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Abstract

Genome-wide association studies (GWAS) have identified .500 common variants associated with quantitative metabolic
traits, but in aggregate such variants explain at most 20–30% of the heritable component of population variation in these
traits. To further investigate the impact of genotypic variation on metabolic traits, we conducted re-sequencing studies in
.6,000 members of a Finnish population cohort (The Northern Finland Birth Cohort of 1966 [NFBC]) and a type 2 diabetes
case-control sample (The Finland-United States Investigation of NIDDM Genetics [FUSION] study). By sequencing the coding
sequence and 59 and 39 untranslated regions of 78 genes at 17 GWAS loci associated with one or more of six metabolic traits
(serum levels of fasting HDL-C, LDL-C, total cholesterol, triglycerides, plasma glucose, and insulin), and conducting both
single-variant and gene-level association tests, we obtained a more complete understanding of phenotype-genotype
associations at eight of these loci. At all eight of these loci, the identification of new associations provides significant
evidence for multiple genetic signals to one or more phenotypes, and at two loci, in the genes ABCA1 and CETP, we found
significant gene-level evidence of association to non-synonymous variants with MAF,1%. Additionally, two potentially
deleterious variants that demonstrated significant associations (rs138726309, a missense variant in G6PC2, and rs28933094,
a missense variant in LIPC) were considerably more common in these Finnish samples than in European reference
populations, supporting our prior hypothesis that deleterious variants could attain high frequencies in this isolated
population, likely due to the effects of population bottlenecks. Our results highlight the value of large, well-phenotyped
samples for rare-variant association analysis, and the challenge of evaluating the phenotypic impact of such variants.
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Introduction

Genome-wide association studies (GWAS) based on common

single nucleotide polymorphisms (SNPs) have unequivocally

demonstrated the contribution of thousands of loci to risk for

common diseases and to variation in quantitative traits. However

for most such complex phenotypes, the variants identified to date

appear to explain only a fraction of heritable variation, suggesting

an important role for variants not assessed in GWAS. In

particular, the hypothesis that currently unidentified low-frequen-

cy genetic variants may have a major impact on complex

phenotypes has stimulated extensive efforts to discover such

variants through next-generation sequencing.

Over the next several years it will increasingly become feasible

to conduct comprehensive variant discovery through exome or

whole genome re-sequencing studies. Such studies have the

potential to demonstrate the impact on complex phenotypes of

genes, pathways, and networks that GWAS have not yet

implicated in these phenotypes. However it is increasingly clear

that identifying associations at genome-wide or exome-wide

thresholds of statistical significance will require large samples,

and thus these experiments remain very costly. Although targeted

re-sequencing studies of large samples do not provide the same

likelihood of implicating novel genes as do genome-wide or

exome-wide sequencing, they offer an excellent opportunity to

obtain an initial picture of the relative phenotypic impact of

variants across the complete allele frequency spectrum, in regions

of interest. Such studies require evaluation of a relatively limited

number of variants and, if prior evidence indicates that variants

within the targeted region contribute to the phenotype, require a

less stringent statistical threshold.

Genes within loci for which GWAS have shown significant

associations represent logical foci for investigations across the

allelic frequency spectrum. Several genes are now known to

harbor both rare variants responsible for Mendelian disorders and

common variants associated with related phenotypes [1,2].

Resequencing of such genes may suggest particular variants as

contributors to the GWAS signal, and may identify variants whose

association with the phenotype is independent of the GWAS

signal. Together, such variants provide starting points to

investigate the heritable component of biological processes

underlying the associated phenotypes.

We therefore undertook a re-sequencing study of Finnish

cohorts, targeting loci identified from GWAS of quantitative

metabolic traits, including: fasting blood levels of lipids and

lipoproteins (triglycerides, TG; high-density lipoprotein cholester-

ol, HDL-C; low-density lipoprotein cholesterol, LDL-C; and total

cholesterol, TC), glucose (FG), and insulin (FI). Several of these

traits (TG, HDL-C, and FG) are components of the metabolic

syndrome, an aggregation of variables that increase risk for type 2

diabetes (T2D) and cardiovascular diseases [3]. We report here the

results of such targeted re-sequencing of .6,000 individuals drawn

from a population cohort (the 1966 Northern Finland Birth

Cohort, NFBC; [4]) and a T2D case-control sample (the Finland-

United States Investigation of NIDDM Genetics study, FUSION;

[5,6], which included 919 individuals with T2D and 919 normal

glucose-tolerant controls). In these individuals, we sequenced the

coding regions of 78 genes selected from 17 loci that showed

genome-wide significant association to one or more of the

designated quantitative metabolic traits in GWAS meta-analyses

that included these studies [7,8]. Details on how we selected loci

and genes within loci for re-sequencing can be found in Text S1.

We focused on these Finnish cohorts for two reasons, both of

which concern the relationships expected between population

history and the distribution of rare variants within a study sample.

First, when a founder population has expanded recently from

severe bottlenecks, as in Finland, many variants may disappear

from the population while others increase rapidly in frequency

owing to subsampling and genetic drift. Thus, while the overall

number of rare variant sites observed in sequencing studies of the

Finnish population is smaller than in other European populations

[9], some deleterious variants are observed at a much higher

frequency in Finland than in other populations. These variants

include the mutations responsible for about 40 rare Mendelian

disorders, the so-called ‘‘Finnish disease heritage’’ [10,11]. We

hypothesized that some variants with a large effect on quantitative

metabolic phenotypes would also have attained a relatively high

frequency in the Finnish population, so that by re-sequencing

Finnish samples we could identify novel associations that might be

unfeasible to detect in comparably sized samples from most other

populations.

Second, the availability of information specifying the birthplace

of most members of the NFBC and FUSION cohorts (or their

parents) addresses the recently raised concern that unidentified

population substructure may pose a particular issue in association

analyses of rare variants (e.g. those with frequency ,1%) [12].

This concern reflects the expectation that such variants have

generally arisen more recently than common variants and are

therefore more likely to differ in frequency between study

populations; this concern is mainly relevant in studies where the

geographical origin of the subjects is unknown [12]. Indeed,

previous studies in Finnish samples (including NFBC) have shown

that the available birthplace data provide a highly accurate

delineation of population substructure [7,10].

