains	a	number	of	

toxic	 lectins,	 which	 are	 type	 II	 RIPs	 (Kourmanova	 et	 al.,	 2004).	 Some	 PR10	 proteins	
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have	RNase	activity	(Bufe	et	al.,	1996,	Bantignies	et	al.,	2000,	Wu	et	al.,	2003).	I	propose	

that	PR10	may	possess	RIP	function.		

4.8.5.1. Eukaryotic	Elongation	Factors	1	alpha	and	gamma	

The	majority	of	the	eEFs	identified	were	found	to	be	part	of	the	eEF1	complex	(Figure	

19);	which	 occupies	 the	 A-site	 of	 the	 small	 ribosomal	 subunit,	 near	 the	 SRL;	 as	 does	

eEF2	 (Figure	 20)(Unbehaun	 et	 al.,	 2007).	 Multiple	 copies	 of	 eEF1A	 were	 identified	

following	 insertion	of	PCR	products	 into	pCR8.	Six	eEFs	and	eIFs	 (eEF1A,	eEF2,	eEF3,	

eIF4A,	eIF4G	and	eIF5A)	are	encoded	by	multiple	genes;	with	the	occurrence	of	multiple	

alleles	 for	 initiation	 and	 elongation	 factors	 being	 a	 feature	 conserved	 amongst	

eukaryotes	(Firczuk	et	al.,	2013).	

	

Ribosomal	 protein	 eEF1g	 is	 involved	 in	 formation	 of	 eukaryotic	 elongation	 factor-1	

(eEF-1)	complex	(see	above).	It	is	associated	with	RIPs	(Unbehaun	et	al.,	2007).	Here,	I	

have	 found	 that	 it	 interacts	 in	 one	 bait-prey	 orientation	 with	 BEC1054	

(BEC1054+eEF1g)	 in	 yeast.	 Taken	 together,	 these	 results	 support	 the	hypothesis	 that	

BEC1054	may	interact	directly	with	this	RIP-associated	ribosomal	protein	(Figure	18).		
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Figure	19:	Model	of	the	formation	of	the	eukaryotic	elongation	factor-1	(eEF-1)	complex	during	translation	

elongation.	 An	 aminoacylated	 transfer	 RNA	 is	 delivered	 to	 the	 ribosome	 “A”	 site	 by	 eukaryotic	 elongation	

factor	1	alpha	(eEF1A)	in	complex	with	GTP.	When	codon-anticodon	recognition	occurs,	the	GTP	is	hydrolysed	

to	GDP,	and	eEFA-GDP	is	released.	The	three	subunits;	eEF1B,	eEF1G	and	eEF1D;	together	with	eEF1A	form	the	

eEF-1	 complex;	 where	 eEF1B,	 eEF1G	 and	 eEF1D	 act	 as	 the	 GTP	 exchange	 factor	 for	 eEF1A;	 allowing	 active	

eEF1A	to	be	regenerated.	“SRL”	stands	for	the	ribosomal	sarcin-ricin	loop,	“LSU”	for	ribosomal	large	subunit,	

and	“SSU”	for	ribosomal	small	subunit.	Figure	adapted	from	(Li	et	al.,	2013)	and	(Unbehaun	et	al.,	2007).		

	

Figure	20:	Eukaryotic	elongation	factor	2	 (eEF2)	occupies	the	A-site	of	 the	small	 ribosomal	subunit.	Where	

“SSU”	 stands	 for	 the	 ribosomal	 small	 subunit,	 “LSU”	 stands	 for	 the	 ribosomal	 large	 subunit,	 SRL	 for	 the	

ribosomal	sarcin-ricin	loop,	GAC	for	“GTPase	associated	center.”		
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4.9.5.1. Glutathione-S-transferase	(GST)	

The	GSTs	catalyse	the	conjugation	of	electrophilic	molecules	with	glutathione	(Dean	et	

al.,	 2005).	 They	 are	 involved	 in	 responses	 to	 pathogen	 invasion	 and	 stress	 through	

glutathione	 peroxidase	 activity,	 but	 the	 exact	 function	 of	 most	 GSTs	 is	 poorly	

understood	(Edwards	et	al.,	2000,	Dean	et	al.,	2005).	 In	addition,	 they	provide	 further	

protection	 through	 reduction	 of	 cytotoxic	 hydroperoxides,	 for	 example	 hydrogen	

peroxide	 or	 nucleic	 and	 fatty	 acid	 hyperoxides,	 to	 their	 respective	 alcohols	 (Li	 et	 al.,	

1997,	Dixon	et	al.,	2002,	R.	Sharma	et	al.,	2004).		

	

The	GST	investigated	in	this	study	is	a	zeta	class	GST	(zGST)(Edwards	et	al.,	2000).	This	

class	of	GSTs	possess	glutathione	peroxidase	activity	 in	a	number	of	species	 including	

wheat	 (Cummins	 et	al.,	 1997),	maize	 (Dixon	 et	al.,	 1997,	 Dixon	 et	al.,	 1998),	 soybean	

(Skipsey	et	al.,	1997)	and	Arabidopsis	(Eshdat	et	al.,	1997).	It	is	not	clear	why	BEC1054	

and	GST	interact,	and	this	may	be	worth	further	investigation.		

4.6. Conclusion	

The	 fungal	 effector	 BEC1054	 is	 an	 RNase	 like	 protein,	 which	 I	 propose	 may	 bind	

ribosomes,	outcompeting	RIPs.	An	 in	vitro	pull-down	demonstrated	that	BEC1054	was	

associated	with	significantly	more	ribosomal	proteins	than	the	negative	controls	used.	I	

used	 three	 differing	 experimental	methods	 to	 investigate	 the	 interaction	 of	 BEC1054	

with	proteins	 in	vitro,	 in	yeast	and	 in	planta.	I	 found	that	 five	proteins	 interacted	with	

BEC1054	 in	 all	 experiments:	 PR5,	 PR10,	 GST,	 eEF1A(1)	 and	 eEF1G,	 the	 latter	 two	 of	

which	 are	 associated	with	 ribosomes.	 In	 addition,	 GST	 and	 PR10,	 which	 is	 an	 RNase	

from	a	family	containing	RIPs,	interacted	with	each	other	in	yeast	and	in	planta.	
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4.7. Further	work	

As	 in	any	 investigation,	 there	are	always	 further	controls,	or	 further	experiments	 that	

would	have	been	completed	if	there	were	more	time/resources	available.	This	section,	

and	the	‘Further	work’	section	at	the	end	of	each	results	chapter,	indicates	the	ones	that	

I	would	most	like	to	have	completed.	

	

AIM:	 To	 validate	 further	 interactors	 from	 the	 LCMS	 analysis,	 focusing	 on	 other	

ribosomal	proteins	and	the	main	targets	identified	in	the	latest	LCMS	re-analysis.	

OBJECTIVE:	 To	 utilise	 Y2H	 and	 BiFC	 approaches	 to	 test	 further	 protein-protein	

interactions	in	a	1:1	manner.	

REASONING:	The	latest	re-analysis	of	the	LCMS	data	was	performed	after	I	had	finished	

the	 cloning	 for	 the	 Y2H	 assay,	 and	 just	 before	 I	was	 due	 to	move	 to	 Aachen.	 The	 re-

analysis	was	performed	against	 the	 IBSC	database,	 using	more	 stringent	 criteria	 than	

those	used	for	the	U36	(HarvEST),	with	all	proteins	found	in	any	negative	control	being	

excluded	 from	 the	 dataset.	 Validation	 of	 these	 proteins	 as	 interactors	 for	 BEC1054	

would	 help	 to	 validate	 the	 results	 seen	 in	 our	 LCMS	 assay,	 and	 to	 help	 determine	

whether	more	stringent	analysis	produced	a	more	accurate	representation	of	the	host	

protein	interactors	of	this	effector.	

	

AIM:	To	utilise	further	controls	for	the	BiFC	assay.	

OBJECTIVE:	To	 test	 the	 interactors	 previously	 identified	 against	 a	 series	 of	BEC1054	

mutants	to	identify	the	interacting	sites.	

REASONING:	One	of	the	major	disadvantages	of	BiFC,	is	that	the	N	and	C	terminal	parts	

of	 the	 fluorescent	 protein	 can	 interact	 irreversibly	 without	 an	 interaction	 having	
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occurred	between	the	two	proteins	of	interest.	Choosing	one,	or	a	selection,	of	negative	

controls,	such	as	a	version	of	the	bait	protein	with	a	mutated	binding	site,	is	therefore	

critical	when	confirming	a	protein-protein	interaction	(Horstman	et	al.,	2014).		

	

AIM:	To	perform	further	methods	of	protein-protein	interaction	validation	

OBJECTIVE:	To	utilise	 fluorescence	 resonance	energy	 transfer,	 to	 further	validate	 the	

interactions	identified	through	Y2H	and	BiFC.	

REASONING:	Methods	which	utilise	FRET	give	information	on	both	the	protein-protein	

interaction,	and	also	the	localisation	of	the	individual	proteins	(Horstman	et	al.,	2014).	

In	addition,	since	FRET	works	through	two	fluorophores	transferring	excitation	energy	

between	them	when	they	are	in	close	proximity,	not	on	the	reassembly	of	a	fluorescent	

molecule,	 the	 problem	 of	 the	 two	 halves	 of	 a	 fluorescent	 molecule	 reassembling	 is	

overcome.	

	

AIM:	To	determine	whether	PR10	possesses	RIP	function	

OBJECTIVE:	To	determine	whether	PR10	inhibits	translation	in	wheat	germ	lysate,	or	

rabbit	reticulocyte	lysate.		

REASONING:	The	 inhibition	of	 translation	 is	a	 technique	used	 to	 identify	RIP	activity.	

The	 RIP	 proteins	 arrest	 protein	 synthesis	 at	 the	 translation	 step	 (Endo	 and	 Tsurugi,	

1987, Sharma	et	al.,	2004).	Protein	PR10	is	part	of	the	Betv	1/PR10/MLP	family.	This	

family	 contains	 a	 number	 of	 toxic	 lectins,	which	 are	 type	 II	 RIPs	 (Kourmanova	 et	al.,	

2004).	 Some	 PR10	 proteins	 have	 RNase	 activity	 (Bufe	 et	 al.,	 1996,	 Bantignies	 et	 al.,	

2000,	Wu	et	al.,	2003).		
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5. Expression	 profiling	 of	 Candidate	 Secreted	 Effector	 Protein	

family	21	

5.1. Introduction	

In	 B.	 graminis,	 the	 internal	 features	 (i.e.	 those	 that	 occur	 within	 the	 host	 plant)	 are	

comprised	of	haustoria	formed	within	epidermal	cells.	The	external	features	(those	that	

occur	 on	 the	 surface	 of	 the	 leaf)	 include	 surface	 hyphae,	 spores,	 and	 primary	 and	

secondary	 germ	 tubes	 (Both	 and	 Spanu	 2004).	 Significant	 changes	 in	 transcript	

abundance	 occur	 during	 infection	 (Both	 et	 al.,	 2005).	 The	 prior	 alterations,	 i.e.	

promotion	 or	 inhibition	 of	 gene	 activity,	 required	 to	 cause	 these	 mean	 that	 the	

expression	levels	of	housekeeping	genes,	and	the	abundance	of	gene	transcripts,	cannot	

be	assumed	to	remain	constant.		

	

Transcript	 abundance	 can	 be	 assayed	 simultaneously	 across	 many	 different	 samples	

through	quantitative	real-time	PCR	(qPCR)	(Higuchi	et	al.,	1993,	Heid	et	al.,	1996,	Fink	

et	al.,	1998).	The	qPCR	method	is	both	more	rapid	and	relatively	high	throughput,	when	

contrasted	with	other	methods	of	RNA	quantification,	for	example	competitive	RT-PCR,	

northern	blots	or	ribonuclease	protection	assays	(Vandesompele	et	al.,	2002).	 

	

An	 alternative	 normalization	 control	 for	 qPCR	 is	 DNA.	 This	 can	 take	 the	 form	 of	

circularized	or	linear	plasmid	DNA,	or	genomic	DNA	(Yun	et	al.,	2006,	Hou	et	al.,	2010).	

Supercoiled	 plasmid	 DNA	 has	 been	 shown	 to	 suppress	 PCR	 amplification,	 which	 can	

lead	 to	 elevated	 estimates	 of	 genomic	 DNA	 copy	 number,	 and	 presumably	 of	 RNA	

transcript	 abundance	 also.	 Genomic	 DNA	 or	 linear	 DNA	 (linearized	 plasmid	 or	 PCR	
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amplicons)	can	be	used,	but	 they	are	only	subject	 to	 the	amplification	step,	not	 to	 the	

reverse	 transcription	 step	 required	 for	mRNA	 samples,	meaning	 that	 the	 results	may	

not	be	strictly	comparable	(Chen	et	al.,	2007,	Hou	et	al.,	2010).		

	

A	 number	 of	 variables	 need	 to	 be	 considered	 when	 investigating	 alterations	 in	

transcript	 abundance	 through	 qPCR,	 including	 template	 quality	 and	 quantity	

(Vandesompele	 et	 al.,	 2002).	 Normalisation	 of	 transcript	 abundance	 can	 be	 done	

through	 traditional	 methods,	 including	 determining	 the	 amount	 of	 18S/28S	 RNA	

(where	the	total	amount	can	only	be	reduced,	not	removed),	determining	cell	number	

(which	 is	problematic	 in	solid	samples,	 i.e.	barley	 leaves),	or	 through	determining	 the	

RNA	mass	 quantity	 (which	 does	 not	 assess	 enzymatic	 efficiency	 or	 the	 quality	 of	 the	

substrate).	 Normalisation	 is	 carried	 out	 for	 qPCR	 through	 the	 use	 of	 internal	 control	

genes,	 frequently	called	“housekeeping”	genes.	These	genes	are	used	as	a	comparative	

reference	 for	 the	 genes	 of	 interest.	 Housekeeping	 genes	 should	 ideally	 be	 stably	

expressed,	within	the	tissue	under	investigation,	despite	experimental	treatment.	These	

genes	require	validation	of	their	stability,	as	expression	can	vary	significantly	(Thellin	et	

al.,	1999,	Bustin	2000,	Suzuki	et	al.,	2000,	Warrington	et	al.,	2000).		

	

Vandesompele	 et	al.,	 (2002)	 developed	 a	method	 to	 validate	 control	 gene	 expression	

without	a	reliable	measure	with	which	to	perform	control	normalisation.	Their	method	

utilises	 the	 idea	 that	 two	 ideal	 control	 genes	would	 have	 identical	 expression	 ratios,	

regardless	 of	 experimental	 conditions	 or	 cell	 type.	Any	 variation	 in	 the	housekeeping	

genes”	expression	ratios	would	indicate	that	the	genes	were	not	constantly	expressed;	

with	increasing	expression	stability	corresponding	to	a	decreasing	ratio.	
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As	is	the	case	for	other	haustorium-forming	pathogens,	B.	graminis	and	its	host	perform	

“secretory	warfare”,	with	 the	 haustorial	 complex	 acting	 as	 the	 delivery	 site	 for	 small	

effector	 proteins,	 such	 as	 the	 members	 of	 CSEP	 family	 21	 (O'Connell	 and	 Panstruga	

2006,	Panstruga	and	Dodds	2009).	In	this	study,	the	levels	of	messenger	RNA	(mRNA)	

encoding	members	of	CSEP	family	21,	which	 includes	BEC1054	and	its	paralogs,	were	

quantified	 along	 with	 a	 conidia-specific	 gene,	 and	 five	 proteins	 predicted	 to	 interact	

with	BEC1054	(Pennington	et	al.,	2015).	
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5.2. Aims	and	Objectives	

AIM:	 To	 identify	 and	 validate	 normalisation	 controls	 for	 use	 in	 qPCR	 across	 a	 B.	

graminis	 infection	 time	 course,	 for	 barley	 epidermal	 tissue,	 and	 for	 B.	 graminis	

epidermal	and	epiphytic	material.	

OBJECTIVE:	 To	 identify	 a	 selection	 of	 control	 genes	 from	 literature	 searches,	 and	 to	

utilise	qPCR	with	geNorm	control	gene	validation	software,	to	identify	the	best	controls	

from	the	selection	screened.	

	

AIM:	To	investigate	the	changes	in	transcript	abundance	for	bec1054	(csep0065),	for	the	

other	members	of	CSEP	family	21.	

OBJECTIVE:	 To	 utilise	 qPCR,	 to	 determine	 changes	 in	 transcript	 abundance	 for	

members	 of	 CSEP	 family	 21,	 and	 for	 a	 conidia-specific	 gene	 across	 an	 infection	 time	

course.	

	

AIM:	To	investigate	the	changes	in	transcript	abundance	for	putative	barley	interactors	

of	BEC1054.	

OBJECTIVE:	To	utilise	qPCR,	to	determine	changes	in	transcript	abundance	for	protein	

interactors	 of	 BEC1054	 identified	 through	 yeast-two-hybrid	 and	 bimolecular	

fluorescence	complementation.	
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5.3. Individual	Contributions	

I	applied	 for,	and	was	awarded,	a	PrimerDesign	Gold	Studentship	(2014-2015),	which	

provided:	

1. training,	technical	advice	and	support	

2. access	to	geNorm	software	

3. a	 seminar	 series	 on	 qPCR	 given	 by	 Dr	 Alison	 Davis	 from	 PrimerDesign	 at	

Imperial	

4. experimental	chemicals/reagents	required	for	this	project.		

Data	 was	 obtained	 with	 the	 assistance	 of	 the	 Masters	 student	 Linhan	 Li,	 who	 I	

supervised.	Linhan	completed,	or	took	part	in:	

1. preparation	of	RNA	from	epidermal	and	epiphytic	material	

2. testing	and	validation	of	control	genes	using	geNorm	software	

3. design	and	testing	of	qPCR	primers	for	the	four	members	of	CSEP	family	21	and	

the	conidia	specific	gene	

4. performance	of	qPCR	reactions	for	the	CSEPs	and	their	controls,	and	collection	of	

data	necessary	for	the	Pfaffl	calculations	

I	completed,	or	took	part	in,	a	number	of	practical	elements	of	this	project,	including:	

1. identification	of	candidate	control	genes	through	literature	searches	

2. identification	and	obtaining	of	both	gDNA	and	cDNA	sequences	for	the	candidate	

control	genes,	and	the	barley	putative	interacting	protein	sequences	

3. submission	 of	 data/cDNA,	 required	 for	 primer	 design	 and	 optimization,	 to	 the	

sponsoring	company	PrimerDesign		

4. troubleshooting	of	qPCR	

5. testing	and	validation	of	control	genes	using	geNorm	software	
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5.4. Results	

5.4.1. Selection	of	control	genes	
I	selected	six	genes	for	investigation	as	B.	graminis	normalisation	controls	(	
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Supplementary	Table	17):	monoglyceride	lipase	(mgll	(Both	et	al.,	2005,	Nowara	et	al.,	

2010));	 β-tubulin	 (tubb	 (Zhang	 et	 al.,	 2000,	 Hacquard	 et	 al.,	 2013));	 α-tubulin	 (tuba	

(Hacquard	et	al.,	2013));	histone	3	(h3	(Both	et	al.,	2005));	actin	(actb	(Hacquard	et	al.,	

2013));	 and	 glyceraldehyde	 3-phosphate	 dehydrogenase	 (gapdh	 (Hacquard	 et	 al.,	

2013)).	 Three,	mgll,	 h3	 and	 tubb	 had	 previously	 been	 characterized	 as	 being	 stable	

during	the	interaction	of	barley	and	B.	graminis	(Both	et	al.,	2005).	Three	of	the	selected	

genes	 have	 also	 been	 utilised	 for	 the	 normalisation	 of	 a	 number	 of	 fungal	 species,	

including	 Fusarium	 graminearum	 (Brown	 et	 al.,	 2011);	 Melampsora	 larici-populina	

(Hacquard	 et	 al.,	 2011);	 Magnaporthe	 oryzae	 (Kim	 et	 al.,	 2009);	 Aspergillus	 niger,	

Penicillium	chrysogenum	and	Cladosporium	cladosporioides	(Ettenauer	et	al.,	2014).	

	

I	 selected	 five	 barley	 genes	 as	 normalisation	 controls	 for	H.	 vulgare	 (Supplementary	

Table	18):	actb	 (Jiang	et	al.,	2011,	Ma	et	al.,	2013);	gapdh	 (Besse	et	al.,	2011,	Ma	et	al.,	

2013)	(a	similar	gapdh	has	also	been	used	in	the	literature	(Identities	813/987	(82%),	

Query	 cover	 71%,	 Blastn-2-sequences)	 (Jarosova	 and	 Kundu	 2010));	 adenosine	

triphosphatase	 (h+-atpase	 (Besse	 et	 al.,	 2011));	 ubiquitin	 (ubi	 (Trujillo	 et	 al.,	 2006,	

Besse	 et	 al.,	 2011));	 and	 tuba	 (tuba2b	 (Doblin	 et	 al.,	 2009,	 Besse	 et	 al.,	 2011)).	 An	

additional,	 similar,	 tuba2b	 was	 also	 tested	 as	 a	 normalisation	 control	 Accession:	

AK260165	(Identities	1600/1602	(99%),	Query	Cover	98%,	Blastn-2-sequences).	

	

The	internal	stability	of	a	control	gene	(M),	can	be	calculated	as	the	pairwise	variation	

of	a	control	gene	with	all	other	control	genes.	For	each	control	gene,	I	determined	the	

pairwise	 variation	 from	 the	 standard	 deviation	 of	 the	 logarithmically	 transformed	

expression	ratios	of	the	transcript	quantities.	A	high	M	indicates	a	large	variation	in	the	
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abundance	 of	 transcripts,	 and	 a	 low	 M	 a	 small	 variation	 in	 abundance	 (i.e.	 stable	

expression).	 I	 determined	 the	 M	 value;	 excluded	 the	 least	 stable	 gene	 based	 on	 the	

average	 pairwise	 variation;	 and	 repeated	 the	 process	 in	 a	 stepwise	 manner	 to	

determine	the	two	genes	with	the	lowest	M	values	(i.e.	the	most	stable	genes)	(Table	12	

and	Figure	21).	Originally,	the	algorithm	used	was	not	able	to	rank	the	two	most	stable	

genes	 (Table	 12);	 as	 genes	 were	 excluded	 based	 on	 the	 average	 pairwise	 variation	

(Vandesompele	 et	 al.,	 2002).	 Improvement	 of	 the	 geNorm	 software	 has	 allowed	 the	

identification	of	the	most	stable	gene	(qbase+	v3.0,	Biogazelle,	www.qbaseplus.com).	

	

For	B.	graminis,	I	 found	 the	control	genes	h3,	gapdh	 and	act	 to	be	 the	most	 stable	 for	

both	 the	 B.	 graminis	 infected	 epidermis	 samples;	 and	 for	 the	 “combined	 analysis”	

sample	(which	was	comprised	of	B.	graminis	epiphytic	and	epidermal	material	analysed	

together;	Table	12).	In	epiphytic	B.	graminis,	I	found	gapdh,	mgll	and	tuba	to	be	the	most	

stable.	 In	 infected	 barley	 epidermis,	 I	 found	 that	 tuba2b,	 ubi	 and	 gapdh	 transcripts	

varied	least.		
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Figure	21:	Calculation	of	control	gene	stability	(M).	The	internal	control	gene	stability	can	be	calculated	as	the	

pairwise	variation	of	a	control	gene	with	all	other	control	genes.	The	M	value	was	determined,	the	least	stable	

gene	excluded,	based	on	 the	average	pairwise	variation;	and	 the	process	 repeated	 in	a	 stepwise	manner	 to	

determine	the	two	genes	with	the	lowest	M	values	(i.e.	the	most	stable	genes).	Improvement	of	the	geNorm	

software	 has	 allowed	 the	 identification	 of	 the	most	 stable	 gene.	 Control	 genes	 are	 ranked	 along	 the	 x-axis	

from	 left	 to	 right,	 in	 order	 of	 increasing	 stability.	 Six	 genes	 were	 investigated	 for	 each	 of	 the	 following	

substrates:	B.	graminis	epiphytic	material	“Epiphytic”;	B.	graminis	epidermal	material	“Epidermal”;	combined	

B.	 graminis	 epidermal,	 and	 epiphytic	 material	 “Combined”;	 and	 barley	 epidermal	 material	 “Barley.”	 Figure	

reproduced	with	permission	from	(Pennington	et	al.,	2015).	
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Table	12:	Control	genes	for	B.	graminis	and	barley	ranked	in	order	of	expression	stability.	The	control	genes	

are	ranked	from	1-6,	where	1	is	the	most	stable,	and	6	is	the	least	stable.	Table	reproduced	with	permission	

from	(Pennington	et	al.,	2015).	

	 Blumeria	graminis		

reference	genes	

Barley		

reference	genes	

Rank	 Epidermal	 Epiphytic	 Combined	 Epidermal	

1	 act		 mgll		 gapdh		 gapdh	

2		 gapdh	 tuba	 act	 ubi	

3	 h3	 gapdh	 h3	 tuba2b	

4	 mgll	 act	 mgll	 tuba	

5	 tub2b	 h3	 tub2b	 atpase	

6	 tuba	 tub2b	 tuba	 act	

5.4.2. Number	of	control	genes	

The	 “Pairwise	Variation”	 (Vn/n+1)	 (where	n	 is	 the	number	of	genes,	and	3≤n≤5)	was	

used	to	calculate	the	optimal	number	of	reference	genes	(Vandesompele	et	al.,	2002).	A	

large	V	indicates	that	the	inclusion	of	the	control	gene	has	a	significant	effect;	and	that	it	

should	ideally	be	included	for	the	calculation	of	the	normalisation	factor.	I	plotted	the	V	

values	 for	 the	different	 substrates	 (Figure	22);	 and	 the	 results	demonstrated	 that	 the	

optimal	 control	 gene	 numbers	 were	 three,	 four	 and	 three	 for	 B.	 graminis	 epiphytic,	

epidermal	and	combined	qPCR	substrates	respectively.	For	barley	epidermal	material,	I	

found	the	optimal	number	of	control	genes	to	be	three.	The	minimum	number	of	control	

genes	 recommended	 for	 normalisation	was	 three	 (Vandesompele	 et	al.,	 2002).	 In	 our	

study,	 we	 used	 the	 best	 three	 controls	 for	 normalisation	 of	 barley	 and	 B.	 graminis	

transcript	levels.	
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Figure	22:	Determining	the	optimal	number	of	genes	for	gene	normalisation.	Pairwise	variation	analysis	was	

used	to	determine	the	number	of	control	genes	required	for	accurate	normalisation.	A	high	variation	value	(V)	

indicates	a	low	correlation	coefficient.	The	optimal	number	of	control	genes	is	marked	by	the	symbol	“▼’.	The	

“Pairwise	 Variation”	 (Vn/n+1)	 (where	 n	 is	 the	 number	 of	 genes)	was	 calculated	 between	 the	 normalisation	

factors	NF,	and	NFn+1	to	determine	the	optimal	number	of	reference	genes	(see	Vandesompele	et	al.,	2002	

for	 details).	 The	 following	 substrates	 were	 used:	 B.	 graminis	 epiphytic	 material	 “Epiphytic”;	 B.	 graminis	

epidermal	material	 “Epidermal”;	 combined	B.	 graminis	 epidermal,	 and	 epiphytic	material	 “Combined”;	 and	

barley	epidermal	material	“Barley.”	Figure	reproduced	with	permission	from	(Pennington	et	al.,	2015).	
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5.4.3. Control	gene	expression	

We	used	 the	 three	optimal	controls	 to	normalise	 the	remaining	 (non-optimal)	control	

genes,	 and	 then	 plotted	 the	 Pfaffl	 values	 (Figure	 23).	 For	 epiphytic	 material	 (Figure	

23a),	 transcript	abundance	of	 the	control	gene	mgll	 increased	at	16hpi	and	decreased	

by	48hpi;	but	did	not	go	back	to	pre-infection	expression	levels.	The	expression	levels	of	

tuba	and	tub2b	fell,	with	minimum	expression	occurring	at	48	hpi;	the	two	controls	then	

increased	again	by	120	hpi.	We	found	that	the	pattern	of	transcript	abundance	for	tub2b	

was	 the	same	 in	both	combined	and	epidermal	material	 (Figure	23b	and	c).	For	 tuba,	

expression	increased	at	16	hpi;	decreased;	and	then	remained	below	the	original	level	

of	tuba	expression	(Figure	23b	and	c).	Variation	was	also	seen	in	the	expression	levels	

of	mgll,	which	increased	at	16	hpi;	fell	at	48	hpi,	and	increased	again	at	120	hpi.		

	

The	 transcript	 abundance	 of	 barley	 (Figure	 23d)	 act	 decreased	 by	 16	 hpi,	 then	

increased	 by	 48	 hpi	 and	 again	 by	 120	 hpi.	 In	 contrast,	 tuba2b	 decreased	 by	 16	 hpi;	

following	which	it	remained	constant.	The	transcript	abundance	of	atpase	 increased	at	

16	hpi	and	48	hpi;	and	decreased	by	120	hpi.		
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Figure	23:	Quantification	of	 “control”	gene	RNA	 transcript	 levels.	Levels	of	RNA	transcripts	were	calculated	

using	the	Pfaffl	method,	and	are	shown	relative	to	0	h	post	inoculation.	The	different	substrates	used	were	B.	

graminis	a)	epiphytic	material;	b)	epidermal	material;	 c)	 combined	epiphytic	and	epidermal	material;	and	d)	

barley	infected	epidermal	material.	Figure	reproduced	with	permission	from	Pennington	et	al.,	(2015).	

5.4.4. CSEP	expression	

For	 the	 CSEPs,	 three	 biological	 replicates	 were	 used	 for	 each	 time	 point.	 Biological	

replicated	were	 treated	 as	 independent	 samples	 for	 further	 analysis.	 Initial	 analyses,	

and	 calculation	 of	 the	 CT	 values	 was	 done	 using	 7500-Fast	 Software	 v1.0	

(ThermoScientific).	The	 “no-template”	 controls	 for	 the	CSEPs	and	 control	primers	did	
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not	 show	 amplification.	 Analysis	 of	 the	 control	 genes	 was	 performed	 using	 geNorm	

software	(Vandesompele	et	al.,	2002).	Further	analysis	of	the	controls,	and	between	the	

controls	 and	 the	CSEPs,	was	performed	using	 the	Pfaffl	 calculation	method	 (Equation	

14)	(Pfaffl	2001).		

	

Equation	 14:	 Relative	 quantification	 of	 target	 genes	 via	 the	 Pfaffl	 method.	 Where	 “ratio”	 is	 the	 relative	

expression	ratio,	“E”	is	the	real-time	PCR	efficiency,	and	“ΔCP”	is	the	crossing	point	difference	of	a	sample	and	

a	control.	

!"#$% = (!!"#$%!)∆!"!"#$%!(!"#!"#$!!"#$%&)
(!!"#"!"$%")∆!"!"#"!"$%"(!"#$%"&!!"#$%&)
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We	investigated	the	RNA	transcript	abundance	of	CSEP	family	21	and	a	conidia-specific	

gene	during	the	 initial	stages	of	B.	graminis	 infection	of	barley	(Figure	24).	 In	general,	

the	 four	 CSEPs	 investigated	 showed	 the	 same	 trend	 in	 epiphytic	 material,	 with	 a	

primary	peak	of	maximum	expression	at	6	hpi,	and	a	broad	secondary	peak	at	24	hpi	

(csep0066),	 or	 between	 24	 and	 48	 hpi	 (csep0064,	 csep0065	 and	 csep0264).	 The	 two	

CSEPs	 (0064	 and	 0066)	 demonstrated	 maximum	 transcript	 abundance	 in	 epidermal	

material	at	48	hpi;	which	then	decreased	to	near	the	initial	level;	whereas	csep0065	and	

csep0264	 increased	in	transcript	abundance,	with	a	maximum	at	48	hpi,	 followed	by	a	

decrease	in	abundance	by	120	hpi.	The	same	overall	trends	were	observed	when	using	

the	two	best	controls	(act	and	gapdh),	as	when	using	the	three	best	controls	(act,	gapdh	

and	h3).	In	contrast,	use	of	the	worst	control	(tub2b)	obscured	the	second	peak	for	all	

CSEP	epiphytic	material.	This	change	 in	 trend	was	 the	most	pronounced	 for	csep0066	

and	csep0264;	with	csep0066	even	gaining	an	additional	secondary	peak.		

	

Following	infection,	the	conidia-specific	gene	showed	a	general	decrease	in	expression	

for	 both	 epiphytic	 and	 epidermal	 material.	 We	 found	 this	 to	 be	 the	 case	 for	

normalisation	 against	 the	 best	 (act,	 gapdh	 and	 h3)	 and	 worst	 (tub2b)	 normalisation	

control	genes.	

	 	



129	

	

	

Figure	24:	Candidate	Secreted	Effector	Protein	 (CSEP)	 family	21	expression	during	 infection	with	Blumeria	

graminis.	Transcript	 levels	were	 investigated	using	quantitative	 real-time	polymerase	chain	 reaction	 (qPCR).	

The	RNA	substrates	were	a)	infected	epiphytic	material;	b)	infected	epidermal	material.	Results	are	shown	as	

Pfaffl	values,	relative	to	0	h	post	inoculation	(hpi)	(=1)	for	tissue	samples	from	zero	to	120	hpi,	with	standard	

deviation	 error	 bars	 for	 three	 biological	 replicates.	 The	 normalisation	 control	 genes	 were	 actin	 (accession	

CCU76638),	 glyceraldehyde-3-phosphate	 dehydrogenase	 (accession	 CCU80715)	 and	 histone-3	 (accession	

CCU82905).	Figure	reproduced	with	permission	from	Pennington	et	al.,	(2015).	
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Figure	 25:	 Barley	 gene	 expression	 during	 infection	 with	 Blumeria	 graminis.	 Transcript	 levels	 were	

investigated	 using	 quantitative	 real-time	 polymerase	 chain	 reaction	 (qPCR).	 The	 RNA	 substrates	 were	 a)	

infected	epiphytic	material;	b)	infected	epidermal	material.	Results	are	shown	as	Pfaffl	values,	relative	to	0	h	

post	inoculation	(hpi)	(=1)	for	tissue	samples	from	zero	to	120	hpi,	with	standard	deviation	error	bars	for	three	

biological	replicates.	The	normalisation	control	genes	were	tubulin	A	(accession:	U40042),	ubiquitin	(accession:	

X04133)	and	glyceraldehyde	phosphate	dehydrogenase	(accession:	X60343).	Error	bars	represent	the	standard	

deviation	of	 three	biological	 replicates.	The	abbreviation	GST	stands	 for	glutathione-S-transferase,	eEF1A	for	

eukaryotic	 elongation	 factor	 1	 alpha,	 eEF1G	 for	 eukaryotic	 elongation	 factor	 1	 gamma,	 and	 PR	 for	

pathogenesis	response.	Figure	reproduced	with	permission	from	Pennington	et	al.,	(2015).	
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5.5. Discussion	

The	 issue	 of	 accurate	 and	 reliable	 quantification	 of	 gene	 expression	 has	 been	

increasingly	highlighted	 in	 the	 literature,	especially	when	the	aim	 is	 to	observe	subtle	

changes,	as	changes	in	the	abundance	of	housekeeping	genes	can	obscure	changes	in	the	

transcript	 abundance	 of	 the	 genes	 of	 interest	 (Pfaffl,	 2004).	 The	 abundance	 of	

housekeeping	 genes	 has	 been	 shown	 in	 numerous	 studies	 to	 vary	 considerably	

(reviewed	by	Vandesompele	et	al.,	(2002)).	

	

The	use	of	single	control	genes	for	qPCR	normalisation	is	associated	with	error,	caused	

by	 changes	 in	 the	 transcript	 abundance	of	 the	 control	 gene	used.	The	use	of	multiple	

control	 genes	 is	 therefore	 recommended	 (Vandesompele	 et	 al.,	 2002).	 In	 this	 assay,	

during	an	infection	time-course,	six	B.	graminis	and	five	barley	genes	were	investigated	

as	 potential	 normalisation	 genes	 for	 B.	 graminis	 infected	 material,	 and	 for	 infected	

barley	 epidermal	 material.	 Optimal	 normalisation	 controls	 were	 selected	 (Table	 12);	

and	used	for	the	normalisation	of	the	remaining	control	gene	Pfaffl	values	(Figure	23).	

