Automatic Sleep Staging Using State Machine-controlled Decision Trees

Syed Anas Imtiaz and Esther Rodriguez-Villegas

Abstract— Automatic sleep staging from a reduced number
of channels is desirable to save time, reduce costs and make
sleep monitoring more accessible by providing home-based
polysomnography. This paper introduces a novel algorithm for
automatic scoring of sleep stages using a combination of small
decision trees driven by a state machine. The algorithm uses
two channels of EEG for feature extraction and has a state
machine that selects a suitable decision tree for classification
based on the prevailing sleep stage. Its performance has been
evaluated using the complete dataset of 61 recordings from
PhysioNet Sleep EDF Expanded database achieving an overall
accuracy of 82% and 79% on training and test sets respectively.
The algorithm has been developed with a very small number
of decision tree nodes that are active at any given time making
it suitable for use in resource-constrained wearable systems.

I. INTRODUCTION

Sleep studies involve monitoring and analysis of physio-
logical signals from brain (EEG), eyes (EOG) and muscle
movement (EMG) followed by their classification in to one
of the five stages of sleep. These stages, based on AASM
classification [1] are, Wake, N1, N2, N3 and REM. Analysis
of these overnight recordings and their classification is a
tedious task [2] making their automation highly desirable.
This would not only save time and costs associated with
sleep testing but also make the tests more accessible to a
larger population. Further, this also helps to reduce inter-
rater disagreement [3] as well as subjective error in human
scoring and improve consistency between different tests.
These motivations lead to the research and development of
algorithms for automatic scoring of sleep stages.

Automatic sleep scoring is an increasingly active area of
research with many algorithms already published in litera-
ture. A typical algorithm involves using some kind of signal
processing to extract representative features followed by a
classifier to assign one of the sleep stages based on these
features. Some of the algorithms proposed recently include
the use of support vector machines [4]-[6], hidden Markov
models [7] and frequency coupling with linear discriminant
analysis classification [8]. Other methods have also used
artificial neural networks [2], [9], [10] and decision trees
[11], [12] for classification with a variety of time, frequency,
entropy [13], [14] and wavelet [10] based features.

All sleep scoring algorithms in literature report their
classification performance by evaluating their method on

S. A. Imtiaz and E. Rodriguez-Villegas are with the Circuits
and Systems Group, Electrical and Electronic Engineering
Department, Imperial College London, United Kingdom.

Email: ({anas.imtiaz,e.rodriguez } @imperial.ac.uk).

The research leading to these results has received funding from the Eu-
ropean Research Council under the European Community’s 7th Framework
Programme (FP7/2007-2013) / ERC grant agreement no. 239749.

sleep data either recorded by the researchers or using signals
available from public sleep databases. It is generally difficult
to compare the performance of algorithms that have been
evaluated using different databases. However, the use of
public databases helps in comparison since that is easily
accessible for all researchers.

Until recently, the most popular sleep database has been
the PhysioNet Sleep EDF database [15] which comprises of
8 overnight sleep recordings. A superset of this database, the
Sleep EDF Expanded database [16], is now available with
61 sleep recordings. Of the various sleep scoring algorithms
mentioned above, only four have reported their results using
the new database.

In this paper, we present a novel algorithm for classifica-
tion of sleep stages using a combination of small decision
trees contextually driven by a state machine. This approach
is inspired by the combination of state machine and decision
trees used in artificial intelligence for game development [17]
and results in an overall shorter worst case path for individual
trees that are designed based on the current state. We evaluate
the algorithm’s performance using the entire PhysioNet Sleep
EDF Expanded database. Section II describes the database
in more detail and discusses the features extracted followed
by Section III which explains the proposed sleep staging
algorithm. The performance of this algorithm is evaluated in
Section IV followed by a discussion on future development
and improvements in Section V.

II. MATERIAL AND METHODS
A. Database

Recordings from the PhysioNet Sleep EDF Expanded
database were used for the training and testing of the
algorithm proposed in this paper. This database consists of 61
recordings of which 22 are approximately 8 hour overnight
recordings while the other 39 are recordings over a 24-
hour period including night sleep. For all recordings in the
database, two channels of EEG signals (Fpz-Cz and Pz-Oz)
were available, together with EOG and submental EMG.
The hypnograms in this database were scored using R&K
classification with epoch size of 30 seconds. The relevant
sleep data from all recordings were taken as those between
the lights off and lights on times where available, or 15
minutes before the first and 15 minutes after the last scored
sleep epoch. The hypnograms were also converted to AASM
classification using the recommendations in [18] and only
the two EEG channels were used to extract features for the
algorithm. From the recordings (as listed on the PhysioNet
webpage [16]), starting with the first one, every alternate
recording was selected to be part of the training set (making

it a total of 31 recordings) while the remaining 30 recordings
were taken as part of the test set.