Results

Characteristics of study cohorts and re-sequencing
summary statistics

Principal components analysis (PCA) using 122 k SNPs typed

on genome-wide arrays revealed that the NFBC and FUSION

samples overlap broadly in the first two PC dimensions (Figure

Author Summary

Abnormal serum levels of various metabolites, including
measures relevant to cholesterol, other fats, and sugars,
are known to be risk factors for cardiovascular disease and
type 2 diabetes. Identification of the genes that play a role
in generating such abnormalities could advance the
development of new treatment and prevention strategies
for these disorders. Investigations of common genetic
variants carried out in large sets of research subjects have
successfully pinpointed such genes within many regions of
the human genome. However, these studies often have
not led to the identification of the specific genetic
variations affecting metabolic traits. To attempt to detect
such causal variations, we sequenced genes in 17 genomic
regions implicated in metabolic traits in .6,000 people
from Finland. By conducting statistical analyses relating
specific variations (individually and grouped by gene) to
the measures for these metabolic traits observed in the
study subjects, we added to our understanding of how
genotypes affect these traits. Our findings support a long-
held hypothesis that the unique history of the Finnish
population provides important advantages for analyzing
the relationship between genetic variations and biomed-
ically important traits.
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S1). Phenotype distributions also overlap considerably between the

cohorts (Table S1), and comparison of mean residual values after

regressing the combined sample on age, age2, and sex showed no

significant differences between NFBC and FUSION for any

phenotype (p.0.77 for all comparisons; see Text S1), after

excluding T2D cases from analysis of FG and FI.

We selected for re-sequencing the protein-coding regions and 59

and 39 untranslated regions (UTRs) of the genes within 17 loci that

had previously demonstrated significant association (p,561028)

in GWAS to one or more metabolic phenotype (Table 1); TG

(eight loci), HDL-C (nine loci), LDL-C (six loci), TC (nine loci), FG

(six loci), and FI (one locus) [7,8,13–15]. The selection of the loci

depended on the evidence from meta-analyses of several

independent studies, but for eight of them, NFBC alone showed

genome-wide significant association to one or more of the six

phenotypes. We defined loci as the regions bracketed by the

nearest recombination hotspots (.10 cM/Mb) on both sides of the

reported GWAS SNPs. The numbers of genes included in the

GWAS loci so defined ranged from one (four loci) to 50 (the

MADD locus). As we did not have the resources to sequence all

possible genes at each locus, we sequenced the genes nearest to the

SNPs that showed genome-wide significant association with these

phenotypes (see Text S1 for more detail), for a total of ,270 kb of

sequence.

We conducted targeted Illumina sequencing using 150 bp

probes designed to capture primarily coding sequence, in whole-

genome amplified (WGA) DNA from 6,958 individuals; 6,123 of

these individuals (4,447 NFBC, 836 FUSION normal glucose

tolerant controls, and 840 FUSION T2D cases) passed quality

control procedures (Text S1). Mean depth of coverage (per bp per

person) per gene ranged from 316–2856 (Table S2, Figure S2,

and Text S1). On average, 96% of sequenced base pairs within a

gene had genotype quality score $50 in $75% of subjects; some

genes were covered at this level for as few as 60% of base pairs

(Table S2). After this initial quality control process, we identified

2,221 variant sites, 1,779 (80%) with MAF,1%.

Validation of rare variants
It is difficult to distinguish between low count variants and

sequencing artifacts, and we reasoned that such artifacts might be

increased in our study given that all DNAs had been whole-

genome amplified (WGA). We therefore attempted to validate low

count variants by PCR-amplification of the putative variant site in

genomic DNA from variant carriers (or WGA DNA if genomic

DNA was not available) and sequencing using a different platform

(Roche 454 FLX). We sequenced all variants identified in #3

individuals in our sample and not reported in dbSNP version 135

(N = 1,104, Text S1), and considered validation for the sites as (1)

their being variable and (2) the specific non-reference genotypes

being correct as called.

Overall, we validated 89.5% of these 1,104 sites including 100%

of the 91 sites with variants present three times and 271 of 273

(99.3%) corresponding non-reference genotypes; 205 of 207

(99.5%) of the 207 sites with variants present twice and 397 of

414 (95.9%) corresponding non-reference genotypes. Among

singletons, we validated 691 of 806 (85.7%) non-reference

genotypes; however, 336 of these validated only in WGA DNA

(the only DNA source available for these samples). Conservatively,

we excluded from further analyses these 336 WGA-only singleton

sites, along with 104 singleton sites that were refuted (49 sites), not

covered (20 sites), or found to be WGA artifacts (35 sites). Eleven

additional singleton sites were found to be homozygous alternative

when validated, bringing the number of retained singleton sites to

T
a

b
le

1
.

C
o

n
t.

L
o

cu
s1

C
h

r
5

9
b

o
u

n
d

a
ry

(B
u

il
d

3
7

)
(M

b
)

S
iz

e
(k

b
)

R
O

I2
(k

b
)

G
e

n
e

s
T

a
rg

e
te

d
/T

o
ta

l3
#

V
a

li
d

a
te

d
V

a
ri

a
n

t
S

it
e

s4
A

ss
o

ci
a

te
d

T
ra

it
(s

)5
:

A
rr

a
y

S
N

P
A

rr
a

y
S

N
P

M
A

F
6

A
rr

a
y

S
N

P
P

-
v

a
lu

e
6

T
G

:r
s1

5
6

1
1

4
0

.4
7

2
.1

E-
0

2

N
C

A
N

1
9

1
9

.2
5

0
1

4
5

6
2

8
.6

6
9

5
5

.5
7

0
1

8
/2

0
3

3
6

LD
L-

C
:r

s1
2

6
1

0
1

8
5

.0
6

2
.3

E-
0

3

T
C

:r
s2

2
2

8
6

0
3

.0
7

3
.0

E-
0

5

T
G

:r
s2

3
0

4
1

3
0

.0
6

1
.3

E-
0

5

1
T

h
e

lo
ci

ar
e

n
am

e
d

ac
co

rd
in

g
to

th
e

fi
rs

t
g

e
n

e
in

th
e

re
g

io
n

o
f

in
te

re
st

,
st

ar
ti

n
g

at
th

e
5

9
e

n
d

o
f

th
e

re
g

io
n

.
2
R

O
I=

re
g

io
n

o
f

in
te

re
st

.
N

u
m

b
e

r
o

f
kb

se
q

u
e

n
ce

d
fo

r
th

e
lo

cu
s.

3
T

o
ta

l
G

e
n

e
s

is
th

e
n

u
m

b
e

r
o

f
g

e
n

e
s

in
th

e
lo

cu
s;

T
ar

g
e

te
d

G
e

n
e

s
is

th
e

n
u

m
b

e
r

o
f

g
e

n
e

s
in

ve
st

ig
at

e
d

in
th

is
st

u
d

y.
4
P

le
as

e
se

e
T

ab
le

S3
fo

r
a

co
m

p
le

te
lis

ti
n

g
o

f
al

l
va

ri
an

t
si

te
s,

al
o

n
g

w
it

h
th

e
ir

M
A

F
an

d
an

n
o

ta
ti

o
n

.
5
P

h
e

n
o

ty
p

e
ab

b
re

vi
at

io
n

s:
T

C
=

to
ta

l
ch

o
le

st
e

ro
l,

LD
L-

C
=

lo
w

d
e

n
si

ty
lip

o
p

ro
te

in
ch

o
le

st
e

ro
l,

H
D

L-
C

=
h

ig
h

d
e

n
si

ty
lip

o
p

ro
te

in
ch

o
le

st
e

ro
l,

T
G

=
tr

ig
ly

ce
ri

d
e

s,
FG

=
Fa

st
in

g
G

lu
co

se
,F

I=
Fa

st
in

g
In

su
lin

.P
re

vi
o

u
s

as
so

ci
at

io
n

e
vi

d
e

n
ce

fo
r

lip
id

tr
ai

ts
is

fr
o

m
K

at
h

ir
e

sa
n

et
a

l.
2

0
0

8
,W

ill
e

r
et

a
l.