These	results	demonstrated	that	control	gene	abundance	varies	between	genes.		

	

When	compared	with	 transcript	abundance	of	 the	optimal	B.	graminis	controls	act,	h3	

and	gapdh;	tuba	transcript	was	found	to	accumulate	at	16	hpi.	At	around	this	time,	the	

fungus	 penetrates	 the	 cell	 of	 the	 host	 plant,	 forming	 complex	multidigitate	 haustoria	

(Spanu	 and	 Kaemper	 2010).	 The	 increase	 in	 tuba	 may	 represent	 the	 cytoskeletal	

changes	taking	place	within	the	fungus.		
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Obligate	 biotrophs	 are	 challenging	 to	 investigate:	 the	 infection	 process	 and	 their	 life	

cycle	are	closely	linked;	they	cannot	be	cultured	outside	of	the	host;	and	their	structures	

differ	 inside	 and	 outside	 of	 the	 host	 (Spanu	 and	 Kaemper	 2010).	 Dissecting	 the	

epidermal	layer	from	barley	leaves	increases	the	percentage	of	the	biomass	represented	

by	 the	 fungus	 (although	 this	 still	 remains	 small).	This	method	 reduces	 the	 competing	

signal	 from	 the	 host	 tissue,	 without	 losing	 B.	 graminis,	 which	 grows	 only	 within	

epidermal	 cells.	 Our	 study	 found	 different	 normalisation	 optima	 for	 different	 tissue	

substrates	 (Figure	 23	 and	 Table	 12).	 This	 result	 demonstrates	 the	 variation	 between	

cell	 types	 and	 tissue	 sources.	 The	 control	 genes	 act,	 h3	 and	 gapdh	 were	 used	 for	 B.	

graminis	 transcript	 abundance	 normalisation,	 as	 they	 were	 the	 least	 variable	 for	 the	

combined	epidermal	and	epiphytic,	and	epiphytic	qPCR	substrates	(Table	12).	

	

Hacquard	et	al.,	(2013),	found	act	and	tubb	to	be	the	two	most	stable	controls	for	barley	

(compared	 with	 gapdh,	 eukaryotic	 elongation	 factor	 1	 alpha,	 ubiquitin	 conjugating	

enzyme	e2,	and	tuba).	In	contrast,	we	found	that	the	least	stable	normalisation	control	

was	 tubb	 in	 epidermal	 material.	 These	 differences	 may	 be	 due	 to	 the	 differing	

experimental	 set-up,	 with	 different	 time-scales,	 control	 genes	 and	 sample	 materials	

(whole-leaf	instead	of	epidermal	tissue)	used.	The	changes	in	the	transcript	abundance	

of	some	genes	were	found	to	be	obscured	by	the	use	of	the	worst	control	(tub2b).	For	

csep0066	and	csep0264,	the	use	of	the	worst	control	produced	an	additional	secondary	

peak,	 which	 was	 not	 observed	 when	 other	 controls	 were	 used	 (Figure	 24).	 These	

differences	 in	 the	 observed	 results	 further	 emphasize	 the	 need	 for	 control	 genes	

appropriate	to	each	experiment,	and	to	the	investigation	in	question.	
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The	three	most	stable	controls	 identified	for	barley,	during	infection,	were	tuba2b,	ubi	

and	 gapdh.	 The	 least	 stable	 normalisation	 control	 was	 act	 (this	 contrasts	 with	 B.	

graminis,	where	act	was	one	of	the	most	stable).	The	two	normalisation	controls	atpase	

and	act	were	found	to	increase	at	48	hpi.	These	results	correlates	with	the	formation	of	

the	 haustorium,	 and	 extrahaustorial	 membrane	 formation	 (O'Connell	 and	 Panstruga	

2006,	 Panstruga	 and	 Dodds	 2009).	 The	 increase	 in	 transcript	 abundance	 of	 the	

cytoskeletal	genes	may	reflect	the	epidermal	cell	response	to	the	attempted	penetration	

by	the	pathogen	(Kobayashi	et	al.,	1992,	Gross	et	al.,	1993,	Both	et	al.,	2005).		

	

A	 recent	 investigation	 (Ferdous	 et	 al.,	 2015)	 also	 utilised	 the	 normalisation	 control	

genes	gapdh,	 tuba	 and	act,	 in	 addition	 to	microRNAs	 and	 small	 nucleolar	RNAs.	They	

investigated	 their	 use	 in	 barley	 under	 a	 variety	 of	 experimental	 conditions,	 including	

the	infection	cycle	of	Rhynchosporium	commune,	a	necrotrophic	fungal	pathogen.	In	our	

study,	we	found	that	of	the	three	genes	(gapdh,	tuba	and	act),	tuba	was	the	most	stably	

expressed,	 and	act	 the	 least;	whereas	Ferdous	et	al.,	(2015)	 found	act	 to	be	 the	most	

stable,	 and	 tuba	 the	 least.	 The	 difference	 in	 results	 may	 be	 due	 to	 the	 different	

experimental	conditions,	or	to	the	use	of	a	different,	necrotrophic,	 fungus.	Their	study	

found	 that	 different	 control	 genes	 were	 optimal	 under	 different	 experimental	

treatments,	and	that	the	order	of	stability	varied.	They	did,	however,	demonstrate	that	

an	ADP-ribosylation	 factor-1	 like	protein	and	small	nucleolar	RNAs	may	perform	well	

under	a	variety	treatments/conditions.	

	

Similar	expression	patterns	were	 found	for	 the	 four	CSEP	members	of	 family	21,	with	

peaks	 in	transcript	abundance	occurring	at	16	hpi,	and	24	or	48	hpi.	The	 former	time	
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point	represents	the	formation	of	the	penetration	peg,	and	the	latter	the	stages	between	

infection	and	the	formation	of	fungal	colonies	visible	to	the	naked	eye	on	the	surface	of	

the	leaf	(Both	et	al.,	2005).	The	occurrence	of	multiple	peaks	indicates	that	these	CSEPs	

may	 be	 involved	 in	 more	 than	 one	 part	 of	 the	 infection	 process.	 Overall,	 the	 results	

found	for	csep0064	and	csep0066	agree	with	those	previously	published	by	Pliego	et	al.,	

(2013).	 The	 secondary	 peak	 detected	 occurred	 at	 the	 same	 time-point	 (ca.	 24	 hpi)	

(Pliego	et	al.,	2013).	An	expression	maximum	was	also	seen,	in	epidermal	material,	for	

csep0064	and	csep0066	at	24	hpi.	The	patterns	of	transcript	abundance	were	different	

for	csep0065	and	csep0246	in	epidermal	and	epiphytic	material.	The	two	CSEPs	showing	

general	elevation	and	a	maximum	transcript	abundance	at	48	hpi,	 indicating	that	they	

take	part	 in	 the	 later	 infection	 stages,	 possibly	 aiding	 the	 spread	 of	 epiphytic	 hyphae	

across	the	surface	of	the	leaf	and	further	preventing	the	recognition	of	the	fungus.	

	

There	was	no	peak	in	transcript	abundance	seen	for	the	conidia	specific	gene,	indicating	

that	 the	 peak	 in	 transcript	 accumulation	 seen	 for	 the	 CSEPs	 in	 both	 epiphytic	 and	

epidermal	 substrate	 is	 biologically	 relevant,	 i.e.	 that	 it	 is	 not	 the	 product	 of	

normalisation	bias.	

	

The	 five	 barley	 genes	 identified	 through	 Y2H	 and	 BiFC	 as	 possible	 interactors	 for	

BEC1054	(Section	4)	were	also	investigated;	and	their	expression	patterns	were	found	

to	 be	 very	 varied	 (Figure	 25).	 The	 increase	 in	 expression	 for	 eef1a,	 eef1g	 and	 gst	

overlaps	with	the	peak	in	abundance	for	csep0064	seen	in	both	epidermal	and	epiphytic	

material.	 In	 contrast,	 the	 two	 PR	 proteins,	 when	 compared	 with	 pre-infection	

expression	levels,	were	found	to	be	reduced	at	almost	all	time-points.		
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5.6. Conclusion	

Six	 B.	 graminis	 housekeeping	 genes,	 and	 five	 barley	 genes,	 were	 investigated	 as	

potential	 qPCR	 normalisation	 controls	 for	 a	 B.	 graminis	 infection	 time	 course.	 The	

optimal	B.	graminis	housekeeping	genes	were	 found	 to	be	act,	gapdh	 and	H3;	 and	 for	

barley	gapdh,	ubi	and	tuba2b.	The	housekeeping	genes	investigated	were	shown	to	vary	

significantly	between	species	and	tissues,	demonstrating	the	necessity	 for	appropriate	

controls	 for	 each	 qPCR	 assay.	 The	 four	 members	 of	 CSEP	 family	 21	 showed	 diverse	

expression	patterns	in	epiphytic	and	epidermal	material.	In	epiphytic	material,	all	four	

CSEPs	showed	a	primary	peak	of	maximum	expression	at	six	hpi,	and	a	broad	secondary	

peak	 at	 24	 hpi	 (csep0066),	 or	 between	 24	 and	 48	 hpi	 (csep0064,	 csep0065	 and	

csep0264).	 In	 epidermal	 material,	 csep0064	 and	 0066	 demonstrated	 maximum	

transcript	abundance	at	24	hpi;	which	then	decreased	sharply	to	near	the	initial	level	by	

48	 hpi.	 In	 contrast,	 csep0065	 and	 csep0264	 increased	 in	 transcript	 abundance,	with	 a	

maximum	at	48	hpi,	followed	by	a	gradual	decrease	in	abundance	by	120	hpi.	

	

A	paper	has	been	published	on	the	work	conducted	in	this	chapter:	

	

Pennington,	H.	G.,	Linhan.,	L.	&	Spanu,	P.	D.	(2015).	Identification	and	selection	of	

normalisation	controls	for	quantitative	transcript	analysis	in	Blumeria	graminis.	

Molecular	Plant	Pathology.	DOI:	10.1111/mpp.12300	[Epub	ahead	of	print]	
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5.7. Further	work	

AIM:	To	 investigate	 the	relative	 transcript	abundance	of	 JIP60,	and	other	barley	RIPs,	

during	a	B.	graminis	time	course.	

OBJECTIVE:	To	determine,	 through	qPCR,	whether	 barley	RIPs	 such	 as	 JIP60	 are	up-

regulated	following	infection.	

REASONING:	 This	 information	would	 allow	 us	 to	 determine	whether	 RIPs,	 including	

JIP60,	 are	 transcribed	 in	 a	manner	 that	 changes	 following	 infection	with	B.	graminis.	

Any	 changes	 in	 transcription	 may	 help	 to	 elucidate	 their	 role	 in	 the	 plant	 defense	

response.	

	

AIM:	To	investigate	the	relative	transcript	abundance	of	the	proteins	identified	through	

the	re-analysis	of	the	LCMS	work.	

OBJECTIVE:	 To	 utilise	 qPCR	 to	 determine	 whether	 the	 proteins	 identified	 from	 the	

more	 stringent	 analysis	 of	 the	 IBSC	 database	were	 expressed	within	 a	 time-frame	 in	

which	they	could	interact	with	BEC1054.	

REASONING:	This	information,	in	conjunction	with	further	Y2H	experiments	conducted	

on	 these	 putative	 protein	 interactors	 (suggested	 in	 Further	Work	 Section	 4.7)	would	

allow	us	to	determine	if	they	are	expressed	at	the	same	time	as	BEC1054.	
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6. Ribonucleic	acid	(RNA)	interactors	of	BEC1054	

6.1. Introduction	

The	BECs	were	identified	through	proteomic	analysis	as	proteins	associated	specifically	

with	 host	 cells	 colonized	 by	 haustoria.	 Structural	 prediction	 of	 the	 two	 functionally	

validated	effectors,	BEC1011	and	BEC1054	determined	that	they	possess	an	RNase	like	

fold	 similar	 to	 a	 microbial	 RNase,	 but	 the	 catalytic	 active	 site	 residues	 required	 for	

RNase	 activity	 are	 absent	 (Bindschedler	 et	 al.,	 2011,	 Pedersen	 et	 al.,	 2012).	 This	

structure	 of	 BEC1054	 has	 recently	 been	 confirmed	 experimentally	 (R.	 Jones,	 pers.	

comm.).	 This	 structure	 has	 led	 to	 these	 proteins	 being	 referred	 to	 as	 RNase-Like	

Proteins	expressed	 in	Haustoria	 (RALPH)	effectors.	The	RALPHs	represent	 the	 largest	

group	 of	 effectors	 within	 the	 B.	 graminis	 f.sp.	 hordei	 genome.	 Their	 abundance,	 and	

proliferation,	 within	 a	 genome,	 which	 is	 otherwise	 losing	 genes	 (Spanu	 et	 al.,	 2010),	

indicates	that	they	play	a	key	role	in	the	infection	process.	

	

Previous	work	performed	within	the	host	laboratory	was	unable	to	identify	any	RNase	

activity	 for	 recombinant	 bec1054	 expressed	 in	 E.	 coli	 (Kwon	 2011).	 A	 general	

ribonuclease	 assay	 was	 performed,	 using	 methylene	 blue	 as	 an	 indicator	 of	 RNase	

activity.	 Methylene	 blue	 monomers	 intercalate	 into	 RNA,	 the	 degradation	 of	 which,	

through	alkaline	hydrolysis	or	enzymatic	digestion,	causes	the	absorbance	at	688nm	to	

decrease	(Pritchard	et	al.,	1966,	GreinerStoeffele	et	al.,	1996).	Not	only	did	induction	of	

recombinant	BEC1054	not	show	RNase	activity,	but	its	induction	was	associated	with	a	

relative	decrease	 in	RNase	activity.	This	 finding	 led	 to	 the	proposal	of	a	hypothesis	 in	

which	BEC1054	competes	with	RIPs	by	binding	to	rRNA	(Kwon	2011),	preventing	them	
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from	 cleaving	 a	 specific	 adenine	 base	 from	 the	 28S	 rRNA	 sugar-phosphate	 backbone	

(Endo	et	al.,	1988b,	May	et	al.,	1989,	Funatsu	et	al.,	1991).	

	

Ribonucleic	acid	binding	proteins	play	roles	in	all	parts	of	RNA	biology,	from	pre-mRNA	

editing	and	splicing	(Green	1991,	Rueter	et	al.,	1999),	transcription	and	polyadenylation	

(Wahle	 and	 Keller	 1992),	 to	 translation	 (Shatkin	 1985),	 transport	 and	 localisation	

(Kang	and	Cullen	1999),	and	degradation	of	RNA	(Gherzi	et	al.,	2004).	They	can	bind	to	

RNA	 with	 varying	 degrees	 of	 sequence	 specificity	 and	 affinity;	 and	 the	 correct	

functioning	of	 all	of	 these	networks	and	processes	 is	 essential	 as	 their	disruption	can	

lead	 to	 disease	 (Glisovic	 et	al.,	 2008).	Determining	RNA	 and	protein	 binding	 partners	

can	 help	 to	 further	 elucidate	 these	 networks;	 with	 similar	 techniques	 being	 used	 to	

screen	 many	 different	 RNA-protein	 interactions.	 We	 decided	 to	 investigate	 the	 RNA	

binding	 activity	 of	 BEC1054,	 based	 on	 the	 aforementioned	 hypothesis	 that	 it	may	 be	

binding	to	rRNA.	To	this	end,	a	model	of	the	28S	barley	RNA	was	created,	and	used	as	a	

template	for	the	synthesis	of	RNA	fragments	for	further	investigation.		

	 	

Multiple	 in	 vitro	 and	 in	 vivo	 techniques	 are	 available	 for	 the	 study	 of	 protein-RNA	

interactions;	 their	 combined	 use	 provides	 a	 powerful	 method	 for	 determining	

interactions	 of	 proteins	 with	 RNA.	 For	 example,	 protein-RNA	 interactions	 can	 be	

investigated	 in	vitro	by	differential	scanning	fluorimetry	(DSF).	This	 is	a	rapid	method	

which,	 once	 a	 purified	 soluble	 protein	 has	 been	 obtained,	 allows	 rapid	 screening	 of	

ligands	 that	 bind	 to	 the	 purified	 protein	 (Senisterra	 and	 Finerty	 2009).	 The	 method	

utilises	 a	 fluorescent	 dye	 which	 possesses	 an	 affinity	 for	 the	 protein’s	 hydrophobic	

regions,	 and	which	 is	 quenched	 in	 aqueous	 solution	 (Pantoliano	et	al.,	 2001,	 Lo	et	al.,	
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2004).	As	 the	 temperature	of	 the	solution	 is	 increased,	 the	protein	unfolds,	 leading	 to	

exposure	 of	 its	 hydrophobic	 core.	 This	 allows	 the	 dye	 to	 bind	 to	 the	 protein,	 and	 to	

unquench,	 leading	 to	 increased	 fluorescence.	The	Tm	 is	defined	as	 the	midpoint	of	 the	

protein	unfolding	(Niesen	et	al.,	2007).	The	comparison	of	the	Tm	with,	and	without,	the	

presence	 of	 a	 ligand	 can	 be	 compared.	 The	 change	 in	 the	 Tm	 relates	 to	 the	 binding	

affinity	of	the	protein	and	ligand;	and	can	therefore	be	used	as	an	indicator	that	binding	

occurred	(Senisterra	et	al.,	2006,	Vedadi	et	al.,	2006).	

 

Alternatively,	protein-RNA	interactions	can	be	investigated	in	yeast	using	a	yeast-three-

hybrid	 assay	 (Y3H;	 Figure	 26)(SenGupta	 et	 al.,	 1996).	 In	 this	 method,	 the	 RNA	 of	

interest	 is	 cloned	 into	 an	 RNA	 expression	 vector,	 which	 contains	 two	 RNA	 MS2	

sequences,	which	bind	 to	 the	bacteriophage	MS2	protein.	The	bait-RNA	 is	 targeted	 to	

the	DNA	binding	site	by	a	hybrid	protein,	encoded	in	the	yeast	chromosome,	composed	

of	 the	 LexA	 DNA	 binding	 domain	 and	 the	MS2	 coat	 protein.	 Interaction	 between	 the	

RNA	 of	 interest	 and	 the	 prey	 protein	 leads	 to	 the	 co-localisation	 of	 the	 activation	

domain	 to	 the	reporter	genes	 (Figure	26),	which	 in	 turn	 leads	 to	 the	activation	of	 the	

reporter	genes	his3	and	lacZ.	This	method	is	rapid,	as	RNA	sequences	can	be	cloned	into	

the	 pIIIA	 expression	 plasmid	 with	 relative	 ease.	 It	 has	 also	 been	 designed	 to	 be	

compatible	with	 the	prey-AD	 fusions,	 and	 the	plasmids	encoding	 them,	used	 for	most	

Y2H	assays.	We	were	 therefore	 able	 to	 re-use	 the	prey	plasmids	described	 in	 Section	

4.4.4.		
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Figure	 26:	 Basis	 of	 the	 yeast-three-hybrid	 system.	 A	 fusion	 RNA,	 composed	 of	 the	 RNA	 sequence	 under	

investigation	and	an	MS2	binding	site,	is	localised	to	the	DNA	binding	site	by	a	hybrid	protein,	encoded	in	the	

yeast	 chromosome,	 composed	of	 or	 the	 LexA	DNA	binding	 domain	 and	 the	MS2	 coat	 protein.	 A)	 shows	no	

interaction,	 where	 a	 second	 hybrid	 protein,	 composed	 of	 the	 GAL4	 activation	 domain	 (AD)	 and	 the	 RNA	

protein	of	 interest,	does	not	 interact	with	RNA.	 In	B),	The	RNA	binding	domain	of	the	second	hybrid	protein	

does	 interact	 with	 the	 RNA	 sequence	 of	 interest.	 The	 GAL4-AD	 is	 brought	 into	 close	 proximity	 with	 the	

regulatory	 region	 upstream	 of	 the	 reporter	 gene,	 leading	 to	 reporter	 gene	 transcription	 (SenGupta	 et	 al.,	

1996).	
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6.2. Aims	and	Objectives	

AIM:	To	create	a	sequence	and	structural	model	for	the	barley	28S	rRNA.	

OBJECTIVE:	 To	 use	 sequence	 information	 and	 ribosomal	 models	 available	 in	 the	

literature	and	online	to	create	a	model	of	the	28S	rRNA	for	use	in	further	experimental	

work.	

	

AIM:	To	investigate	the	interaction	of	BEC1054	with	RNA	and	DNA	in	vitro.	

OBJECTIVE:	To	use	DSF	to	determine	whether	BEC1054	interacts	with	RNA	or	DNA	in	a	

sequence	or	concentration	specific	manner.	

	

AIM:	 To	investigate	the	interaction	of	BEC1054	and	JIP60	with	rRNA.		

OBJECTIVE:	To	use	a	Y3H	assay	to	investigate	the	interaction	of	BEC1054	with	rRNA;	to	

investigate	the	interaction	of	JIP60	with	rRNA.	

6.3. Individual	Contributions	

The	Differential	 Scanning	 Fluorimetry	 experiments	were	 established	with	 the	 help	 of	

the	PhD	student	Giulia	Bonciani.	Giulia	had:	

1. determined	the	melting	point	for	BEC1054	in	sodium	acetate	buffer	

2. found	that	BEC1054	was	destabilised	by	RNA	corresponding	to	the	rat	SRL	

	

I	 obtained	 the	yeast-three-hybrid	kit	 from	 the	 laboratory	group	of	Dr	Wickens,	 at	 the	

University	of	Wisconsin-Madison.	Members	of	 their	 laboratory	 group	kindly	provided	

help	and	feedback	via	email.	
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6.4. Results	

6.4.1. Ribosomal	RNA	and	ribosomal	putative	interactors	

I	 created	a	model	 for	barley	28S	 rRNA	based	on	a	wheat	model	 from	GenBank,	using	

data	 from	 IBSC	 un-annotated	 454BacContigs	 (Figure	 27).	 The	 28S	 rRNA	 model’s	

secondary	 structures	 were	 predicted	 using	 RNAfold	 (http://rna.tbi.univie.ac.at/cgi-

bin/RNAfold.cgi),	 and	 viewed	 using	 PseudoViewer	 (http://pseudoviewer.inha.ac.kr/).	

Subsections	used	for	experimental	work	are	enlarged	in	Figure	28	and	Figure	29.		
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Figure	 27:	 Predicted	 secondary	 structure	 of	 the	 barley	 28S	 ribosomal	 RNA.	 A	 thermodynamic	 ensemble	

model	was	created	for	barley	ribosomal	RNA	using	Pseudoviewer	(http://pseudoviewer.inha.ac.kr/),	based	on	

secondary	 structures	 predicted	 using	 RNAfold	 (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi).	 Enlarged	

structures	 in	 coloured	 boxes	 highlight	 the	 sections	 used	 for	 experimental	 work;	 with	 their	 corresponding	

coloured	lines	marked	onto	the	ribosomal	RNA	map.	The	numbers	represent	the	bases,	where	“1”	is	the	first	5’	

base.		
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Figure	28:	Predicted	secondary	structure	of	 the	barley	28S	 ribosomal	RNA	subsection	A.	A	thermodynamic	

ensemble	model	was	created	for	barley	ribosomal	RNA	using	PseudoViewer	(http://pseudoviewer.inha.ac.kr/),	

based	 on	 secondary	 structures	 predicted	 using	 RNAfold	 (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi).	

Enlarged	 structures	 in	 coloured	 boxes	 highlight	 the	 sections	 used	 for	 experimental	 work;	 with	 their	

corresponding	coloured	lines	marked	onto	the	ribosomal	RNA	map.	The	numbers	represent	the	bases,	where	

“1”	is	the	first	5’	base.	
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Figure	29:	Predicted	 secondary	 structure	of	 the	barley	28S	 ribosomal	RNA	subsection	B.	A	thermodynamic	

ensemble	model	was	created	for	barley	ribosomal	RNA	using	PseudoViewer	(http://pseudoviewer.inha.ac.kr/),	

based	 on	 secondary	 structures	 predicted	 using	 RNAfold	 (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi).	

Enlarged	 structures	 in	 coloured	 boxes	 highlight	 the	 sections	 used	 for	 experimental	 work;	 with	 their	

corresponding	coloured	lines	marked	onto	the	ribosomal	RNA	map.	The	numbers	represent	the	bases,	where	

“1”	is	the	first	5’	base.	

	

6.4.2. Differential	Scanning	Fluorimetry	(DSF)		

I	synthesized	three	RNA	fragments	(Table	6)	in	vitro	from	primer	templates	(Figure	30):	

rat	 28S	 SRL,	 barley	 28S	 SRL	 (bases	 3014-3044	 on	 the	 barley	 28S	model),	 and	 barley	

section	76-114.	These	regions	were	selected	as	they	contain	the	SRL,	a	section	of	RNA	

predicted	to	form	a	stem-loop	close	to	the	SRL,	and	a	section	of	RNA	from	close	to	the	5’	

end	of	the	ribosomal	RNA	(where	the	SRL	is	close	to	the	3’	end).	 	The	latter	two	were	

intended	 as	 controls,	 to	 determine	 whether	 BEC1054	 was	 binding	 to	 stel-loop	 RNA	

structures,	or	to	sequences	from	near	to	the	SRL.	
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Figure	30:	 Ribonucleic	 acid	 fragments	 synthesized	by	 in	 vitro	 transcription.	RNA	samples	were	synthesized	

using	the	MEGAshortscript	kit	(Applied	Biosystems,	Paisley,	UK),	and	100ng	of	the	resulting	product	for	each	

synthesis	 reaction	 run	on	16%	denaturing	acrylamide	gels	with	7%	urea	and	1xTBE.	Numbers	above	 the	gel	

represent	 the	 base	 number	 within	 the	 barley	 28S	 ribosomal	 RNA	model	 (with	 the	 first	 base	 at	 the	 5’	 end	

numbered	 “1’).	 The	 abbreviations	 “SRL”	 refer	 to	 the	 sarcin-ricin	 loop,	 and	 “T7”	 to	 the	 T7	 RNA	 synthesis	

promoter.	Bands	were	visualized	using	SYBR	Gold	nucleic	acid	gel	stain.	
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Figure	 31:	 Calculating	 the	 melting	 point	 of	 Blumeria	 Effector	 Candidate	 1054	 (BEC1054).	 Sigmoidal	 dose-

response	 (variable	 slope)	 curves	 (shown	 as	 black	 lines)	were	 fitted	 to	melting	 curves	 for	 BEC1054	 (circles),	

BEC1054	with	1	µM	Barley	SRL	3014-3044	+T7	primer	(triangles)	or	BEC1054	with	20	µM	Barley	SRL	3014-3044	

+T7	 primer	 (squares).	 Dashed	 lines	 show	 the	 inflection	 point	 of	 the	 sigmoidal	 curves,	 which	 indicate	 the	

“melting	point”	of	BEC1054.	

	

I	investigated	the	RNA	and	DNA-binding	ability	of	BEC1054	in	vitro	through	DSF	(Figure	

31),	 using	 synthesized	RNA	 (Figure	 32).	 A	 concentration-dependent	 decrease	 (Figure	

32)	 in	melting	 temperature	was	 shown	 by	 BEC1054	with	 all	 three	 RNA	 ligands.	 The	

three	 interactions	 showing	 very	 similar	 decreases	 in	 temperature	 (Figure	 32	 D).	

Together,	 the	 results	 indicated	 that	 BEC1054	 bound	 to	 all	 RNA	 species,	 but	 does	 not	

show	 any	 particular	 selectivity	 for	 the	 SRL	 RNA	 under	 the	 conditions	 used	 in	 this	

experiment.	
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Figure	32:	Blumeria	Effector	Candidate	1054	(BEC1054)	binds	to	RNA.	Graphs	show	the	mean	melting	point	

for	10	µM	BEC1054	with	 the	 ligands	 indicated	on	 the	bottom	right,	A)	“barley	SEL	3014-3044”	 indicates	 the	

barley	 28S	 sarcin-ricin	 loop	 RNA	 bases	 3014-3044;	 B)	 “Barley	 control	 76-114”	 indicates	 a	 section	 of	 barley	

ribosomal	RNA	selected	from	within	the	28S	section;	C)	“Rat	SRL”	indicates	the		rat	sarcin-ricin	loop	RNA;	and	

D)	shows	the	four	graphs	superimposed	upo	each	other.	

	 	

A)	 B)	

C)	 D)	
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I	investigated	the	ability	of	BEC1054	to	bind	single	stranded	DNA	in	vitro	through	DSF	

(Figure	 33).	 Addition	 of	 HSP82	 and	 the	 truly	 random	 primer	

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN+T7	(where	T7	is	the	RNA	promoter	required	

on	 DNA	 primers	 for	 the	 initiation	 of	 RNA	 synthesis)	 destabilised	 BEC1054,	 with	

increasing	 concentrations	 causing	 a	 greater	 degree	 of	 destabilization.	 In	 contrast,	

addition	of	three	DNA	primers	for	28S	ribosomal	sections,	“barley	SRL	3014-3044+T7”,	

“section	76-114+T7”	and	“rat	SRL	DNA+T7”	(	

Supplementary	Table	22)	caused	a	decrease	in	melting	temperature	for	BEC1054	at	low	

concentrations	 (i.e.	 they	 destabilised	 BEC1054)(Figure	 32).	 Increasing	 the	 ligand	

concentration	then	increased	the	melting	temperature	of	BEC1054,	indicating	that	they	

stabilized	it,	and	for	the	rat	28S	SRL	and	barley	SRL	3014-3044,	the	final	melting	point	

was	 just	 above	 that	 of	BEC1054	alone	 (Figure	33).	The	 synthesized	RNA	 (section	76-

114),	used	as	a	control,	destabilised	BEC1054	as	before,	but	in	a	manner	that	was	slight	

when	compared	with	the	shift	caused	by	DNA,	indicating	that	these	results	were	not	due	

to	differences	in	experimental	conditions.		

	

I	investigated	the	ability	of	BEC1054	to	bind	double	stranded	DNA	in	vitro	(Figure	34).	

Double	stranded	DNA	was	created	through	mixing	a	primer	encoding	the	T7	sequence,	

and	a	primer	encoding	 the	reverse	complement	of	T7.	As	 the	concentration	of	double	

stranded	 DNA	 increased,	 the	 melting	 temperature	 decreased	 (i.e.	 BEC1054	 was	

destabilised).		
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Figure	33:	Blumeria	 Effector	Candidate	1054	 (BEC1054)	binds	 single	 stranded	DNA.	Graphs	show	the	mean	

melting	point	 for	10	µM	BEC1054	with	 the	 ligands	 indicated	on	 the	bottom	right:	 “Rat	28S	SRL	DNA”	 is	 the	

primer	 for	 the	 rat	 28S	 sarcin-ricin	 loop;	 “Barley	 76-114	 RNA”	 is	 a	 5’	 section	 of	 barley	 ribosomal	 RNA	 from	

within	the	28S	subunit,	“Barley	3014-3044”	is	the	28S	region	containing	the	sarcin-ricin	loop;	“NNNNNN	DNA”	

is	a	random	DNA	primer	with	30	“N”	bases,	and	HSP82	DNA	is	a	“forward	primer”	used	to	amplify	heat	shock	

protein	82;	and	in	all	cases	“T7”	represents	the	T7	RNA	promoter	required	on	DNA	primers	for	RNA	synthesis.	

Graph	A)	shows	the	DNAs	with	which	BEC1054	decreased	and	then	increased	in	melting	point	(Rat	SRL	DNA+	

T7,	Barley	76-114	DNA+T7	and	Barley	3014-3044	DNA+T7);	B)	shows	the		DNAs	and	RNA	with	which	BEC1054	

decreased	 in	melting	point	 (NNNN	DNA+T7,	HSP82	DNA+T7	and	Barley	76-114	RNA(;	 and	C)	 shows	 the	 two	

graphs	superimposed.	 	

A)	 B)	

C)	
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Figure	34:	Interaction	of	Blumeria	Effector	Candidate	1054	(BEC1054)	with	double	stranded	DNA.	The	graph	

show	the	mean	melting	point	for	10	µM	BEC1054	with	double	stranded	DNA,	encoding	the	T7	RNA	synthesis	

promoter	and	its	reverse	complement.		

6.4.3. Yeast-three-hybrid	(Y3H)	

I	used	a	yeast-three-hybrid	system	to	determine	whether	BEC1054	interacted	with	RNA	

in	 a	 sequence-specific	manner	 in	 yeast.	 The	proteins	BEC1054	and	 JIP60ml	 (Table	4)	

were	 expressed	 on	 the	 expression	 vector	 pDEST22,	 RNA	 was	 expressed	 on	 the	

pIIIA/MS2-2	vector,	and	the	positive	control	protein	on	the	pAD	vector.		

	

The	vector	pIIIA/MS2-2	contains	a	bacteriophage	MS2	binding	site,	which	is	localised	to	

the	DNA	binding	site	by	a	hybrid	protein,	encoded	in	the	yeast	chromosome,	composed	

of	 the	 LexA	 DNA	 binding	 domain	 and	 the	 MS2	 coat	 protein.	 The	 RNA	 sequence	 of	

interest	 is	 expressed	 on	 the	 pIIIA/MS2-2	 plasmid,	 with	 a	 3’	 tail	 of	 repeat	 MS2	

sequences.	 Interaction	between	 the	RNA	of	 interest	 and	 the	prey	protein	 leads	 to	 the	

localisation	 of	 the	 activation	 domain	 to	 the	 reporter	 genes	 (Figure	 26).	 The	 plasmids	

pDEST22	and	pAD	both	contain	a	transcriptional	activation	domain;	when	localised	to	
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the	reporter	gene	promoter,	this	will	drive	expression	of	the	reporters	his3	and	lacZ	in	

the	 genome	 of	 yeast	 strain	 YBZ1	 (SenGupta	 et	 al.,	 1996,	 MacDonald	 2001).	 A	 low	

transformation	 success	 rate,	 and	 poor	 growth,	 were	 observed	 for	 yeast	 transformed	

with	BEC1054,	as	had	happened	for	the	Y2H	assay	(Figure	11).			

	

As	 was	 the	 case	 for	 the	 Y2H	 assay,	 β-galactosidase	 activity	 indicates	 the	 level	 of	

expression	of	 the	 lacZ	reporter	gene.	The	maximum	conversion	rate	 (Vi)	of	CPRG	was	

again	used	as	an	indicator	of	a	reaction	(Figure	35),	but	this	time	between	the	bait	RNA	

and	the	prey	protein.	Yeast	lines	containing	pDEST22	and	pIIIA/IRE-MS2	were	used	as	

the	negative	control.	Further	negative	controls	were	comprised	of	BEC1054	or	JIP60ml	

bound	to	the	activation	domain	(pEXP22/BEC1054	or	pEXP22/JIP60ml),	and	expressed	

with	either	a	control	rRNA	section,	or	IRE	(pIIIA/control_rRNA-MS2	or	pIIIA/IRE-MS2).	

Interactions	 were	 performed	 using	 pEXP22/BEC1054	 or	 pEXP22/JIP60ml,	 and	

pIIIA/SRL-MS2	or	pIIIA/rRNA_control-MS2	(Table	7).	

	

The	 β-galactosidase	 activity	 was	 higher	 than	 the	 negative	 control	 for	 almost	 all	

combinations	of	BEC1054	or	JIP60ml	with	bait	RNA	(Figure	35),	as	can	be	seen	by	the	

elevation	 of	 the	 boxplots.	 This	 increase	 was	 statistically	 significant	 for	 all	 the	 lines	

which	were	 elevated	 compared	with	 the	 negative	 control	 (Supplementary	 Table	 32).	