B. Features

At the initial stages of development, 66 features were
extracted from the two EEG channels to study their effec-
tiveness. To compute the features, each 30-second epoch was
divided in to 2-second sub-epochs. The value of any feature
for the epoch was then calculated by taking the mean within
its fifteen sub-epochs. The set of initial features include ab-
solute and relative powers in the following frequency bands:
delta (0.5-4Hz), deltal (0.5-2Hz), delta2 (2-4Hz), sigma (11-
16Hz), beta (16-30Hz), alpha (8-13Hz), alphal (8-10Hz),
alpha2 (10-13Hz), theta (4-8Hz), gamma (30-40Hz); spectral
ratio of powers in these bands; spectral edge frequencies
at 95% (SEF95) and 50% (SEF50) in several bands. The
difference between SEF95 and SEF50 (known as SEFd) in
8-16 Hz frequency band, shown to be highly useful for
detection of REM sleep [19] was also included in this set.
Further, line length of the signal in 11-16 Hz range was
also added since it is useful for sleep spindle detection [20],
thereby helpful for scoring N2 and N3 stages.

From this set, the features with redundancies and low
discriminatory power were removed using sequential feature
selection. As a result, 30 features remained that were used
in the algorithm developed in this work. The list of these
features is shown in Table I.

TABLE I: List of discriminative features used for the sleep
staging algorithm

Channel Features

sigma/beta, beta/delta, delta/alpha, beta/alpha,
SEFd(8-16Hz), SEFd(0.5-8Hz), SEF95(0.5-
30Hz), SEF50(0.5-8Hz), line length (11-16Hz),
rel. delta2, rel. beta, rel. gamma, abs. delta,
abs. deltal, abs. delta2, abs. alpha?2

sigma/beta, beta/delta, theta/alpha, beta/alpha,
SEF95(0.5-30Hz), SEF50(0.5-8Hz), rel. beta,
rel. gamma, rel. alpha, rel. theta, abs. delta,
abs. deltal, abs. alphal

Fpz-Cz

Pz-Oz

rel - relative power; abs - absolute power.

III. SLEEP STAGING ALGORITHM

The algorithm is designed in such a way that the state
machine starts with a pre-defined initial state and must satisfy
two levels of checks to transition in to another state. The
first level is the core test which is a one-versus-all decision
tree with a maximum of seven nodes in total (four nodes in
the longest path). It checks to determine whether the epoch
being analysed is of the same sleep stage as previous or not.
In other words it checks whether the current state of the
machine needs to change. If the core test determines that the
current epoch may potentially be of a different sleep stage
then a series of peripheral tests are applied, otherwise the
state machine remains unchanged. These peripheral tests are
very small one-versus-one decision trees with a maximum of
two levels and three decision nodes (two nodes in the longest

path). Since there are only five possible sleep states including
the current state, there can always be a maximum of four
peripheral tests required. The order of these peripheral tests
are important and determined during the training stage. If
one of these tests is passed, the sleep stage corresponding
to that test is assigned to the current epoch, no further
peripheral tests are executed and the state machine transitions
to the new state. If, however, the peripheral tests also fail to
assign a different sleep stage to the current epoch, the state
of the machine remains unchanged and the previous stage
is assigned to the epoch. The pseudocode of the complete
algorithm is shown in Listing 1.