2
0

0
8

an
d

T
e

sl
o

vi
ch

et
a

l.
2

0
1

0
;f

o
r

g
lu

co
se

D
u

p
u

is
et

a
l.

2
0

1
0

,a
n

d
fo

r
in

su
lin

Sa
b

at
ti

et
a

l.
2

0
0

9
.T

h
e

‘‘a
rr

ay
SN

P
’’

is
th

e
G

W
A

S
ar

ra
y-

g
e

n
o

ty
p

e
d

SN
P

(n
o

t
se

q
u

e
n

ce
va

ri
an

t)
w

it
h

th
e

sm
al

le
st

p
-v

al
u

e
to

in
d

ic
at

e
d

tr
ai

ts
in

th
is

st
u

d
y

an
d

is
n

o
t

n
e

ce
ss

ar
ily

th
e

sa
m

e
SN

P
h

ig
h

lig
h

te
d

in
p

re
vi

o
u

s
st

u
d

ie
s.

6
A

rr
ay

SN
P

M
A

F
an

d
p

-v
al

u
e

s
ar

e
ta

ke
n

fr
o

m
th

e
cu

rr
e

n
t

st
u

d
y.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

g
e

n
.1

0
0

4
1

4
7

.t
0

0
1

Re-sequencing GWAS Loci

PLOS Genetics | www.plosgenetics.org 4 January 2014 | Volume 10 | Issue 1 | e1004147



366 and the total number of retained sites (among the 1,104 for

which validation was attempted) to 663.

After validation, we included a total of 1,780 variable sites for

further analysis. The subsequently released dbSNP version 137

included 76 of our non-validated sites: our experiments had

directly refuted four of these sites, we had not adequately covered

five of them, and we had validated 67 sites only in WGA DNA.

We re-included the 72 non-refuted sites, bringing the total number

of validated polymorphic sites for subsequent analysis to 1,852

(Table S3).

To quantify the increase in rare variation information provided

by sequencing compared with genotyping, we calculated the

overlap between variants found in this study and those observed in

a larger Finnish sample: 9,660 Finnish participants from the

population-based Metabolic Syndrome in Men (METSIM) study

[16] who were genotyped with the Illumina ExomeChip. The

ExomeChip captured only 346 (19%) of the 1,852 polymorphic

sites that we identified through sequencing.

Characteristics of sequence variants
The majority of sequence variants (1,114, 60%) were in coding

sequence (37% non-synonymous [NS] and 23% synonymous)

while 738 (40%) were in introns or UTRs (Figure S3). PolyPhen2

[17] predicted 236 variants to have a deleterious impact: 213

missense ‘‘probably damaging’’ and 23 nonsense variants. Of these

236 variants, 21 (19 missense and two nonsense) were present in

homozygous form in at least one individual. For all 21 of these

variants, the phenotype distributions for rare-allele homozygotes

overlapped with the phenotype distributions of the common-allele

homozygotes (Figure S4), suggesting these variants are not

sufficient to cause extreme phenotypes. A total of 1,410 of the

1,852 validated variants (76%) had MAF,1%, including 486

(26%) singleton and 217 (12%) doubleton variants (Figure S5).

Nucleotide diversity, as estimated by Watterson’s measure

hW = 7.161024 was larger than the pair wise heterozygosity

estimator hp = 3.561024, reflecting the abundance of singleton

sites.

We observed less overall variation than that seen in earlier

sequencing studies of individuals of European descent; one variant

site in every 147 bp sequenced, as compared to every 21 bp [9],

57 bp [18] or 83 bp [19]. While the sample size in the study of

Nelson et al. [9] was larger (12,514 European Americans) than that

of our study, the sample sizes in Tennessen et al. [19] and Fu et al.

[18] were smaller (1,351 and 4,298 European Americans,

respectively; note that the samples sequenced in the latter two

studies represented two different data releases from the same

dataset). Nelson et al. observed that in the Finnish samples in their

study, the number of variant sites per kb of sequence, was about

one-third that of similar sized samples from southern Europe.

Thus, while differences in sequencing coverage and in the number

of sequencing artifacts could partially account for our observation

of reduced numbers of variant sites compared to other studies, the

results of Nelson et al. suggest that the Finnish population

bottleneck may have played a larger role.

The reduced variation observed in our study compared to the

three previous studies, primarily reflects numbers of rare variants.

Nelson et al. report that 95% of their variant sites were rare

(MAF,0.5%), with 74% seen in only one or two copies. Similarly,

Tennessen et al. report that 72% of variant sites were seen in #3

copies. In our study, by contrast, 72% of variants were rare, 38%

were seen in one or two copies, and 44% were seen in #3 copies.

By down-sampling our data [20] to match the sample sizes of

Tennessen et al. and Fu et al., and down sampling the data of

Nelson et al. to match our sample size, we directly compared our

site-frequency spectra (SFS) with those observed in these three

studies. We caution against over-interpretation of these SFS, as

they can be impacted by differences between studies in the choice

of genes sequenced, variant ascertainment, and coverage. Never-

theless, in our sample, a substantially lower percentage of coding

variants have MAF,1% than in any of the other three studies

(Table S4). Conversely, in our sample we observe a higher

proportion of so called ‘‘Goldilocks alleles’’: variants with MAF

0.5–2%, a frequency sufficient for single-variant analyses of

potentially large-effect variants [21]. For example, while Nelson

et al. report that 1.1% of NS variants are Goldilocks alleles, we

observe that 7.4% of NS variants fall in this frequency range.

While we observe fewer rare variants than these other

sequencing studies, the proportion of NS variants among rare

coding variants in our study (65%; 95% CI = 62%–68%) is similar

to that seen in Nelson et al. (63%). The proportion of rare variants

predicted to be functional is also roughly similar between our study

and other studies. For example, Tennessen et al. report that almost

96% of SNVs predicted to be functional have MAF,0.5%, and

state an odds ratio of 4.2 that such rare variants are functional

compared to variants with MAF.0.5%. We find that 89% of

SNVs predicted to be functional are rare, and estimate an odds

ratio of 3 (95% CI = 1.98–4.52).