The	only	combination	for	which	this	was	not	the	case	was	for	BEC1054	with	SRL	rRNA,	

where	 the	 Vi	 was	 lower	 than	 the	 negative	 control,	 although	 the	 two	 were	 not	

significantly	 different	 (Supplementary	 Table	 32).	 These	 results	 indicate	 that	 both	

BEC1054	and	JIP60ml	bind	to	RNA	in	yeast	 in	a	non-sequence	specific	manner	except	
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for	 the	 interaction	 of	 BEC1054	 with	 the	 SRL.	 The	 mean	 β-galactosidase	 activity	 was	

lower	for	BEC1054	than	for	JIP60ml	in	all	RNA-prey	combinations	(Figure	35).	

	

I	further	analysed	the	transformed	yeast	lines	through	plating	onto	media	containing	10	

mM	 3AT,	 and	 lacking	 histidine.	 Growth	 on	 media	 containing	 3AT	 indicates	 an	

interaction	between	the	bait	RNA	and	the	prey	protein.	The	strong	positive	control	grew	

well	on	media	containing	3AT,	whereas	the	negative	control	did	not.	Both	BEC1054	and	

JIP60ml	 formed	a	 limited	number	of	colonies	on	the	3AT	media	when	co-transformed	

with	 plasmids	 encoding	 the	 SRL,	 but	 not	 with	 the	 other	 RNA	 controls.	 The	 selective	

media	 assay	 results	 indicate	 that	 BEC1054	 and	 JIP60ml	may	 interact	 in	 a	 sequence-

specific	manner	in	yeast.	
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Figure	35:	Both	 fungal	Blumeria	Effector	Candidate	1054	 (BEC1054)	and	barley	 Jasmonate	 Induced	Protein	

60	 (JIP60)	 show	 evidence	 of	 binding	 RNA	 in	 yeast.	 A	 yeast-three-hybrid	 system	 was	 used	 to	 determine	

whether	 the	RNase	 like	 BEC1054,	 and	 the	 barley	RNase	 JIP60	 bound	RNA	 in	 a	 sequence-specific	manner	 in	

yeast.	For	each	yeast	line	under	investigation,	the	name	of	the	protein	is	given	first,	and	the	RNA	second.	The	

abbreviation	“SRL”	stands	for	ribosomal	large	subunit	“Sarcin-Ricin	Loop”,	“control”	in	the	position	of	the	RNA	

for	 a	 different	 section	 of	 the	 ribosomal	 large	 subunit,	 “IRE”	 for	 the	 RNA	 Iron	 Response	 Element,	 “positive	

control”	for	Iron	Regulatory	Protein	1	(IRP1)	with	the	interacting	IRE	RNA	sequence,	and	“negative	control”	for	

empty	pDEST22	with	pIIIA/IRE-MS2	.	The	proteins	BEC1054	and	JIP60	were	expressed	on	the	expression	vector	

pDEST22,	RNA	was	expressed	on	the	pIIIA/MS2-2	vector,	and	the	positive	control	protein	on	the	pAD	vector.	

Left:	Growth	promotion	 in	 the	presence	of	 3AT	 (3-Amino-1,2,4-triazole)	 indicates	 an	 interaction.	Right:	 The	

thick	 line	 denotes	 the	median	 of	 each	 boxplot,	 the	 boxes	 represent	 the	 quartiles,	maximum	 and	minimum	

values	are	 shown	by	 the	error	bars,	 and	outliers	 are	 indicated	by	 circles.	Games-Howell	 posthoc	 tests	were	

used	to	determine	whether	the	mean	Vi	(the	maximum	rate	of	conversion	of	the	yellow	substrate	CPRG	to	the	

red	product	chloramphenicol	red	(and	D-galactose))	was	significantly	different	for	different	yeast	lines	(line	1	

and	 line	2).	Significant	difference	 is	 indicated	by	 the	 letters	“a”,	 “b”,	 “c’	and	“d’	 (p>0.05),	with	bars	 labelled	

with	different	letters	being	significantly	different.	The	circle	for	the	positive	control	represents	an	outlier.	Six	

independently	transformed	colonies	were	used	for	each	yeast	line.			
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6.5. Discussion	

6.5.1. Barley	28S	rRNA	model	

At	the	beginning	of	this	study,	no	model	for	the	barley	28S	rRNA	was	available.	I	created	

a	28S	rRNA	model	based	on	a	wheat	model	(Armache	et	al.,	2010),	using	data	from	IBSC	

un-annotated	454BacContigs	(Figure	27,	Figure	28	and	Figure	29).	This	model	was	used	

as	the	theoretical	template	for	the	design	and	synthesis	of	RNA	fragments	for	DSF;	and	

for	the	design	of	primers	used,	via	PCR,	to	amplify	the	sections	used	in	the	Y3H	assay.	

6.5.2. Differential	Scanning	Fluorimetry	(DSF)	

	The	 DSF	 assay	 is	 widely	 used	 in	 high-throughput	 screening	 for	 ligands	 which	 bind	

strongly	to	proteins	(Cummings	et	al.,	2006);	and	to	determine	protein	function	(Carver	

et	 al.,	 2005).	 I	 therefore	 used	 this	 assay	 to	 determine	 whether	 BEC1054	 bound	 to	

nucleotides	in	vitro.	

	

In	this	study,	I	found	that	BEC1054	interacted	with	RNA,	decreasing	thermal	stability	in	

a	 concentration-dependent	 manner	 (Figure	 32).	 This	 result	 was	 not	 found	 to	 be	

sequence	 specific,	 as	 it	 interacted	 with	 three	 different	 RNA	 sequences	 in	 the	 same	

manner.	

	

The	 decrease	 in	 thermal	 stability	 contrasted	 with	 the	 usual	 findings	 for	 equilibrium	

binding	 ligands,	 where	 the	 ligand	 increases	 thermal	 stability	 with	 increased	 ligand	

concentration	(Niesen	et	al.,	2007,	Cimmperman	et	al.,	2008).	A	thermodynamic	model	

has	been	proposed,	where	the	ligand	binds	to	the	denatured	(unfolded)	native	protein;	

explaining	the	destabilization	effect	(Cimmperman	et	al.,	2008).		
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The	RNA	binding	domain,	(also	called	the	ribonucleoprotein	domain	or	RNA	recognition	

motif	 (Clery	 et	 al.,	 2008))	 is,	 biochemically	 and	 structurally,	 the	 most	 studied	 RNA-

binding	 domain	 (Maris	 et	 al.,	 2005).	 The	 two	 effectors	 BEC1054,	 and	 its	 paralog	

BEC1011,	possess	the	structure	of	an	RNA	binding	domain,	with	four	β-sheets	and	two	

α-helices	(Clery	et	al.,	2008,	Bindschedler	et	al.,	2011,	Pedersen	et	al.,	2012).	The	RNA	

binding	domain	demonstrates	a	wide	range	of	ligand	recognition:	it	is	able	to	bind	with	

high	or	 low	affinity	and	specificity;	 to	 interact	with	varied	 lengths	of	RNA;	 to	 interact	

with	multiple	partners	 simultaneously;	 to	 interact	with	proteins;	 and	 to	 interact	with	

DNA	(reviewed	by	Clery	et	al.,	2008).	It	is	therefore	possible	that	BEC1054	may	bind	to	

both	DNA	and	RNA	in	vivo.	

	

In	 contrast	with	 the	RNA-binding	 results,	BEC1054	was	 found	 to	be	destabilised,	 and	

then	stabilized	by	a	DNA	 ligand,	with	 the	 final	 stabilization	being	significantly	greater	

than	 BEC1054’s	 initial	 melting	 temperature.	 Interestingly,	 this	 binding	 behavior	 was	

only	seen	for	ribosome-related	DNA	sequences.	It	is	not	clear	what	these	results	mean,	

but	 they	 may	 indicate	 that	 BEC1054	 is	 binding	 to	 ribosome	 related	 nucleotide	

sequences.	To	rule	out	whether	this	result	could	be	due	to	the	primer	forming	a	primer-

dimer	 at	 higher	 concentrations,	 and	 therefore	 no-longer	 interacting	 with	 BEC1054,	 I	

tested	 the	 interaction	of	BEC1054	with	T7	double	 stranded	DNA.	 I	 found	 that	double	

stranded	DNA	destabilised	BEC1054,	and	that	the	result	was	concentration	dependent	

(Figure	34).	Other	proteins	containing	an	RNA	binding	domain	have	been	shown	to	bind	

to	 single	 stranded	 DNA	 (Ding	 et	 al.,	 1999,	 Enokizono	 et	 al.,	 2005).	 This	 would	 not,	
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however,	explain	why	BEC1054	was	stabilized	at	higher	concentrations:	this	remains	to	

be	determined.	

	

The	RIPs	α-	and	β-momorcharin	have	been	shown	to	possess	RNase	(Mock	et	al.,	1996),	

DNase	 (Go	 et	 al.,	 1992)	 (where	 nuclease	 activity	 is	 defined	 as	 the	 cleavage	 of	 a	

phosphodiester	bond	from	RNA	or	DNA),	and	N-glycosidase	(defined	as	the	cleavage	of	

the	 glycosidic	 bond	 linking	 an	 oligosaccharide	 to	 an	 asparagine	 side	 chain	 amide)	

activity	(Fong	et	al.,	1996)		in	addition	to	their	RIP	activity.	This	DNase	activity	has	also	

been	shown	for	other	RIPs,	including	(but	not	limited	to):	ricin	A,	phytolaccin	and	shiga	

toxin	 (Obrig	 et	 al.,	 1985);	 alpha-	 and	 beta-pisavins	 (Lam	 et	 al.,	 1998);	 luffin,	

cinnamomin	and	camphorin	(Ling	et	al.,	1994)	and	trichosanthin	(Li	et	al.,	1991).	This	

DNA-degrading	 activity	 has	 been	 shown	 to	 contribute	 to	 the	 cytotoxicity	 of	 RIPs	

(Nicolas	et	al.,	1997).		

	

It	 has	been	 suggested	 that	 contamination	with	nucleases	may	have	 caused	 the	DNase	

activity	 of	 some	 RIPs	 (Day	 et	 al.,	 1998).	 Other	 studies	 have	 gone	 to	 great	 length	 to	

confirm	 that	 the	 alternative	 RNase	 activities	 seen	 are	 really	 related	 to	 the	 RIP	 in	

question	(Fong	et	al.,	2000).	The	DSF	assays	performed	 in	 this	study	were	done	using	

BEC1054	purified	from	E.	coli;	and	hence	the	results	are	unlikely	to	be	due	to	RIPs	from	

the	plant	or	the	fungus,	as	neither	was	present	during	the	synthesis	of	BEC1054.	

6.5.3. Yeast-three-hybrid	(Y3H)	and	RNA	interactions	

Complex	interactions	occur	within	the	host	cell	which	cannot	be	mimicked	in	vitro.	The	

interaction	 of	 proteins	 and	 RNA	 within	 cells	 can	 be	 influenced	 by	 factors	 including:	

intracellular	 localisation;	 ion	 concentrations;	 the	 relative	 concentrations	of	 competing	
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proteins	 or	 RNAs;	 phosphorylation	 of	 the	 RNA	 binding	 protein;	 or	 the	 secondary	

structure	 of	 the	 RNA	 (which	 itself	 can	 be	 influenced	 through	 interaction	 with	 other	

RNA-binding	proteins)	(Huranova	et	al.,	2009).	Performing	RNA-protein	interactions	in	

yeast	 provides	 a	 compromise	 between	 in	 vitro	 and	 in	 planta	 assays.	 Yeast-N-hybrid	

systems	 allow	 the	 experiment	 to	 be	 performed	 in	 a	 eukaryotic	 cell,	which	provides	 a	

more	realistic	environment,	whilst	still	providing	an	easily	manipulatable	and	scorable	

system	(Hook	et	al.,	2005)	(when	compared	with	in	planta	systems,	which	can	be	more	

costly	in	terms	of	both	materials	and	effort).	

	

The	 Y3H	 system	 has	 been	 used	 to	 investigate	 numerous	 protein-RNA	 interactions	 in	

yeast	 (SenGupta	 et	al.,	 1996,	 Sengupta	 et	al.,	 1999,	 Bernstein	 et	al.,	 2002,	Hook	 et	al.,	

2005).	In	our	study,	a	Y3H	assay	was	used	to	investigate	whether	BEC1054	and	JIP60ml	

bound	to	RNA	in	yeast	(which	is	likely	to	represent	closer	to	 in	planta	conditions	than	

DSF,	which	is	in	vitro).	Our	β-galactosidase	assay	results	(Figure	35)	demonstrated	that	

BEC1054	did	bind	to	RNA	in	yeast,	as	did	JIP60ml.	The	mean	β-galactosidase	activity	for	

BEC1054	was	 lower	 than	 for	 JIP60ml	 in	 all	 RNA-prey	 combinations.	 This	 result	may	

indicate	 that	 BEC1054	 is	 binding	more	weakly	 to	 RNA	 than	 JIP60ml;	 alternatively,	 it	

may	further	indicate	that	BEC1054	is	affecting	translation,	as	was	hypothesised	for	the	

Y2H	assay	(see	Section	4.5	for	details).		

	

When	BEC1054	was	paired	with	SRL	RNA,	the	β-galactosidase	activity	was	lower	than	

the	 negative	 control	 (Figure	 35).	 No	 relative	 β-galactosidase	 activity	 curve	 for	 the	

cleavage	 of	 chlorophenolred-ß-D-galactopyranoside	 (CPRG)	 into	 the	 red	 product	

chloramphenicol	red	(and	D-galactose)	occurred.	The	values	varied	around	the	level	of	



159	

	

the	blank	(the	readings	for	the	buffer,	without	yeast	lysate),	with	no	clear	trend.	It	is	not	

clear	what	 these	results	mean.	They	may	 indicate	 that	BEC1054	 is	somehow	affecting	

transcription	 of	β-galactosidase	when	 localised	 to	 the	 reporter	gene;	or	 that	BEC1054	

has	 a	 greater	 effect	 upon	 translation	when	 paired	with	 SRL	RNA;	 or	 that	 some	 other	

reaction	has	taken	place.	

	

For	 the	 3AT	 selective	media	 assay,	 only	 the	 RNA-prey	 pairing	 of	 BEC1054	 with	 SRL	

RNA,	 or	 JIP60ml	 with	 SRL	 RNA	 produced	 yeast	 colonies.	 In	 contrast	 with	 the	 β-

galactosidase	assay	 results,	 these	 indicate	 that	 the	 interaction	of	BEC1054	or	 JIP60ml	

with	 these	 RNA	 sections	 may	 be	 stronger	 than	 for	 the	 other	 RNA	 sections.	 The	 two	

proteins	may	therefore	be	binding	to	SRL	RNA	with	a	higher	specificity	than	to	the	other	

RNA	 fragments;	 indicating	 that	 this	 may	 be	 the	 real	 RNA	 target.	 As	 mentioned	

previously,	many	RIPs	have	been	shown	to	possess	multiple	activities,	including	DNase	

(Go	 et	 al.,	 1992),	 RNase	 (Mock	 et	 al.,	 1996)	 and	 N-glycosidase	 (Fong	 et	 al.,	 1996)	

activity.	 The	 proteins	 JIP60ml	 and	 BEC1054	 may	 well	 bind	 RNA,	 in	 the	 manner	 of	

trichosanthin,	 which	 transiently	 binds	 human	 immunodeficiency	 virus	 type	 1	 long	

terminal	 repeats	before	depurinating	 them	(Zhao	et	al.,	 2010).	Other	proteins	may	be	

involved	 in	 the	 interaction,	 and	 may	 help	 to	 determine	 the	 specificity	 beyond	 the	

binding	of	JIP60	and	BEC1054	to	RNA;	and	that	these	proteins	would	need	to	be	present	

for	the	specificity	to	be	more	easily	discerned	(see	Section	4.5	for	further	discussion	of	

BEC1054	 with	 multiple	 protein	 partners).	 Alternatively,	 BEC1054	 may	 bind	 to	 a	

different	RNA	sequence	which	has	not	yet	been	identified.		
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6.6. Conclusion	

The	 RNase-like	 effector	 BEC1054	 was	 found	 to	 interact	 with	 oligo(poly)nucleotides	

both	in	yeast,	and	 in	vitro.	Our	 in	vitro	results	suggested	that	BEC1054	interacted	with	

RNA	in	a	non-sequence	specific	manner,	and	with	DNA	in	a	sequence-specific	manner.	

My	β-galactosidase	results	from	yeast	indicated	that	both	BEC1054	and	JIP60ml	bound	

RNA,	 albeit	 very	weakly;	 and	 the	 selective	media	 assay	 indicated	 that	 this	 interaction	

may	be	specific	for	the	region	of	the	ribosome	containing	the	SRL.	Taken	together,	these	

results	provide	some	evidence	supporting	our	original	hypothesis	that	BEC1054	may	be	

binding	to	ribosomal	RNA,	as	they	show	evidence	for	nucleotide	binding	activity	in	vitro,	

and	evidence	for	BEC1054	binding	to	RNA	in	vivo.		
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6.7. Further	work	

AIM:	To	utilise	the	Y3H	system	to	test	a	series	of	mutants	of	BEC1054,	in	an	attempt	to	

identify	the	nucleotides	required	for	binding	RNA.	

OBJECTIVE:	To	create	a	series	of	BEC1054	mutants,	and	to	screen	them	using	the	Y3H	

system,	to	determine	whether	they	interact	with	RNA	in	yeast.	

REASONING:	The	Y3H	system	provides	a	good	compromise	between	a	 rapidly	usable	

system	for	screening	multiple	protein	constructs,	and	the	use	of	an	in	vivo	system,	which	

provides	 a	 more	 realistic	 environment	 in	 which	 the	 reactions	 can	 take	 place.	

Identification	 of	 the	 amino	 acids	 required	 for	 the	 interaction	 of	 BEC1054	 with	 RNA	

would	provide	us	with	a	useful	tool	for	further	experimental	work.	

	

AIM:	To	screen	a	range	of	RNA	targets	for	BEC1054.	

OBJECTIVE:	To	create	barley	RNA	 library,	 and	 to	 screen	 it	via	Y3H	with	BEC1054,	 to	

determine	whether	BEC1054	interacts	with	any	of	the	RNAs	in	yeast.	

REASONING:	Screening	barley	RNA	 library	would	allow	us	 to	 identify	additional	RNA	

targets	for	BEC1054.	

	

AIM:	To	investigate	the	binding	of	BEC1054	to	RNA	in	planta.	

OBJECTIVE:	 To	 utilise	 techniques	 such	 as	 RNA	 Fluorescence	 In	 Situ	 Hybridization	

(FISH)	to	determine	whether	BEC1054	interacts	with	ribosomal	RNA	in	plants,	and	to	

utilise	 the	 aforementioned	 mutants	 of	 BEC1054,	 to	 help	 determine	 the	 amino	 acids	

required	for	binding	RNA.	

REASONING:	 In	planta	interactions	would	provide	further	validation	of	the	interaction	

between	BEC1054	and	ribosomal	RNA.	
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AIM:	To	determine	whether	BEC1054	binds	to	ribosomes	in	planta.	

OBJECTIVE:	To	express	BEC1054	with	a	 fluorescent	 tag	 in	Nicotiana	benthamiana,	 to	

perform	 a	 ribosome	 extraction,	 and	 to	 determine	 whether	 the	 ribosomal	 pellet	

fluoresces.	The	ribosomal	40S	16-GFP	could	be	used	as	a	positive	control,	with	a	GFO	

only	protein	as	the	negative	control.	

REASONING:	This	would	provide	direct	evidence	for	BEC1054	binding	to	the	ribosome,	

and	as	such	would	help	to	validate	our	working	hypothesis.		

	

AIM:	To	interact	28S	rRNA	with	BEC1054	in	vitro.	

OBJECTIVE:	To	extract	ribosomes	from	barley	seedlings	using	a	sucrose	gradient,	and	

to	then	extract	the	RNA	from	the	purified	ribosomes.	The	ribosomal	RNA	could	then	be	

used	 for	direct	 interactions	with	BEC1054	 in	vitro,	 for	example	protein	NMR	chemical	

shift	mapping.		

REASONING:	 This	 would	 provide	 further	 evidence	 for	 BEC1054	 binding	 to	 the	

ribosomal	RNA.		
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7. Expression	of	the	Blumeria	effector	BEC1054	in	planta		

7.1. Introduction	

Two	 strains	 of	 B.	 graminis,	 f.sp.	 hordei	 and	 f.sp.	 tritici,	 maintained	 within	 the	 host	

laboratory,	 infect	 barley	 and	 wheat	 respectively.	 They	 are	 each	 unable	 to	 infect	 the	

other	host.	Triticum	aestivum	 cv.	Fielder	had	previously	been	stably	 transformed	with	

“wobble	“BEC1054	(wbec1054)	through	Agrobacterium-mediated	transformation	at	the	

National	 Institute	 of	 Agricultural	 Botany	 (NIAB,	 Cambridge).	 The	 wobble	 BECs	 are	

synthetic	genes	which	do	not	possess	a	signal	peptide,	so	 that	 they	remain	within	 the	

plant	cytosol,	and	which	have	silent	“wobble”	mutations	which	minimize	the	nucleotide	

sequence	 identity	with	the	wild-type	barley	genes.	The	wobble	mutations	were	added	

so	that	they	would	be	insensitive	to	RNA	interference	directed	silencing,	in	order	to	test	

complementation	in	the	Host	Induced	Gene	Silencing	experiments	(Pliego	et	al.,	2013).		

	

Our	hypothesis	is	that	BEC1054	competes	with	RIPs	by	binding	to	rRNA	(Kwon	2011),	

preventing	 them	 from	 cleaving	 a	 specific	 adenine	 base	 from	 the	 28S	 rRNA	 sugar-

phosphate	 backbone	 (Endo	 et	 al.,	 1988b,	 May	 et	 al.,	 1989,	 Funatsu	 et	 al.,	 1991).	 The	

RIPs,	 such	 as	 JIP60,	 are	 N-glycosidases	 which	 depurinate	 the	 large	 subunit	 rRNA	

through	the	cleavage	of	an	N-glycosidic	bond.	This	causes	a	phosphodiester	bond	of	the	

sugar-phosphate	 backbone	 to	 become	 exposed	 to	 chemical	 hydrolysis	within	 the	 cell	

(Endo	et	al.,	 1988a,	 Endo	 and	Tsurugi	 1988,	Endo	et	al.,	 1988b,	Barbieri	et	al.,	 1993).	

Here,	 I	 utilised	 these	 plants	 to	 determine	 whether	 expression	 of	 the	 fungal	 effector	

BEC1054	 affected	 plant	 growth	 and	 yield,	 senescence	 or	 ribosomal	 degradation,	 and	

whether	 BEC1054	 interfered	 with	 non-host	 resistance	 of	 wheat	 to	 B.	 graminis	 f.sp.	

hordei,	or	susceptibility	to	the	adapted	f.sp.	tritici,.	
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Leaf	 senescence	 is	 a	 tightly	 controlled	 process,	which	 involves	 large	 scale	 changes	 in	

gene	 expression	 (Guo	 and	 Gan	 2005,	 Reinbothe	 and	 Reinbothe	 2006,	 Zentgraf	 et	 al.,	

2010,	Christiansen	and	Gregersen	2014,	Penfold	and	Buchanan-Wollaston	2014).		

	

We	 hypothesized	 that	 the	 presence/absence	 of	 BEC1054	 may	 affect	 chlorophyll	

degradation	during	senescence.	Chlorophyll	degradation	can	be	used	as	an	indicator	of	

senescence.	 The	 breakdown	 of	 chlorophyll	 plays	 a	 vital	 role	 during	 the	 process,	

allowing	nitrogen	and	other	nutrients	to	be	recycled,	and	preventing	the	accumulation	

of	 phototoxic	 intermediates	 of	 chlorophyll	 (for	 a	 review,	 see	Hoertensteiner	 (2006)).	

Jasmonates	 were	 first	 reported	 to	 induce	 senescence	 in	 oat	 leaves	 (Ueda	 and	 Kato	

1980).	This	induced	senescence	works	in	other	monocot	species	including	rice	(Hung	et	

al.,	2006),	barley	(Weidhase	et	al.,	1987a,	Reinbothe	et	al.,	1992)	and	in	dicots	such	as	

Arabidopsis	(He	et	al.,	2002).		

	

	

Plant	transformation	involves	the	insertion	of	“foreign”	DNA,	both	from	plants,	and	from	

non-plant	 organisms	 such	 as	 fungi,	 into	 plant	 cells	 (Barampuram	 and	 Zhang	 2011).	

Transient	or	stable	expression	can	result	 from	the	 transfer	of	DNA	 into	 the	plant	cell.	

Stable	expression	is	usually	time-consuming,	and	involves	the	growth	of	a	whole	plant	

from	tissue	culture	of	treated	cells	or	explants.	The	DNA	is	integrated	into	the	host	cell’s	

DNA,	 and	 can	 therefore	 be	 inherited	 by	 subsequent	 generations	 (Hansen	 and	Wright	

1999,	Barampuram	and	Zhang	2011).	Multiple	generations	must	be	assessed	 for	gene	
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copy	 number	 and	 protein	 expression	 to	 be	 accurately	 determined,	 causing	 stable	

transformation	studies	in	crop	plants	to	take	years.		

	

	

Transient	 expression	 occurs	 over	 a	much	 shorter	 time	 frame	 than	 stable	 expression,	

usually	 days.	 It	 allows	 experimental	 results	 to	 be	 seen	 relatively	 rapidly,	 and	 thus	

facilitates	 screening	 of	 multiple	 proteins	 (Bernaudat	 et	 al.,	 2011).	 Transient	

transformation	methods	are	relatively	difficult,	although	possible,	 in	monocots	as	they	

are	 not	 natural	 hosts	 for	 Agrobacterium	 tumefaciens	 (Cleene	 and	 Ley	 1976).	 Direct	

delivery	methods,	 such	as	bombardment,	are	 frequently	used	but	 result	 in	a	very	 low	

percentage	 of	 cells	 being	 transformed.	 The	 dicot	 Nicotiana	 benthamiana	 has	 been	

gaining	 popularity	 as	 a	 host	 for	 transient	 protein	 expression,	 as	 it	 can	 be	 efficiently	

transformed	using	Agrobacterium	(Schob	et	al.,	1997,	Goodin	et	al.,	2002,	Voinnet	et	al.,	

2003).	 Transient	 expression	 in	 N.	 benthamiana	was	 used	 to	 determine	 whether	 the	

expression	 of	 BEC1054	 or	 JIP60ml	 affected	 infection	 with	 the	 obligate	 biotrophic	

oomycete	Peronospora	tabacina,	and	whether	JIP60ml	or	BEC1054	had	an	effect	on	cell	

death.		
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7.2. Aims	and	Objectives	

AIM:	To	confirm	the	genotyping	of	wheat	transformed	with	wbec1054.	

OBJECTIVE:	 To	 utilise	 direct	 PCR	 to	 demonstrate	 the	 presence	 (or	 absence)	 of	 the	

BEC1054	 transgene	 in	 wheat	 using	 the	 KAPA	 direct	 PCR	 system	 (KAPA	 Biosystems,	

Massachusetts,	US).	

	

AIM:	To	confirm	the	transcription	of	the	wbec1054	transgene	in	wheat.	

OBJECTIVE:	To	utilise	real-time	PCR,	to	demonstrate	the	transcription	of	the	wbec1054	

transgene	in	wheat.	

	

AIM:	 To	 determine	 whether	 expression	 of	wbec1054	 in	 wheat	 has	 an	 effect	 on	 the	

phenotypic	characteristics	of	the	adult	wheat	plant.	

OBJECTIVE:	To	measure	a	series	of	characteristics	such	as	height,	seed	number	and	leaf	

number	 in	 the	adult	plant,	 to	determine	whether	 they	are	different	between	different	

homozygous	null	(-/-)	and	homozygous	wbec1054	(+/+)	lines.	

	

AIM:	To	determine	whether	 expression	of	wbec1054	 in	wheat	 affects	 the	 ability	 of	B.	

graminis	f.sp.	tritici	or	f.sp.	hordei	to	infect	wheat	

OBJECTIVE:	 To	 investigate	 the	 effect	 of	 the	 expression	 of	 wbec1054	 in	 wheat	 on	

infection	with	wheat	and	barley	powdery	mildew.	

	

AIM:	 To	 determine	 whether	 expression	 of	 wbec1054	 or	 jip60ml	 in	 Nicotiana	

benthamiana	 has	 an	 effect	 on	 the	 ability	 of	 Peronospora	 tabacina	 to	 infect	 N.	

benthamiana.	
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OBJECTIVE:	 To	 utilise	 Agrobacterium	 to	 express	 JIP60ml	 and	 BEC1054	 in	 N.	

benthamiana,	and	to	infect	the	transformed	leaves	with	P.	tabacina.	

	

AIM:	 To	 determine	 whether	 expression	 of	 wbec1054	 or	 jip60ml	 in	 Nicotiana	

benthamiana	has	an	effect	on	cell	death.	

OBJECTIVE:	 To	 perform	 trypan	 blue	 staining	 on	 transformed	 leaves,	 to	 selectively	

colour	dead	tissues/cells.	

	

	AIM:	 To	 determine	 whether	 BEC1054	 co-localises	 with	 any	 of	 the	 N.	 benthamiana	

cellular	markers	available	in	the	host	laboratory.	

OBJECTIVE:	To	express	wBEC1054	with	a	C	or	N	 terminal	GFP	tag	 in	N.	benthamiana,	

and	 to	 determine	 through	 confocal	 microscopy	 whether	 it	 co-localises	 with	

mitochondria,	early	endosomes,	late	endosomes,	or	Golgi	bodies.	
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7.3. Individual	Contributions	

Data	was	obtained	with	the	assistance	of	the	following	undergraduate	students,	whom	I	

supervised:	

1. Peggy	Luong		

a. re-confirming	the	presence	of	the	fungal	transgene	in	wheat	

b. re-confirming	the	transcription	of	the	fungal	transgene	in	wheat	

c. determining	 whether	 the	 presence	 of	 the	wbec1054	 transgene	 affected	

infection	of	wheat	with	Blumeria	graminis	f.sp.	tritici	

2. Hannah	Thieron	

a. 	determining	whether	 the	 expression	 of	wbec1054	 and	 JIP60ml	 affected	

infection	of	Nicotiana	benthamiana	with	Peronospora	tabacina	

b. determining	whether	BEC1054	or	B.	graminis	f.sp.	tritici	infection	affected	

ribosomal	RNA	degradation	in	wheat	

c. determining	whether	 the	expression	of	 JIP60ml	affected	N.	benthamiana	

cell	death	

3. Thomas	Chandler	

a. determining	whether	BEC1054	or	B.	graminis	f.sp.	tritici	infection	affected	

chlorophyll	degradation	in	wheat	

b. determining	whether	BEC1054	or	B.	graminis	f.sp.	tritici	infection	affected	

ribosomal	RNA	degradation	in	wheat	

I	 performed	 analyses	 and	 processing	 for	 the	 collected	 data	 (both	 numerical	 and	

photographic),	to	ensure	consistency	in	the	statistical	methods	used.	Confocal	 imaging	

was	done	with	the	help	of	Tolga	Bozkurt.	
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7.4. Results	

7.4.1. Determining	the	presence	of	the	transgene	

We	used	direct	PCR	(from	a	leaf	template,	 instead	of	conventional	PCR	from	extracted	

DNA)	 to	 confirm	 the	 presence	 of	 wbec1054	 in	 transgenic	 wheat.	 Homozygous	 T4	

generation	 plants	 (produced	 via	 four	 generations	 of	 successive	 selfing)	 from	 the	 line	

3.3.14	(+/+)	exhibited	the	presence	of	the	transgene	when	tested	via	PCR,	and	azygous	

control	 plants	 (3.3.12	 (-/-))	 did	 not	 (Figure	 36).	 Genotyping	 of	 seeds	 from	 each	

generation	indicated	that	the	initial	transformants	had	been	homozygous,	as	the	genes	

were	found	to	be	present	in	each	successive	generation.		

 

	

Figure	 36:	 Confirming	 the	 presence	 of	 fungal	 effector	 Blumeria	 Effector	 Candidate	 1054	 (BEC1054)	 in	

transgenic	 wheat.	 Transgenic	 wheat	 had	 undergone	 Agrobacterium-transformation	 with	 BEC1054.	 The	 T4	

generation	 plants	 (produced	 via	 four	 generations	 of	 successive	 selfing)	 exhibited	 the	 presence	 of	 the	

transgene	when	tested	via	PCR.	The	symbol	“H”	stands	for	homozygous	(+/+),	“A”	for	azygous	(-/-),	“Tub”	for	

wheat	 tubulin,	 and	 “+”	 for	 a	 positive	 control	 conducted	using	 the	 pCR8/BEC1054	plasmid.	 The	wBEC	 genes	

have	 silent	 “wobble”	mutations,	which	minimize	 the	nucleotide	 sequence	 identity	with	 the	wild-type	barley	

powdery	mildew	genes.	Image	reproduced	with	permission	from	(Luong	2014).		 	
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We	extracted	total	RNA	from	one	T4	plant	for	each	of	the	lines	3.3.14	(+/+)	and	3.3.12	(-

/-),	and	used	it	as	a	template	for	cDNA	synthesis.	We	performed	end-point	qPCR	using	

the	wobble	BEC	primers	to	confirm	whether	wbec1054	was	transcribed,	as	was	found	to	

be	the	case.	Wheat	lines	containing	wbec1011	(1.16.14	+/+	and	1.16.3	-/-),	a	paralog	of	

wbec1054	were	also	tested.	

	

Figure	37:	Transcription	of	wBEC1054	occurs	 in	transgenic	wheat.	Leaf	material	from	transgenic	wheat	lines	

homozygous	for	wbec1054,	or	its	paralog	wbec1011,	was	used	for	RNA	extraction	and	subsequently	for	cDNA	

synthesis.	The	cDNA	was	used	as	a	template	for	endpoint	PCR.	The	expected	size	of	the	products	for	wbec1011	

and	wbec1054	were	155bp	and	184bp	respectively.	Where	“54”	indicates	BEC1054,	“11”	indicates	wbec1011,	

“A”	 azygous,	 “H”	 homozygous	 and	 “+”	 a	 tubulin	 positive	 control.	 The	 wbec	 genes	 have	 silent	 “wobble”	

mutations,	 which	 minimize	 the	 nucleotide	 sequence	 identity	 with	 the	 wild-type	 barley	 genes	 Image	

reproduced	with	permission	from	(Luong	2014).	

7.4.2. Phenotyping	plants	azygous	or	homozygous	for	BEC1054	

I	 assayed	 transgenic	 wheat	 lines	 from	 the	 T4	 generation	 of	 lines	 homozygous	 for	

wbec1054,	or	azygous	(3.3.14	and	3.3.12	respectively),	to	determine	whether	BEC1054	

had	 an	 effect	 on	 the	 phenotypic	 characteristics	 of	 adult	 wheat.	 Azygous	 plant	 were	

obtained	through	selection	from	self	breeding	heterozygote	transformed	parent	plants	

(Bonciani	 2014).	 The	 characteristics	 assayed	 were:	 the	 number	 of	 leaves,	 maximum	

height,	subcrown	length,	ear	length	(including	whiskers),	peduncle	(internode	1)	length,	
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the	 length	of	 the	 three	remaining	 internodes,	 the	number	of	 fertile	 tillers,	 the	mass	of	

the	tillers,	and	the	number	of	grains.		

	

Bartlett	 tests	 were	 performed	 to	 determine	 whether	 the	 variance	 of	 the	 wheat	

phenotypic	characteristics	was	homogeneous	(Crawley	2005).	This	was	found	to	be	the	

case	for	the	majority	of	the	characteristics	measured	(Supplementary	Table	33);	but	not	

for	the	leaf	number;	the	length	of	internode	three;	the	length	of	the	ear;	or	the	number	

of	 fertile	 tillers.	 Although	 the	 variance	 was	 found	 to	 be	 equal	 for	 the	 remaining	

characteristics,	GLMs	(Equation	15)	were	applied	to	each	of	the	datasets	for	consistency	

(as	 opposed	 to	 using	 ANOVAs	 for	 those	 with	 equal	 variance).	 A	 “poisson”	 family	

structure	was	used	to	handle	the	count	data;	and	all	datasets	were	log	transformed	to	

account	for	overdispersion	in	the	original	models	(the	residual	deviance	was	massively	

greater	 than	 the	 degrees	 of	 freedom).	 Post-hoc	 Games-Howell	 tests	 were	 used	 to	

determine	which	pairs	of	means	differed	significantly	(Crawley	2005).	