Listing 1: Pseudocode of the sleep staging algorithm

Initial Condition: current_state is Wake

if current_state = Wake then
if CoreTest(Wake, Others) = Wake then
current_state = Wake
else
if PeriTest(Wake, N2) = N2 then
current_state = N2
else if PeriTest(Wake, N1) = N1 then
current_state = N1
else if PeriTest(Wake, N3) = N3 then
current_state = N3
else if PeriTest(Wake, REM) = REM then
current_state = REM
else
current_state = Wake
end if
end if
else if current_state = N1 then
if CoreTest(N1,Others) = N1 then
current_state = N1
else
if PeriTest(Wake, N1) = N1 then
current_state = N1
else if PeriTest(N1, N2) = N2 then
current_state = N2
else if PeriTest(N1, N3) = N3 then
current_state = N3
else if PeriTest(N1, REM) = REM then
current_state = REM
else
current_state = N1
end if
end if
else if current_state = N2 then
if CoreTest(N2,Others) = N2 then
current_state = N2
else
if PeriTest(N2, N3) = N3 then
current_state = N3
else if PeriTest(N1,N2) = N1 then
current_state = N1
else if PeriTest(N2, REM) = REM then
current_state = REM
else if PeriTest(Wake, N2) = Wake then
current_state = Wake
else
current_state = N2
end if
end if

else if current_state = N3 then
if CoreTest(N3,Others) = N3 then
current_state = N3
else
if PeriTest(N1, N3) = N1 then
if PeriTest(Wake, N1) = N1 then
current_state = N1
else
current_state = Wake
end if
else if PeriTest(N2, N3) = N2 then
current_state = N2
else if PeriTest(N3, REM) = REM then
current_state = REM
else if PeriTest(Wake, N3) = Wake then
current_state = Wake
else
current_state = N3
end if
end if
else if current_state = REM then
if CoreTest(REM,Others) = REM then
current_state = REM
else
if PeriTest(Wake, REM) = Wake then
if PeriTest(Wake, N2) = Wake then
current_state = Wake
else
current_state = N2
end if
else if PeriTest(N2, REM) = N2 then
current_state = N2
else if PeriTest(N1, REM) = N1 then
current_state = N1
else if PeriTest(N3, REM) = N3 then
current_state = N3
else
current_state = REM
end if
end if
end if

The algorithm starts initially with the state machine
in the Wake state. For an incoming new epoch, the
CoreTest(Wake,Others) determines whether a state change is
required. If yes, then a series of four peripheral tests are used
to determine the new state of the machine. For the Wake
state, the peripheral checks are: Wake vs N1, Wake vs N2,
Wake vs N3 and Wake vs REM. If one of these determine
the epoch to be other than Wake then the epoch is assigned
that sleep stage and the machine transitions to that state,
otherwise the state remains unchanged. If the state of the
machine is changed, then based on the newly assigned state,
the next epoch will be classified by starting at a different
core test following a similar pattern of peripheral tests.

Two exception are made to an otherwise symmetrical
structure of the algorithm. First, if the state machine is cur-
rently in N3 state and its PeriTest(N1,N3) determines the next
state to be N1, then a further PeriTest(Wake,N1) is used to
filter out possible false N1 classifications from this peripheral
test. Second, during the REM state, if PeriTest(Wake,REM)
determines the next state as Wake, another PeriTest(Wake,N2)
is used to reduce false Wake classifications. These two addi-

tional peripheral tests were found to be useful in improving
the classification accuracy during the training stage.

IV. RESULTS

The performance of the proposed algorithm was evaluated
using the sensitivity and selectivity metrics defined in [18].
The training set was first used to determine the optimum core
and peripheral decision trees and their internal order of eval-
uation that would result in the highest f-score. Of the 29499
epochs in this set, the best performance of the algorithm
resulted in 24255 epochs being correctly classified giving an
overall accuracy of 82.22%. The detection performance for
all stages (except N1) showed a sensitivity of more than 80%
and is shown in Table II.

TABLE II: Algorithm performance using the Training data set

ALGORITHM
= W N1 N2 N3 R | Sen(%) Sel(%)
% W 3290 209 162 26 217 84.3 84.6
§ N1 339 676 519 10 724 29.8 68.0
E N2 74 54 11672 592 792 88.5 85.8
= | N3 14 13 759 3633 21 81.8 85.1
IR 174 42 495 8 4984 87.4 74.0

The test dataset consisted of 29817 epochs in total of
which 23512 were correctly classified by the algorithm with
an overall accuracy of 78.85%. This is, expectedly, slightly
lower than the accuracy obtained using the training set. The
results for each sleep stage are shown in Table III. Comparing
the sensitivity of each sleep stage with that obtained using
the training set, it can be seen that the accuracies for stages
N2, N3 and REM are very similar. However, there is a
noticeable reduction in the sensitivity for Wake stage and
a slight reduction in N1 accuracy as well.