Phenotype associations
A total of 39 unique locus-phenotype combinations represent

the previously reported associations between the 17 re-sequenced

loci and one or more of the six metabolic phenotypes: 32

associations for lipid measures, six for fasting glucose, and one for

insulin (Table 1). To follow up these previous findings, we

conducted association tests on the combined NFBC/FUSION

data (see Methods). We conducted single-variant tests (regression

of phenotype residuals on an additively coded genotype, see

Methods) to assess association in each of the 39 locus-phenotype

sets for all validated variants with MAF.0.1%; tests under

alternative genetic models did not reveal any additional association

evidence. Since multiple independent association signals may be

present at a locus, we evaluated the relation of each newly

associated variant to the ‘‘array SNP,’’ the SNP genotyped in the

combined NFBC/FUSION sample with smallest p-value in this

sample in single-SNP association tests (Table 1). We then

conducted single-variant analyses conditional on the array SNP,

by including the array SNP genotype as a covariate in the linear

regression.

We used gene-level tests to evaluate the collective impact of

non-synonymous (NS) variants with MAF,1% for each of the 62

genes that harbored at least two such validated variants,

considering only phenotypes that showed prior evidence of

association to the locus (a total of 147 tests). We adopted this

MAF threshold after determining that any higher MAF threshold

simply recapitulated associations identified by the single-variant

tests. Given different alternative models of interest, we performed

two minimally correlated tests: CMC [22] which assumes the

direction of effect for all rare variants is the same, and SKAT [23]

which is better tuned to the setting in which the direction of effect

of rare variants is mixed.

Taking the combined results from our single-variant and gene-

level analyses, we evaluated to what degree re-sequencing of these

17 loci has advanced our understanding, beyond what was known

from GWAS, of the phenotypic impact of genetic variation. We

considered such an advancement to consist of either identification

of additional, independent association signals, or the detection of

association to rare variants.

Re-sequencing GWAS Loci
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For several of the lipid-associated loci, we were able to assess the

evidence for multiple independent signals in relation to a similar

analysis conducted on SNP data by Teslovich et al. 2010 [8]. This

comparison has two limitations: our study and that of Teslovich et

al. did not examine the same set of variants, and for five of the 13

lipid loci, our variant set did not contain a good proxy (r2.0.8) for

the lead SNP of Teslovich et al. To counter these limitations, we

used information imputed from NFBC data on pairwise LD

between variants analyzed in the two studies, and assumed that

any pair of variants with r2,0.2 in NFBC were effectively

independent.

We used here a significance threshold of p,0.001 (approxi-

mately the cutoff obtained by applying the Benjamini-Hochberg

[24] rule to control FDR at the 0.02 level across all the variants/

genes and phenotypes tested, see Methods). For 27 of the 39

locus-phenotype combinations, the re-sequencing analysis essen-

tially recapitulated the results from the GWAS. For the remaining

12 locus-phenotype combinations (at seven loci), we summarize

below how re-sequencing has advanced our understanding of

genotype-phenotype relationships; MAF, p-values, and annota-

tions for all associated variants at these seven loci are presented in

Table 2.

ABCG8 locus (LDL-C). In re-sequencing seven genes at this

locus, we identified 231 validated variants, and detected associ-

ation independent of the array SNP with variant rs145756111 in

the ABCG8 gene (Figure S6AB, Table 2, p = 6.161024). Compar-

ison with the data of Teslovich et al. indicates three distinct LDL-C

signals at this locus: (1) a single signal given by our array SNP and

the Teslovich et al. lead SNP (r2 = 0.98); (2) the second common

signal identified by Teslovich et al. (rs4953023); and (3) the rare

variant signal identified here (rs145756111), which is independent

of both common signals.

G6PC2 locus (FG). Table 2, p = 2.661026). The independent

associated SNP rs138726309 codes for a missense variant

(His177Tyr) predicted to be ‘‘probably damaging’’ by PolyPhen2

[17], occurring at a highly conserved site; the reference amino acid

is observed at 25 of 26 aligned homologous proteins, refSeq

NP_066999, SwissProt Q9NQR9. This SNP is a candidate causal

variant and a priority for follow-up investigations; it is also

significantly increased in frequency in Finland compared to other

European populations (MAF = 0.014 in Finland vs MAF = 0.0023

in the European ancestry samples in the Exome Variant Server,

http://evs.gs.washington.edu/EVS/, p,10216).

LPL locus (HDL-C, TG). We re-sequenced only LPL at this

locus, detecting 43 validated variants, including a nonsense

variant, rs328, in strong LD with the array SNP. We identified

a second variant, rs268, in low LD (r2 = 0.002) with rs328 and

associated with both HDL-C and TG (Figure S6E–H, Table 2,

HDL-C p = 2.261027, TG p = 9.361025). Comparison with the

data of Teslovich et al. indicates three distinct signals at this locus

for both HDL-C and TG: (1) a signal given by our array SNP and

the Teslovich et al. lead SNP (r2 = 0.87); (2) the second signal

reported by Teslovich et al. at rs7016529; and (3) the rare variant

identified by sequencing, rs268.

ABCA1 locus (HDL-C, TC). We identified 73 validated

variants in ABCA1, the only gene we sequenced in this region. Two

sequence variants with single SNP associations to HDL-C are

independent of the array SNP at this locus (Figure S6IJ, Table 2,

variants rs2066718, p = 9.361025, and rs2066715, p = 5.161024,

pair wise r2 = 0.000). Comparison with the data of Teslovich et al.

suggests four HDL-C signals at this locus; our array SNP is

modestly correlated with their lead SNP (r2 = 0.62), and poorly

correlated with their independent signal at SNP rs11789603

(r2 = 0.17), and sequence variants rs2066718 and rs2066715 are

not correlated to either of the common SNPs (r2,0.01 for all pair

wise comparisons).

The gene-level tests used 23 ABCA1 variants, eight not

previously reported (as of dbSNP 137), one nonsense variant

and seven missense variants, all predicted to be ‘‘probably

damaging’’ (Table S3). These tests implicated rare ABCA1 variants

in both TC and HDL-C (TC: CMC p = 3.761025, HDL-C:

CMC p = 5.061024). For TC, 18 of the 23 variant sites (with 138

of the 157 minor alleles) are associated with lower TC (Figure 1);

16 of these 23 variants were also associated with decreased HDL-

C, based on single-marker tests. The observation that most

variants have the same direction of effect is consistent with

stronger association evidence for CMC than for SKAT (TC:

SKAT p = 0.018, HDL-C: SKAT p = 0.0033; Table S5).