	

Equation	 15:	 A	 Generalized	 Linear	 Model	 Model	 used	 to	 determine	 whether	 the	 response	 variable	 (y)	

changed	with	the	seed	line	under	investigation.	

!"#(!"#(!)~!""#_!"#$, !"#$%& = ”!"#$$"%”)	

	

Statistical	 analyses	 were	 not	 performed	 for	 the	 subcrown,	 as	 many	 of	 the	 tiller	

subcrowns	became	detached	during	the	drying	out	phase.	This	meant	that	it	could	not	

always	be	accurately	determined	which	subcrown	belonged	to	which	primary	tiller.	

Summary	 models,	 displaying	 the	 mean	 measurements	 from	 the	 primary	 internode,	

were	created	for	the	wbec1054	azygous	and	homozygous	wheat.		
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I	 found	 the	 characteristics	 assayed	 were	 consistent	 between	 the	 homozygous	 and	

azygous	wheat	plants	(Figure	38),	i.e.	there	were	no	major	phenotypic	changes	between	

those	 lines	 expressing	BEC1054	 and	 those	without	 it.	 No	 significant	 differences	were	

identified	between	the	+/+	and	-/-	lines	for	any	of	the	characteristics	measured	(Figure	

38,	Supplementary	Table	34,	Supplementary	Figure	54,).	

	
	

I	did	not	perform	statistical	analyses	for	the	subcrown,	as	many	of	the	tiller	subcrowns	

became	 detached	 during	 the	 drying	 out	 phase.	 This	 meant	 that	 I	 could	 not	 always	

accurately	 determined	 which	 subcrown	 belonged	 to	 which	 primary	 tiller.	 I	 created	

summary	models	for	the	wbec1054	azygous	and	homozygous	wheat	(Figure	39).	These	

models	demonstrate	visually	that	there	is	no	difference	in	total	height	for	the	different	

primary	 tillers,	 and	 that	 there	 was	 no	 great	 difference	 between	 the	 lengths	 of	 the	

internodes	or	ear.	
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Figure	38:	Blumeria	Effector	Candidate	1054	(BEC1054)	does	not	affect	the	phenotype	of	transgenic	wheat.	

Eleven	 phenotypic	 characteristics	 of	 wheat	 were	 investigated	 for	 the	 T4	 generation	 of	 homozygous	 (+/+)	

wheat	 (line	3.3.14)	 transformed	with	Blumeria	Effector	Candidate	BEC1054	(wbec1054)	and	for	azygous	 (-/-)	

wheat	 (line	 3.3.12).	 The	 thick	 line	 denotes	 the	median	 of	 each	 boxplot,	 the	 boxes	 represent	 the	 quartiles,	

maximum	 and	minimum	 values	 are	 shown	 by	 the	 error	 bars,	 and	 outliers	 are	 indicated	 by	 circles.	 Games-

Howell	post-hoc	 tests	 indicated	 that	 the	characteristics	 investigated	were	not	significantly	different	 (p>0.05)	

for	any	wheat	lines.		
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Figure	39:	Wheat	main	 culm	 length	 is	 unaffected	 by	 the	 expression	 of	wbec1054.	 The	 two	wheat	models	

represent	 a	 summary	 of	 data	 collected	 for	 the	 T4	 generation	 of	 homozygous	 (+/+)	 wheat	 (line	 3.3.14)	

transformed	 with	 Blumeria	 Effector	 Candidate	 BEC1054	 (wbec1054),	 and	 for	 an	 azygous	 (-/-)	 wheat	 (line	

3.3.12).	The	coloured	bars	for	each	internode	and	the	ear	represent	the	mean	length	of	the	primary	tillers	

7.4.3. Wheat	infection	assays	

Transgenic	wheat	plants	 expressing	 the	effector	BEC1054	were	assayed	 to	determine	

whether	this	B.	graminis	f.sp.	hordei	effector	affected	the	non-host	resistance	of	wheat	to	
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B.	graminis	f.sp.	hordei.	No	haustoria	were	 identified	 for	wheat	 leaves	 inoculated	with	

f.sp.	hordei,	indicating	that	BEC1054	was	not	involved	in	non-host	resistance.	

	

Transgenic	wheat	plants	expressing	BEC1054	were	assayed	to	determine	whether	the	

presence	of	the	effector	affected	the	resistance	of	the	host	plant	to	B.	graminis	f.sp.	tritici	

(Figure	40).	The	number	of	colonies,	which	formed	epiphytic	hyphae,	was	measured	as	

a	proxy	for	the	presence	of	at	least	one	functional	haustorium.	The	presence	of	BEC1054	

was	 found	 to	 increase	 the	 proportion	 of	 germinated	 conidia	 that	 formed	 at	 least	 one	

haustorium	 (propH),	 as	 can	be	 seen	by	 the	 elevation	of	 boxplots	 labeled	 “+/+”,	when	

compared	with	the	“-/-“	from	the	same	leaf	segment	and	age.	This	increase	was	found	to	

occur	for	plants	of	differing	ages	(three	weeks	or	11	weeks),	and	for	different	areas	of	

the	leaf.	Furthermore,	the	propH	was	found	to	increase	with	distance	from	the	leaf	base,	

with	the	greatest	mean	propH	at	the	leaf	tip,	as	can	be	seen	by	the	increasing	elevation	

of	the	boxplots	from	leaf	base	to	leaf	tip	(Figure	40).		
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A	Generalised	Linear	Mixed	Model	(GLMM)	was	performed	in	R	v	3.0.2.	The	count	data	

for	 the	 number	 of	 germinated	 conidia	 with	 haustorium;	 or	 without	 haustorium;	 was	

bound	 as	 a	 single	 vector	 to	 create	 the	 response	 variable	 “y’.	 The	 age,	 genotype	 and	

segment	 (tip,	 middle	 or	 base)	 were	 set	 as	 fixed	 effects	 to	 account	 for	 the	

pseudoreplication	 of	 data	 from	 the	 segments	 (Equation	 16).	 A	 binomial	 family	 was	

specified	 to	 account	 for	 the	 response	 variable	 being	 count	 data.	Model	 simplification	

was	 performed,	 and	 non-significant	 interactions	 and	 factors	 removed,	 resulting	 in	

Equation	17.	 The	 linear	 hypotheses	were	 then	 tested	 in	 a	 pairwise	manner	 using	 the	

“multcomp”	package	in	R.		

	

Equation	 16:	 A	 maximal	 Generalised	 Linear	 Mixed	 Model	 before	 simplification.	 The	 model	 contains	 all	

possible	 interactions	 for	 the	explanatory	 factors	 “genotype”,	 “age”,	 and	 “segment’.	 The	 response	 factor	 “y”	

represents	 the	 number	 of	 germinated	 conidia	 with	 haustorium;	 or	 without	 haustorium	 bound	 as	 a	 single	

vector.		

!"#$%(!~!"#$%&'" ∗ !"# ∗ !"#$"%& + (1|!"#$%), !"#$%& = !"#$%"&').	

Equation	17:	A	minimal	Generalised	Linear	Mixed	Model	after	simplification.	The	model	contains	all	possible	

interactions	 for	 the	 explanatory	 factors	 “genotype”,	 and	 “segment’.	 The	 response	 factor	 “y”	 represents	 the	

number	 of	 germinated	 conidia	 with	 haustorium;	 or	 without	 haustorium	 bound	 as	 a	 single	 vector.	 All	 non-

significant	interactions	and	terms	have	been	removed.	

!"#$%(!~!"#$%&'" + !"#$"%& + (1|!"#$%), !"#$%& = !"#$%"&')	

	

I	found	no	significant	two-or-three	way	interactions	(p>0.05)	for	the	interaction	of	the	

factors	“genotype”,	“age”	or	“segment.”	Furthermore,	I	found	no	significant	effect	of	age	

(p>0.05),	 i.e.	 although	young	plants	also	showed	a	higher	propH	 than	older	ones,	 this	

effect	 was	 not	 statistically	 significant.	 In	 contrast,	 I	 found	 a	 significant	 difference	 for	

whether	the	lines	were	homozygous	or	azygous	(0.13	and	0.09	respectively,	p<0.001),	



177	

	

(Supplementary	Table	36).	A	Tukey	multiple	 comparison	 test	was	 then	 conducted	on	

the	GLMM	data,	and	it	was	determined	that	the	propH	was	significantly	different	for	the	

base,	 middle	 and	 tip	 (p<0.005),	 and	 that	 the	 propH	 was	 greatest	 at	 the	 leaf	 tip	

(Supplementary	Table	36).	
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Figure	 40:	Haustorial	 formation	 is	 increased	 in	 wheat	 by	 the	 non-host	Blumeria	 Effector	 Candidate	 1054	

(BEC1054).	 The	mean	proportion	of	 germinated	Blumeria	graminis	 f.sp.	 tritici	 conidia	which	 formed	at	 least	

one	 haustorium	 was	 calculated	 for	 2	 cm	 leaf	 segments	 from	 the	 primary	 leaves	 of	 transgenic	 wheat	

homozygous	(+/+	 line	3.3.14)	or	azygous	(-/-	 line	3.3.12)	 for	Blumeria	graminis	 f.sp.	hordei	effector	BEC1054	

(wbec1054).	 Old	 plants	were	 11	weeks	 old,	 young	 plants	were	 three	weeks	 old.	 The	 thick	 line	 denotes	 the	

median	of	each	boxplot,	the	boxes	represent	the	quartiles,	maximum	and	minimum	values	are	shown	by	the	

error	bars.	Data	utilised	with	permission	from	(Luong	2014).		
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7.4.4. Nicotiana	infection	assay	

I	 used	 Agrobacterium	 lines	 to	 express	 GFP,	 BEC1054	 with	 a	 C-terminal	 GFP	 tag,	 or	

JIP60ml	 with	 a	 C-terminal	 GFP	 tag	 in	N.	 benthamiana	 (Table	 8).	 We	 infiltrated	 four-

week-old	plants	with	Agrobacterium,	(Section	3.5.3),	with	GFP	on	one	side	of	the	midrib,	

and	either	BEC1054-GFP	or	 JIP60ml-GFP	on	 the	other.	We	 then	 inoculated	 the	 leaves	

with	P.	tabacina	sporangia	at	four	points	on	their	abaxial	surface	(Section	3.5.6).	After	

10	days,	we	collected	1	cm	diameter	leaf	disks	from	each	leaf	infection	site,	removed	the	

sporangia	via	washing,	counted	them,	and	used	them	to	calculate	the	mean	(Figure	41	

top	and	middle).	We	then	further	calculated	the	proportion	of	sporangia	in	relation	to	

the	GFP	only	controls	to	account	 for	 leaf-to-leaf	variation	 in	 levels	of	 infection	(Figure	

41	bottom).	

	

Expression	of	BEC1054-GFP	increased	the	number	of	P.	tabacina	sporangia	(Figure	41,	

top),	as	can	be	seen	by	the	elevation	of	the	BEC1054-GFP	boxplot	above	zero.	A	total	of	

753	sporangia	were	counted	from	the	samples,	in	contrast	with	446	identified	for	GFP	

from	 the	 same	 leaves.	 In	 contrast,	 JIP60ml	 decreased	 the	 number	 of	 P.	 tabacina	

sporangia	to	almost	zero	(Figure	6,	middle).	In	total,	only	six	sporangia	were	identified	

from	leaf	samples	transformed	with	JIP60ml,	whereas	1775	were	identified	for	the	GFP	

control	from	the	same	leaves.	

	

We	 observed	 a	 large	 variation	 for	 overall	 susceptibility	 (the	 number	 of	 sporangia,	

Figure	 41,	 top).	 This	 can	 be	 seen	 through	 the	 wide	 spread	 of	 the	 data	 points,	 with	

average	leaf	counts	varying	from	1.75	to	64.75	for	BEC1054-GFP,	and	0.5	to	42.75	for	its	

GFP	 control	 leaves.	The	paired	data	points	 for	 the	 leaf	 averages	 are	 also	displayed	 in	
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Figure	41.	For	every	pair	of	datapoints,	 a	higher	number	of	 sporangia	were	observed	

with	BEC1054-GFP	than	with	its	paired	GFP	control.	The	JIP60ml	averages	varied	very	

little,	due	 to	 the	extremely	 low	number	of	 sporangia	observed,	and	 they	displayed	no	

obvious	relationship	to	the	results	identified	with	the	GFP	control	(i.e.	the	highest	GFP-

only	leaf	sporangia	averages	did	not	correspond	with	the	leaf	averages	for	JIP60ml	for	

which	spores	were	identified).		

	

A	GLM	was	performed	to	determine	whether	the	number	of	sporangia	9	dpi	varied	with	

which	plasmid	had	been	agroinfiltrated	(Equation	19).	

	

Equation	 18:	 A	 Generalised	 Linear	 Mixed	 Model	 for	 the	 difference	 in	 Peronospora	 infection	 with	

agroinfiltration	 construct.	 The	 explanatory	 factors	 “relative_difference”	 refers	 to	 the	 relative	 difference	

between	the	number	of	Peronospora	tabacina	sporangia	identified	from	Nicotiana	benthamiana	leaf	material	

infiltrated	with	the	protein	of	interest,	and	the	number	identified	from	material	infiltrated	with	GFP.		

!"#(!"#$%&'"_!"##$%$&'$~!"#$%&'!%)	
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Figure	41:	Sporangia	production	is	increased	in	wheat	by	the	non-host	Blumeria	Effector	Candidate	BEC1054.	

Nicotiana	benthamiana	leaves	were	infiltrated	on	one	side	of	the	midrib	with	Agrobacterium	expressing	GFP,	

and	on	the	other	side	with	Agrobacterium	expressing	BEC1054	with	a	C-terminal	GFP	tag,	or	barley	Jasmonate	

Induced	Protein	60	(JIP60)	with	a	C-terminal	GFP	tag.	Leaves	were	inoculated,	within	one	hour	of	infiltration,	

with	Peronospora	sporangia	on	their	abaxial	surface.	After	10	days,	 leaf	disks	were	collected	from	each	 leaf,	

the	sporangia	removed	via	washing,	counted,	and	used	to	calculate	the	mean.	The	top	two	graphs	represent	

the	 leaf	 count	 data	 means	 for	 BEC1054-GFP,	 JIP60ml-GFP	 and	 their	 relative	 controls,	 whereas	 the	 bottom	

boxplot	 represents	 the	 proportion	 of	 sporangia	 in	 relation	 to	 the	 GFP	 only	 controls	 (where	 the	 GFP-only	

values,	post	normalisation,	are	equal	to	one).	The	paired	means	(calculated	from	two	halves	of	the	same	leaf)	

are	shown	as	linked	grey	circles	on	the	top	graph.	Significantly	more	sporangia	were	found	with	BEC1054-GFP	

than	with	GFP	only	(biological	replicates	n=5,	p<0.001),	and	significantly	less	for	JIP60-GFP	than	with	GFP	only	

(biological	replicates	n=6,	p<0.05).	The	thick	line	denotes	the	median	of	each	boxplot,	the	boxes	represent	the	

quartiles,	maximum	and	minimum	values	are	 shown	by	 the	error	bars,	and	outliers	are	 indicated	by	circles.	

Significant	difference	 is	 indicated	by	 “.”	 for	p≤0.1,	 “*”	 for	p≤0.05,	 “**”	 for	p≤0.01	and	 “***”	p≤0.005.	Data	

utilised	with	permission	from	Thieron,	2015.		
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I	 performed	 a	 Bartlett	 test,	 to	 determine	 whether	 the	 variance	 was	 homogeneous	

between	 the	 BEC1054-GFP	 and	 GFP	 lines.	 This	was	 the	 case	 (p<0.0001).	 A	 GLM	was	

performed	(Equation	1),	 to	determine	whether	 the	expressed	protein	(GFP,	BEC1054-

GFP	 or	 JIP60ml-GFP)	 had	 a	 significant	 effect	 upon	 the	mean,	 which	 it	 did	 (p<0.005).	

Post-hoc	Games-Howell	tests	were	performed	(Supplementary	Table	42)	to	determine	

which	pairs	of	means	were	significantly	different.	

	

Normalisation	 of	 the	 sporangia	 means	 against	 the	 GFP	 control	 (Figure	 41,	 bottom)	

demonstrated	that	BEC1054-GFP	increased	the	number	of	P.	tabacina	sporangia.	All	of	

the	data	points	were	 elevated	 above	one	 (where	normalisation	would	make	 the	GFP-

only	values	equal	to	one).		

7.4.5. Nicotiana	benthamiana	

Expression	 of	 JIP60ml-GFP	 induced	 cell	 death	 in	 N.	 benthamiana.	 Brown	 patches,	

corresponding	 to	 dead	 cells,	 could	 first	 be	 observed	 at	 ca.	 5	 dpi	with	Agrobacterium,	

with	large	numbers	of	cells	having	died	by	9	dpi	(Figure	42).	Trypan	blue	staining	was	

used	to	visualise	dead	cells.	In	leaves	infiltrated	with	JIP60ml,	the	blue	dye	was	seen	to	

increase	 in	strength	 towards	 the	midrib,	and	brown	patches	of	 cells	 too	dead	 to	stain	

were	 seen	 towards	 the	 leaf	 perimeter.	 Infiltration	 with	 BEC1054	 did	 not	 cause	 cell	

death.	 Areas	 of	 leaves	 infiltrated	 with	 Agrobacterium	 expressing	 BEC1054	 did	 not	

contain	greater	numbers	of	blue	or	brown	cells	than	non-infiltrated	areas	of	the	leaf.		
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Figure	 42:	 Expression	 of	 Blumeria	 Effector	 Candidate	 1054	 (BEC1054)	 does	 not	 affect	 Nicotiana	

benthamiana’s	 response	 to	 Jasmonate	 Induced	 Protein	 60	 (JIP60).	 Leaves	 were	 infiltrated	 with	

Agrobacterium	expressing	JIP60ml	and	BEC1054.	Infiltrated	areas	are	marked	using	black	or	red	pen.	Ten	days	

after	infiltration,	the	leaves	were	stained	with	trypan	blue.	Data	utilised	with	permission	from	Thieron,	2015,		
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7.4.6. Chlorophyll	breakdown	does	not	appear	to	be	affected	by	BEC1054	

Seven	 day	 old	 seedlings	 of	 transgenic	 wheat,	 azygous	 (-/-)	 or	 homozygous	 (+/+)	 for	

wbec1054,	were	maintained	uninfected,	or	 infected	with	B.	graminis	f.sp.	 tritici	 once	a	

day	 for	 three	 days	 to	 establish	 heavy	 infection	 across	 the	wheat	 adaxial	 surface.	We	

harvested	 primary	 leaves,	 and	 treated	 them	with	 45	 μM	methyl	 jasmonate	 (MeJA)	 or	

water	 (H2O)	 for	 a	 further	 five	 days.	 Photographs	 of	 the	 treated	 leaves	 are	 shown	 in	

Figure	43.	

	

Leaves	 treated	 with	 MeJA	 were	 yellower/	 less	 green	 than	 those	 treated	 with	 water	

(Figure	 43).	 This	 was	 the	 case	 for	 all	 leaf	 treatments	 (infected/uninfected	 and	

H2O/MeJA).	 Infection	 led	 to	 the	 formation	 of	 “green	 islands”	 (Murphy	 et	 al.,	 1997),	

visible	 on	 both	H2O	 and	MeJA	 treated	 leaves	 as	 darker	 green	 patches	 surrounded	 by	

paler	green/yellowing	leaf	tissue	(Figure	43).		
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Figure	 43:	Wheat	 primary	 leaf	 phenotypes	 following	methyl	 Jasmonate	 (MeJA)	 treatment.	 Seven	 day	 old	

seedlings	of	transgenic	wheat,	azygous	(-/-,	line	3.3.12)	or	homozygous	(+/+,	line	3.3.14)	for	Blumeria	graminis	

f.sp.	hordei	effector	(wbec1054),	were	maintained	uninfected,	or	infected	once	a	day,	for	three	days.	Primary	

leaves	were	harvested,	and	treated	with	45	μM	MeJA	or	water	(H2O)	for	a	further	five	days.	Data	utilised	with	

permission	from	Thieron,	2015.	
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We	extracted	total	protein	from	the	treated	leaves,	and	determined	the	concentration	of	

chlorophylls	 a	 and	 b	 using	 a	 spectrophotometer.	 The	 boxplots	 for	 the	 various	

treatments	(with/without	BEC1054,	infected/uninfected	and	MeJA/H2O)	demonstrated	

very	similar	patterns	for	chlorophyll	a	and	b	(Figure	44),	varying	slightly	around	a	value	

of	ca.	0.5	μg/ml	for	chlorophyll	a	and	0.4	μg/ml	for	chlorophyll	b.		

	

I	 performed	 Bartlett	 tests	 to	 determine	 whether	 the	 variance	 of	 the	 datasets	 were	

normally	 distributed	 (Supplementary	 Table	 37).	 I	 found	 this	 for	 the	 majority	 of	 the	

datasets,	 except	 for	 chlorophyll	 a	 treatment	 with	 MeJA/H2O,	 which	 was	 significantly	

non-normal	 (p<0.05).	 Furthermore,	 the	 dataset	 for	 chlorophyll	 b	 treatment	 with	

MeJA/H2O	 was	 very	 weakly	 significant	 (p<0.1).	 All	 datasets	 were	 further	 analysed	

through	GLM	for	consistency.		

	

A	 GLM	 was	 performed	 for	 the	 factors	 H2O/MeJA,	 infection	 status,	 and	 seed	 line.	 No	

significant	 two	 or	 three	 way	 interactions	 were	 found	 for	 either	 chlorophyll	 a	 or	 b	

(p>0.05)	 for	 any	of	 the	 factors.	The	only	 factor	 found	 to	be	 significant	was	 treatment	

with	H2O/MeJA	(p<0.0001).	Games-Howell	post-hoc	tests	were	performed	to	determine	

whether	 any	 of	 the	 pairs	 of	means	were	 significantly	 different	 (Supplementary	 Table	

38).	 There	was	 a	 decrease	 in	 both	 chlorophylls	 a	 and	 b	 for	 uninfected	 plants	 treated	

with	MeJA	(as	can	be	seen	by	the	lowering	of	the	boxes	below	those	treated	with	water).	

This	result	was	significant	for	line	3.3.14	(+/+)	chlorophyll	a	(p<0.05),	when	compared	

with	the	H2O	treated	lines.	This	decrease	was	also	significant	for	lines	3.3.12	(-/-)	and	

3.3.14	 (+/+)	 for	 chlorophyll	 b	 (p<0.05).	 This	 decrease	 was	 not	 present	 for	 infected	
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plants,	 with	 all	 of	 the	 infected	 plants	 for	 chlorophyll	 a	 and	 chlorophyll	 b	 being	

statistically	similar.		

	
Figure	44:	Expression	of	BEC1054	does	not	affect	chlorophyll	a	and	b	concentrations	in	wheat.	Seven	day	old	

seedlings	of	transgenic	wheat,	azygous	(-/-,	line	3.3.12)	or	homozygous	(+/+,	line	3.3.14)	for	Blumeria	graminis	

f.sp.	 hordei	 effector	 BEC1054,	 were	maintained	 uninfected	 or	 infected	 once	 a	 day	 for	 three	 days.	 Primary	

leaves	were	harvested,	and	treated	with	methyl	Jasmonate	(MeJA)	or	water	(H2O)	for	a	further	five	days.	Total	

protein	 was	 extracted	 from	 the	 leaves,	 and	 the	 concentrations	 of	 chlorophyll	 a	 and	 b	 measured	

spectrophotometrically.	 Significant	 difference	 was	 determined	 via	 post-hoc	 test	 for	 +/+	 and	 -/-	 plants	

undergoing	 the	 same	 treatment.	 No	 significant	 difference	 was	 identified	 between	 any	 of	 the	 treatments	

(p>0.05).	The	thick	line	denotes	the	median	of	each	boxplot,	the	boxes	represent	the	quartiles,	maximum	and	

minimum	 values	 are	 shown	 by	 the	 error	 bars,	 and	 outliers	 are	 indicated	 by	 circles.	 The	 letters	 indicate	

significance,	 with	 identical	 letters	 being	 the	 same,	 and	 different	 letters	 being	 significantly	 different.	 Data	

utilised	with	permission	from	(Chandler	2015).	 	
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7.4.7. Ribosome	inactivating	proteins	appear	to	be	outcompeted	by	BEC1054	

Seven	 day	 old	 seedlings	 of	 -/-	 or	 +/+	 transgenic	wheat	were	 infected	 once	 a	 day	 for	

three	days	or	maintained	uninfected.	Primary	leaves	were	harvested,	and	treated	with	

MeJA	 for	 a	 further	 five	days.	Ribonucleic	 acid	was	 extracted	 from	 the	primary	 leaves,	

and	 treated	with	 1	M	 aniline.	 The	RNA	was	 analysed	 on	 a	 Bioanalyzer	Nano	 chip,	 an	

electropherogram	 produced	 and	 the	 area	 of	 the	major	 RNA	 peaks	measured	 (Agilent	

2011;	Section	0,	and	Figure	7).	

	

I	predicted	that	treatment	of	the	depurinated	rRNA	with	aniline	in	vitro	would	result	in	

the	formation	of	two	fragments,	one	ca.	3027	nucleotides	long,	and	one	ca.	364	(based	

on	the	model	shown	in	Figure	27),	as	aniline	cleaves	the	sugar-phosphate	backbone	at	

site	of	the	modified	nucleotide(s)	(Peattie	1979).	A	small	peak	was	found	to	appear	in	

MeJA-treated	uninfected	plants	following	treatment	with	aniline	(Figure	45).	The	small	

peak	 was	 found	 to	 occur	 between	 the	 2000nt	 and	 4000nt	 ladder	 markers	 in	 the	

majority	of	samples,	which	fits	this	prediction.		This	peak	will	be	referred	to	as	the	RNA	

“degradation	peak”	throughout	the	remainder	of	this	chapter;	and	is	shown	enlarged	in	

the	top	left	of	each	electropherogram	(Figure	45,	middle).	This	peak	was	not	observed	

when	RNA	was	treated	with	water	(instead	of	MeJA)	(Figure	45,	top),	if	the	leaf	material	

was	 infected	 with	 B.	 graminis	 f.sp.	 tritici	 (Figure	 45,	 bottom),	 or	 if	 the	 RNA	was	 not	

treated	with	aniline	(Figure	45).	If	homozygous	BEC1054	wheat	leaf	material	was	used,	

this	 peak	 was	 found	 to	 form	 intermittently	 and	 was	 reduced	 in	 size/area	 (when	

compared	with	the	azygous	control).			
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Figure	45:	Ribosomal	RNA	degradation	peak	analysis.	Seven	day	old	seedlings	of	transgenic	wheat,	azygous	(-
/-,	 line	3.3.12	“12	 -/-“)	or	homozygous	 (+/+,	 line	3.3.14	“14	+/+”)	 for	Blumeria	graminis	 f.sp.	hordei	effector	
BEC1054,	were	maintained	uninfected	or	infected	once	a	day	for	three	days.	Primary	leaves	were	harvested,	
and	 treated	with	methyl	 Jasmonate	 (MeJA)	or	water	 (H2O)	 for	 a	 further	 five	days.	 Total	RNA	was	extracted	
from	the	leaves,	and	an	electropherogram	produced	using	Bioanalyzer.	Tick	marks	along	the	x-axis	indicate	the	
Bioanalyzer	ladder	peaks	from	right	to	left	at	6000	nucleotides	(nt)	(this	can	be	seen	as	the	right	most	mark	on	
samples	A,	B,	D,	F	and	G,	4000nt	(the	right	most	mark	on	samples	C	and	E,	2000nt,	1000nt,	500nt	and	200nt.	
Data	utilised	with	permission	from	Thieron,	2015.	
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We	calculated	the	relative	peak	area	for	the	degradation	peak,	in	relation	to	the	area	of	

the	 large	 (28S)	 and	 small	 (18S)	 ribosomal	 subunits	 (Figure	 46	 and	 Supplementary	

Table	 41).	 A	 GLM	was	 performed	 to	 determine	 whether	 infection,	 or	 the	 wheat	 line	

(homozygous	 or	 azygous)	 under	 investigation	 had	 an	 effect	 upon	 the	 area	 of	 a	 peak,	

termed	 the	 “degradation	 peak”,	 which	 was	 observed	 following	 treatment	 of	 azygous	

plants	with	MeJA,	and	then	subsequent	treatment	with	aniline.	The	GLM	was	also	used	

to	 investigate	 whether	 there	 was	 any	 interaction	 between	 the	 factors.	 The	 infection	

status	had	 a	 significant	 effect	 (t=3.26,	 p=0.0038).	The	wheat	 line	 investigated	did	not	

have	 a	 significant	 effect	 upon	 the	 model	 (t=1.02,	 p=0.3186),	 but	 it	 did	 interact	

significantly	 with	 infection	 (t=2.3,	 p=0.0318),	 i.e.	 the	 infection	 status	 and	 wheat	 line	

together	had	an	effect	upon	the	degradation	peak	area.	Simplification	of	the	model	lost	

this	effect,	so	it	was	decided	that	the	maximal	model	(Equation	18)	should	be	kept.	

	

Equation	19:	A	maximal	Generalised	Linear	Mixed	Model	for	RNA	peak	data	before	simplification.	The	model	

contains	 all	 possible	 interactions	 for	 the	explanatory	 factors	 “infection”	 referring	 to	 infection	with	Blumeria	

graminis	f.sp.	tritici,	and	“wheat_line”	referring	to	which	seed	line	was	used.		

!"#(!"#_!"~!ℎ!"#_!"#$ ∗ !"#$%&!'")	

	

I	performed	Bartlett	tests	to	determine	whether	the	variance	was	homogeneous	for	the	

relative	 degradation	 peak	 area	 against	 the	wheat	 line	 (3.3.12	 or	 3.3.14),	 infection,	 or	

both	 (Supplementary	 Table	 40).	None	 of	 the	 datasets	 showed	 homogeneous	 variance	

(p<0.05).		
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For	uninfected	primary	wheat	leaves,	I	found	that	the	presence	of	BEC1054	decreased	

the	degradation	peak	area,	as	can	be	seen	by	the	lowering	of	the	boxplot.	This	decrease	

was	 not	 significant	 (p=0.0993).	 It	 was,	 however,	 repeatable,	 occurring	 for	 both	 line	

3.3.14	(pictured)	and	3.3.7	(+/+)	(Supplementary	Figure	56	and	Supplementary	Table	

39).	 For	 infected	 wheat	 leaves,	 the	 presence	 of	 BEC1054	 increased	 the	 area	 of	 the	

degradation	peak,	as	can	be	seen	by	the	elevation	of	the	boxplot.	This	change	was	not	

significant	 (p=0.7389).	 Infection	of	homozygous	null	wheat	 (-/-)	with	B.	graminis	f.sp.	

tritici	 decreased	 the	 area	 of	 the	 degradation	 peak,	 preventing	 its	 formation	 almost	

completely.	This	effect	was	significant	(p<0.05).	
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Figure	 46:	 Expression	 of	 BEC1054	 decreases	 the	 formation	 of	 an	 RNA	 diagnostic	 peak.	 Seven	 day	 old	

seedlings	of	transgenic	wheat,	azygous	(-/-,	line	3.3.12)	or	homozygous	(+/+,	line	3.3.14)	for	Blumeria	graminis	

f.sp.	hordei	effector	BEC1054	(wbec1054),	were	infected	once	a	day	for	three	days	or	maintained	uninfected.	

Primary	 leaves	were	harvested,	 and	 treated	with	methyl	 jasmonate	 for	 a	 further	 five	days.	Ribonucleic	 acid	

was	extracted	from	the	primary	leaves,	and	treated	with	1	M	aniline.	The	RNA	was	run	on	a	Bioanalyzer	Nano	

RNA	chip,	and	the	area	of	the	major	RNA	peaks	measured.	The	relative	peak	area	was	calculated	for	a	putative	

ribosomal	degradation	peak,	in	relation	to	the	area	of	the	large	ribosomal	subunit	(28S).	The	thick	line	denotes	

the	median	of	each	boxplot,	the	boxes	represent	the	quartiles,	maximum	and	minimum	values	are	shown	by	

the	error	bars,	and	outliers	are	indicated	by	circles.	The	letters	indicate	significance,	with	identical	letters	being	

the	same,	and	different	letters	being	significantly	different.	The	number	biological	replicates,	from	left	to	right,	

was	6,	10,	5	and	4.	utilised	with	permission	from	Thieron,	(2015)	and	Chandler	(2015).	
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7.4.8. Co-localisation	of	BEC1054-GFP	with	cellular	localisation	markers	

The	fluorescent	signal	of	BEC1054	expressed	with	either	a	C-terminal	or	an	N-terminal	

GFP	tag,	in	N.	benthamiana,	was	found	to	occur	in	the	cytoplasm	and	the	nucleus,	with	a	

much	lower	GFP	signal	also	occurring	in	the	nucleolus	(Figure	47).	Max	scans,	created	

through	 combining	 the	maximum	 pixel	 intensity	 of	 the	 images	 obtained	 in	 a	 Z-stack,	

demonstrated	 that	BEC1054’s	GFP	 tag	 signal	 occurred	 in	 faint	 puncta	 throughout	 the	

cytoplasm,	 and	 that	 these	 occurred	 for	 both	 N	 and	 C	 terminal	 fusions.	 These	 puncta	

were	 not	 co-localised	 with	 any	 of	 the	 RFP	 cellular	 markers	 available	 in	 the	 host	

laboratory,	including	early	or	late	endosomes	(ARA7	and	ARA8),	Golgi,	or	mitochondria	

(Geldner	et	al.,	2009).	

	

I	performed	co-localisation	experiments	with	40S	16	with	a	C-terminal	GFP	 tag	and	a	

cytoplasmic	mitochondrial	marker	with	an	RFP	tag.	I	found	that	in	N.	benthamiana,	the	

GFP	signal	for	40S	16	was	visible	in	the	nucleus,	very	bright	in	the	nucleolus,	and	was	

visible	as	puncta	throughout	the	cytoplasm	of	the	cell.	This	expression	pattern	matched	

that	 observed	 in	wheat	 (Chapter	4	 and	Figure	16).	 Co-localisation	was	performed	 for	

40S	16’s	GFP	 tag	 signal	with	 an	RFP	mitochondrial	marker	 (Figure	48).	 The	GFP	 and	

RFP	puncta	occurred	at	the	same	points	throughout	the	cytoplasm.		
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Figure	 47:	 Co-expression	 of	 Blumeria	 Effector	 Candidate	 1054	 (BEC1054)	 with	 multiple	 cellular	 markers.	

Green	fluorescent	tags	were	expressed	in	N.	benthamiana	epidermal	cells,	fused	to	both	the	N	and	C	terminal	

domains	 of	 BEC1054	 (with	 BEC1054-GFP	 indicating	 a	 C-terminal	 tag,	 and	 GFP-BEC1054	 indicating	 an	 N-

terminal	tag).	White	arrows	indicate	focal	accumulations	of	BEC1054.	Chloroplast	autofluorescence	is	shown	in	

pink.	The	red	fluorescenr	protein	tagged	cellular	markers	are	shown	in	red.	
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Figure	48:	Ribosomal	subunit	40S	protein	16	(40S	16)	marks	mitochondria	and	chloroplasts.	Co-expression	of	

C-terminal	 labeled	GFP,	and	an	RFP	 labeled	mitochondrial	marker	demonstrated	 that	40S	16	occurs	as	 focal	

accumulations	marking	mitochondria.	A)	Merged	colour	overview,	B)	expanded	RFP	section,	C)	combined	GFP	

and	RFP	sections,	and	D)	expanded	GFP	section.		
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7.5. Discussion	

7.5.1. Transgenic	wheat	phenotyping	assay	

Genotyping	and	qPCR	determined	that	BEC1054	was	present	and	was	expressed	in	the	

T4	generation	of	wheat	line	3.3.14,	and	absent	in	line	3.3.12.	These	results	reconfirmed	

those	 obtained	 previously	 (Bonciani	 2014),	 demonstrating	 that	 the	 transgene	 was	

stable	in	line	3.3.14.		