TABLE 1II: Algorithm performance using the Test data set

ALGORITHM
= W N1 N2 N3 R | Sen(%) Sel(%)
% W 2134 304 175 24 321 72.1 72.1
EE N1 441 558 720 16 803 22.0 453
E N2 126 242 12241 545 732 88.2 84.0
§ N3 32 13 812 3418 21 79.6 85.2
R 227 115 629 7 516l 84.1 733

V. DISCUSSION & CONCLUSION

A novel algorithm for automatic sleep scoring is presented
in this paper using a state machine that is contextually driven
by small decision trees to determine the next sleep stage. Its
performance has been evaluated using sleep recordings from
PhysioNet Sleep EDF Expanded database and is the first
algorithm to utilise all the recordings from this database.
The results in Section IV show that the algorithm classified
N2, N3 and REM stages with a high accuracy. However, the
sensitivity for Wake stage in test set fell to about 72% while
N1 stage showed poor detection in both test and training
subjects. From Table III, it can be seen that most N1 epochs
are misclassified as Wake, REM and N2 while substantial

number of Wake epochs are also falsely classified as NI
and REM. This is not unexpected since certain spectral
similarities between these three stages are well documented
[21], [22].

Only four other methods have used the Sleep EDF
Expanded database for performance evaluation. Of these,
Yaghouby et al. [7] obtained similar results to this method but
used only a subset of the complete database (ST subjects).
Sanders et al. [8] also used only the ST subjects and
reported an overall accuracy of 75%, which is lower than
that obtained in this work. Rodriguez-Sotelo et al. [14]
used both SC and ST subjects. For SC' subjects, they
reported a maximum accuracy of 80% for individual test
subjects separately. However, this dropped to 51% when
these subjects were combined. They also used S’I" subjects
for validation separately which resulted in a lower accuracy.
Finally, Aboalayon et al. [4] also used a subset of this
database however their method only discriminated between
Wake and N1, and not all the stages of sleep.

The number of epochs classified by each decision tree
was also looked at in detail. Of the 29817 test epochs,
84.8% were classified by the core decision trees. This shows
that these core tests bear most of the classification load.
The peripheral trees are responsible for state transitions
and become involved mostly when the sleep stages are
at the boundary between two stages. Consequently, even
though the peripheral trees are required fewer times their
misclassification represents a higher cost since the state
machine could potentially be transitioned to a wrong state
leading to further misclassifications. At present, all the binary
peripheral decision trees are designed with equal misclassi-
fication cost for either stage. For example, the peripheral
decision tree corresponding to N1 vs N2 classification is the
same whether the current state is N1 or N2. Initial work
involving training of trees with different misclassification
cost based on the current state has shown promising results
with improved classification accuracy. This will be pursued
as future research work to improve the current algorithm.

The core decision trees are constrained to have a maximum
of four nodes while the peripheral trees have a maximum of
two nodes in their longest path. Although, this limits the
maximum accuracy that can be achieved, it was done to
realise an algorithm with smaller processing requirements
making it suitable for being used in a wearable environment
where limited processing resources are available.

Overall the results in this paper suggest that the approach
of combining state machines and decision trees in the context
of sleep staging can be highly useful for the classification of
sleep. This approach allows for the use of multiple small
decision trees that get activated depending on the current
sleep stage. It also results in better usage of processor
resources on which the algorithm is run. This is because only
a subset of features are computed each time depending on the
current sleep stage. Further, since the starting decision trees
change based on the current state, not all of them are required
at all times. This saves several nodes of comparison that
would have been required in an approach using conventional

decision trees alone. Although the algorithm showed a good
overall performance, sensitivity in N1 stage was found to be
lacking. Nevertheless, we believe that the approach presented
in this paper will be highly useful for designers of automatic
sleep scoring systems and can be further improved with
the use of more discriminative features and better designed
decision trees.

REFERENCES

[1] C. Iber, S. Ancoli-Israel, A. Chesson, and S. Quan, Eds., The AASM
manual for the scoring of sleep and associated events: rules, terminol-
ogy and technical specifications. Westchester, IL: American Academy
of Sleep Medicine, 2007.

[2] M. Ronzhina et al., “Sleep scoring using artificial neural networks,”
Sleep Med. Rev., vol. 16, no. 3, pp. 251-63, 2012.