We attempted to determine whether any single rare variant

could be responsible for the gene-level test signal at this locus, and,

if so, whether its contribution could be separated from that of the

more common variants assessed in the single-variant tests. For this

purpose we used all of the non-singleton sequence variants

detected in ABCA1 to construct a multivariate linear model with

HDL-C as a response variable. We employed stepwise regression

analysis, using the Bayesian Information Criteria (BIC) criterion to

select the best model (see Methods). That model (Table 3) includes

six variants: the array SNP, the two independent common variants

identified in the single-variant analyses (rs2066718 and

rs2066715), and three rare variants (MAF = 0.00025, 0.00049,

0.00015), one of which (chr9:107548661) is predicted by

PolyPhen2 to be a ‘‘probably deleterious’’ missense variant.

Inclusion of all sequence variants along with the array SNP in a

model to predict HDL-C increases the HDL-C variance explained

to 1.8%, compared to 0.62% when HDL-C is modeled by the

array SNP alone. Our results underscore the distinct contributions

to HDL-C variation of both common and rare variants at this

locus.

APOA1 locus (HDL-C, LDL-C, TC, TG). We re-sequenced

four genes in this region, discovering 55 variants, and gained

additional understanding of the impact of this locus on LDL-C,

TC, and TG. For TG, variants rs3135506 (p = 6.961028) and

rs2266788 (p = 7.7610213) demonstrate associations that are

independent of each other, although neither is clearly independent

of the array SNP (Figure S6KL, Table 2). For LDL-C and TC,

variant rs651821 also shows association independent of the array

SNP (Figure S6M–P, Table 2, p = 2.261024 and p = 9.361025,

respectively). Comparison with Teslovich et al. suggests three

distinct TC signals at this locus; while rs651821 shows modest

correlation with their lead SNP (r2 = 0.56), our array SNP displays

little correlation with two independent signals that they identified

(r2#0.1).

LIPC locus (HDL-C, TG, TC). We identified 27 variants in

re-sequencing LIPC, the only gene in this region, and detected

association, independent of the array SNP, to HDL-C and TG

(Figure S6Q–T, Table 2, p = 7.061028 and 2.761025, respec-

tively). This independent signal is from rs28933094, a missense

variant predicted to be ‘‘probably damaging,’’ that in recessive

form causes hepatic lipase deficiency [25]. This variant is found at

a higher frequency in Finland (MAF = 0.015) than in other

European populations (MAF = 0.0019 among the European

Ancestry samples in the Exome Variant Server, p,10216).

Comparison with Teslovich et al. suggests three independent

associations for both HDL-C and TG at this locus. For HDL-C,

our array SNP, rs1532085, is the lead SNP reported by Teslovich

et al. and shows low LD (r2 = 0.004) with variant rs28933094 or

with an independent signal reported by Teslovich et al.

(rs2070895). For TG, our array SNP, rs261336, is modestly

Re-sequencing GWAS Loci
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correlated with the independent signal (rs261334) reported by

Teslovich et al. (r2 = 0.57); however, our variant rs28933094 is not

correlated (r2 = 0.004) with Teslovich et al. lead SNP, rs1532085.

CETP locus (HDL-C, LDL-C, TG, TC). We re-sequenced

five genes in this region, identifying 148 variants, and detected

HDL-C association that is independent of the array SNP to

variant rs5880 (Figure S6UV, Table 2, p = 3.961025). Compar-

ison with the data of Teslovich et al. suggests three distinct HDL-C

associations at this locus; our array SNP, rs3764261, is identical to

their lead SNP; however, they identified an independent signal at

SNP rs9939224 that is not well correlated with rs5880 (r2 = 0.07).

Gene-level analyses at this locus used 65 variants in 5 genes and

highlighted the contribution to HDL-C of rare variants in CETP,

including four missense variants predicted to be ‘‘probably

damaging’’, two of which were not in dbSNP 137 (Table S3)

(SKAT p = 6.461024, Table S5, Figure 2). The fact that four of

the eight NS variants in CETP were associated with increased

HDL-C and four with decreased HDL-C explains the stronger

association evidence with SKAT than with CMC. For other

phenotypes, it is not clear that re-sequencing substantially

advanced our understanding of the role of this locus. A

multivariate linear model (Table 4) for CETP selects four variants

for HDL-C response: the array SNP, two common variants

(rs5880 and rs5883), and a rare variant (rs2303790, a missense

variant predicted by PolyPhen2 to be ‘‘probably deleterious’’). The

array SNP alone accounts for 3.3% of variance in HDL-C; by

adding the sequence variants to the model the proportion of HDL-

C variability explained increases to 4.1%, underscoring the distinct

contributions to HDL-C variation made by both common and

rare variants in this gene.

We also carried out a T2D case-control analysis by comparing

FUSION T2D cases to the combination of NFBC participants and

FUSION controls. The first five PCs were included as covariates

to control for stratification. Single-variant analyses conducted for

the 442 SNPs with MAF.1% revealed no significant associations

to T2D, using either the standard definition of genome-wide

Table 2. Loci with multiple independent single-variant association signals to SNPs with MAF.0.1%.