	

In	a	stable	transformation	system,	genes	are	expressed	throughout	the	life	of	the	plant.	

It	can	therefore	be	important	to	determine	whether	any	changes	are	due	to	the	effect	of	

the	gene	on	development,	or	other	essential	processes.	Furthermore,	 it	 is	possible	 for	

the	inserted	DNA	to	interrupt	a	gene	(Alberts	et	al.,	2002).	The	wbec1054	was	inserted	

via	Agrobacterium	mediated	transformation,	and	the	site	of	DNA	insertion	would	have	

been	random,	making	phenotyping	of	the	transformed	plants	important.		

	

Expression	of	BEC1054	in	yeast	had	been	shown	to	affect	yeast	transformation	success	

and	growth.	I	therefore	suspected	that	stable	expression	of	BEC1054	as	a	transgene	in	

wheat	may	affect	wheat	growth	and	development.	A	randomized	block	design	with	six	

plots	 was	 used	 to	 investigate	 the	 phenotype	 of	wbec1054	 homozygous	 and	 azygous	

plants,	 as	 per	 (Borrell	 et	 al.,	 1993,	 Gasperini	 et	 al.,	 2012),	 but	 with	 each	 block	

representing	 one	potted	wheat	 plant.	 This	 design	was	utilised	 to	 prevent	 any	 growth	

differences	that	would	have	occurred	due	to	location	within	the	growth	chamber,	i.e.	if	

the	floor	were	slightly	sloped,	which	would	have	allowed	some	plants	more	water	than	

others,	 or	 if	 there	were	a	 temperature	gradient	between	 the	door	and	 the	ventilation	

system.	 Furthermore,	 all	 seeds	 were	 of	 the	 same	 age,	 originating	 from	 the	 same	 T3	



197	

	

generation	plant,	and	had	been	stored	under	the	same	conditions,	helping	to	ensure	that	

any	 physiological	 differences	 observed	 would	 have	 been	 caused	 by	 the	 presence	 (or	

absence)	of	the	wbec1054	transgene.		

	

The	 height	 of	 wheat,	 the	 spike	 (head	 including	 whisker)	 length,	 number	 of	 leaves,	

number	 of	 fertile	 tillers,	 number	 of	 grains	 set	 per	 spike/ear,	 and	 grain	 yield	 are	

characteristics	 frequently	 assayed	 when	 assessing	 wheat	 plants	 (Borrell	 et	 al.,	 1993,	

Hays	 et	 al.,	 2007,	 Gasperini	 et	 al.,	 2012,	 Fellahi	 et	 al.,	 2013).	 The	 height	 of	 wheat	 is	

commonly	 determined	 using	 the	 primary	 tiller,	 with	 each	 tiller	 usually	 formed	 of	

hollow,	round,	jointed	culms	(stems).	Each	culm	is	usually	comprised	of	five	internodes,	

which	 are	 shortest	 at	 the	base	of	 the	plant,	 and	 longest	 at	 the	 ear,	with	 the	peduncle	

being	 the	 longest	 (Gasperini	 et	 al.,	 2012).	 The	 wheat	 models	 developed	 from	 the	

phenotyping	assay	demonstrated	the	same	pattern	for	both	homozygous	(+/+)	(Figure	

39)	 and	 azygous	 (-/-)	 control	 plants.	 The	 boxplots	 and	 statistical	 analyses	 further	

demonstrated	 that	 there	 were	 no	 significant	 differences	 in	 the	 internode	 lengths,	

primary	 culm	 length,	 or	 any	 other	 characteristic	measured	 (Figure	38).	 These	 results	

were	 reproducible,	 with	 a	 second	 homozygous	 line	 (3.3.7)	 showing	 the	 same	

characteristics	(not	shown).	These	results	showed	that	BEC1054	did	not	have	an	effect	

upon	plant	growth,	yield,	or	height	under	the	experimental	conditions	used,	and	that	the	

DNA	had	not	disrupted	an	essential	wheat	gene.	

7.5.2. Transgenic	wheat	and	Nicotiana	infection	assays	

In	our	experiments,	no	haustoria	were	observed	on	wheat	 inoculated	with	B.	graminis	

f.sp.	hordei.	These	results	indicated	that	BEC1054	does	not	affect	non-host	resistance.	
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We	used	the	proportion	of	B.	graminis	f.sp.	tritici	conidia	that	form	haustoria	on	wheat	

as	an	indication	of	how	successfully	the	pathogen	infected	the	host	plant.	An	expression	

analysis	performed	 for	BEC1054	demonstrated	 that	 it	was	 transcribed	at	early	 stages	

during	a	B.	graminis	 infection	time-course	 in	barley	(Chapter	5	and	(Pennington	et	al.,	

2015)).	 These	 results	 indicated	 a	 correlation	 between	wbec1054’s	expression	 and	 the	

establishment	of	early	infection	and/or	haustorial	formation.	Our	results	demonstrated	

that	 the	presence	of	 the	 transgene	wbec1054	 increased	 the	proportion	of	 conidia	 that	

formed	haustoria	(Figure	40)	 in	both	old	and	young	plants.	These	results	corroborate	

those	identified	previously,	where	it	was	shown	in	barley	that	silencing	of	BEC1054	led	

to	 a	 significant	 decrease	 in	 the	 virulence	 of	B.	graminis	 f.sp.	hordei	 in	 its	 host,	 barley	

(Pliego	et	al.,	2013).	

	

Monocot	leaves,	including	wheat,	mature	along	a	basipetal	(tip	to	base)	gradient	along	

the	 blade	 (Wernicke	 and	 Milkovits	 1984,	 Itoh	 et	 al.,	 2005).	 Furthermore,	 genes	 are	

expressed	 in	 a	 non-uniform	 manner	 along	 the	 longitudinal	 axis	 of	 mature	 leaves	

belonging	to	members	of	the	Poaceae	(Jiao	et	al.,	2009,	Li	et	al.,	2010,	Wang	et	al.,	2014).	

Li	et	al.,	(2015)	 found	 that	 the	 leaf	 base	of	 rice	 expressed	 at	 higher	 levels	 transcripts	

relating	 to	 secondary	metabolism	 compared	 to	 the	 tips.	 Their	 data	 also	 revealed	 that	

transcription	 factors,	 such	as	WRKYs,	were	expressed	differentially	along	 the	blade	of	

the	 leaf,	 with	 13	 showing	 highest	 expression	 at	 the	 leaf	 base,	 and	 two	 highest	

expression	 at	 the	 leaf	 tip	 (Li	 et	 al.,	 2015).	 The	 WRKY	 factors	 play	 roles	 in	 plants	

including	 disease	 resistance	 (Pandey	 and	 Somssich	 2009),	 stress	 responses	 and	

hormone	 responses	 (Sakuma	et	al.,	 2002,	 Chen	et	al.,	 2012).	The	 increase	 in	 infection	

seen	in	plants	expressing	wbec1054	was	strongest	at	the	leaf	base,	and	became	reduced	
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towards	 the	 leaf	 tip	 (Figure	40).	Together,	 the	 gradient	 in	nutrient	 availability	 and	 in	

immune	 related	 transcripts	 helps	 to	 explain	 the	 gradient	 in	 infection	 seen	 with	 B.	

graminis	 f.sp.	 tritici.	 The	 difference	 in	 propH	 was	 higher	 between	 plants	 azygous	 or	

homozygous	for	BEC1054	at	the	leaf	base	than	at	the	leaf	tip.	If	other	disease	resistance	

factors	 such	 as	RIPs,	were	more	 abundant	 at	 the	base	of	 the	 leaf	 (as	were	 the	WRKY	

transcription	factors	(Li	et	al.,	2015)),	then	BEC1054	may	have	played	a	greater	role	in	

preventing	RIP	induced	cell	death.		

	

Agrobacterium	was	used	to	express	BEC1054	and	JIP60ml	with	a	C-terminal	tag	in	the	

dicot	non-host	N.	benthamiana	(Figure	41),	which	was	then	infected	with	the	oomycete	

P.	 tabacina.	 P.	 tabacina	 causes	 blue	 mould,	 a	 downy	mildew	 disease	 (Krsteska	 et	 al.,	

2015).	 Our	 study	 demonstrated	 that	 the	 expression	 of	 BEC1054	 increased	 the	

susceptibility	 of	 N.	 benthamiana	 to	 P.	 tabacina.	 A	 significantly	 greater	 number	 of	

sporangia	were	recovered	from	leaf	material	transformed	with	BEC1054-GFP	than	with	

a	GFP	only	control.	This	suggests	that	that	BEC1054	affected	a	conserved	mechanism	of	

the	 plant	 defense	 response,	 present	 in	 both	 monocotyledonous	 and	 dicotyledonous	

plants,	and	which	favours	both	fungal	and	oomycete	pathogens.		

	

Far	 fewer	 sporangia	were	 recovered	 from	 leaf	material	 expressing	 JIP60ml-GFP	 than	

material	expressing	GFP	(Figure	41).	These	results	indicate	that	the	JIP60ml	construct	

(described	 in	 Section	 3.4.1.3)	 was	 indeed	 active.	 The	 results	 shown	 (Figure	 43)	

demonstrate	 that	 it	 caused	 extensive	 cell	 death	 by	 10	 days	 after	 agrobacterium	

infiltration.	It	is	possible	that	the	absence	of	sporangia	was	due	to	the	death	of	the	host	

cells,	which	are	required	by	 the	biotrophic	pathogen	P.	tabacina.	Cell	death	caused	by	
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JIP60ml	first	became	visible	at	around	5	dpi,	and	was	readily	apparent	by	10	dpi.	The	

slow	 development	 indicates	 that	 it	 was	 not	 due	 to	 triggering	 of	 the	 hypersensitive	

response	(which	is	notable	for	its	rapidity)	(Goodman	and	Novacky	1994),	but	instead	

was	 a	more	 generalized	 cell	 death,	 possibly	 due	 to	 the	 ribosome	 cleavage	 activity	 of	

JIP60ml.	 This	 result	 is	 consistent	with	 that	 for	 the	 BiFC	 assay,	 where	 two	 epidermal	

cells	 were	 identified	 expressing	 JIP60ml	 tagged	 with	 C-terminal	 YFP	 (Section	 4.4.6),	

where	we	had	hypothesised	that	 JIP60ml	was	toxic,	killing	the	majority	of	cells	 that	 it	

was	expressed	in,	or	that	it	affected	translation	of	both	the	transformation	marker	and	

the	 YFP	 vectors.	 The	 asexual	 life	 cycle	 of	P.	 tabacina	 takes	 five	 to	 seven	 days;	with	 a	

second	set	of	sporangia	being	produced	around	seven	to	10	days	(Krsteska	et	al.,	2015).	

The	 extensive	 cell	 death	 (Figure	 42)	 caused	 by	 JIP60ml	within	 this	 timeframe	would	

have	 prevented	 the	 pathogen	 from	 establishing	 a	 successful	 biotrophic	 infection,	 and	

thus	would	have	prevented	the	formation	of	sporangia.		

7.5.3. Chlorophyll	senescence	assay	

We	induced	senescence	in	wheat	primary	leaves,	by	floating	them	on	MeJA	(Hung	et	al.,	

2006).	After	five	days,	we	were	able	to	detect	a	noticeable	induction	of	senescence,	both	

through	 the	 colour	 change	 of	 the	 wheat	 primary	 leaves	 from	 green	 towards	 yellow	

(Figure	43),	but	also	through	the	decrease	in	the	concentration	of	chlorophylls	a	and	b	

in	MeJA	treated	primary	leaves	(Figure	44).	This	change	was	significant	for	chlorophyll	

b	 from	leaves	homozygous	and	azygous	for	wbec1054,	but	only	 for	chlorophyll	a	 from	

homozygous	leaves.	There	was	also	no	significant	difference	between	the	chlorophyll	a	

concentration	for	the	homozygous	and	azygous	leaves	(Figure	44).	The	degradation	of	

chlorophyll	b	is	different	from	that	of	chlorophyll	a.	Degradation	of	chlorophyll	b	occurs	

first	during	senescence,	with	chlorophyll	b	being	converted	to	chlorophyll	a	(Ito	et	al.,	
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1993,	Ito	et	al.,	1996,	Scheumann	et	al.,	1996).	This	may	explain	the	clear	degradation	of	

chlorophyll	b	with	MeJA	treatment,	and	the	result	seen	for	chlorophyll	a.		

	

The	decrease	 in	 concentration	of	 chlorophylls	 a	 and	b	 seen	with	MeJA	 treatment	was	

delayed	 in	 plants	 infected	 with	 B.	 graminis	 f.sp.	 tritici	 (Figure	 43).	 In	 compatible	

interactions,	chlorophyll	is	maintained	within	viable	host	cells	against	a	background	of	

senescence,	 leading	 to	 the	 occurrence	 of	 “green	 islands”	 (Murphy	 et	al.,	 1997).	 Green	

islands	can	be	observed	in	Figure	43.		

7.5.4. RNA	degradation	assay	

Differential	expression	has	been	found	for	jasmonate	signaling	related	genes	following	

B.	 graminis	 f.sp.	 tritici	 infection	 in	wheat	 (Wang	 et	al.,	2012),	 and	 following	 infection	

with	 the	 powdery	 mildew	 Erysiphe	 necator	 (Schw.)	 Burr	 in	 cultivated	 grapes	 (Vitis	

vinifera)	 (Weng	 et	 al.,	 2014).	 An	 increase	 in	 jasmonate	 signaling	 would	 lead	 to	 the	

expression	of	defense	related	genes	such	as	JIP60	in	barley.	

	

Jasmonates	trigger	or	influence	several	processes	in	addition	to	senescence	in	a	range	of	

plant	species	 including,	but	not	 limited	to,	rice	spikelet	development	(Cai	et	al.,	2014),	

Brassica	and	Linum	embryo	development	(Wilen	et	al.,	1991),	and	secondary	metabolite	

biosynthesis	 (Gundlach	 et	 al.,	 1992,	 Aerts	 et	 al.,	 1994),	 storage	 protein	 accumulation	

(Staswick	et	al.,	1992,	Mason	et	al.,	1993),	wound	responses	(Farmer	et	al.,	1992,	Xu	et	

al.,	 1994),	 and	alteration	of	 gene	expression	 (Sembdner	 and	Parthier	1993)	 including	

the	induction	of	Jasmonate	Induced	Proteins	(JIPs)	(Weidhase	et	al.,	1987b).	These	JIPs	

possess	a	wide	range	of	activities,	for	example	JIP6	is	a	thionin-like	protein	(Andresen	et	
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al.,	1992),	and	JIP60	has	been	shown	to	be	a	ribosome	inactivating	protein	(see	Section	

6.5	for	further	details).		

	

Treatment	of	the	depurinated	rRNA	with	aniline	in	vitro	results	in	the	formation	of	two	

fragments,	one	ca.	3027	nucleotides	long,	and	one	ca.	364,	as	aniline	cleaves	the	sugar-

phosphate	 backbone	 at	 site	 of	 the	 modified	 nucleotide(s)	 (Peattie	 1979).	 The	 small	

fragment,	often	used	as	an	indicator	of	RIP	activity,	has	previously	been	shown	to	occur	

in	barley	leaves	after	72	h	of	MeJA	treatment	(Dunaeva	et	al.,	1999).		

	

A	 diagnostic	 RNA	peak,	 of	 between	 2000	 and	 4000	nucleotides,	was	 identified	 in	 the	

Bioanalyzer	data,	which	occurred	following	MeJA	treatment	(Figure	45).	The	predicted	

size	 of	 the	 peak	 varied	 between	 samples/chips,	 but	 remained	 between	 these	 ladder	

markers	in	the	vast	majority	of	samples.	Treatment	with	a	control	(H2O,	as	opposed	to	

MeJA)	did	not	 lead	to	the	 formation	of	 this	peak.	One	possibility	 is	 that	 this	peak	may	

represent	the	large	fragment	produced	following	RIP	degradation	of	rRNA.	Bioanalyzer	

RNA	Nano	chips	are	non-denaturing,	so	secondary	folding	may	affect	the	running	speed	

of	RNA	fragments	(Agilent	2013).		

	

Infection	with	B.	graminis	f.sp.	tritici	caused	the	diagnostic	peak	to	disappear	in	control	

wheat	 plants	 azygous	 for	 wbec1054	 (Figure	 45	 and	 Figure	 46).	 These	 results	

corroborate	 the	 idea	 that	 the	 fungus	 protects	 the	 plant	 ribosomes	 from	 degradation.		

The	prevention	of	rRNA	degradation	would	help	to	maintain	a	living	plant	cell	as	a	food	

source	 for	 the	 fungus.	The	activity	of	RIPs,	 such	as	 JIP60,	prevents	 the	binding	of	 the	

eEF2/GTP	 complex	 to	 the	 ribosome,	 and	 thus	 inhibits	 protein	 synthesis	 at	 the	
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elongation	step	(Wool	et	al.,	1992);	and	it	has	also	been	suggested	that	RIPs	may	affect	

initiation	(Osborn	and	Hartley	1990).	Expression	of	JIP60	in	N.	tabacum	indicated	that	

JIP60	 impaired	 elongation,	 as	 they	 found	 a	 shift	 towards	 polysomes	 in	 the	

polysome/monosome	ratio	(Gorschen	et	al.,	1997).	

	

The	 presence	 of	 BEC1054	 decreased	 the	 accumulation	 of	 the	 RNA	 seen	 as	 a	

“degradation”	peak.	Although	this	effect	was	not	statistically	significant,	it	was	found	to	

be	repeatable,	also	occurring	for	the	homozygous	seed	line	3.3.7.	The	RNA	samples	used	

were	 extracted	 from	 whole	 primary	 leaves.	 The	 wheat	 infection	 assay	 (Figure	 40)	

demonstrated	 that	a	greater	difference	was	seen	 in	 infection	when	 looking	at	 the	 leaf	

base,	 than	when	looking	at	 the	 leaf	 tip.	 It	may	be	that	extraction	of	RNA	from	just	 the	

leaf	 base	 following	 treatment	 would	 allow	 a	 significant	 difference	 to	 be	 observed	

between	the	degradation	peak	areas	for	the	azygous	and	homozygous	lines	(Figure	46).	

Alternatively,	more	than	one	of	the	RNase-like	proteins	associated	with	haustoria	may	

be	 required	 for	 further	 protection	 of	 the	 ribosomes,	 as	 120	 are	 encoded	 by	 the	 B.	

graminis	f.sp.	hordei	genome	(Spanu,	pers.	comm.).	It	remains	to	be	seen	which	of	these	

explanations	is	correct.	

7.5.5. Colocalisation	of	BEC1054	in	planta	

We	were	unable	to	identify	the	localisation	of	BEC1054	puncta	 in	vivo	(Figure	47).	We	

found	that	 the	 fluorescent	signals	 for	 the	GFP	tag	of	BEC1054	did	not	co-localise	with	

the	RFP	tags	of	early	endosomes,	 late	endosomes,	mitochondria	or	Golgi	(the	markers	

utilised	were	developed	by	(Geldner	et	al.,	2009)),	but	instead	occurred	in	other	distinct	

puncta	 throughout	 the	 cell.	 The	GFP	 signal	 for	 ribosomal	 protein	 40S	 16	 co-localised	
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with	the	RFP	signal	for	mitochondria	(Figure	48),	and	in	addition	it	occurred	in	bright	

spots	in	the	chloroplasts.		

	

The	expression	pattern	of	40S	16	was	similar	to	that	of	fluorescently	tagged	mammalian	

40S	proteins,	which	are	also	expressed	in	a	granular/punctate	manner	throughout	the	

cytoplasm,	in	the	nucleus,	and	brightly	in	the	nucleolus	(Rugjee	et	al.,	2013).	Rugjee	et	

al.,	(2013)	found	that	the	ribosomal	proteins	tested	co-migrated	with	ribosomal	subunit	

fractions,	 monosomes	 and	 polysomes,	 indicating	 that	 they	 had	 indeed	 bound	 to	 the	

ribosome.	To	date,	we	have	been	unable	to	find	a	fluorescently	tagged	plant	ribosomal	

marker	for	confocal	microscopy	in	the	literature.	Our	results	indicate	that	40S	16	may	

provide	such	a	resource.		

7.6. Conclusion	

Together,	 stable	 and	 transient	 expression	 systems	 provide	 a	 powerful	 toolset	 for	

investigating	effector	activity	in	plants.	Stable	expression,	although	more	difficult/costly	

to	 achieve,	 allows	 the	 activity	 of	 the	 effector	 to	 be	 studied	within	 the	 host.	 Transient	

expression	can	be	utilised	to	rapidly	screen	multiple	proteins	for	activity	or	expression.	

Here,	we	utilised	transient	expression	to	show	that	the	B.	graminis	f.sp.	hordei	effector	

BEC1054,	when	expressed	in	N.	benthamiana,	or	stably	in	wheat,	affected	the	resistance	

of	 the	 host	 plant	 to	 the	 biotrophs	P.	 tabacina	and	B.	graminis	 f.sp.	 tritici	respectively.	

Transient	expression	was	also	used	to	 investigate	the	effects	of	BEC1054	and	JIP60ml	

on	plant	 cell	 death,	where	 it	was	 found	 that	 our	 JIP60	 construct	 induced	 a	 cell	 death	

response.	Furthermore,	here	we	have	provided	evidence	that	infection	with	B.	graminis	

f.sp.	 tritici	prevented	 degradation	 of	 the	 ribosome	 by	 ribosome	 inactivating	 proteins;	

and	partial	evidence	for	BEC1054’s	ability	to	reduce	this	effect.	
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7.7. Further	work	

AIM:	To	determine	whether	 the	protection	of	 ribosomal	RNA	by	BEC1054	varies	 in	a	

basipetal	manner.	

OBJECTIVE:	 To	 treat	 wheat	 leaves	 in	 the	 same	 manner	 as	 for	 the	 RNA	 analysis	

conducted	 above	 (Section	 7.4.7),	 but	 to	 extract	 and	 analyze	 RNA	 separately	 from	

sections	of	the	leaf,	i.e.	the	base	2	cm	and	the	tip	2	cm.	

REASONING:	 Wheat	 infection	 was	 shown	 to	 vary	 in	 a	 basipetal	 manner,	 with	 the	

proportion	of	 germinated	 conidia	 that	 formed	 at	 least	 one	haustorium	 (propH)	being	

highest	 at	 the	 leaf	 tip,	 and	with	 the	 difference	 in	 this	 proportion	 for	 plants	with	 and	

without	BEC1054	being	highest	at	the	leaf	base	(Figure	40).	The	difference	in	formation	

of	the	diagnostic	small	peak	may	therefore	be	higher	at	the	leaf	base	than	at	the	leaf	tip.	

	

AIM:	To	determine	the	nature	of	the	small	peak.	

OBJECTIVE:	To	create	a	much	greater	quantity	of	RNA,	through	the	pooling	of	multiple	

samples,	 to	 run	 this	RNA	on	 a	 gel	 and	 on	Bioanalyzer	 in	 parallel,	 and	 (if	 possible)	 to	

identify	the	band	associated	with	the	small	peak	through	comparison	of	the	two	sets	of	

results,	excision	of	the	band,	extraction	and	identification	of	the	RNA,	possibly	through	

mass	spectrometry	(Matthiesen	and	Kirpekar,	2009).		

REASONING:	 If	 the	 band	 were	 identified,	 it	 could	 potentially	 be	 recovered	 and	

identified.	If	this	fragment	were	the	large	one	formed	during	RNA	degradation	by	RIPs,	

this	would	lend	further	evidence	to	our	working	hypothesis.	

	

AIM:	 To	 determine	 whether	 BEC1054	 affects	 JIP60ml’s	 necrosis	 inducing	 effect	 in	

Nicotiana	benthamiana.	
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OBJECTIVE:	To	utilise	a	series	of	concentrations	of	Agrobacterium	expressing	JIP60ml,	

to	identify	a	concentration	at	which	the	necrosis	effect	is	weakly	induced	(i.e.	only	some	

cells	show	evidence	of	necrosis	following	trypan	blue	staining).		

REASONING:	 This	 concentration	 of	Agrobacterium	expressing	 JIP60ml	 could	 then	 be	

utilised	 in	 conjunction	 with	 a	 range	 of	 concentrations	 of	 Agrobacterium	 expressing	

BEC1054,	 to	 determine	 whether	 BEC1054	 has	 an	 effect	 upon	 this	 necrotizing	 effect.	

This	concentration	of	Agrobacterium	expressing	JIP60ml	could	also	be	used	to	see	more	

accurately	whether	JIP60ml	has	an	effect	on	Peronospora	tabacina	sporangia	formation,	

independent	of	its	causing	cell	death	(which	prevents	the	establishment	of	infection	by	

the	biotrophic	pathogen).	
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8. General	summary:	aims	and	objectives	of	this	thesis	

Chapter	4	

AIM:	To	identify,	and	validate,	protein	interactors	for	Blumeria	Effector	Candidate	1054	

(BEC1054)	in	vitro,	in	yeast	and	in	planta	

OBJECTIVE:	 To	 utilise	 protein-protein	 interaction	 methods,	 including	 affinity	

chromatography,	 yeast-two-hybrid	 and	 bimolecular	 fluorescence	 complementation	 to	

identify	protein	interactors	for	BEC1054	

	

Chapter	5	 	

AIM:	 To	 investigate	 the	 transcript	 abundance	 for	Candidate	 Secreted	Effector	Protein	

(CSEP)	family	21	across	a	Blumeria	graminis	infection	time	course	

OBJECTIVE	1:	To	develop	controls	for	qPCR	normalisation	of	B.	graminis	and	of	the	host	

plant,	barley.	

OBJECTIVE	2:	To	utilise	quantitative	Real-Time	PCR	(qPCR)	to	determine	the	relative	

expression	of	CSEP	 family	21	 (which	 includes	BEC1054),	 a	 conidia-specific	gene	 (as	a	

negative	control),	and	putative	host-plant	interactors	of	BEC1054.	

	

Chapter	6	 	

AIM:	 To	 identify	 whether	 BEC1054	 interacts	 with	 the	 large	 subunit	 ribosomal	 RNA	

(rRNA),	particularly	the	Sarcin-Ricin	Loop	(SRL)	in	vitro	or	in	yeast	

OBJECTIVE:	To	utilise	in	vitro	methods	(Differential	Scanning	Fluorimetry)	and	in	yeast	

(Yeast-Three-Hybrid)	methods	 to	determine	whether	BEC1054	binds	 to	 large	 subunit	

rRNA,	or	to	the	SRL		
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Chapter	7	

AIM	1:	To	determine	whether	the	presence	of	BEC1054	in	wheat	affects	its	phenotype,	

senescence,	ribosomal	degradation,	or	host/non-host	infection	

OBJECTIVE	1:	To	phenotype	transgenic	wheat	homozygous	or	azygous	for	BEC1054	

OBJECTIVE	 2:	 To	 utilise	 chlorophyll	 degradation	 as	 a	 quantitative	 indicator	 of	

senescence,	and	 to	determine	whether	 infection	with	Blumeria	graminis	f.sp.	 tritici,	or	

expression	of	wbec1054	affects	senescence	in	wheat	

OBJECTIVE	 3:	 To	 determine	whether	 infection	with	Blumeria	graminis	 f.sp.	 tritici,	or	

expression	of	wbec1054	affects	ribosomal	RNA	

OBJECTIVE	 4:	 To	 determine	 whether	 the	 ability	 of	 Blumeria	 graminis	 f.sp.	 tritici,	 is	

affected	by	the	presence/absence	of	the	wbec1054	transgene	

	

AIM	2:	To	determine	whether	the	presence	of	BEC1054	in	Nicotiana	benthamiana	has	

an	effect	on	N.	benthamiana	cell	death,	or	the	ability	of	Peronospora	tabacina	to	infect	N.	

benthamiana	

OBJECTIVE	 1:	 To	 utilise	 Agrobacterium	 to	 express	 JIP60ml	 and	 BEC1054	 in	 N.	

benthamiana,	and	to	infect	the	transformed	leaves	with	P.	tabacina.	

OBJECTIVE	 2:	To	 perform	 trypan	 blue	 staining	 on	 transformed	 leaves,	 to	 selectively	

colour	dead	tissues/cells.	

	

	AIM	 3:	 To	 determine	 whether	 BEC1054	 co-localises	 in	 plant	 cells	 with	 any	 of	 the	

cellular	markers	available	in	the	host	laboratory.	
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OBJECTIVE:	To	express	wBEC1054	with	 a	C	 or	N	 terminal	GFP	 tag,	 and	 to	determine	

through	 confocal	 microscopy	 whether	 it	 co-localises	 with	 mitochondria,	 early	

endosomes,	late	endosomes,	or	Golgi	bodies.	

9. General	discussion	

During	 the	 first	 three	months	 of	my	 PhD,	 an	 undergraduate	 student	 (Seomun	Kwon)	

came	 up	 with	 the	 initial	 hypothesis	 in	 which	 BEC1054	 outcompetes	 Ribosome	

Inactivating	 Proteins	 (RIPs)	 by	 binding	 to	 rRNA	 (Kwon	 2011).	 This	 idea	 formed	 the	

starting	point	of	my	project,	around	which	I	built	much	of	my	experimental	work	and	

literature	 searches.	 In	 addition,	 during	 the	 first	 year	 of	my	 PhD,	 Giulia	 Bonciani	was	

finishing	a	PhD	investigating	the	activities	of	a	number	of	effectors,	including	BEC1054	

(Bonciani	 2014),	 and	 had	 demonstrated	 that	 BEC1054	 interacted	 with	 rRNA	 in	 a	

concentration	 dependent	 manner,	 and	 had	 helped	 contribute	 to	 the	 creation	 and	

genotyping	of	the	transgenic	wheat	lines	expressing	BEC1054.		

	

Dana	Gheorghe	used	recombinant	BEC1054	with	an	N-terminal	6x	His	tag	as	the	bait	to	

pull-down	prey	proteins	 in	vitro	 from	barley	uninfected	or	 infected	primary	 leaves,	or	

infected	 barley	 epidermis	 from	 primary	 leaves.	 Liquid	 Chromatography	 Mass	

Spectrometry	 (LCMS)	 was	 performed	 to	 identify	 the	 proteins	 bound	 to	 BEC1054.	

Analyses	 of	 the	 LCMS	 results	 were	 performed	 by	 Laurence	 Bindschedler,	 but	 the	

analyses	were	not	completed	until	near	the	end	of	my	second	year.	
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9.1. Summary	of	key	findings	

 
I	do	not	believe	that	BEC1054	is	an	avirulence	(Avr)	protein,	nor	that	its	plant	partner	is	

an	R	protein,	 i.e.	 I	do	not	 think	that	 it	 interacts	with	plant	proteins	 in	a	gene-for-gene	

manner.		

	

Here,	 I	 have	 attempted	 to	 understand	 and	 interpret	 the	 activity	 of	 one	 effector,	

BEC1054,	through	investigation	of	its	protein	binding	activity,	 its	expression	 in	planta,	

its	RNA	binding	activity	in	vitro	and	in	yeast;	and	through	an	analysis	of	its	expression	in	

wheat	and	N.	benthamiana,	both	in	relation	to	its	effect	upon	infection,	but	also	through	

its	effect	upon	two	of	the	key	components	of	senescence:	chlorophyll	degradation	and	

RNA	degradation.		

	

Within	this	chapter,	I	have	tried	to	bring	together	the	results	from	the	diverse	range	of	

experiments	 performed,	 both	 by	myself,	 by	 students	 under	my	 supervision,	 by	 other	

members	 of	 our	 collaboration	 in	 the	 host	 laboratory	 and	 in	 other	 universities,	 and	

salient	 information	 from	 the	 literature.	More	 detailed	 discussions	 for	 each	 individual	

experiment	conducted	can	be	found	at	the	end	of	the	appropriate	results	chapters.	Key	

points	have	been	integrated	into	Summary	Figure	49	and	Summary	Figure	50.		

	

9.1.1. BEC1054	and	proteins	

Multiple,	complementary	methods	are	required	for	the	 identification	and	validation	of	

effector	targets	(Alfano	2009).	Pull-down	assays,	and	other	 in	vitro	approaches,	can	be	

utilised	 to	 identify	 putative	 targets	 for	 fungal	 effectors.	 In	 our	 experiments,	 BEC1054	

was	 expressed	 with	 a	 polyhistidine-tag,	 purified,	 and	 bound	 with	 an	 affinity	 resin	
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containing	a	chelator	such	as	Ni-nitrilotriacetic	acid	(Ni-NTA).	Proteins	were	identified	

through	LCMS,	(Section	4.4.1),	247	of	which	were	found	to	occur	solely	with	BEC1054.	

Proportions	analysis	determined	that	significantly	more	ribosomal	proteins	were	found	

associated	with	BEC1054	than	with	the	glycosidase	like	BEC1005,	or	an	empty	Ni-NTA	

agarose	beads	(Table	1).		

	

Nine	 protein	 targets	 from	 the	 LCMS	 screen	were	 tested	 for	 further	 analysis,	 through	

Y2H	 and	 BiFC	 (Sections	 4.4.4,	 4.4.6	 and	 4.4.7).	 It	 was	 determined	 that	 BEC1054	

interacted	 with	 PR5,	 PR10,	 GST,	 eEF1A(1)	 and	 eEF1G.	 The	 presence	 of	 significantly	

more	 ribosomal	 proteins	 within	 the	 LCMS	 screen,	 and	 the	 presence	 of	 ribosomal	

proteins	within	the	Y2H	and	BiFC	assays,	indicated	that	BEC1054	may	bind	to	the	host	

ribosome	(Pennington	et	al.,	2016).	 In	addition	to	finding	interactors	for	BEC1054,	we	

identified	an	interaction	occurring	between	GST	and	PR10	(Figure	18),	where	PR10	is	

from	a	family	in	which	several	members	in	differing	species	have	been	shown	to	have	

RNase	 activity	 (Liu	 and	Ekramoddoullah	2006).	 In	 addition,	 PR10	has	been	 shown	 in	

birch	 to	be	post	 translationally	S-glutathiolated	 (Koistinen	et	al.,	2002).	 It	 is	 therefore	

possible	that	these	proteins	were	pulled	down	as	part	of	a	complex.		

9.1.2. BEC1054’s	expression	

Obligate,	 biotrophic	 pathogens	 require	 that	 the	 host	 cells	 remain	 alive,	 and	 therefore	

that	host	immunity	is	suppressed	during	infection	(Duplessis	et	al.,	2011,	Spanu	2012).	

A	 previous	 study	 had	 highlighted	 the	 importance	 of	 BEC1054,	 and	 its	 paralogs	

BEC1011,	in	establishing	a	successful	infection	(Pliego	et	al.,	2013).	Down-regulation	of	

the	 two	 genes	 through	Host-Induced	 Gene	 Silencing	 caused	 a	 reduction	 in	 haustorial	

formation	(Pliego	et	al.,	2013).	The	controls	developed	for	the	qPCR	assay	allowed	us	to	
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obtain	better	resolution	for	our	results	than	had	previously	been	seen	for	the	family	21	

CSEPs	(Pliego	et	al.,	2013);	with	an	early	expression	peak	being	identified	as	occurring,	

in	 epiphytic	material,	 for	 all	 of	 the	 CSEPs	 investigated	 (Chapter	 5;	 (Pennington	 et	al.,	

2015)).	 In	 this	 study,	we	have	shown	that	 four	members	of	CSEP	 family	21,	 including	

BEC1054	(CSEP0064),	showed	peaks	 in	expression	at	stages	representing	penetration	

peg	 formation,	 and	 ca.	 24-48	 hpi,	 which	 represents	 the	 stages	 between	 haustorial	

formation	 and	 colonies	 becoming	 visible	 to	 the	 naked	 eye	 (Chapter	 5;	 (Both	 et	 al.,	

2005)).	 The	 role	 of	 the	 haustorium	 in	 delivering	 effectors	 to	 host	 cells	 has	 become	

increasingly	apparent	for	filamentous	pathogens,	including	in	B.	graminis	(Bindschedler	

et	al.,	2009,	Godfrey	et	al.,	2010,	Bindschedler	et	al.,	2011),	rust	fungi	(Uromyces	fabae)	

(Hahn	and	Mendgen	1997,	Kemen	et	al.,	2005),	and	Phytophthora	infestans	(Whisson	et	

al.,	2007).		