[3] H. Danker-Hopfe et al., “Interrater reliability for sleep scoring accord-
ing to the rechtschaffen & kales and the new aasm standard,” J. Sleep
Res., vol. 18, no. 1, pp. 74-84, 2009.

[4] K. Aboalayon, H. Ocbagabir, and M. Faezipour, “Efficient sleep stage
classification based on eeg signals,” in /[EEE LISAT, New York, May
2014.

[5] T. Lajnef et al., “Learning machines and sleeping brains: Automatic
sleep stage classification using decision-tree multi-class support vector
machines,” J. Neurosci. Methods, no. 0, 2015.

[6] T. Sousa et al., “A two-step automatic sleep stage classification method
with dubious range detection,” Comput. Biol. Med., vol. 59, no. 1, pp.
42-53, 2015.

[71 F. Yaghouby, P. Modur, and S. Sunderam, ‘“Naive scoring of human
sleep based on a hidden markov model of the electroencephalogram,”
in [EEE EMBC, Chicago, August 2014.

[8] T. Sanders, M. McCurry, and M. Clements, “Sleep stage classification
with cross frequency coupling,” in IEEE EMBC, Chicago, August
2014.

[9] S. Charbonnier, L. Zoubek, S. Lesecq, and F. Chapotot, “Self-evaluated
automatic classifier as a decision-support tool for sleep/wake staging,”
Comput. Biol. Med., vol. 41, no. 6, pp. 380-9, 2011.

[10] F. Ebrahimi, M. Mikaeili, E. Estrada, and H. Nazeran, “Automatic
sleep stage classification based on eeg signals by using neural networks
and wavelet packet coefficients,” in JEEE EMBC, Vancouver, August
2008.

[11] S.-F. Liang, C.-E. Kuo, Y.-H. Hu, and Y.-S. Cheng, “A rule-based
automatic sleep staging method,” J. Neurosci. Methods, vol. 205, no. 1,
pp. 16976, 2012.

[12] M. Hanaoka, M. Kobayashi, and H. Yamazaki, “Automated sleep stage
scoring by decision tree learning,” in /[EEE EMBC, Chicago, July 2000.

[13] S.-F. Liang et al., “Automatic stage scoring of single-channel sleep eeg
by using multiscale entropy and autoregressive models,” IEEE Trans.
Instrum. Meas., vol. 61, no. 6, pp. 1649-1657, 2012.

[14] J. L. Rodriguez-Sotelo et al., “Automatic sleep stages classification us-
ing eeg entropy features and unsupervised pattern analysis techniques,”
Entropy, vol. 16, no. 12, pp. 6573-6589, 2014.

[15] PhysioNet. (2013) Sleep-edf database. [Online]. Available: http:
/Iwww.physionet.org/physiobank/database/sleep-edf/.

[16] PhysioNet. (2014) Sleep-edf database [expanded]. [Online]. Available:
http://www.physionet.org/physiobank/database/sleep-edfx/.

[17] I. Millington and J. Funge, Eds., Artificial Intelligence for Games.
CRC Press, 2009.

[18] S. Imtiaz and E. Rodriguez-Villegas, “Recommendations for perfor-
mance assessment of automatic sleep staging algorithms,” in /IEEE
EMBC, Chicago, August 2014.

[19] S. Imtiaz and E. Rodriguez-Villegas, “A low computational cost
algorithm for rem sleep detection using single channel eeg,” Ann.
Biomed. Eng., vol. 42, no. 11, pp. 2344-2359, 2014.

[20] S. Imtiaz and E. Rodriguez-Villegas, “Evaluating the use of line
length for automatic sleep spindle detection,” in /EEE EMBC, Chicago,
August 2014.

[21] M. Corsi-Cabrera, Z. Munoz-Torres, Y. delRio-Portilla, and M. A.
Guevara, “Power and coherent oscillations distinguish rem sleep, stage
1 and wakefulness,” Int. J. Psychophysiol., vol. 60, no. 1, pp. 59-66,
2006.

[22] R. Bédizs, M. Sverteczki, and E. Mészéros, “Wakefulness-sleep transi-
tion: Emerging electroencephalographic similarities with the rapid eye
movement phase,” Brain Res. Bull., vol. 76, no. 1, pp. 85-89, 2008.