Trait/Locus1 Gene Variant MAF Allele Type Beta2 P-value3
PV array
SNP only4

PV array
SNP+sequence
variants5

LDL-C in ABCG8 rs6756629 .090 A array SNP 20.15 1.3E-05

ABCG8 rs145756111 .011 A synonymous 0.31 6.1E-04 1.2% 1.4%

FG in G6PC2 rs560887 .310 A array SNP 20.15 9.0E-12

G6PC2 rs138726309 .014 T missense probably
damaging

20.41 2.6E-06 1.2% 1.7%

HDL-C in LPL rs10096633 .100 A array SNP 0.15 6.8E-06

LPL rs268 .018 G missense benign 20.38 2.2E-07 0.72% 1.2%

TG in LPL rs10096633 .100 A array SNP 20.19 1.9E-08

LPL rs268 .018 G missense benign 0.31 9.2E-05 0.59% 0.85%

HDL-C in ABCA1 rs2575875 .300 A array SNP 20.08 8.4E-05

ABCA1 rs2066718 .015 T missense benign 0.32 9.3E-05

ABCA1 rs2066715 .055 T missense benign 0.15 5.1E-04 0.62% 1.1%

TG in APOA1 rs12805061 .270 G array SNP 0.004 .86

APOA5 rs2266788 .089 G 39-UTR 0.27 7.7E-13

APOA5 rs3135506 .059 C coding-synonymous 0.24 6.9E-08 0.4% 1.6%

LDL-C in APOA1 rs11216267 .460 G array SNP 0.08 2.3E-05

APOA5 rs651821 .085 C 59-UTR 0.13 2.2E-04 1.4% 1.6%

TC in APOA1 rs11216267 .460 G array SNP 0.08 1.3E-04

APOA5 rs651821 .085 C 59-UTR 0.14 9.3E-05 1.1% 1.4%

HDL-C in LIPC rs1532085 .440 A array SNP 0.13 9.4E-12

LIPC rs28933094 .016 T missense probably
damaging

0.42 7.0E-08 1.2% 1.8%

TG in LIPC rs261336 .230 G array SNP 0.09 1.4E-04

LIPC rs28933094 .016 T missense probably
damaging

0.33 2.7E-05 0.2% 0.5%

HDL-C in CETP rs3764261 .270 A array SNP 0.27 1.6E-40

CETP rs5880 .024 C missense probably
damaging

20.26 1.8E-05 3.3% 3.6%

1FG and TG were LN transformed prior to analysis; the regression coefficient is on the LN scale.
2Beta is the estimate of the regression coefficient, and provides the amount and direction the phenotype changes for each copy of the indicated allele.
3The p-values come from separate multivariate models for each locus that include all variants listed below, and the first five PCs. P-values shown here represent the
independent evidence for the specified variant, after conditioning on the array SNP.
4The percent variance in the phenotype accounted for by just the array SNP.
5The percent variance in the phenotype accounted for by the array SNP and the independent sequence variants.
doi:10.1371/journal.pgen.1004147.t002
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significance (p,561028) or the less stringent Bonferroni threshold

of .05/442 = 1.161024.

Discussion

Large-scale re-sequencing has the potential to identify a

comprehensive set of variants that are missed by imputation and

chip based fine-mapping approaches. In more than 6,000

members of Finnish cohorts assessed for metabolic traits, we

re-sequenced 78 genes implicated in prior GWAS of these traits,

identifying 1,852 total variants, including .200 predicted-

deleterious missense variants and 23 nonsense variants, 125 of

which are not currently in the public database (dbSNP 137). Using

single-variant analyses, we found associations at seven loci (six

involving one or more variants with MAF,5%, Table 2) and

demonstrated using conditional analyses that these signals are

independent of previously reported GWAS SNPs. Using gene-level

tests we found compelling association evidence for rare variants in

two genes, ABCA1 and CETP. By comparison, Hunt et al. [26] in a

large (.40,00 individuals) autoimmune disease case-control

sample, found that targeted coding region re-sequencing of 25

GWAS risk genes provided minimal new information. Several

differences between our studies could account for the apparent

discrepancies in findings: First, the genetic architecture of

quantitative metabolic traits may be simpler than that of the

diseases investigated by Hunt et al. Second, we benefitted from the

effect of Finnish population history, which has led to a larger

proportion of variants in the Goldilocks allele range and a smaller

proportion of rare variants (about 70% of the variants observed by

Hunt et al. are present in one or two copies, compared to ,40% in

our study). Third, the genes for which we identify rare variant

associations may be unusual in their tolerance for functional

variation.

Our gene-level test results for ABCA1 agree with two previous

lines of evidence that rare variants in this gene could have an

impact on lipid phenotypes. First, recessive mutations in ABCA1

cause extreme reduction in HDL-C, termed Tangier Disease or

hypoalphalipoproteinemia; several of these variants were discov-

ered in Finnish families [27]. Second, previous studies in diverse

populations found enrichment of NS ABCA1 variants in individ-

uals with low HDL-C levels [21,28]. Among the fifteen previously

described rare NS variants observed in our data, ten have

previously been implicated in metabolic phenotypes: Tangier

Disease (n = 3), increased risk for heart disease (n = 2), or either

Figure 1. Schematic of rare (MAF,1%) non-synonymous variants used in the gene-level test of total cholesterol (TC) in gene ABCA1.
The x-axis scale (AA) is in amino acid positions. Numbers in parenthesis are the number of copies of the rare variant in persons with phenotype data.
The mean TC level in persons possessing variants with bold naming is increased relative to persons without the variant, for all other variants the
mean TC level in persons possessing variant alleles is decreased relative to persons without the variant.
doi:10.1371/journal.pgen.1004147.g001

Table 3. Rare and common variants contribute to the
association signal to HDL-C in gene ABCA1.

Variant MAF MAC Allele Type Beta P-value1

rs2575875 .30 4209 A array SNP 20.08 2.7E-04

rs2066718 .015 181 T missense
benign

0.32 1.0E-04

rs2066715 .055 674 T missense
benign

0.15 5.1E-04

Chr9:107548661 .00025 3 G missense
probably
damaging

22.08 2.9E-04

Chr9:107555091 .00049 6 C missense
benign

1.50 6.9E-04

Chr9:107555452 .00016 2 G missense
benign

22.94 2.8E-05

1P-values for rs2575875, rs2066718, and rs2066715 may be different from those
recorded in Table 2 because of the addition of the three rare variants to the
model. MAC: minor allele count.
doi:10.1371/journal.pgen.1004147.t003
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reduced (n = 3) or elevated (n = 2) serum HDL-C levels (Human

Gene Mutation Database).

Our results have enabled us to clarify genotype-phenotype

relationships for eight of the 17 loci examined. By delineating

multiple distinct association signals, and in some instances

highlighting specific candidate alleles, they also suggest potential

targets for functional investigations that could specify causal

variants. For example, at G6PC2 we identified a Goldilocks allele

at rs13872630 which has a predicted deleterious effect. This

variant has a distinct signal from the array SNP, and appears to

have a much stronger effect in lowering FG. As this effect may

provide protection against cardiovascular disease [29], there may

be great value in generating mice mutated for this His177Tyr

missense variant, which occurs at a highly conserved site.

Additionally, the relatively high frequency of this variant within

Finland offers an unusual opportunity to evaluate its impact on a

much wider range of phenotypes than we investigated here.

At the same time these findings also point to the difficulty in

predicting the phenotypic impact of individual variants. Recessive

mutations in several of the genes that we re-sequenced are

causative for rare metabolic disorders (e.g. [27]). However the

relatively modest effect on quantitative metabolic phenotypes that

we observed for variants in these and other genes predicted to be

deleterious (nonsense and missense) suggest two possibilities: 1) the

genetic and/or environmental backgrounds in families demon-

strating Mendelian metabolic disorders may differ from the

backgrounds in individuals drawn for population samples, and 2)

we must be cautious in assigning likely causality to variants on the

basis of annotation alone.

The incomplete coverage obtained for several loci provides an

additional reason for caution in our conclusions. Methods for

capturing a targeted region have become more efficient since we

completed our study, and therefore it is possible that implemen-

tation of such methods would provide more complete coverage at

these loci and could identify additional novel variants with a large

contributions to metabolic phenotypes.