	

The	 expression	 of	 the	 interacting	 proteins	 GST,	 PR5,	 PR10,	 eEF1A	 and	 eEF1G	 was	

investigated	following	infection	with	B.	graminis	(Chapter	5;	(Pennington	et	al.,	2015)).	

Expression	 of	 the	 two	 elongation	 factors	 and	 GST	 was	 found	 to	 increase	 following	

infection,	 in	 a	manner	 that	overlapped	with	 the	peak	 in	abundance	 for	BEC1054.	The	

two	 PR	 proteins	were	 found	 to	 be	 reduced	 in	 abundance,	 when	 compared	with	 pre-

infection	levels,	at	almost	all	time	points	(Chapter	5;	(Pennington	et	al.,	2015)).		

9.1.3. BEC1054	and	RNA	

Structural	 work	 performed	 by	 our	 collaborators	 confirmed	 the	 RNase-like	 fold	 of	

BEC1054	 (R.	 Jones,	 pers.	 comm),	 which	 had	 been	 predicted	 using	 bioinformatics	

methods	(Bindschedler	et	al.,	2011,	Pedersen	et	al.,	2012).		

	



213	

	

In	 this	 investigation	 I	 demonstrated,	 through	 Differential	 Scanning	 Fluorimetry,	 that	

BEC1054	 interacted	 with	 RNA	 in	 vitro	 (Chapter	 6,	 Section	 6.4.2)	 and	 that	 it	 was	

destabilised,	 and	 then	 stabilized	by	 a	DNA	 ligand.	 Interestingly,	 this	 binding	behavior	

was	 only	 seen	 for	 ribosome-related	 DNA	 sequences.	 The	 RNA	 binding	 domains	 have	

been	 found	 to	 recognize	 a	wide	 range	 of	 ligands,	 including	 DNA	 and	 RNA	 of	 varying	

lengths,	with	proteins,	 or	with	multiple	partners	 simultaneously,	 and	 to	 interact	with	

DNA	(reviewed	by	Clery	et	al.,	2008).	It	is	therefore	possible	that	BEC1054	may	bind	in	

vivo	to	both	DNA	and	RNA.		

	

Interactions	performed	 in	yeast	provide	a	 compromise	between	 in	planta	and	 in	vitro	

assays:	 they	 are	manipulatable/scorable	 whilst	 still	 being	 easier/cheaper	 to	 perform	

than	the	former,	but	provide	a	more	realistic	environment	than	the	latter	(Hook	et	al.,	

2005).	I	demonstrated	through	the	use	of	a	β-galactosidase	assay	that	BEC1054,	and	the	

RIP	JIP60ml,	bound	to	RNA	in	yeast	(Figure	35).	Only	the	RNA-prey	pairing	of	BEC1054	

with	 SRL	 RNA,	 or	 JIP60ml	 with	 SRL	 RNA	 produced	 yeast	 colonies	 on	 media	 lacking	

histidine,	 but	 containing	 3AT	 (where	 growth	 on	 3AT	 indicates	 a	 positive	 interaction)	

(Figure	35).	Other	RIPs,	such	as	trichosanthin,	have	previously	been	shown	to	bind	to	

RNA	 prior	 to	 depurination	 (Zhao	 et	 al.,	 2010).	 The	 interaction	 of	 BEC1054	with	 SRL	

RNA	 resulted	 in	 β-galactosidase	 activity	 that	 was	 lower	 than	 the	 negative	 control	

(Figure	 35).	 This	 result	 was	 found	 to	 be	 repeatable,	 but	 it	 was	 not	 clear	 what	 these	

results	mean.	They	may	 indicate	BEC1054	had	a	greater	effect	upon	translation	when	

paired	with	SRL	RNA;	that	BEC1054	somehow	affected	transcription	of	β-galactosidase	

when	localised	to	the	reporter	gene;	or	that	some	other	reaction	had	taken	place.	
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9.1.4. BEC1054	in	planta	

Wheat	 plants	 were	 transformed	 with	 bec1054	 (Section	 7.4.1).	 Genotyping	 was	

performed	via	PCR	to	confirm	the	presence	of	the	gene,	and	qPCR	confirmed	that	it	was	

transcribed	 (Section	 7.4.1).	 Stable	 expression	 of	 bec1054	 in	 wheat,	 and	 transient	

expression	 through	 agroinfiltration	 in	Nicotiana	benthamiana	were	 found	 to	 increase	

infection	 with	 the	 pathogens	 B.	 graminis	 f.sp.	 tritici	 and	 Peronospora	 tabacina	

respectively.	The	effect	of	BEC1054	on	the	infection	of	such	diverse	pathogens	(a	fungus	

and	 an	 oomycete),	 and	on	 such	diverse	hosts	 (a	monocot	 and	 a	 dicot),	 indicated	 that	

BEC1054	affected	a	conserved	mechanism	of	the	plant	defense	response.	

	

The	 effect	 of	 BEC1054	 on	 leaf	 senescence	 was	 investigated,	 using	 chlorophyll	 as	 a	

diagnostic	measure	(Section	7.4.6).	We	induced	senescence	in	wheat	primary	leaves,	by	

floating	 them	 on	MeJA	 (Hung	 et	 al.,	 2006).	 A	 significant	 induction	 of	 senescence	was	

visible	for	both	azygous	and	homozygous	plants	after	five	days	(Figure	43),	through	the	

colour	change	of	the	wheat	primary	leaves	from	green	towards	yellow,	and	through	the	

decrease	 in	 the	 concentration	of	 chlorophylls	 a	 and	b	 in	MeJA	 treated	primary	 leaves	

(Figure	44).	There	was	no	significant	difference	between	plants	azygous	or	homozygous	

for	bec1054,	 i.e.	BEC1054	did	not	have	an	effect	on	chlorophyll	degradation.	 Infection	

with	B.	graminis	f.sp.	tritici	was,	however,	found	to	delay	the	degradation	of	chlorophyll;	

with	green	islands	around	infected	sites	being	visible	on	infected	leaves	(Figure	43).		

	

Jasmonates	trigger	or	influence	several	processes	in	addition	to	senescence	in	a	range	of	

plant	 species	 including	 induction	 of	 RIPs	 such	 as	 JIP60	 (Weidhase	 et	 al.,	 1987b).	

Following	induction	of	RIPs	with	MeJA,	treatment	of	the	resulting	RNA	with	aniline,	and	
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analysis	of	the	rRNA	using	Bioanalyzer,	we	found	that	a	diagnostic	peak	was	formed	in	

the	electropherogram	 for	azygous	plants	 treated	with	MeJA	 (Section	7.5.4).	This	peak	

was	greatly	reduced	if	the	plants	were	treated	with	water	(instead	of	MeJA),	or	if	they	

were	 infected	 (Figure	 45	 and	 Figure	 46).	 The	 disappearance	 of	 this	 peak	 following	

infection	corroborates	the	idea	that	the	fungus	may	be	protecting	the	plant	ribosomes	

from	degradation.		

	

The	accumulation	of	cleaved	RNA,	seen	as	the	diagnostic	“degradation”	peak,	was	found	

to	decrease	in	plants	homozygous	for	wbec1054,	when	compared	with	azygous	plants.	

Although	this	effect	was	not	statistically	significant,	it	was	found	to	be	repeatable,	also	

occurring	 for	 the	 homozygous	 seed	 line	 3.3.7.	 These	 results	 indicate	 that	 wBEC1054	

may	 have	 an	 effect	 on	 rRNA	 degradation.	 A	 greater	 number	 of	 the	 120	 RNase-like	

proteins	 associated	with	 haustoria,	 produced	 by	B.	graminis	 f.sp.	hordei	 (Spanu	 et	al.,	

2010)	may	be	needed	for	the	protection	of	the	ribosome	to	be	significant.		

9.1.5. BEC1054’s	effect	on	translation	

Throughout	 this	 investigation,	 a	 number	 of	 odd	 occurrences	 were	 identified	 for	

BEC1054.	When	expressed	in	yeast,	in	both	the	Y2H	(line	MaV203)	and	Y3H	(line	YBZ1)	

assay,	 BEC1054	 was	 observed	 to	 decrease	 yeast	 growth	 and	 transformation	 success	

(Section	4.4.3	and	Figure	11).	This	result	was	quantified	for	MaV203,	and	it	was	found	

that	BEC1054	affected	both	 the	maximum	growth	 rate	 and	 the	maximum	cell	 growth	

(Figure	 11).	 For	 both	 the	 Y2H	 and	 Y3H	 assays,	 the	maximum	CPRG	 activity	 rate	was	

found	 to	 be	 lower	 for	 negative	 controls	 containing	 BEC1054,	 than	 for	 the	 negative	

controls	provided	with	the	kits	(Figure	12).	This	result	was	not	due	to	the	poor	growth	

of	yeast,	as	the	results	were	normalised	against	the	yeast	cell	count.	In	the	BiFC	assay,	
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the	 fluorescence	 of	 the	YFP	 tag	 attached	 to	BEC1054	 could	 only	weakly	 be	 observed,	

when	 compared	with	 the	other	YFP	 tagged	proteins	 (Figure	16);	with	only	 JIP60-YFP	

showing	 a	 similar	 level	 of	 weak	 fluorescence.	 If	 BEC1054	 was	 binding	 to	 ribosomal	

proteins,	 it	may	have	affected	their	efficiency/activity,	whilst	preventing	 it	 from	being	

lost	completely.	The	decrease	in	CPRG	activity	seen	in	the	yeast	assays,	and	the	decrease	

in	 fluorescence	 observed	 with	 BEC1054,	 may	 indicate	 that	 BEC1054	 was	 affecting	

translation.	This	could	decrease	overall	levels	of	translation	in	the	cell,	including	factors	

required	 for	 yeast	 to	 thrive,	 the	 translation	 of	 the	 β-galactosidase	 reporter,	 or	 the	

translation	of	further	BEC1054-YFP	in	the	BiFC	assay.		
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Figure	 49:	An	 unsuccessful	Blumeria	 infection,	 in	 which	 the	 invading	 fungal	 pathogen	 is	 detected	 by	 the	
plant,	 and	 its	 entry	 prevented.	 Top:	 attempted	 cell	 penetration	 is	 detected,	 for	 example	 through	 the	
recognition	 of	microbe	 associated	molecular	 patterns	 by	 plant	 innate	 immune	 systems	 pattern	 recognition	
receptors,	or	through	the	recognition	of	avirulence	genes	by	resistance	proteins.	Invasion	is	prevented	through	
papillae	formation	(pictured),	and/or	through	the	hypersensitive	response,	which	results	in	cell	death.	Bottom:	
An	enlarged	view	of	the	interactions	taking	place	between	plant	proteins	and	ribosomes.	Following	attempted	
infection,	an	increase	in	transcription	of	plant	Ribosome	Inactivating	Proteins	(RIPs),	such	as	JIP60,	occurs,	and	
post-translational	modifications	are	performed	on	inactive	RIPs.	Pathogenesis	related	protein	10	(PR10)	is	also	
hypothesized	 to	 be	 a	 RIP.	 The	 RIPs	 depurinate	 ribosomes	 at	 a	 specific	 base	 on	 the	 Sarcin-Ricin	 Loop	 (SRL).	
Cleavage	of	the	SRL	prevents	the	binding	of	the	eukaryotic	elongation	factor	(eEF)	one	complex,	and	leads	to	
the	cessation	of	protein	translation,	and	subsequently	to	cell	death.		

Vauole	

cytoplasm	

IPs	

Ribotoxins		
(α-Sarcin)	

Detec<on	
of	

infec<on	

MeJA	

RIP	synthesis/	
ac<va<on	

SRL	cleavage	

Failed	infec<on	

Cessa<on	of	
transla<on	through	
preven<on	of	eEF	
binding	

eEF1	complex	

PR10	



218	

	

		

	

Figure	50:	A	successful	Blumeria	infection,	in	which	the	pathogen	successfully	establishes	infection,	leading	
to	disease.	The	fungus	penetrates	the	plant	cell,	forms	a	haustorium	that	assimilates	nutrients	from	the	host.	
Top:	The	haustorium	is	shown	within	the	cell,	and	its	actions	in	secretory	warfare	are	indicated	by	its	secretion	
of	effectors	 such	as	 the	RALPHs	 (RNase-Like	Effectors	Expressed	 in	Haustoria).	Bottom:	An	enlarged	view	of	
the	 interactions	 taking	 place	 between	 plant	 proteins,	 fungal	 proteins	 and	 ribosomes.	 The	 possible	mode	 of	
action	of	the	RALPH	Blumeria	Effector	Candidate	1054	(BEC1054),	 including	all	known	protein	interactions	to	
date.	The	fungal	effector	BEC1054	is	hypothesised	to	bind	to	ribosomes,	preventing	the	cleavage	of	the	SRL	by	
RIPs.	This	is	supported	by	experimental	evidence	that	BEC1054	binds	to	eEF1A	and	eEF1G;	and	that	it	binds	to	
nucleotides	 including	 ribosomal	RNA.	The	plant	glutathione-S-transferase	 (GST)	 interacts	with	both	BEC1054	
and	pathogenesis	related	protein	10	(PR10),	with	 it	having	been	shown	to	S-glutathiolate	the	RNase	PR10	 in	
the	literature.	In	addition,	PR5	and	BEC1054	were	found	to	interact,	but	the	role	of	PR5	in	this	model	requires	
further	investigation.	Experiments	expressing	BEC1054	in	transgenic	wheat	have	indicated	that	it	may	protect	
ribosomal	RNA.	
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9.2. Wider	context		

9.2.1. Ribosome	inactivating	proteins	in	medicine	

Within	 this	 investigation,	 I	 have	 studied	 the	 activity	 of	 one	 effector,	 BEC1054.	 In	 our	

working	hypothesis,	for	which	we	have	been	gathering	increasing	amounts	of	evidence,	

BEC1054	 appears	 to	 be	 targeting/interacting	 with	 a	 key	 part	 of	 plant	 immunity,	

preventing	the	degradation	of	ribosomes,	and	thus	helping	to	prevent	the	death	of	the	

host	cell	(Figure	50).	Our	chosen	effector,	BEC1054,	is	one	of	ca.	120	RNase-like	protein	

effectors	 secreted	 by	 B.	 graminis	 f.sp.	 hordei	 (Pedersen	 et	 al.,	 2012).	 The	 strong	 up-

regulation	of	 transcription	of	 this	 effector,	 relative	 to	 conidia,	 and	of	 related	effectors	

(for	 example	 the	 other	 members	 of	 family	 21),	 indicates	 its	 importance	 within	 the	

establishment	 of	 a	 compatible	 interaction	 (Chapter	 5;	 (Pennington	 et	al.,	 2015)).	 The	

sheer	 number	 of	 these	 RNase-like	 effectors	 further	 highlights	 their	 key	 role	 within	

infection;	as	does	the	effect	of	BEC1054	on	increasing	infection	in	wheat,	and	BEC1054-

GFP	on	increasing	infection	in	N.	benthamiana	(Sections	7.4.3	and	7.4.4).	The	production	

of	such	large	quantities	of	RALPHs,	indicated	that	they	could	be	playing	a	role	in	directly	

outcompeting	RIPs.		

	

In	 addition	 to	 plants,	 fungi	 have	 also	 been	 shown	 to	 produce	 ribosome	 inactivating	

proteins,	 for	 example	 the	 Aspergillus	 RIPs	 restrictocin,	 alpha-sarcin	 and	 mitogillin	

(Conde	et	al.,	1978),	as	have	bacteria,	for	example	shiga	toxin	from	Shigella	dysenteriae	

(Reisbig	et	al.,	1981)	and	the	shigatoxigenic	group	of	Escherichia	coli	(Mainil	1999).	The	

widespread	use	of	RIPs	 in	plant	defense	makes	 it	 likely	that	other	pathogens	will	also	

target	or	subvert	 this	part	of	plant	 immunity.	The	 fungus	Leptosphaeria	maculans,	 the	

causal	 agent	 of	 stem	 canker	 of	 oilseed	 rape	 (Brassica	 napus),	 secretes	 the	 effector	



220	

	

AvrLm4–7.	Structural	analysis	of	this	protein	found	that	it	was	topologically	similar	to	

RNA-recognition	motif	proteins,	 also	possessing	 two	α-helices	 and	 four	β-sheets.	This	

effector	also	possesses	positively	charged	surface	patches,	indicating	that	it	could	bind	

to	 nucleotide	 ligands,	 although	 the	 authors	 could	 not	 detect	 DNA	 binding	 activity	

(Blondeau	 et	al.,	 2015).	 A	 greater	 understanding	 of	 BEC1054’s	 activity	may	 therefore	

help	to	suggest	modes	of	action	for	other	effectors	that	possess	RNA-recognition	motifs.	

	

Expression	 of	 ribosome	 inactivating	 proteins	 in	 plants	 has	 been	 shown	 to	 cause	

resistance	to	a	number	of	 fungal	and	viral	pathogens	(Lodge	et	al.,	1993;	Taylor	et	al.,	

1994;	Lam	et	al.,	1996;	Moon	et	al.,	1997).	Their	 expression	 in	animals	has	 suggested	

that	they	may	be	useful	medicinal	tools	in	humans	(Kreitman	2006,	Pastan	et	al.,	2007).	

Several	RIPs	have	been	used	in	the	construction	of	immunotoxins	and	conjugates	which	

target	 cancer	 cells	 (Flavell	 1998,	 Flavell	 et	al.,	 2001,	 Rosenblum	2004).	Multiple	 RIPs	

have	undergone	clinical	trials,	for	example	bouganin	(Kowalski	et	al.,	2008)	and	gelonin	

(Borthakur	et	al.,	2013).	They	have	also	been	shown	to	inhibit	the	replication	of	human	

immunodeficiency	 virus	 in	 clinical	 trials,	 but	 caused	 heavy	 side	 effects	 (Byers	 et	 al.,	

1994).	 The	 therapeutic	 window	 of	 these	 toxins	 is	 relatively	 narrow	 (Shapira	 et	 al.,	

2011),	 and	 they	 are	 associated	 with	 potentially	 life-threatening	 toxicities.	 Proteins	

which	 modify	 or	 moderate	 their	 activities	 may	 have	 far-reaching	 applications.	 If	

BEC1054	 were	 to	 reduce,	 but	 not	 completely	 inhibit,	 protein	 translation	 then	 it	 too	

could	potentially	be	used	for	similar	treatments.		
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9.3. Overall	conclusions	

The	fungal	effector	BEC1054	is	an	RNase-like	protein	associated	with	significantly	more	

ribosomal	proteins	than	the	negative	controls.	I	found	that	five	proteins	interacted	with	

BEC1054	in	vitro,	in	yeast	and	in	planta:	PR5,	PR10,	GST,	eEF1A(1)	and	eEF1G,	the	latter	

two	of	which	are	associated	with	ribosomes.	In	addition,	PR10	and	GST	were	found	to	

interact	with	each	other	in	yeast	and	in	planta.	

	

Following	the	development	and	testing	of	qPCR	control	genes,	 I	assayed	the	family	21	

CSEPs	 to	 determine	 their	 transcript	 abundance	 across	 a	 B.	 graminis	 infection	 time	

course.	 All	 tested	 members	 of	 CSEP	 family	 21	 were	 identified	 in	 epidermal	 and	

epiphytic	 material.	 In	 epiphytic	 material,	 they	 showed	 an	 early	 peak	 in	 abundance,	

which	had	not	 previously	 been	 identified	 in	 the	 literature.	 In	 addition,	 all	 four	 CSEPs	

showed	 a	 second	 peak	 in	 abundance	 at	 24-48h.	 In	 epidermal	 material,	 the	 CSEPs	

showed	 more	 diverse	 patterns	 of	 expression,	 with	 transcript	 abundance	 peaks	

occurring	at	ca.	24	 for	csep0064	(bec1054)	and	0066,	which	then	decreased	sharply	to	

near	the	initial	level	by	48	hpi.	In	contrast,	csep0065	and	csep0264	(bec1011)	increased	

in	 transcript	 abundance	 more	 gradually,	 with	 a	 maximum	 at	 48	 hpi,	 followed	 by	 a	

gradual	decrease	in	abundance	by	120	hpi.	

	

The	RNase-like	effector	BEC1054	interacted	with	oligo(poly)nucleotides	both	 in	yeast,	

and	 in	vitro.	 Both	 sets	 of	 reactions	were	 found	 to	 be	 concentration	dependent.	My	β-

galactosidase	results	from	yeast	indicated	that	both	BEC1054	and	JIP60ml	bound	RNA;	

and	 the	 selective	 media	 assay	 indicated	 that	 this	 interaction	 may	 be	 specific	 for	 the	

region	of	the	ribosome	containing	the	ribosomal	SRL.	
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Expression	of	BEC1054	in	wheat	or	N.	benthamiana	affected	the	resistance	of	the	host	

plants	to	the	biotrophic	pathogens	B.	graminis	f.sp.	tritici	and	P.	tabacina.	We	found	that	

the	 presence	 of	 wbec1054	 did	 not	 appear	 to	 affect	 chlorophyll	 degradation	 during	

induced	 senescence.	We	 also	 provided	direct	 evidence	 that	 infection	with	B.	graminis	

f.sp.	 tritici	prevented	 degradation	 of	 the	 ribosome	 by	 ribosome	 inactivating	 proteins;	

and	partial	evidence	for	BEC1054’s	ability	to	reduce	this	effect.	
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12. Supplementary	information	

Supplementary	Table	13:	Primer	sequences	used	for	initial	gene	amplification	from	barley	or	Blumeria.	The	

term	 “CSEP”	 stands	 for	 Candidate	 Secreted	 Effector	 Protein;	 and	 BEC	 for	 Blumeria	 Effector	 Candidate	

(Pedersen	et	al.,	2012).	Primers	marked	with	the	symbol	“*”	were	from	(Pliego	et	al.,	2013)	and	ones	marked	

with	**	were	from	(Damerum	2013).		

Protein	 UniProt	
reference	

Original	
GenBank	
Accession	
retrieved	

GenBank	
accession	 for	
genes	 used	 in	
this	study	

FWD	primer	(5'-3')	 REV	primer	(5'-3')	

BEC1005	 N1JK84	 	 	 TTGAGCCAGGGATT
TAACGCACAAGTAC	
*	

TAATGGTTCAAAAGA
ATTGCAGG	*	

BEC1054	
(CSEP0064)	

N1JJ94	 	 	 GCAGCTTATTGGGA
TTGTG	*	

CTAGCCCTCAACAAA
AGTAC	*	

40S	
ribosomal	protein	
S16		

Q0IQF7	 AK371280	 KP293844	
	

GCTGCTGTCCTCACC
CGCCC	

ACGGTAAGACTTCTG
GAACCTCGC	

Elongation	 factor	
1	gamma	

Q5Z627	 AK248884	 KP293852	 GCGCTCGTTTTGCAT
TCGGGCAGC**	

CTTGAAGCACTTGGC
GTCCAGC**	

Elongation	 factor	
1a	(colony	1)	

Q9LN13	 Z50789	 KP293845	 GGTAAGGAGAAGA
CTCACATC	

TTTCTTCTTGATGGC
AGCCTTGGTCACCTT
GGC	

Elongation	 factor	
1a	(colony	3)	

Q9LN13	 Z50789	 KP293846	 GGTAAGGAGAAGA
CTCACATC	

TTTCTTCTTGATGGC
AGCCTTGGTCACCTT
GGC	

Glutathione-S-
Transferase	

Q8H8U5	 AK355502	 KP293847	 AGTTCGCTCGCTTTC
C	

CTCAATCCCAAGCCG	

Malate	
dehydrogenase	

Q6YWL3	 AK364298	 KP293848	 GCATCATCATCTGCT
ACCATCAG	

AACAGACGCCGCGG
CTCCCTGCTGTTTG	

Nucleoside	
Diphosphate	
Kinase	

Q9LKM0	 AK356457	 KP293849	 GCGGAGCAGACCTT
CATCATGATC	

AGCCTCATAGATCCA
GTTGTGCTGGCTG	

Pathogenesis-
related	protein	10	

Q84QC7	 AY220734	 KP293851	 GTCGCCGGCTGTGT
CATCACCGAGCAGT
G**	

GACGTACTCGGCAG
GGTGGGCGACCAGG
TA**	

Pathogenesis-
related	protein	5	

O23997		 AJ001268	 KP293850	 GCGTCCTCTCGTGTT
GTC	

TTCCTTATTGACCCA
AG	
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Supplementary	 Table	 14:	 Primers	 used	 to	 create	 entry	 vector	 plasmids	 containing	 Blumeria	 graminis	 or	

barley	 genes.	 In	primers	with	 the	sequence	“GGGGACAAGTTTGTACAAAAAAGCAGGCTTC,	sections	 labelled	 in	

bold	are	the	sequence	for	the	start	and	end	of	genes.	The	sections	not	labelled	in	bold	correspond	to	the	start	

or	end	of	the	genes	being	amplified.	

	 Genes	 for	 N-terminal	 fusion	 (with	 a	 START	
codon	and	no	STOP	codon)	

Genes	for	C-terminal	fusion	(with	no	START	codon,	
but	with	a	STOP	codon)	

Gene	name	 FWD	 START	 primer	
(5’-3’)	

REV	primer	(5’-3’)	 FWD	 primer	 (no	
START)	(5’-3’)	

REV	STOP	primer	(5’-3’)	

Glutathione-S-
transferase	

ATGAGTTCGCTCGCTT
TCC	

CTCAATCCCAAGCCG	 GGGGACAAGTTTGTACA
AAAAAGCAGGCTTCAGT
TCGCTCGCTTTCCCCTG	

GGGGACCACTTTGTACAA
GAAAGCTGGGTCTCACTC
AATCCCAAGCCGCTTCTTT
G	

Malate	
dehydrogenase	

GGGGACAAGTTTGTAC
AAAAAAGCAGGCTTCA
TGGCATCATCATCTGC
TACCATCAG	

GGGGACCACTTTGTAC
AAGAAAGCTGGGTCA
ACAGACGCCGCGGCT
CC	

GGGGACAAGTTTGTACA
AAAAAGCAGGCTTCGCA
TCATCATCTGCTACCATC
AG		
	

GGGGACCACTTTGTACAA
GAAAGCTGGGTCTCAAAC
AGACGCCGCGGCTCC		
	

Pathogenesis-
related	protein	
5	

GGGGACAAGTTTGTAC
AAAAAAGCAGGCTTCA
TGGTCGCCGGCTGTGT
CATC	

GGGGACCACTTTGTAC
AAGAAAGCTGGGTCG
ACGTACTCGGCAGGG
TG	

GCGTCCTCTCGTGTTGTC	 TCATTCCTTATTGACCCAA
G	

Pathogenesis-
related	protein	
10	

GGGGACAAGTTTGTAC
AAAAAAGCAGGCTTCA
TGGCGGAGCAGACCT
TCATCATGATC	

GGGGACCACTTTGTAC
AAGAAAGCTGGGTCA
GCCTCATAGATCCAGT
TGTGCTG	

GGGGACAAGTTTGTACA
AAAAAGCAGGCTTCGTC
GCCGGCTGTGTCATC		
	

GGGGACCACTTTGTACAA
GAAAGCTGGGTCTCAGAC
GTACTCGGCAGGGTG		
	

Elongation	
factor	1	gamma	

GGGGACAAGTTTGTAC
AAAAAAGCAGGCTTCA
TGGCGCTCGTTTTGCA
TTCGG	

GGGGACCACTTTGTAC
AAGAAAGCTGGGTCCT
TGAAGCACTTGGCGTC
C	

GGGGACAAGTTTGTACA
AAAAAGCAGGCTTCGCG
CTCGTTTTGCATTCGG		
	

GGGGACCACTTTGTACAA
GAAAGCTGGGTCTCACTT
GAAGCACTTGGCGTCC		
	

Elongation	
factor	1a	
(colony	1)	

ATGGGTAAGGAGAAG
ACTCACATC	

TTTCTTCTTGATGGCAG
CCTTGGTCACCTTGGC	

GGGGACAAGTTTGTACA
AAAAAGCAGGCTTCGGT
AAGGAGAAGACTCACA
TC		
	

GGGGACCACTTTGTACAA
GAAAGCTGGGTCTCATTT
CTTCTTGATGGCAGCCTT
G		
	

Elongation	
factor	1a	
(colony	3)	

GGGGACAAGTTTGTAC
AAAAAAGCAGGCTTCA
TGGGTAAGGAGAAGA
CTCACATC	

GGGGACCACTTTGTAC
AAGAAAGCTGGGTCTT
TCTTCTTGATGGCAGC
CTTG	

GGGGACAAGTTTGTACA
AAAAAGCAGGCTTCGGT
AAGGAGAAGACTCACA
TC		
	

GGGGACCACTTTGTACAA
GAAAGCTGGGTCTCATTT
CTTCTTGATGGCAGCCTT
G		
	

40S	
ribosomal	prote
in	S16		

ATGGCTGCTGTCCTCA
CCCGCCC	

ACGGTAAGACTTCTGG
AACCTCGC	

GGGGACAAGTTTGTACA
AAAAAGCAGGCTTCGCT
GCTGTCCTCACCCGC		
	

GGGGACCACTTTGTACAA
GAAAGCTGGGTCTCAACG
GTAAGACTTCTGGAACCT
C		
	

Nucleoside	
diphosphate	
kinase	

ATGGCGGAGCAGACC
TTCATCATGATC	

AGCCTCATAGATCCAG
TTGTGCTGGCTG	

GGGGACAAGTTTGTACA
AAAAAGCAGGCTTCGCG
GAGCAGACCTTCATCAT
GATC		
	

GGGGACCACTTTGTACAA
GAAAGCTGGGTCTCAAGC
CTCATAGATCCAGTTGTG
CTG		
	

BEC1054	
(CSEP0064)	

GCAGCTTATTGGGATT
GTG	

	
CTAGCCCTCAACAAAA
GTAC	

GCAGCTTATTGGGATTG
TG	

	
TCACTAGCCCTCAACAAA
AGTAC	

JIP60ml	N-
terminal	
domain	

GGGGACAAGTTTGTAC
AAAAAAGCAGGCTTCA
TGGCTTTAGACAAAGT
TGCTCCCATC	

GGGGACCACTTTGTAC
AAGAAAGCTGGGTCG
TCCGCCATGTTGCTTC
GG	

GGGGACAAGTTTGTACA
AAAAAGCAGGCTTCGCT
TTAGACAAAGTTGCTCC
CATC	

GGGGACCACTTTGTACAA
GAAAGCTGGGTCTCAGTC
CGCCATGTTGCTTCGG	
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Supplementary	Table	15:	Primers	used	for	amplification	and	modification	of	Jasmonate	Induced	Protein	60.	

Primers	labelled	“*”	were	designed	by	Rhian	Jones	

	 FWD	primer	(5’-3’)	 REV	primer	(5’-3’)	

JIP60	 initial	 amplification	

primers	

GCTTTAGACAAAGTTGCTCCCATCG	
	

CCAAGGGTACTCCGACCATAAGATTG	

N-terminal	 linker	

mutagenesis	primers	

GACCCGGTAAAGCAAGCAGTGGCG*	 TAGCATAGCCTTGTTCCAGAGCGC*	

Amplification	 of	 N-

terminal	domain	

GCTTTAGACAAAGTTGCTCCCATCG	
	

GTCCGCCATGTTGCTTCGGATGACT	
	

	

Supplementary	table	16:	Plasmids	used	to	sequence	YFP	expression	vectors.		

Plasmid	name	 Sequence	(5’-3’)	

pESPYCE_FWD	 CTGAGCAAAGACCCCAACGAG	

pESPYNE_FWD	 CTTCAAGGAGGACGGCAACATC	

pUCSPYNE_FWD	 TTGATGTGATATCTCCACTGAC	
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Supplementary	 Table	 17:	 Primers	 used	 for	 amplification	 of	 Blumeria	 graminis	 reference	 genes.	 Table	

reproduced	with	permission	from	(Pennington	et	al.,	2015).	

Accession	 Gene	 Abbreviation	 FWD	Sequence		
(5’-3’)	

REV	sequence		
(5’-3’)	

Amplicon	
length	

Efficiency	

CCU82444	 α-tubulin	 tuba	 GGTCACTACACT
GTTGGTAAAGA	

CCGAAGGAAT
GGAATACAAG
AAAG	

110	 1.23	

CAA35709	 β-tubulin	 tubb	 GGAAACGCACC
TACACTATACC	

GCCGTGATGG
AATTTAACTAA
CAA	

94	 1.19	

CCU76638	 actin	 actb		 CCCAATTTACGA
AGGTTTCTCTC	

TCAGCGGTTG
TGGAAAAAGT	

126	 1.21	

CCU80715	 glyceraldehy
de	3-
phosphate	
dehydrogena
se	

gapdh		 GGAGCCGAGTA
CATAGTAGAGT	

GGAGGGTGCC
GAAATGATAA
C	

105	 1.23	

CCU82905	 Histone	3	 h3	 GGAAACAACTC
GCTTCTAAGG	

GATTTTTGGTA
TCTTCTGATTT
CAC	

121	 1.22	

CCU80195	 monoglyceri
de	lipase	

mgll	 GCCCTACCAGCC
GAAAAC	

ATGCCTGATAA
TCCCTCTAACG	

104	 1.24	

	

Supplementary	Table	18:	 Primers	 used	 for	 amplification	 of	 barley	 reference	 genes.	 Table	 reproduced	with	

permission	from	(Pennington	et	al.,	2015).	

Accession	 Gene	 Abbreviation	 FWD	Sequence		
(5’-3’)	

REV	sequence		
(5’-3’)	

Amplicon	
length	

Efficiency	

U40042	 a-tubulin	 tuba	 CAACATACACCA
ACCTCAACAG	

AACTCATTCAC
ATCAACATTCA
GA	

100	 1.23	

AY145451	 actin	 actb	 CTGTGCCCATTT
ATGAAGGATAC	

GCTGAGGTTG
TGAAGGAGTA
A	

127	 1.22	

X04133	 ubiquitin	 ubq	 TTTGGTATTATT
GAGGGTCTGAT
GA	

TGCTGCTGGG
GATGATGTT	

130	 1.25	

AJ344078	 adenosine	
triphosphata
se	

h+-atpase	 TCTCAGGGTTCA
CAGGTCTT	

CCGAACAGGT
CCGTAATGG	

93	 1.24	

X60343	 glyceraldehy
de-
phosphate	
dehydrogena
se	

gapdh	 CTGATTGAGAA
GGCTGATGGAT	

AGAGCAGGAG
CGTCATTGA	

128	 1.25	
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Suplplementary	 Table	 19:	 Primers	 used	 for	 amplification	 of	Blumeria	 Candidate	 Secreted	 Effector	 Protein	

(CSEP)	 family	 21.	 Table	 reproduced	with	 permission	 from	 (Pennington	 et	 al.,	 2015).	 Primers	were	 from	 (Li	

2014).	

Accession	 CSEP	
number	

BEC	 number	
(where	
applicable)	

FWD	 Sequence	
(5’-3’)	

REV	 sequence	
(5’-3’)	

Amplicon	
length	

Efficiency	

CCU83233	 csep0064	 	 GAAACGTTCGA
GCTGCAGTA	

TACAGCTCCTC
CTTGCCAGT	

149	 1.24	

CCU82938	 csep0065	 bec1054	 GCTGCAGGGTTT
TATCATGG	

TCCAGACCAG
CTTTCATTGG	

114	 1.23	

CCU82934	 csep0066	 	 TGCCTTTAGTTG
CTCACCAG	

TTTCCCGGAA
GCTGTTATTG	

115	 1.23	

CCU83219	 csep0264	 bec1011	 CGAGATGCAGC
AGTATTTGC	

TGCTCTCCTTG
CCAGTTTTC	

149	 1.23	

CCU76783	 Conidia	
specific	gene	

	 GGGTTCATCGG
GTCTTTTCT	

AGTTGGGCCA
AGGGTAAAGT	

149	 1.22	

	

Supplementary	Table	20:	Primers	used	 for	amplification	of	barley	genes.	Table	reproduced	with	permission	

from	(Pennington	et	al.,	2015).	