Our prior hypothesis was that the process of genetic drift within

a recently expanded founder population such as Finland should

elevate the frequency of some deleterious alleles so that, even if

they are subject to strong selective pressure, they may be observed

at relatively high frequency [11]. In such populations, these

variants may be sufficiently common for phenotype-associations to

be detected using single-variant tests. As predicted by this

hypothesis, our re-sequencing identified, in G6PC2 and LIPC,

two missense variants predicted to be deleterious that are very rare

outside Finland (MAF,0.002), but that were sufficiently increased

in frequency (MAF.0.013) in our study sample for us to detect

significant association in single-variant tests. A recent genome-

wide survey of copy number variations has similarly demonstrated

that a rare deletion, highly over-represented within Finland, is

associated with neurodevelopmental disorders [30]. Taken

together, these results suggest that exome-wide and genome-wide

investigations of Finnish population cohorts will likely identify

Figure 2. Schematic of rare (MAF,1%) non-synonymous variants used in the gene-level test HDL-C in gene CETP. The x-axis scale (AA)
is in amino acid positions. Numbers in parenthesis are the number of copies of the rare variant in persons with phenotype data. The mean HDL-C
level in persons possessing variants with bold naming is increased relative to persons without the variant, for all other variants the mean HDL-C level
in persons possessing variant alleles is decreased relative to persons without the variant.
doi:10.1371/journal.pgen.1004147.g002

Table 4. Rare and common variants contribute to the
association signal to HDL-C in gene CETP.

Variant MAF MAC Allele Type Beta P-value1

rs3764261 .27 3913 A array SNP 0.28 1.6E-40

rs5883 .040 490 T coding-
synonymous

0.22 5.2E-06

rs5880 .024 296 C missense
probably
damaging

20.29 4.2E-05

rs2303790 .00057 7 G missense
possibly
damaging

1.31 1.0E-03

1P-values for rs3764261 and rs5880 may be different from those recorded in
Table 2 because of the addition of rs2303790 and rs5883 to the model. MAC:
minor allele count.
doi:10.1371/journal.pgen.1004147.t004
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additional associations to complex phenotypes that may not be

apparent in other populations.

Methods

Study samples
We obtained genomic DNA samples processed at the Finnish

Institute of Molecular Medicine (NFBC) and US National Human

Genome Research Institute (FUSION). All NFBC and FUSION

participants included in this study provided informed consent. The

studies were carried out in accordance with the approvals of the

Ethical Committee of the Northern Ostrobothnia Hospital District

(for NFBC), and the University of Michigan Health Sciences and

Behavioral Sciences Institutional Review Board (IRB-HSBS) and

the Institutional Review Board of the National Public Health

Institute (KTL; now part of the National Institute for Health and

Welfare, THL) (for FUSION).

Capture, sequencing, and quality control
We constructed Illumina multiplexed libraries with 5 mg of

whole genome amplified material (see Text S1 for description of

amplification procedures) or 1 mg native genomic DNA according

to the manufacturer’s protocol (Illumina Inc, San Diego, CA) with

the following modifications: 1) DNA was fragmented using a

Covaris E220 DNA Sonicator (Covaris, Inc. Woburn, MA) to

between 100 and 400 bp. 2) Illumina adapter-ligated library

fragments were amplified in four 50 mL PCR reactions for

eighteen cycles. 3) Solid Phase Reversible Immobilization bead

cleanup was used for enzymatic purification throughout the library

construction process and for final library size selection targeting

300–500 bp fragments. Samples were multiplexed using Illumina

barcoded libraries pooled together in pools of 12 or 18 depending

on the sequencing platform. We designed a custom targeted set of

150 bp probes (Agilent Technologies, Santa Clara, CA) and

captured ,270 kb of primarily coding sequence from 78 genes.

The concentration of each captured library pool was determined

through qPCR according to the manufacturer’s protocol (Kapa

Biosystems, Inc, Woburn, MA) to produce cluster counts

appropriate for the Illumina GAIIx and HiSeq 2000 platforms.

Sample pools of 12 and 18 were loaded on GAIIx and HiSeq

machines, respectively, using paired end 101 bp read lengths. We

aimed to achieve a coverage metric of 80% of the targeted space

covered at $206 depth. We aligned reads from each sample to

the NCBI37/hg19 reference sequence using BWA [31]. Sample

identity was confirmed by comparing sequence data (SAMtools

consensus calls) with pre-existing genotype array data. Individuals

with $70% coverage at 206 and $90% genotype concordance

with 51 array SNPs were included in the analysis (6,123 of 6,958

individuals).

Generation of consensus variant data set
Details on sequencing and generation of center-specific

genotype call sets can be found in Text S1. To generate a

consensus call set, we pooled together all quality controlled sites

discovered by any of the three centers (UCLA, University of

Michigan, or Washington University) in the defined target loci

(number of markers m = 2,306). We excluded multi-allelic sites or

sites with different alternative alleles (m = 72). Each center then re-

called SNP genotypes at the remaining sites (m = 2,234). Majority

vote was used to generate variant calls. Genotypes concordant

between at least two centers were included in the consensus data

set; others were set to missing. The overall concordance rate

between centers was 99.96% (99.99%, 99.94%, and 99.95% for

homozygous reference, heterozygous, and homozygous alternative

genotypes, respectively).

Principal components analysis (PCA)
NFBC individuals were previously genotyped on the Illumina

370duo Chip, and all FUSION cases and 774 of 919 FUSION

controls on the Illumina HumanHap300 BeadChip (version 1.0).

After standard quality control procedures [6,7], high-quality

GWAS genotypes were available for 296,978 SNPs for all

genotyped individuals. We used PLINK [32] to identify 122,644

SNPs with no more than moderate pair wise linkage disequilib-

rium (r2,0.5) which we used to calculate genetic principal

components (PCs) with EIGENSTRAT [33].

Association analysis
Phenotype transformation. We applied logarithm transfor-

mations to BMI, WHR, TG, glucose, insulin, and SBP to reduce

skewness. For each phenotype (or its logarithm), data from the two

studies combined were regressed on age, age2, and indicator

variables for sex, oral contraceptive use, pregnancy status, and

cohort, and residuals from this regression used in association

analyses. T2D cases were excluded from analysis of FG and FI.

Analyses were repeated using inverse normal transformed

variables, and our conclusions were robust to choice of transfor-

mation.

Single-variant analysis. We tested variants with minor

allele frequency (MAF).0.1% for association with phenotype

residuals in the combined NFBC/FUSION data set assuming an

additive genetic model and including the first five PCs as

covariates using PLINK [32]. We used conditional analyses to

determine if single-SNP associations were independent of geno-

types at the array SNP. Teslovich et al., in a previous GWAS meta-

analysis of lipid traits, identified, at several loci, associations

independent of their GWAS signals [8]. We sought to evaluate, at

all such GWAS loci highlighted by Teslovich et al., the correlation

between the signals identified through our conditional analyses

and the ‘‘independent’’ signals detected by Teslovich et al. We

could not make a direct comparison because at most loci the two

studies did not have data on the same sets of variants. We instead

used imputed data from Finnish reference populations to evaluate

pairwise LD between the variants from our study that we

compared with the variants from Teslovich et al. In this

comparison we considered any pair of variants with r2,0.20 to

be independent.

Gene-level tests. We conducted gene-level tests for pheno-

type residuals for each gene using non-synonymous variants with

MAF,1%. Only individuals with complete genotype data for all

variant sites were used in a given gene-level test of each gene;

sample size for gene-level tests ranged from 4,651 to 5,376

individuals. There were 62 genes with .1 non-synonymous

variant site with MAF,1%; the number of such sites ranged from

2 to 33 per gene.

We used the Combined Multivariate and Collapsing (CMC,

[22]) test that uses a weighted-sum-score-based linear model to test

the collective effect of multiple rare variants within a gene; see

Text S1 for more information on the form of the weighting

method used. We also employed the Sequence Kernel Association

Test (SKAT, [23]), which assumes that the effect sizes for

individual variants follow an arbitrary distribution with zero mean

and an unknown variance. SKAT uses a score-based variance

component approach to test the null hypothesis that the effect size

distribution has zero variance. For both CMC and SKAT, we

used the first five PCs as covariates.
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For SKAT, we used asymptotic theory p-values, which

conformed well to p-values estimated by permutation (data not

shown). For the CMC, we estimated p-values based on 10,000

permutations of the phenotype data. To estimate the p-value for

the ABCA1 association, we performed 1,000,000 permutations.
Significance thresholds. We employed FDR controlling

procedures [24] over the entire set of single-variant and gene-level

tests we conducted. Testing of each phenotype against variants/

genes in loci to which the phenotype had prior association resulted

in 2,096 tests (1,802 single-variant tests and 294 gene-level tests).

FDR control at the 0.05 level resulted in a p-value cut-off of 0.004,

and we opted to use a somewhat more stringent p-value threshold

of 0.001 corresponding to a FDR of 0.02.
Multivariate linear model selection. We used a standard

model selection approach to analyze the 39 locus-phenotype

combinations and derive the ‘‘best’’ multivariate linear model for

each phenotype based on all variants at the locus. We excluded

singletons from this analysis because the absence of any replication

in the study sample renders inference on their effect impossible

without making strong parametric assumptions. As a default model

selection approach, we used the Bayesian Information Criterion

(BIC) using a greedy search built into R (StepAIC). We again

included only complete observations in each locus-phenotype

combination. For each locus, the model with the smallest number

of predictor variables included the first five PCs, and the model

with the largest number of predictor variables included all non-

singleton variants genotyped.

Supporting Information

Figure S1 PC 1 and PC 2 from an analysis of GWAS data in

FUSION (red) and NFBC (black) samples. FUSION: circles are

individuals born in Lapland, crosses are individuals born in Oulu,

triangles are individuals born elsewhere in Finland. NFBC: the

birthplace of both parents of NFBC subjects are indicated by

different symbols, in the legend the slash separates the location of

birth of each parent. Lap = Lapland.

(PDF)

Figure S2 Summary of coverage by person and gene. A: Person-

specific average depth of coverage over all the targeted genes. 107

persons with mean coverage .5006were omitted to improve plot

clarity. B: Gene-specific average coverage depth across all subjects

and all targeted basepairs within each gene. C: Relationship

between the percent of target basepairs in a gene and GC content.

HighGC = mean GC in a gene .60%; LowGC = mean GC in a

gene , = 60%.

(PDF)

Figure S3 Distribution of variant types and targeted sequence

regions. Top: proportion of variant sites (left) and sequenced

basepairs (right) that are intronic, utr, coding (synonymous,

missense and nonsense). The purple and yellow hatched region

indicates coding basepairs. Bottom: proportion of variant site types

by minor allele frequency category.

(PDF)

Figure S4 Boxplots of raw phenotypic values vs. the number of

alternative alleles at deleterious variant sites. Deleterious sites are

nonsense and missense variants predicted to be probably

deleterious by PolyPhen-2. In the title, the number in parentheses

is the number of persons homozygous for the alternative allele at

the variant site.

(PDF)

Figure S5 Summary of variant allele frequency. A: Site

frequency spectrum. On the y axis is the proportion of variant

sites with a specified minor allele count. On the x axis are minor

allele counts running from 1 (singleton sites) to 20. Data were

down-sampled to a common sample size of 6,000 persons using

the hypergeometic distribution. B: Relationship between minor

allele frequency (MAF) and presence of variant in dbSNP 137.

(PDF)

Figure S6 Regions and phenotypes where significant association

with single SNP analysis of SNPs with MAF.0.11% was

independent of the array SNP association. For each phenotype-

region combination two plots are presented, single-SNP associa-

tion, and single-SNP association conditional on the array SNP (in

purple, and labeled with text). Color scale is LD relative to the

array SNP. On the y-axis is the 2log10(P-value) for association to

the indicated phenotype, on the x-axis is position in Mb from

hg19. Up triangles: nonsense variants; down triangles: missense

variants; squares: synonymous and utr variants; circles: no

annotation available. The loci are named according to the first

gene in the region of interest, starting at the 59 end of the region.

A. LDL-C in ABCG8 locus B. LDL-C in ABCG8 locus, conditional

analysis C. FG in G6PC2 locus D. FG in G6PC2 locus, conditional

analysis E. HDL-C in LPL locus F. HDL-C in LPL locus,

conditional analysis G. TG in LPL locus H. TG in LPL locus,

conditional analysis I. HDL-C in ABCA1 locus J. HDL-C in

ABCA1 locus, conditional analysis K. TG in APOA1 locus L. TG in

APOA1 locus, conditional analysis M. LDL-C in APOA1 locus N.

LDL-C in APOA1 locus, conditional analysis O. TC in APOA1

locus P. TC in APOA1 locus, conditional analysis Q. TG in LIPC

locus R. TG in LIPC locus, conditional analysis S. HDL-C in LIPC

locus T. HDL-C in LIPC locus, conditional analysis U. HDL-C in

CETP locus V. HDL-C in CETP locus, conditional analysis.

(PDF)

Table S1 Comparison of phenotypic values for NFBC partic-

ipants and FUSION cases and controls.

(XLS)

Table S2 Description of the 78 genes sequenced.

(XLS)

Table S3 All 1,852 variants analyzed in the study. SNPs not

found in dbSNP137 are named by the chromosome and position.

Phenotype abbreviations are as in Table S1.

(XLS)

Table S4 Percent of variants in coding regions with MAF,1%

in various studies. All comparisons involve persons of European

ancestry.

(DOCX)

Table S5 Results of all gene-level tests of rare variants in genes

that are found in regions of a priori association to the indicated

phenotype.

(XLS)

Text S1 Supplementary methods.

(DOC)
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