Accession	 Gene	 FWD	Sequence	(5’-3’)	 REV	sequence	(5’-3’)	 Amplicon	
length	

Efficiency	

KP293847	 gst	 TGCCAGGAATTACAAGGG
TTT	

GGTTATTATGCTCCAGT
GAAGG	

128	 1.22	

KP293850	 pr5	 CGCCGACCAACTACTCAA
TG	

GGCAGGGCAGGTGAAG
G	

95	 1.25	

KP293851	 pr10	 GCCAGGGTGTTCAAGACA
G	

CGTCCAGCCTCTCGTAC
TC	

142	 1.22	

KP293852	 eef1g	 GGCTGCTCCTGCTAAACC	 AGGGGATTCTTGGGCTT
AGG	

117	 1.23	

KP293845	 eef1a	 GACAGGCGATCAGGTAA
GGA	

TGGGCTTGGTGGGAAT
CAT	

91	 1.23	
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Supplementary	 Table	 21:	 RNA	 synthesis	 primers.	 “SRL”	 stands	 for	 the	 sarcin-ricin	 loop	 and	 “rRNA”	 for	

ribosomal	RNA.		

Name	 Primer	(5’-3’)	

Rat	SRL	+T7	 ACCTGCGGTTCCTCTCGTACTGAGCAGGTCCCTATAGTGAGTCGTATTAA
ATT	

Barley	SRL	3014-3044	+T7	 AATCAACGGTTCCTCTCGTACTAGGTTGAATCCCTATAGTGAGTCGTATT
AAATT	

Barley	76-114	+T7	 GCTGGGCTGTTCCCGGTTCGCTCGCCGTTACTAGGGGACCCTATAGTGA
GTCGTATTAAATT	

Truly	random	primer	+T7	 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNCCCTATAGTGAGTCG
TATTAAATT	

T7	promoter	 AATTTAATACGACTCACTATAGG	

	

Supplementary	Table	22:	 primers	used	 to	amplify	 28S	 ribosomal	 sections.	Numbers	refer	 to	the	nucleotide	

number	within	the	28S	ribosomal	model.	Sections	in	bold	represent	the	start	or	end	of	the	ribosomal	section	

being	amplified.	

Bases	 FWD	5’-3’	 REV	5’-3’	 Reasons/features	 Length	 GC	 content	
(%)	

2989-
3139	

ACTAGTGGATCCCC
CACTGATGACAGTG
TCGCG	

CGACCTGCAGGCATGG
CTTGGATTCTGACTTAG
AGG	

Contains	SRL	 150	 49.3	

13-163	 ACTAGTGGATCCCC
CAGGCGGGACTACC
CGCTG	

CGACCTGCAGGCATGG
ACGCGTCTCCAGACTA
CAATTCG	

Negative	control	 150	 54	

	

Supplementary	Table	23:	primers	used	to	amplify	Blumeria	Effector	Candidate	1054	(BEC1054),	BEC1011	or	

wheat	tubulin.	The	abbreviation	“tubbw”	stands	for	wheat	β-tubulin	(Bonciani	2014).	

Bases	 FWD	5’-3’	 REV	5’-3’	

wbec1054	 ACCTTCATCATCGGCTCCACCTTCT	 AACCCTCGACGAAGGTGCACTTGT	
wbec1011	 CCGTGTTCGCGTTCAGCAAGGAAAA	 CACGTAAAAATTCACGTGTTCGCCC	
tubbw	 ACCTGAACCACCTCATCTCG	 CAAACCCGACCATGAAGAAG	
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Supplementary	 Table	 24:	 primers	 used	 for	 amplification	 and	 sequencing	 of	 Agrobacterium	 expression	
plasmids	

Name	 Sequence	5’-3’	 Length	(nt)	

pK7FWG2	FWD	 CTCTATATAAGGAAGTTCATTTCATTTGGAGAGG	 34	
pK7FWG2	REV	 AGGTGGCATCGCCCTCGCC	 19	
pK7WGF2	FWD	 GCTGCCCGACAACCACTACCTG	 22	
pK7WGF2	REV	 AGCGAAACCCTATAAGAACCCTAATTCCC	 29	
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Supplementary	 Table	 25.	 Proteins	 identified	 interacting	 solely	 with	 Blumeria	 Effector	 Candidate	 1054	

(BEC1054)	 from	 the	 U36	 Harvest	 database.	 Full-length	 CDS	 barley	 sequences	were	 obtained	 from	UniProt	

using	 the	 UniRef90	 identifiers.	 Putative	 interacting	 proteins	 for	 BEC1054,	 which	 underwent	 further	

investigation,	 are	highlighted	 in	 grey,	where	dark	 grey	 indicates	 that	 they	were	 identified	with	 some	of	 the	

negative	controls	(either	“B05”	(BEC1005)	or	in	the	absence	of	a	bait	protein),	and	light	grey	indicates	that	no	

interaction	was	observed	with	the	negative	controls.	The	letters	“A”,	“B”	and	“C”	represent	the	experimental	

conditions	 used,	 with	 “A“	 being	 48h	 infected	 leaf	 epidermis	magnetic	 NTA	 agarose	 beads,	 “B”	 being	 non-

infected	 leaves	 and	1	ml	NTA	 chromatography	 columns,	 and	 “C”	being	 7	 day	 infected	 leaves	with	magnetic	

NTA	agarose	beads.	The	values	present	within	the	“B54”	(BEC1054)	columns	indicate	the	number	of	times	that	

a	protein,	with	the	same	accession	number,	was	identified	in	biological/technical	replicates	with	BEC1054,	but	

not	with	the	negative	controls	(either	“B05”	(BEC1005)	or	in	the	absence	of	a	bait	protein).	The	values	within	

the	“Tot”	(Total)	columns	indicate	the	number	of	times	that	a	protein,	with	the	same	accession	number	was	

identified	in	all	pulldowns	of	the	same	biological	replicate.	Where	a	larger	value	can	be	observed	in	the	“Total”	

column	than	in	the	“B54”	column,	this	indicates	that	the	protein	was	identified	with	the	negative	controls.		

HarvEST		 UniRef	 Protein	description	 B54	
A	

Tot	
A	

BE54	
B	

Tot	
B	

B54	
C	

Tot	
C	

B54	
ABC	

	 Tot	
ABC	

U36_14
076	

Q0IQF
7	

40S	ribosomal	protein	S16		 2	 4	 	 	 1	 5	 3	 	 9	

U36_16
09	

Q7XVZ
0	

40S	Ribosomal	protein	S27		 3	 3	 	 	 	 	 3	 	 3	

U36_22
14	

Q7XVZ
0	

40S	Ribosomal	protein	S27		 3	 3	 	 	 	 	 3	 	 3	

U36_32
768	

Q7XVZ
0	

40S	Ribosomal	protein	S27		 3	 3	 	 	 	 	 3	 	 3	

U36_15
834	

Q7XVZ
0	

40S	Ribosomal	protein	S27		 3	 3	 	 	 	 	 3	 	 3	

U36_49
995	

Q5I7L4	 60S	ribosomal	protein	L6		 	 	 2	 2	 	 	 2	 	 2	

U36_21
893	

B6TA2
9	

actin-related	 protein	 2/3	 (ARP2/3)	 complex	
34	kDa	subunit		

3	 3	 	 	 	 	 3	 	 3	

U36_21
421	

Q2QXT
1	

acyl-CoA	synthetase	protein,	putative	 3	 3	 	 	 	 	 3	 	 3	

U36_41
668	

A6SI57	 Alpha-ketoglutarate	 dehydrogenase	 E1	
component	

3	 3	 	 	 	 	 3	 	 3	

U36_31
524	

Q8LI32	 amine	oxidase	family	protein,	 	 	 	 	 2	 2	 2	 	 2	

U36_50
229	

A6YH8
6	

Ascorbate	peroxidase		 4	 4	 	 	 	 	 4	 	 4	

U36_21
564	

Q6EUS
6	

Aspartate	aminotransferase		 3	 3	 	 	 	 	 3	 	 3	

U36_54
5	

Q2L9B
8	

ATP	synthase	subunit	E,	vacuolar	 	 	 	 	 2	 2	 2	 	 2	

U36_19
101	

B8A7C
1	

ATP-dependent	Clp	protease	 	 	 1	 1	 1	 1	 2	 	 2	

U36_50
223	

B8A7C
1	

ATP-dependent	Clp	protease	 	 	 1	 1	 1	 1	 2	 	 2	

U36_51
602	

Q0JBL
5	

ATP-dependent	 Clp	 protease	 proteolytic	
subunit		

	 	 	 	 2	 2	 2	 	 2	

U36_24
974	

C5YUG
7	

ATP-dependent	Clp	protease,	Sb09g026620,		 	 	 3	 3	 	 	 3	 	 3	

U36_15
712	

P0478
4	

Chlorophyll	a-b	binding	protein,	chloroplastic		 	 	 	 	 2	 2	 2	 	 2	

U36_49
889	

B4G24
9	

dehydrogenase	protein	,	putative,	expressed		 1	 1	 	 	 1	 1	 2	 	 2	
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U36_45
390	

B4G24
9	

dehydrogenase	protein	,	putative,	expressed		 1	 1	 	 	 1	 1	 2	 	 2	

U36_18
413	

Q9LN1
3	

Elongation	 factor	 1-alpha	 ,	 putative	
elongation	factor	Tu	

2	 4	 1	 5	 	 	 3	 	 9	

U36_36
305	

Q9ZS
W2	

Elongation	 factor	 1-alpha,	 putative	
elongation	factor	Tu	

	 	 	 	 2	 2	 2	 	 2	

U36_17
248	

Q5Z62
7	

Elongation	factor	1-gamma	3		 3	 3	 	 	 	 	 3	 	 3	

U36_35
625	

Q5Z62
7	

Elongation	factor	1-gamma	3		 3	 3	 	 	 	 	 3	 	 3	

U36_41
871	

A7E7R
3	

Elongation	factor	2	 2	 5	 	 	 	 	 2	 	 5	

U36_69
641	

Q2H0S
4	

Elongation	factor	2		 2	 5	 	 	 	 	 2	 	 5	

U36_31
227	

C5YX0
2	

eukaryotic	translation	inititation,	Putative		 2	 2	 	 	 	 	 2	 	 2	

U36_21
911	

P2322
5	

Ferredoxin-dependent	 glutamate	 synthase,	
chloroplastic		

	 	 	 	 2	 2	 2	 	 2	

U36_50
246	

Q10SI2	 flavonol	 synthase/flavanone	 3-hydroxylase,	
putative	

1	 1	 	 	 1	 1	 2	 	 2	

U36_29
611	

Q10SI2	 flavonol	 synthase/flavanone	 3-hydroxylase,	
putative	

1	 1	 	 	 1	 1	 2	 	 2	

U36_50
247	

Q10SI2	 flavonol	 synthase/flavanone	 3-hydroxylase,	
putative	

1	 1	 	 	 1	 1	 2	 	 2	

U36_75
25	

Q655
W2	

glyceraldehyde-3-phosphate	 dehydrogenase,	
putative	

	 	 	 	 2	 2	 2	 	 2	

U36_53
12	

Q8H8E
0	

GST,	glutathione	S-transferase	 	 	 	 	 2	 2	 2	 	 2	

U36_49
726	

Q8H8
U5	

GST,	IN2-1	homolog	B	 	 	 	 	 2	 2	 2	 	 2	

U36_18
517	

Q8H8
U5	

GST,	IN2-1	homolog	B	 	 	 	 	 2	 2	 2	 	 2	

U36_20
285	

B6TLT
1	

HEAT	 repeat	 family	 protein,	 putative,	
expressed	

	 	 	 	 2	 2	 2	 	 2	

U36_27
828	

Q6F2Y
7	

Heat	shock	protein	101		 	 	 3	 3	 	 	 3	 	 3	

U36_57
829	

Q6F2Y
7	

Heat	shock	protein	101		 	 	 3	 3	 	 	 3	 	 3	

U36_26
803	

P0227
6	

Histone	H2A.2.1		 1	 1	 1	 1	 	 	 2	 	 2	

U36_23
007	

Q2QYB
7	

Homoserine	 dehydrogenase	 bifunctional	
aspartokinase/homoserine	dehydrogenase	

3	 3	 	 	 	 	 3	 	 3	

U36_22
480	

Q10CE
4	

hydroxyacid	oxidase	1,	Os03g0786100		 	 	 1	 1	 1	 1	 2	 	 2	

U36_18
976	

A1C0L
3	

lipase,	 putative,	 GDSL-like	
lipase/acylhydrolase,	UCW116	

3	 3	 	 	 	 	 3	 	 3	

U36_35
765	

A1C0L
3	

lipase,	 putative,	 GDSL-like	
lipase/acylhydrolase,	UCW116	

3	 3	 	 	 	 	 3	 	 3	

U36_26
49	

Q7XDC
8	

Malate	 dehydrogenase,	 cytoplasmic,	
lactate/malate	dehydrogenase,	putative,	exp	

2	 2	 	 	 	 	 2	 	 2	

U36_20
088	

Q6YW
L3	

Malate	 dehydrogenase,	 lactate/malate	
dehydrogenase	

4	 6	 1	 3	 2	 2	 7	 	 11	

U36_20
089	

Q6YW
L3	

Malate	 dehydrogenase,	 lactate/malate	
dehydrogenase	

4	 6	 2	 2	 2	 2	 8	 	 10	

U36_20
090	

Q6YW
L3	

Malate	 dehydrogenase,	 lactate/malate	
dehydrogenase	

4	 6	 1	 3	 2	 2	 7	 	 11	

U36_51
035	

Q6YW
L3	

Malate	 dehydrogenase,	 lactate/malate	
dehydrogenase	

4	 6	 1	 3	 2	 2	 7	 	 11	

U36_51
037	

Q6YW
L3	

Malate	 dehydrogenase,	 lactate/malate	
dehydrogenase	

4	 6	 1	 3	 2	 2	 7	 	 11	

U36_51
036	

Q6YW
L3	

Malate	 dehydrogenase,	 lactate/malate	
dehydrogenase	

3	 5	 1	 3	 2	 2	 6	 	 10	

U36_10
746	

Q6YW
L3	

Malate	 dehydrogenase,	 lactate/malate	
dehydrogenase	

	 	 1	 1	 2	 2	 3	 	 3	

U36_20
290	

Q93W
16	

miro	 protein,	 putative,	 expressed,	
Os01g0338000	

1	 1	 	 	 2	 2	 3	 	 3	

U36_19 Q9LK Nucleoside	diphosphate	kinase	 2	 10	 	 	 1	 1	 3	 	 11	
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006	 M0	
U36_51
7	

Q5JLV
2	

Os01g0894700	protein		 	 	 1	 1	 1	 1	 2	 	 2	

U36_18
259	

Q10PG
5	

Os03g0235100	protein	 3	 3	 	 	 	 	 3	 	 3	

U36_23
86	

O4986
6	

Peroxidase		 2	 2	 	 	 1	 1	 3	 	 3	

U36_21
445	

Q5I3E
8	

Peroxidase	10	(Fragment)		 2	 2	 	 	 2	 2	 4	 	 4	

U36_19	 O2399
7	

PR5	 Basic	 pathogenesis-related	 protein,	
thaumatin	

	 	 	 	 2	 2	 2	 	 2	

U36_23
528	

Q5MB
N2	

PR5,	Thaumatin-like	protein	TLP5		 2	 2	 	 	 1	 1	 3	 	 3	

U36_91
71	

Q5MB
N2	

PR5,	Thaumatin-like	protein	TLP5		 2	 2	 	 	 1	 1	 3	 	 3	

U36_20
861	

Q84QC
7	

PR10,	Pathogenesis-related	protein	10	Bet	v	I	
family		

	 	 	 	 1	 4	 1	 	 4	

U36_35
919	

Q84QC
7	

PR10,	Pathogenesis-related	protein	10	Bet	v	I	
family		

	 	 	 	 1	 3	 1	 	 3	

U36_60
26	

Q84QC
7	

PR10,	Pathogenesis-related	protein	10	Bet	v	I	
family		

	 	 	 	 1	 4	 1	 	 4	

U36_77
17	

Q84QC
7	

PR10,	Pathogenesis-related	protein	10	Bet	v	I	
family		

	 	 	 	 1	 4	 1	 	 4	

U36_19
133	

Q0DZE
5	

protein	 kinase,	 pfkB	 family,	 putative,	
expressed	

4	 4	 	 	 	 	 4	 	 4	

U36_30
280	

C5WY
G0	

Putative	 uncharacterized	 protein	
Sb01g019330		

3	 3	 	 	 	 	 3	 	 3	

U36_64
21	

A3BW
84	

Putative	 uncharacterized	 protein,	
Os09g04310.1		

1	 1	 	 	 1	 1	 2	 	 2	

U36_20
346	

Q6AV4
0	

RAN	 binding	 protein,	 exportin-7-A,	 putative,	
expr	

	 	 	 	 2	 2	 2	 	 2	

U36_21
205	

Q69U0
5	

reductase,	Os06g0666600	protein,		 4	 4	 	 	 	 	 4	 	 4	

U36_11
913	

P2666
7	

Ribulose	 bisphosphate	 carboxylase	 small	
chain	PW9	

	 	 2	 2	 	 	 2	 	 2	

U36_42
26	

Q10BX
7	

RNA	 recognition	 motif	 containing	 protein,	
Os03g0801800		

	 	 	 	 2	 2	 2	 	 2	

U36_50
575	

Q7Y1F
0	

Serine	 hydroxymethyltransferase,	
mitochondrial?	

	 	 2	 2	 	 	 2	 	 2	

U36_10
414	

D1IVV
3	

Shotgun	 seq.	 line	 PN40024,	 scaffold_44	
Os05g36290.1		

1	 1	 1	 1	 	 	 2	 	 2	

U36_18
526	

D1IVV
3	

Shotgun	 seq.	 line	 PN40024,	 scaffold_44,	
Os01g64630.4		

	 	 2	 2	 	 	 2	 	 2	

U36_19
915	

B8B5H
6	

spermidine	synthase	putative	 3	 3	 	 	 	 	 3	 	 3	

U36_47
068	

B8B5H
6	

spermidine	synthase	putative	 3	 3	 	 	 	 	 3	 	 3	

U36_19
660	

Q6EZE
7	

Sucrose-phosphate	synthase	2	(Fragment)		 4	 4	 	 	 	 	 4	 	 4	

U36_19
661	

Q6EZE
7	

Sucrose-phosphate	synthase	2	(Fragment)		 4	 4	 	 	 	 	 4	 	 4	

U36_50
671	

Q6EZE
7	

Sucrose-phosphate	synthase	2	(Fragment)		 4	 4	 	 	 	 	 4	 	 4	

U36_35
297	

Q2R3T
7	

sulfotransferase	domain	containing	protein	 3	 3	 	 	 	 	 3	 	 3	

U36_15
752	

B4GM
N3	

tubulin/FtsZ	 domain	 containing	 protein,	
GL12416	

	 	 	 	 2	 2	 2	 	 2	

U36_23
924	

Q94DY
4	

vacuolar	 protein	 sorting-associated	 protein	
28	

3	 3	 	 	 	 	 3	 	 3	

U36_14
924	

Q9AYE
4	

WD	 repeat-containing	 protein,	
Os03g0681700		

4	 4	 	 	 	 	 4	 	 4	

U36_11
862	

Q6PW
L8	

WIN3,	 Wound-induced	 protein,	 vacuolar	
defense	prot	PR4e	

1	 1	 	 	 2	 2	 3	 	 3	

U36_50
018	

Q6PW
L8	

WIN3,	 Wound-induced	 protein,	 vacuolar	
defense	prot	PR4e	

2	 2	 	 	 2	 2	 4	 	 4	
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Supplementary	Table	26:	List	of	barley	proteins	grouped	according	to	their	UniRef90	descriptor	as	putative	

Blumeria	 Effector	 Candidate	 1054	 (BEC1054)	 interactors	 following	 identification	 by	 pull-down	 using	 the	

U36_Harvest	 database.	 The	 letters	 “A”,	 “B”	 and	 “C”	 indicate	 the	 experimental	 conditions,	 with	 “A”	 being	

magnetic	NTA	agarose	beads	and	48h	 infected	 leaf	epidermis;	“B”	being	1	ml	NTA	chromatography	columns	

and	 non-infected	 leaves;	 and	 “C”	 being	 magnetic	 NTA	 agarose	 beads	 and	 seven	 day	 Infected	 leaves.	 The	

numbers	 in	 the	 columns	A,	 B	 and	 C	 indicate	 the	 biological	 replicates	with	which	 the	 protein	was	 identified	

solely	with	BEC1054	(as	opposed	to	with	the	negative	controls).	Where	there	are	multiple	numbers	within	a	

column,	 this	 indicates	 that	 the	 UniRef90	 (a	 UniProt	 database	 identifier)	 is	 associated	 with	 several	 U36	

(HarvEST	database	identifier)	Expressed	Sequence	Tag	(EST)	entries.		

UniRef90	 Description	 A	 B	 C	 Total	

Q9FNU8	 26S	protease	regulatory	subunit,	putative	 		 		 2	 2	

Q7GCH3	 26S	protease	regulatory	subunit,	putative,	 		 		 2	 2	

P42798	 40S	ribosomal	protein	S15a-1;	40S	ribosomal	protein	S15a	 2,1	 1,1	 1,x	 4,2	

Q0IQF7	 40S	ribosomal	protein	S16		 1	 		 1	 2	

B6TH42	 60S	ribosomal	protein	L9;	ribosomal	protein	L6	 		 		 2	 2	

Q2R480	 6-phosphogluconate	dehydrogenase,	decarboxylating		 		 		 2	 2	

Q9LHA8	 70	kDa	heat	shock	protein;	DnaK	family	protein,		 		 2	 1	 3	

Q2R1G8	 Acyl-coenzyme	A	oxidase	2,	peroxisomal	 2	 		 3	 5	

P52894	 Alanine	aminotransferase	2	;	aminotransferase,	classes	I	and	II	 3	 		 		 3	

Q8LI32	 amine	oxidase	family	protein,	putative,	 		 		 2	 2	

Q69UU3	 aminotransferase,	classes	I	and	II,	domain	containing	protein	 1	 1	 		 2	

Q7XN11	 aminotransferase,	putative,	expressed	 		 		 2	 2	

Q01859	 ATP	synthase	subunit	beta,	mitochondrial	n	 		 		 2	 2	

A3BCW4	 ATP	synthase,	putative,	expressed	 		 		 3	 3	

B8A7C1	 ATP-dependent	Clp	protease	 		 3	 2	 5	

A3ATE4	 ATP-dependent	Clp	protease	 		 2	 		 2	

Q0JMN6	 bifunctional	3-dehydroquinate	dehydratase;	Os01g0375200	protein	 		 		 2	 2	

Q84MN8	 bifunctional	3-phosphoadenosine	5-phosphosulfate	synthase	 		 		 2	 2	

P40880	 Carbonic	anhydrase,	chloroplastic		 		 2,2,1	 x,x,1	 2,2,2	

Q9LEH7	 Chitinase	II	 1	 		 1	 2	

P04784	 Chlorophyll	a-b	binding	protein,	chloroplastic		 		 		 2	 2	

Q53PH9	 DEAD/DEAH	 box	 helicase	 family	 protein,	 DSHCT	 domain	 containing	
protein	

		 		 2	 2	

B6SKP8	 Dynamin-related	protein	1C	 2	 		 		 2	

Q9LN13	 Elongation	factor	1-alpha	;	elongation	factor	Tu	 1	 5	 		 6	

Q5Z627	 Elongation	factor	1-gamma	3		 2	 		 		 2	

P17784	 Fructose-bisphosphate	aldolase	cytoplasmic	isozyme		 1	 		 2	 3	

Q40677	 Fructose-bisphosphate	aldolase,	chloroplastic	 		 1	 1	 2	

P15737	 Glucan	 endo-1,3-beta-glucosidase	 GII,	 glycosyl	 hydrolases	 family	 17,	
putative	

1	 		 1	 2	

B6TLT1	 HEAT	repeat	family	protein,	putative,	expressed	 1	 		 2	 3	

Q334H8	 Heat	shock	protein	101		 		 2	 1	 3	

Q08277	 Heat	shock	protein	82		 		 1	 1	 2	
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Q10CE4	 hydroxyacid	oxidase	1,		 		 1	 1	 2	

Q6YWL3	 Malate	dehydrogenase,	lactate/malate	dehydrogenase	 3,1,1,1	 3,1,1,1,1	 3,1,1,1,1	 9,3,3,3,2	

Q84JH5	 mannose-1-phosphate	guanyltransferase,	putative,	expressed	 		 		 2	 2	

Q9LKM0	 Nucleoside	diphosphate	kinase		 1	 		 1	 2	

Q5JLV2	 Os01g0894700	protein	n	 		 1	 1	 2	

P35792	 Pathogenesis-related	 protein	 PRB1-2;	 SCP-like	 extracellular	 protein,	
expressed	

1	 		 1	 2	

O49866	 Peroxidase		 1	 		 1	 2	

Q5I3E8	 Peroxidase	10	(Fragment)		 1	 		 1	 2	

C6ETB7	 peroxidase	Class	III		 		 		 2	 2	

Q5QNA5	 phosphoenolpyruvate	carboxylase,	putative	 		 		 2	 2	

Q9ZTS1	 Probable	methionyl-tRNA	synthetase		 		 		 4	 4	

Q7X5X9	 proteasome	subunit,	putative,	expressed		 		 		 2,2	 2,2	

Q7X5X9	 proteasome	subunit,	putative,	expressed,	UCRAM01	 		 		 2	 2	

Q67UF5	 protein	disulfide	isomerase	PDIL2-3,	expressed	 2	 		 		 2	

Q657P0	 Protein	translocase	subunit	secA	n,	chloroplastic	 		 		 2	 2	

Q6AV40	 Putative	RAN	binding	protein;	exportin-7-A,	putative	 		 		 4	 4	

C5XR25	 Putative	uncharacterized	protein,	tetratricopeptide	repeat	 		 2	 		 2	

Q6PWL8	 Putative	vacuolar	defense	protein,	WIP3	-	Wound-induced	protein	 1	 		 1	 2	
Q6AVA8	 Pyruvate,	phosphate	dikinase	1,	chloroplastic,	PPDK1	 		 		 2	 2	

Q7XGR3	 RNA	recognition	motif	containing	protein,	expressed	 2	 		 		 2	

P46285	 Sedoheptulose-1,7-bisphosphatase,	chloroplastic	 		 		 2	 2	

C5Y297	 Serine	hydroxymethyltransferase,	mitochondria	 1	 		 1	 2	

B6U124	 Succinate	dehydrogenase	flavoprotein	subunit,	mitochondrial		 1	 		 4	 5	

Q6EZE7	 Sucrose-phosphate	synthase	2	 3	 		 		 3	

Q5MBN2	 Thaumatin-like	protein	TLP5	,	thaumatin,	putative,	expressed	 1,1	 		 1,1	 2,2	

Q6K6K7	 ThiF	family	domain	containing	protei	 		 		 2	 2	

Q53NR8	 transport	protein	 2	 		 		 2	

B6T0F0	 Trehalose-6-phosphate	synthase		 2	 		 		 2	

Q53M52	 Tubulin	alpha-2	chain	;	tubulin/FtsZ	domain	containing	protein	 		 		 2	 2	
B9FIN1	 tubulin/FtsZ	domain	containing	protein,	 		 		 2	 2	

C0PA67	 tubulin/FtsZ	domain	containing	protein,	put	 		 1	 1	 2	

Q6H547	 TUDOR	protein	with	multiple	SNc	domains,	putative,	 		 		 2	 2	

Q9SAQ6	 Ubiquitin	(Fragment);ubiquitin	family	protein,	putative,	expressed	 		 		 2	 2	

A1C0L3	 UCW116,	putative	lipase	;	GDSL-like	lipase/acylhydrolase,	 2	 		 		 2	

Q9LLR3	 Vacuolar	targeting	receptor	bp-80	;	vacuolar-sorting	receptor		 6	 		 		 6	

D1IVV3	 Whole	 genome	 shotgun	 sequence	 of	 line	 PN40024	 Vitis	 vinifera	
D1IVV3_VITVI	LOC_Os05g36290.1		

		 2	 1	 3	

D1I3M9	 Whole	 genome	 shotgun	 sequence	 of	 line	 PN40024	 Vitis	 vinifera	
RepID=D1I3M9_VITVI	LOC_Os05g49890.1		

1	 		 1	 2	
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Supplementary	Table	27:	A	list	of	proteins	identified	with	Blumeria	Effector	Candidate	1054	(BEC1054)	from	

the	 International	 Barley	 Sequencing	 Consortium	 (IBSC)	 database	 through	 affinity	 pull-down	 and	 liquid	

chromatography	mass	spectrometry.	The	letters	“A”,	“B”	and	“C”	indicate	the	experimental	conditions,	with	

“A”	being	magnetic	NTA	agarose	beads	and	48h	Infected	leaf	epidermis;	“B”	being	1	ml	NTA	chromatography	

columns	and	non-infected	leaves;	and	“C”	being	magnetic	NTA	agarose	beads	and	seven	day	Infected	leaves.	

The	numbers	in	the	columns	A,	B	and	C	indicate	the	biological	replicates	with	which	the	protein	was	identified	

solely	with	BEC1054	(as	opposed	to	with	the	negative	controls).	At	 least	 two	peptides	were	used	to	 identify	

each	protein	in	at	least	two	independent	biological	replicates.		

ISBC	accession	 Accession	 UniProt	
	
Protein	description	 A	 B	 C	 Total	

AK375372	 AT3G14750	 M0ZBG8_HORVD	 unknown	protein;	Similar	to	A.	thaliana	protein	FLX-Like	1	 2	 		 		 2	

AK251411.1	 AT1G67170	 Not	found	 unknown	protein;	Similar	to	A.	thaliana	protein	FLX-Like	2	 2	 		 		 2	

AK370126	 B9RLP7	 F2E1V5_HORVD	 Chaperone	clpb,	putative	 		 3	 2	 5	

MLOC_50979.1	 B9RLP7	 M0WFE2_HORVD	 Chaperone	clpb,	putative	 		 3	 2	 5	

AK373131	 B9SZ67	 F2EAF6_HORVD	

Wound-induced	protein	WIN1,	putative	(Ricinus);	AK373131	
BARWIN	protein	 1	 		 2	 3	

MLOC_4512.2	 B9SCC1	 F2D006_HORVD	 WD-repeat	protein,	putative	 2	 		 		 2	

AK362773	 B9S1U1	 F2DFV6_HORVD	
ATP-dependent	 clp	 protease	 ATP-binding	 subunit	 clpx,	
putative	 		 1	 1	 2	

MLOC_76454.6	 B9S1U1	 M0Z3M8_HORVD	 ATP-dependent	clp	protease	ATP-binding	subunit	clpx	 		 3	 		 3	
AK250663.1	 B9S5Y6	 Not	found	 C20orf11,	CRA	+	lisH	motifs	(in	RAN	binding	prot	and	tubulin	

binding	prot	respectively)	
2	 		 		 2	

AK362492	 E4W3Z2	 F2DF25_HORVD	 Heat	shock	70	kDa	protein	5	 		 		 2	 2	

AK251322.1	 F2KPY6	 Not	found	 S-adensyl	L	methionine	(SAM)	Methyltransferase	type	11	 2	 		 		 2	

AK248545.1	 D4N8D8	 Not	found	 Carbonic	anhydrase	 		 2	 		 2	

MLOC_4511.1	 O03994	 M0W8Z2_HORVD	 Wound-induced	protein;	Barwin,	PR4	 1	 		 2	 3	

MLOC_16610.1	 Q9FS06	 M0V101_HORVD	 Cysteine	proteinase	inhibitor;	 1	 1	 		 2	

MLOC_55635.2	 G7IUL0	 M0WYF4_HORVD	
Ser/thr	 protein	 phosphatase	 2A	 55	 kDa	 regulatory	 SU	 B	 β	
isoform	 3	 		 		 3	

AK370341	 O49902	 M0UIF1_HORVD	 1-phosphatidylinositol-4,5-bisphosphate	phosphodiesterase	 2	 		 		 2	

AK355673	 Q8S4P7	 F2CVM0_HORVD	 Thaumatin-like	protein	 2	 		 1	 3	

AK371265	 Q8S4P7	 F2E541_HORVD	 Thaumatin-like	protein	 		 		 2	 2	

MLOC_4305.2	 G7L8A9	 M0W3P1_HORVD	 RNA-binding	protein;	nucleolysin	TIAR	like	 2	 		 		 2	

AK371628	 F2E654	 F2E654_HORVD	
Ubiquitin	 carboxyl-terminal	 hydrolase	 Deubiquitination	
enzyme/	peptidase	 2	 		 		 2	

MLOC_69600.1	 F2CQL5	 M0YIA7_HORVD	 Isocitrate	dehydrogenase	[NADP]	 		 		 2	 2	

AK372321	 G2HFQ0	 F2E847_HORVD	 Tubulin	alpha-2	chain;	GTPase	activity	 		 		 2	 2	

MLOC_65477.1	 Q5I3E8	 M0Y3W8_HORVD	 Peroxidase	10		 1	 		 1	 2	

AK250662.1	 D9YM16	 Not	found	
Elongation	 factor	1-alpha	EF-TU.	GTP	dependent	binding	of	
aa-tRNA	 		 		 2	 2	

AK357263	 C6H7S5	 F2D056_HORVD	 ATP-binding	cassette	protein,	ABC	transporter	 2	 		 		 2	
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Supplementary	Table	28:	β-galactosidase	activity	datasets	show	non-homogeneous	variance.	Bartlett’s	tests	

were	 performed	 to	 determine	 whether	 the	 β-galactosidase	 activity	 values	 for	 different	 yeast	 lines	 showed	

homogeneous	 variance.	 Significant	 difference	 is	 indicated	 by	 “.”	 for	 p≤0.1,	 “*”	 for	 p≤0.05,	 “**”	 for	 p≤0.01,	

“***”	p≤0.005,	and	“****”	for	p≤0.001.		

Protein	a	 	Protein	b	 	Bartlett’s	K	squared	 	p-value		 significance	

BEC1054	 GST	 36.15	 0.0000	 ****	
BEC1054	 MDH	 22.60	 0.0000	 ****	
BEC1054	 PR5	 9.30	 0.0256	 *	
BEC1054	 eEF1G	 5.53	 0.1367	 		
BEC1054	 40S	16	 6.67	 0.0831	 .	
BEC1054	 eEF1a(1)	 3.19	 0.3626	 		
BEC1054	 eEF1a(3)	 17.75	 0.0005	 ***	
BEC1054	 PR10	 20.55	 0.0001	 ***	
BEC1054	 NDPK	 26.96	 0.0000	 ****	
Krev1	 RalGDS	 7.66	 0.0535	 .	

	

	

Supplementary	Table	29:	 Fungal	Blumeria	Effector	Candidate	1054	 (BEC1054)	 interacts	with	multiple	plant	

proteins	 in	yeast.	A	CPRG	galactosidase	assay	was	used	to	quantify	 the	 interaction	between	BEC1054	and	

putative	 interacting	plant	proteins	 in	a	yeast-two-hybrid	assay.	Yeast	 lines	were	 lysed	through	freeze-thaw	

lysis,	and	the	lysis	supernatant	added	to	buffer	containing	chlorophenolred-ß-D-galactopyranoside	(CPRG).	The	

names	of	the	interactors	are	given	first	for	the	bait,	and	then	for	the	prey,	with	a	space	referring	to	an	empty	

plasmid,	i.e.	“BEC1054”	is	pEXP32/BEC1054	and	pDEST22;	whereas	“BEC1054+eEF1G	is	pEXP32/BEC1054	and	

pEXP22/eEF1G	Games-Howell	posthoc	tests	were	used	to	determine	whether	the	mean	Vi	(the	maximum	rate	

of	 conversion	of	 the	 yellow	 substrate	CPRG	 to	 the	 red	product	 chloramphenicol	 red	 (and	D-galactose))	was	

significantly	different	 for	different	yeast	 lines	 (line	1	and	 line	2).	Significant	difference	 is	 indicated	by	“.”	 for	

p≤0.1,	“*”	for	p≤0.05,	“**”	for	p≤0.01,	“***”	p≤0.005,	and	“****”	for	p≤0.001.		

Line1	 Line2	 t-value	 p-value	 Significance	

BEC1054	 GST	 0.27	 0.9929	 		

BEC1054	 BEC1054+GST	 5.55	 0.0001	 ***	

BEC1054	 GST+BEC1054	 9.31	 0.0000	 ****	

GST	 BEC1054+GST	 5.28	 0.0002	 ***	

GST	 GST+BEC1054	 9.04	 0.0000	 ****	

BEC1054+GST	 GST+BEC1054	 3.76	 0.0062	 **	

BEC1054	 MDH	 0.56	 0.9416	 		

BEC1054	 BEC1054+MDH	 4.96	 0.0004	 ***	
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BEC1054	 MDH+BEC1054	 7.90	 0.0000	 ****	

MDH	 BEC1054+MDH	 4.40	 0.0015	 ***	

MDH	 MDH+BEC1054	 7.34	 0.0000	 ****	

BEC1054+MDH	 MDH+BEC1054	 2.94	 0.0371	 *	

BEC1054	 PR5	 0.56	 0.9414	 		

BEC1054	 BEC1054+PR5	 5.66	 0.0001	 ****	

BEC1054	 PR5+BEC1054	 3.79	 0.0058	 **	

PR5	 BEC1054+PR5	 6.22	 0.0000	 ****	

PR5	 PR5+BEC1054	 4.36	 0.0016	 ***	

BEC1054+PR5	 PR5+BEC1054	 1.86	 0.2746	 		

BEC1054	 eEF1G	 0.49	 0.9607	 		

BEC1054	 BEC1054+eEF1G	 7.57	 0.0000	 ****	

BEC1054	 eEF1G+BEC1054	 2.30	 0.1306	 		

eEF1G	 BEC1054+eEF1G	 8.06	 0.0000	 ****	

eEF1G	 eEF1G+BEC1054	 2.79	 0.0506	 .	

BEC1054+eEF1G	 eEF1G+BEC1054	 5.27	 0.0002	 ***	

BEC1054	 40S	16	 2.40	 0.1090	 		

BEC1054	 BEC1054+40S	16	 15.29	 0.0000	 ****	

BEC1054	 40S	16+BEC1054	 2.31	 0.1296	 		

40S	16	 BEC1054+40S	16	 12.89	 0.0000	 ****	

40S	16	 40S	16+BEC1054	 0.09	 0.9997	 		

BEC1054+40S	16	 40S	16+BEC1054	 12.98	 0.0000	 ****	

BEC1054	 eEF1A(1)	 2.31	 0.1295	 		

BEC1054	 BEC1054+eEF1A(1)	 4.16	 0.0025	 ***	

BEC1054	 eEF1A(1)+BEC1054	 2.48	 0.0938	 .	

eEF1A(1)	 BEC1054+eEF1A(1)	 1.85	 0.2797	 		

eEF1A(1)	 eEF1A(1)+BEC1054	 0.17	 0.9981	 		

BEC1054+eEF1A(1)	 eEF1A(1)+BEC1054	 1.68	 0.3598	 		

BEC1054	 eEF1A(3)	 0.95	 0.7811	 		

BEC1054	 BEC1054+eEF1A(3)	 0.26	 0.9936	 		

BEC1054	 eEF1A(3)+BEC1054	 1.68	 0.3610	 		

eEF1A(3)	 BEC1054+eEF1A(3)	 0.68	 0.9017	 		

eEF1A(3)	 eEF1A(3)+BEC1054	 0.73	 0.8831	 		

BEC1054+eEF1A(3)	 eEF1A(3)+BEC1054	 1.42	 0.5039	 		

BEC1054	 PR10	 5.14	 0.0003	 ***	

BEC1054	 BEC1054+PR10	 1.60	 0.3986	 		

BEC1054	 PR10+BEC1054	 0.85	 0.8318	 		

PR10	 BEC1054+PR10	 3.54	 0.0103	 *	

PR10	 PR10+BEC1054	 4.29	 0.0019	 ***	

BEC1054+PR10	 PR10+BEC1054	 0.76	 0.8720	 		

BEC1054	 NDPK	 2.52	 0.086257	 .	
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BEC1054	 BEC1054+NDPK	 5.44	 0.000137	 ***	

BEC1054	 NDPK+BEC1054	 0.68	 0.901634	 		

NDPK	 BEC1054+NDPK	 2.92	 0.039238	 *	

NDPK	 NDPK+BEC1054	 1.84	 0.284746	 		

BEC1054+NDPK	 NDPK+BEC1054	 4.76	 0.000644	 ***	

BEC1054	 Krev1+RalGDS-m2	 3.25	 0.0191	 *	

BEC1054	 Krev1+RalGDS-Wt	 12.14	 0.0000	 ****	

BEC1054	 Krev1+RalGDS-m1	 4.11	 0.0028	 ***	

Krev1+RalGDS-m2	 Krev1+RalGDS-Wt	 8.89	 0.0000	 ****	

Krev1+RalGDS-m2	 Krev1+RalGDS-m1	 0.85	 0.8275	 		

Krev1+RalGDS-Wt	 Krev1+RalGDS-m1	 8.04	 0.0000	 ****	
	

Supplementary	 Table	 30:	 Glutathione-S-Transferase	 (GST)	 and	 Pathogenesis	 Related	 protein	 10	 (PR10)	

interact	in	yeast.	A	CPRG	galactosidase	assay	was	used	to	quantify	the	interaction	between	GST	and	PR10	in	

a	yeast-two-hybrid	assay.	Yeast	lines	were	lysed	through	freeze-thaw	lysis,	and	the	lysis	supernatant	added	to	

buffer	containing	chlorophenolred-ß-D-galactopyranoside	(CPRG).	The	names	of	the	interactors	are	given	first	

for	the	bait,	and	then	for	the	prey,	with	a	space	referring	to	an	empty	plasmid,	i.e.	“GST”	is	pEXP32/GST	and	

pDEST22;	whereas	 “GST+PR10	 is	 pEXP32/GST	 and	 pEXP22/PR10.	Games-Howell	 posthoc	 tests	were	 used	 to	

determine	whether	 the	mean	Vi	 (the	maximum	 rate	of	 conversion	of	 the	 yellow	 substrate	CPRG	 to	 the	 red	

product	chloramphenicol	red	(and	D-galactose))	was	significantly	different	for	different	yeast	lines	(line	1	and	

line	2).	Significant	difference	is	indicated	by	“.”	for	p≤0.1,	“*”	for	p≤0.05,	“**”	for	p≤0.01,	“***”	p≤0.005,	and	

“****”	for	p≤0.001.		

Line1	 Line2	 t-value	 p-value	 Significance	

GST	 PR10	 5.18	 0.0002	 ***	
GST	 GST_PR10	 10.78	 0.0000	 ****	
GST	 PR10_GST	 9.65	 0.0000	 ****	
PR10	 GST_PR10	 5.61	 0.0001	 ****	
PR10	 PR10_GST	 4.47	 0.0012	 ***	
GST_PR10	 PR10_GST	 1.13	 0.6740	 		
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Supplementary	 Figure	 51:	 Yeast-two-hybrid	 shows	 the	 interaction	 of	 fungal	 Blumeria	 Effector	 Candidate	

1054	 (BEC1054)	with	multiple	plant	proteins.	The	protein	 interactors	abbreviations	are:	GST,	glutathione-S-

transferase;	MDH,	malate	 dehydrogenase;	 PR5,	 pathogenesis-related	 protein	 5;	 eEF1G,	 elongation	 factor	 1	

gamma;	 and	 40S	 16,	 40S	 ribosomal	 subunit	 protein	 16;	 eEF1A(1),	 eukaryotic	 Elongation	 Factor	 1	 alpha;	

eEF1A(3),	 eukaryotic	 Elongation	 Factor	 1	 gamma;	 PR10,	 pathogenesis-related	 protein	 10;	 and	 NDPK,	

nucleoside	 diphosphate	 kinase.	 A	 CPRG	 galactosidase	 assay	 was	 used	 to	 quantify	 the	 interaction	 between	

BEC1054	and	putative	 interacting	plant	proteins	 in	a	yeast-two-hybrid	assay.	Yeast	 lines	were	 lysed	 through	

freeze-thaw	 lysis,	 and	 the	 lysis	 supernatant	 added	 to	 buffer	 containing	 chlorophenolred-ß-D-

galactopyranoside	(CPRG).	The	names	of	the	interactors	are	given	first	for	the	bait,	and	then	for	the	prey,	with	

a	space	referring	to	an	empty	plasmid,	i.e.	“B54”	is	pEXP32/BEC1054	and	pDEST22;	whereas	“B54+eEF1A(1)	is	

pEXP32/BEC1054	 and	 pEXP22/eEF1A(1).	 Games-Howell	 posthoc	 tests	 were	 used	 to	 determine	whether	 the	

mean	Vi	 (the	maximum	rate	of	conversion	of	the	yellow	substrate	CPRG	to	the	red	product	chloramphenicol	

red	 (and	 D-galactose))	 was	 significantly	 different	 for	 different	 yeast	 lines	 (line	 1	 and	 line	 2).	 Significant	
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difference	is	 indicated	by	the	letters	“a”,	“b”	and	“c”	(p>0.05),	with	bars	 labelled	with	different	 letters	being	

significantly	different.	Six	independently	transformed	colonies	were	used	for	each	yeast	line.		

	

Supplementary	 Figure	 52:	Three	 different	 eukaryotic	 elongation	 factor	 1A	 from	 barley.	 An	 alignment	was	

produced	 using	 ClustalW	 (http://www.ebi.ac.uk/Tools/msa/clustalw2/)	 of	 three	 different	 eEF1A	 sequences	

amplified	from	barley	cDNA.	
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Supplementary	Figure	53:	 40S	and	60S	proteins	 identified	 through	 in	 vitro	chromatography	with	BEC1054.	

“SSU”	stands	for	small	subiunit,	and	“LSU”	stands	for	large	subunit,	Rf	for	the	right	foot,	Pt	for	the	platform,	Lf	

dor	the	left	foot,	H	for	the	head,	CP	for	the	central	protuberance,	Bd	for	the	body	and	Be	for	the	beak.	Yellow	

circles	highlight	ribosomal	proteins	identified	through	in	vitro	chromatography,	where	a)	is	the	interface	view	

of	the	ribosomal	subunit,	and	b)	is	the	solvent	view.	Figure	adapted	from	(Anger	et	al.,	2013).	
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Supplementary	 Table	 31:	 Analysis	 of	 RNA	 samples	 used	 for	 qPCR.	 Where	 “hpi”	 stands	 for	 hours	 post	

inoculation;	 “conidia”	 for	 Blumeria	 graminis	 conidia;	 “barley”	 for	 Hordeum	 vulgare	 uninfected	 epidermal	

material;	 “epiphytic”	 for	 B.	 graminis	 epiphytic	 material;	 and	 “epidermal”	 for	 barley	 epidermal	 peels	

(containing	B.	graminis	hyphae),	and	where	the	RNA	Integrity	Number	is	a	value	calculated	using	Bioanalyzer	

software	 to	 indicate	 the	 integrity	 of	 total	 RNA.	 Table	 reproduced	with	 permission	 from	 (Pennington	 et	 al.,	

2015)	

Time	point	 Replicate	 Concentration(ng/ul)	 RNA	Integrity	Number	

0hpi	(conidia)	 1	 126.3	 8.5	

	 2	 133.1	 8.3	

	 3	 209.5	 9.0	
0hpi	(barley)	 1	 456.4	 9.2	

	 2	 400.8	 8.4	

	 3	 480.0	 8.8	
4hpi	epiphytic	 1	 27.1	 7.0	

	 2	 73.5	 8.4	

	 3	 38.5	 7.9	
6hpi	epiphytic	 1	 219.0	 8.6	

	 2	 75.3	 7.0	

	 3	 79.7	 8.2	
16hpi	epiphytic	 1	 39.0	 8.0	

	 2	 30.8	 7.9	

	 3	 24.9	 7.0	
24hpi	epiphytic	 1	 12.3	 8.0	

	 2	 36.7	 6.9	

	 3	 74.9	 8.7	
24hpi	epidermal	 1	 116.0	 9.4	

	 2	 220.0	 9.0	

	 3	 161.5	 9.5	
48hpi	epiphytic	 1	 132.8	 7.0	

	 2	 66.6	 7.5	

	 3	 38.9	 6.9	
48hpi	epidermal	 1	 210.0	 8.3	

	 2	 200.0	 7.9	

	 3	 120.9	 9.4	
72hpi	epiphytic	 1	 369.8	 8.7	

	 2	 270.4	 8.0	

	 3	 155.0	 9.2	
72hpi	epidermal	 1	 160.3	 9.0	

	 2	 160.0	 8.0	

	 3	 113.0	 7.9	
120hpi	epiphytic	 1	 524.0	 9.2	
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	 2	 230.5	 8.6	

	 3	 128.2	 8	

	

Supplementary	Table	32:	Fungal	Blumeria	Effector	Candidate	1054	(BEC1054)	and	Jasmonate	Induced	Protein	

60	 interact	 with	 RNA	 in	 yeast.	 A	 CPRG	 galactosidase	 assay	 was	 used	 to	 quantify	 the	 interaction	 between	

BEC1054	and	RNA	sequences	 in	a	yeast-three-hybrid	assay.	Yeast	 lines	were	 lysed	through	freeze-thaw	lysis,	

and	 the	 lysis	 supernatant	 added	 to	 buffer	 containing	 chlorophenolred-ß-D-galactopyranoside	 (CPRG).	 The	

names	of	the	interactors	are	given	first	for	the	protein,	and	then	for	the	RNA,	i.e.	“BEC1054+SRL”	is	pIIIA/SRL-

MS2.	.	The	abbreviation	“SRL”	stands	for	ribosomal	large	subunit	“Sarcin-Ricin	Loop”,	“control”	in	the	position	

of	 the	RNA	for	a	different	section	of	 the	ribosomal	 large	subunit,	“IRE”	 for	 the	RNA	 Iron	Response	Element,	

“positive	control”	 for	 Iron	Regulatory	Protein	1	 (IRP1)	with	 the	 interacting	 IRE	RNA	sequence,	and	“negative	

control”	 for	 empty	 pDEST22	 with	 pIIIA/IRE-MS2	 . Games-Howell	 posthoc	 tests	 were	 used	 to	 determine	

whether	 the	 mean	 Vi	 (the	 maximum	 rate	 of	 conversion	 of	 the	 yellow	 substrate	 CPRG	 to	 the	 red	 product	

chloramphenicol	red	(and	D-galactose))	was	significantly	different	for	different	yeast	 lines	(line	1	and	line	2).	

Significant	difference	is	indicated	by	“.”	for	p≤0.1,	“*”	for	p≤0.05,	“**”	for	p≤0.01,	“***”	p≤0.005,	and	“****”	

for	p≤0.001.		

Line1	 Line2	 t-value	 p-value	 Significance	
BEC1054+SRL	 BEC1054+control	 6.39	 0.0000	 ****	
BEC1054+SRL	 BEC1054+IRE	 5.46	 0.0001	 ****	
BEC1054+SRL	 Positive	control	 14.88	 0.0000	 ****	
BEC1054+SRL	 Negative	control	 2.03	 0.2820	 		
BEC1054+control	 BEC1054+IRE	 1.19	 0.7570	 		
BEC1054+control	 Positive	control	 7.53	 0.0000	 ****	
BEC1054+control	 Negative	control	 4.69	 0.0007	 ***	
BEC1054+IRE	 Positive	control	 9.22	 0.0000	 ****	
BEC1054+IRE	 Negative	control	 3.64	 0.0096	 **	
Positive	control	 Negative	control	 13.38	 0.0000	 ****	

JIP60+SRL	 JIP60+control	 1.04	 0.8360	 		
JIP60+SRL	 JIP60+IRE	 2.30	 0.1770	 		
JIP60+SRL	 Positive	control	 1.76	 0.4190	 		
JIP60+SRL	 Negative	control	 5.00	 0.0003	 ***	
JIP60+control	 JIP60+IRE	 1.26	 0.7170	 		
JIP60+control	 Positive	control	 0.68	 0.9590	 		
JIP60+control	 Negative	control	 6.08	 0.0000	 ****	
JIP60+IRE	 Positive	control	 0.63	 0.9690	 		
JIP60+IRE	 Negative	control	 7.39	 0.0000	 ****	
Positive	control	 Negative	control	 7.03	 0.0000	 ****	
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Supplementary	 Table	 33:	 Wheat	 phenotypic	 characteristics	 show	 variation	 in	 homogeneity	 of	 variance.	

Bartlett’s	 tests	 were	 performed	 to	 determine	 whether	 differing	 wheat	 phenotypic	 characteristics	 showed	

homogeneous	 variance.	 Significant	 difference	 is	 indicated	 by	 “.”	 for	 p≤0.1,	 “*”	 for	 p≤0.05,	 “**”	 for	 p≤0.01,	

“***”	p≤0.005,	and	“****”	for	p≤0.001.	

Characteristic		 Bartlett's	K-squared		 	Degrees	
of	
freedom		

	p-value		 Significance	

number	of	leaves	 18.57	 3	 0.0003	 ****	
Maximum	height	(cm)	 0.55	 3	 0.9075	 	
Subcrown	length	(cm)	 5.92	 3	 0.1154	 	
Internode	4	 0.89	 3	 0.8274	 	
Internode	3	 13.12	 3	 0.0044	 ***	
Internode	2	 3.64	 3	 0.3027	 	
Peduncle	(1)	 3.71	 3	 0.2947	 	
Ear	length	(including	whiskers)	 10.25	 3	 0.0166	 *	
Number	of	fertile	tillers	 9.74	 3	 0.0209	 *	
Tiller	mass	 0.75	 3	 0.8619	 	
Grain	number	 3.72	 3	 0.2928	 	

	

	

Supplementary	Table	34:	Wheat	lines	homozygous	and	azygous	for	Blumeria	Effector	Candidate	1054	are	not	

phenotypically	 different.	 Games-Howell	 posthoc	 tests	 were	 used	 to	 determine	 whether	 the	 phenotypic	

characteristics	 listed	 beneath	were	 significantly	 different	 for	 the	 T4	 generation	 of	 homozygous	 (+/+)	wheat	

(line	3.3.14)	transformed	with	Blumeria	Effector	Candidate	BEC1054	(wbec1054	)	and	for	azygous	(-/-)	wheat	

(line	 3.3.12)..	 Significant	 difference	 is	 indicated	 by	 “.”	 for	 p≤0.1,	 “*”	 for	 p≤0.05,	 “**”	 for	 p≤0.01	 and	 “***”	

p≤0.005.	

Phenotypic	characteristic	 Line	1	 Line	2	 t-value	 p-value	 Significance	

Number	of	leaves	 -/-		 +/+		 1.78	 0.2992	 	
Maximum	height	(cm)	 -/-		 +/+		 0.04	 1.0000	 	
Internode	4	 -/-		 +/+		 0.83	 0.8390	 	
Internode	3	 -/-		 +/+		 1.40	 0.5082	 	
Internode	2	 -/-		 +/+		 0.23	 0.9955	 	
Peduncle	(1)	 -/-		 +/+		 2.59	 0.0610	 .	
Ear	length	(including	whiskers)	 -/-		 +/+		 1.29	 0.5719	 	
Number	of	fertile	tillers	 -/-		 +/+		 1.46	 0.4699	 	
Tiller	mass	 -/-	 +/+	 0.36	 0.9844	 	
Grain	number	 -/-	 +/+	 1.18	 0.6415	 	
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Supplementary	Table	35:	The	proportion	of	conidia	which	formed	haustoria	did	not	vary	homogeneously	in	

relation	 to	 differing	 factors	 investigated.	 Bartlett’s	 tests	 were	 performed	 to	 determine	 whether	 differing	

wheat	 factors	 showed	 homogeneous	 variance	 homogeneous	 variance.	 The	 abbreviation	 “combined”	 stands	

for	a	dataset	where	all	the	different	factors	were	taken	into	account.	Significant	difference	is	indicated	by	“.”	

for	p≤0.1,	“*”	for	p≤0.05,	“**”	for	p≤0.01	and	“***”	p≤0.005.	Data	utilised	with	permission	from	(Luong	2014).	

Set	 Bartlett's	k-squared	 p-value	 Significance	

genotype	 0.06	 0.8131	 	
age	 0.93	 0.3358	 	
plant	 24.77	 0.0532	 .	
leaf	segment	 12.00	 0.0025	 ***	
combined	 16.97	 0.1087	 	

	

	

Supplementary	Table	36:	 The	presence	of	 the	Blumeria	 Effector	Candidate	1054	 (BEC1054)	 transgene,	 and	

the	location	of	sampling	affect	the	mean	proportion	of	conidia	that	formed	at	least	one	haustorium	(propH).	

Multiple	 Comparisons	 of	 Means	 were	 conducted,	 using	 Tukey	 Contrasts,	 to	 determine	 whether	 the	 mean	

propH	values	for	homozygous	and	azygous	plants	transformed	with	BEC1054	were	different,	and	whether	the	

propH	 was	 affected	 by	 the	 location	 of	 the	 sampling	 (at	 the	 tip,	 middle	 or	 base	 of	 the	 leaf).	 Significant	

difference	 is	 indicated	by	“.”	 for	p≤0.1,	“*”	for	p≤0.05,	“**”	for	p≤0.01,	“***”	p≤0.005,	and	“****”	p≤0.001.	

Data	utilised	with	permission	from	(Luong	2014).	

Line1	 Line2	 Estimate	 Standard	error	 z-value	 p-value	 Significance	

Homo	 Azygous	 0.66	 0.10	 6.35	 0.0000	 ****	
Middle	 Base	 0.59	 0.11	 5.41	 0.0000	 ****	
Tip	 Base	 1.09	 0.16	 6.71	 0.0000	 ****	
Tip	 Middle	 0.50	 0.15	 3.32	 0.0025	 **	

	

Supplementary	Table	37:	Chlorophylls	a	and	b	datasets	show	a	mix	of	homogeneous	and	non-homogeneous	

variance.	 Bartlett’s	 tests	 were	 performed	 to	 determine	 whether	 the	 β-galactosidase	 activity	 values	 for	

different	yeast	lines	showed	homogeneous	variance.	Significant	difference	is	indicated	by	“.”	for	p≤0.1,	“*”	for	

p≤0.05,	“**”	for	p≤0.01	and	“***”	p≤0.005.	Data	utilised	with	permission	from	(Chandler	2015).	

Dataset	 Treatment	 Bartlett's	K-squared	 p-value	 Significance	

Chlorophyll	a	 H2O/MeJA	 4.57	 0.0325	 *	
Chlorophyll	b	 H2O/MeJA	 3.75	 0.0527	 .	
Chlorophyll	a	 infection	 0.53	 0.4652	 	
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Chlorophyll	b	 infection	 0.21	 0.6471	 	
Chlorophyll	a	 name	 0.33	 0.5647	 	
Chlorophyll	b	 name	 0.46	 0.4993	 	
	

	

	

Supplementary	Table	38:	Treatment	conditions	affected	the	concentration	of	chlorophylls	a	and	b.	Seven	day	

old	 seedlings	 of	 transgenic	 wheat,	 azygous	 (-/-,	 line	 3.3.12)	 or	 homozygous	 (+/+,	 line	 3.3.14)	 for	 Blumeria	

graminis	 f.sp.	hordei	effector	 BEC1054,	were	maintained	 uninfected	 or	 infected	 once	 a	 day	 for	 three	 days.	

Primary	 leaves	were	harvested,	and	treated	with	methyl	 Jasmonate	 (MeJA)	or	water	 (H2O)	 for	a	 further	 five	

days.	 Total	protein	was	extracted	 from	 the	 leaves,	 and	 the	 concentrations	of	 chlorophyll	 a	 and	b	measured	

spectrophotometrically.	Games-Howell	posthoc	tests	were	used	to	determine	whether	the	chlorophyll	a	and	b	

concentrations	 were	 significantly	 different	 under	 the	 treatments	 listed	 in	 the	 table	 below.	 Significant	

difference	is	indicated	by	“.”	for	p≤0.1,	“*”	for	p≤0.05,	“**”	for	p≤0.01	and	“***”	p≤0.005.	Data	utilised	with	

permission	from	Chandler,	2015.	

	 Line	1	 Line	2	 t-value	 p-value	 Significance	

Chlorophyll	a	 -/-	uninfected	H2O	 +/+	uninfected	H2O	 0.83	 0.8390	 	
	 -/-	uninfected	H2O	 -/-	uninfected	MeJA	 1.67	 0.3600	 	
	 -/-	uninfected	H2O	 +/+	uninfected	MeJA	 2.71	 0.0522	 .	
	 +/+	uninfected	H2O	 -/-	uninfected	MeJA	 2.50	 0.0822	 .	
	 +/+	uninfected	H2O	 +/+	uninfected	MeJA	 3.54	 0.0073	 **	
	 -/-	uninfected	MeJA	 +/+	uninfected	MeJA	 1.04	 0.7252	 	

Chlorophyll	b	 -/-	uninfected	H2O	 +/+	uninfected	H2O	 0.97	 0.7676	 	
	 -/-	uninfected	H2O	 -/-	uninfected	MeJA	 1.59	 0.4007	 	
	 -/-	uninfected	H2O	 +/+	uninfected	MeJA	 2.79	 0.0442	 *	
	 +/+	uninfected	H2O	 -/-	uninfected	MeJA	 2.56	 0.0723	 .	
	 +/+	uninfected	H2O	 +/+	uninfected	MeJA	 3.76	 0.0042	 **	
	 -/-	uninfected	MeJA	 +/+	uninfected	MeJA	 1.20	 0.6339	 	

Chlorophyll	a	 -/-	infected	H2O	 +/+	infected	H2O	 0.53	 0.9519	 	
	 -/-	infected	H2O	 -/-	infected	MeJA	 1.83	 0.2810	 	
	 -/-	infected	H2O	 +/+	infected	MeJA	 1.92	 0.2423	 	
	 +/+	infected	H2O	 -/-	infected	MeJA	 1.30	 0.5687	 	
	 +/+	infected	H2O	 +/+	infected	MeJA	 1.39	 0.5131	 	
	 -/-	infected	MeJA	 +/+	infected	MeJA	 0.09	 0.9997	 	

Chlorophyll	b	 -/-	infected	H2O	 +/+	infected	H2O	 0.43	 0.9733	 	
	 -/-	infected	H2O	 -/-	infected	MeJA	 1.82	 0.2845	 	
	 -/-	infected	H2O	 +/+	infected	MeJA	 1.83	 0.2818	 	
	 +/+	infected	H2O	 -/-	infected	MeJA	 1.39	 0.5131	 	
	 +/+	infected	H2O	 +/+	infected	MeJA	 1.40	 0.5095	 	
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	 -/-	infected	MeJA	 +/+	infected	MeJA	 0.01	 1.0000	 	

	

	

Supplementary	 Figure	 54:	 Blumeria	 Effector	 Candidate	 1054	 (BEC1054)	 does	 not	 affect	 the	 phenotype	 of	

transgenic	 wheat.	 Eleven	 phenotypic	 characteristics	 of	 wheat	 were	 investigated	 for	 the	 T4	 generation	 of	

homozygous	(+/+)	wheat	(line	3.3.7)	transformed	with	Blumeria	Effector	Candidate	BEC1054	(wbec1054)	and	

for	azygous	(-/-)	wheat	(line	3.3.12).	The	thick	 line	denotes	the	median	of	each	boxplot,	the	boxes	represent	

the	quartiles,	maximum	and	minimum	values	are	shown	by	the	error	bars,	and	outliers	are	indicated	by	circles.	
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Games-Howell	 post-hoc	 tests	 indicated	 that	 the	 characteristics	 investigated	 were	 not	 significantly	 different	

(p>0.05)	for	any	wheat	lines.	

	

Supplementary	Figure	55:	Wheat	main	 culm	 length	 is	 unaffected	by	 the	 expression	of	wbec1054.	The	two	

wheat	models	represent	a	summary	of	data	collected	for	the	T4	generation	of	homozygous	(+/+)	wheat	(line	

3.3.7)	transformed	with	Blumeria	Effector	Candidate	BEC1054	(wbec1054),	and	for	an	azygous	(-/-)	wheat	(line	

3.3.12).	The	coloured	bars	for	each	internode	and	the	ear	represent	the	mean	length	of	the	primary	tillers	
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Supplementary	Figure	56:	Expression	of	BEC1054	decreases	the	formation	of	an	RNA	diagnostic	peak.	Seven	

day	old	seedlings	of	 transgenic	wheat,	azygous	(-/-,	 line	3.3.12)	or	homozygous	(+/+,	 line	3.3.7)	 for	Blumeria	

graminis	 f.sp.	hordei	effector	 BEC1054	 (wbec1054),	were	 infected	 once	 a	 day	 for	 three	 days	 or	maintained	

uninfected.	 Primary	 leaves	 were	 harvested,	 and	 treated	 with	 methyl	 jasmonate	 for	 a	 further	 five	 days.	

Ribonucleic	acid	was	extracted	from	the	primary	leaves,	and	treated	with	1	M	aniline.	The	RNA	was	run	on	a	

Bioanalyzer	 Nano	 RNA	 chip,	 and	 the	 area	 of	 the	 major	 RNA	 peaks	 measured.	 The	 relative	 peak	 area	 was	

calculated	 for	 a	putative	 ribosomal	degradation	peak,	 in	 relation	 to	 the	area	of	 the	 large	 ribosomal	 subunit	

(28S).	 The	 thick	 line	denotes	 the	median	of	 each	boxplot,	 the	boxes	 represent	 the	quartiles,	maximum	and	

minimum	 values	 are	 shown	 by	 the	 error	 bars,	 and	 outliers	 are	 indicated	 by	 circles.	 The	 letters	 indicate	

significance,	 with	 identical	 letters	 being	 the	 same,	 and	 different	 letters	 being	 significantly	 different.	 The	

number	 biological	 replicates,	 from	 left	 to	 right,	 was	 6,	 10,	 5	 and	 4.	 utilised	with	 permission	 from	 Thieron,	

(2015)	and	Chandler	(2015).	

	

Supplementary	 Table	 39:	Blumeria	 graminis	 f.sp.	 tritici	 infection	 prevented	 the	 formation	 of	 a	 ribosomal	

degradation	peak.	Seven	day	old	seedlings	of	transgenic	wheat,	azygous	(-/-,	line	3.3.12)	or	homozygous	(+/+,	

line	3.3.7)	for	Blumeria	graminis	f.sp.	hordei	effector	BEC1054,	were	maintained	uninfected	or	infected	once	a	
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day	for	three	days.	Primary	leaves	were	harvested,	and	treated	with	methyl	Jasmonate	(MeJA)	or	water	(H2O)	

for	 a	 further	 five	 days.	 Total	 RNA	 was	 extracted	 from	 the	 leaves,	 and	 the	 major	 peaks	 measured	 using	

Bioanalyzer.	Games-Howell	posthoc	tests	were	used	to	determine	whether	the	relative	degradation	peak	area	

was	significantly	different	under	the	treatments	listed	in	the	table	below.	Significant	difference	is	indicated	by	

“.”	for	p≤0.1,	“*”	for	p≤0.05,	“**”	for	p≤0.01	and	“***”	p≤0.005.	Data	utilised	with	permission	from	Thieron,	

2015	and	(Chandler	2015).	

Set	1	 Set	2	 t-value	 p-value	 Significance	

-/-	uninfected	 +/+	uninfected	 2.01	 0.2237	 	
-/-	uninfected	 -/-	infected	 2.97	 0.0402	 *	
-/-	uninfected	 +/+	infected	 3.00	 0.0384	 *	
+/+	uninfected	 -/-	infected	 0.88	 0.8172	 	
+/+	uninfected	 +/+	infected	 0.67	 0.9081	 	
-/-	infected	 +/+	infected	 0.29	 0.9909	 	

	

Supplementary	 Table	 40:	Ribonucleic	 acid	 electropherogram	 peak	 area	 datasets	 show	 non-homogeneous	

variance.	 Bartlett’s	 tests	 were	 performed	 to	 determine	 whether	 the	 β-galactosidase	 activity	 values	 for	

different	yeast	lines	showed	homogeneous	variance.	Significant	difference	is	indicated	by	“.”	for	p≤0.1,	“*”	for	

p≤0.05,	“**”	for	p≤0.01	and	“***”	p≤0.005.	Data	utilised	with	permission	from	Thieron,	2015.	

Dataset	 Bartlett's	K-squared	 p-value	 Significance	

Wheat	line	 9.27	 0.0023	 **	
Infection	 4.65	 0.0311	 *	
Wheat	line	and	infection	 18.48	 0.0004	 ***	
	

	

Supplementary	 Table	 41:	Blumeria	 graminis	 f.sp.	 tritici	 infection	 prevented	 the	 formation	 of	 a	 ribosomal	

degradation	peak.	Seven	day	old	seedlings	of	transgenic	wheat,	azygous	(-/-,	line	3.3.12)	or	homozygous	(+/+,	

line	3.3.14)	for	Blumeria	graminis	f.sp.	hordei	effector	BEC1054,	were	maintained	uninfected	or	infected	once	

a	 day	 for	 three	 days.	 Primary	 leaves	were	 harvested,	 and	 treated	with	methyl	 Jasmonate	 (MeJA)	 or	water	

(H2O)	for	a	further	five	days.	Total	RNA	was	extracted	from	the	leaves,	and	the	major	peaks	measured	using	

Bioanalyzer.	Games-Howell	posthoc	tests	were	used	to	determine	whether	the	relative	degradation	peak	area	

was	significantly	different	under	the	treatments	listed	in	the	table	below.	Significant	difference	is	indicated	by	

“.”	for	p≤0.1,	“*”	for	p≤0.05,	“**”	for	p≤0.01	and	“***”	p≤0.005.	Data	utilised	with	permission	from	Thieron,	

2015	and	(Chandler	2015).	

Set	1	 Set	2	 t-value	 p-value	 Significance	
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-/-	uninfected	 +/+	uninfected	 2.44	 0.0993	 .	
-/-	uninfected	 -/-	infected	 3.26	 0.0182	 *	
-/-	uninfected	 +/+	infected	 2.34	 0.1202	 	
+/+	uninfected	 -/-	infected	 1.42	 0.4996	 	
+/+	uninfected	 +/+	infected	 0.29	 0.9916	 	
-/-	infected	 +/+	infected	 1.02	 0.7389	 	
	

Supplementary	 Table	 42:	 Infiltration	 of	 Nicotiana	 benthamiana	 with	 barley	 and	 Blumeria	 graminis	 f.sp.	

hordei	 proteins	 affects	 production	 of	 Peronospora	 tabacina	 sporangia.	 Games-Howell	 posthoc	 tests	were	

used	 to	 determine	whether	 the	 number	 of	P.	 tabacina	 sporangia	 counted	was	 significantly	 different	 for	N.	

benthamiana	 leaf	material	 infiltrated	with	Agrobacterium	expressing	either	Green	Fluorescent	Protein	(GFP),	

Blumeria	 Effector	 Candidate	 1054	 with	 a	 GFP	 tag	 (BEC1054-GFP)	 with	 a	 GFP	 C-terminal	 tag,	 or	 barley	

Jasmonate	Induced	Protein	60ml	with	a	GFP	C-terminal	tag	(JIP60ml-GFP).	Significant	difference	is	indicated	by	

“.”	for	p≤0.1,	“*”	for	p≤0.05,	“**”	for	p≤0.01	and	“***”	p≤0.005.	Data	utilised	with	permission	from	Thieron,	

2015.	

Line	1	 Line	2	 t-value	 p-value	 Significance	

BEC1054-GFP	 GFP	 3.55	 0.0093	 **	
BEC1054-GFP	 JIP60-GFP	 6.98	 0.0000	 ***	
GFP	 JIP60-GFP	 3.27	 0.0156	 *	
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