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Improved Detection of Rough Defects for
Ultrasonic Non-Destructive Evaluation Inspections

Based on Finite Element Modelling of Elastic Wave
Scattering

James R. Pettit, Anthony E. Walker, and Michael J. S. Lowe,

Abstract—Defects which possess rough surfaces greatly affect
ultrasonic wave scattering behaviour, usually reducing the magni-
tude of reflected signals. Understanding and accurately predicting
the influence of roughness on signal amplitudes is crucial,
especially in Non-Destructive Evaluation (NDE) for the inspection
of safety-critical components. An extension of Kirchhoff theory
has formed the basis for many practical applications; however, it
is widely recognised that these predictions are pessimistic owing
to analytical approximations. A numerical full field modelling
approach does not fall victim to such limitations. Here, a Finite
Element (FE) modelling approach is used to develop a realistic
methodology for the prediction of expected back-scattering from
rough defects. The ultrasonic backscatter from multiple rough
surfaces defined by the same statistical class is calculated for
normal and oblique incidence. Results from FE models are
compared with Kirchhoff theory predictions and experimental
measurements in order to establish confidence in the new
approach. At lower levels of roughness excellent agreement is
observed between Kirchhoff theory, FE and experimental data,
whilst at higher values the pessimism of Kirchhoff theory is
confirmed. An important distinction is made between the total,
coherent and diffuse signals and it is observed, significantly, that
the total signal amplitude is representative of the information
obtained during an inspection. This analysis provides a robust
basis for a less sensitive, yet safe, threshold for inspection of
rough defects.

Index Terms—Finite Elements, Rough defects, Ultrasonics

I. INTRODUCTION

DEFECTS which possess rough surfaces can greatly affect
ultrasonic wave scattering behaviour and, in particular,

significantly reduce the signal amplitude compared to that of
a smooth defect. In Non-Destructive Evaluation (NDE), it is
essential that there is a reliable method of defect detection
and characterisation for the inspection of safety-critical com-
ponents. Therefore, understanding and accurately predicting
the influence of roughness on signal amplitudes is crucial.

A variety of analytical techniques have been developed
to understand the effects of roughness on ultrasound such
as the Perturbation approach [1], [2], the Rayleigh method
[3], [4], and Kirchhoff theory. Kirchhoff theory is perhaps
the most robust analytical technique and has been the tool

Manuscript submitted for review May 2015. J. R. Pettit (e-mail:
jrp06@imperial.ac.uk) and M. J. S. Lowe (e-mail: m.lowe@imperial.ac.uk)
are with the UK Research Centre for NDE, Imperial College Lon-
don, Exhibition Road, London, UK, SW7 2AZ. A. E. Walker (e-mail:
Tony.Walker@Rolls-Royce.com) is with Rolls-Royce Nuclear, PO BOX 2000,
Derby, UK, DE21 7XX.

of choice for modelling elastodynamic scattering problems,
for both simple geometrical scatterers [5]–[8] and complex
geometrical scatterers [9]–[13]. However, it has been widely
recognised that these approaches are very conservative, often
over estimating signal attenuation, especially for high levels
of roughness. In a practical situation, these results can lead
to problems with overly sensitive inspections and consequent
false call problems. These conservative model predictions arise
from the assumptions made when using analytical approaches,
preventing them from providing accurate solutions to the
complex defect geometry. This point is discussed by Zhang
et al [14], for considering the effects of roughness on sizing
rough defects when using ultrasonic arrays.

A numerical method, such as a Finite Element (FE) model,
does not have the same limitations as an analytical technique.
FE offers the potential to calculate a full and accurate elastic
wave solution for the scattering from rough surfaces, with
the only limitation being computational resource that can
be allocated to solving the problem. The consideration of
numerical methods has become increasingly viable through
the development of absorbing boundary techniques [15]–[20]
and domain linking algorithms [21]–[23], allowing the spatial
domain to only consider the area immediately surrounding the
defect. The FE method has been successfully used to model the
response from simple geometric defects such as Side Drilled
Holes (SDH) and smooth cracks [24], [25], and based on
the success of these methods, extensions have been made to
complex defect geometries [13].

In this paper, results are presented for more complex de-
fect geometries and rough surfaces. FE models are used to
calculate the elastic scattering from multiple realisations of
defects within a statistical class of roughness for normal and
oblique incidence. Results from FE models are compared with
Kirchhoff theory predictions and experimental measurements
in order to establish confidence in the new approach. An
important distinction is made between the total, coherent and
diffuse signals and how they relate to scattering responses
observed in ultrasonic NDE inspections. This will provide
a much more accurate prediction for the attenuation due to
defect roughness, aiding in establishing accurate thresholds
for inspecting safety-critical components.
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II. ROUGH SURFACES AND SCATTERING SIGNALS

The nature of a rough surface implies that no two are
ever the same. It is therefore necessary to characterise defects
by a set of common surface statistical parameters such that
any rough defect can be assigned to a statistical class. It has
been noted from experimental measurements that the variation
in height of the rough surface follows a distribution that
is close to Gaussian [26], [27], where the root-mean-square
(rms) height of the defect surface, σ, represents the variation
in height of the defect from its mean plane. An approach
making use of this observation and the resulting statistical
characteristics has been widely adopted in previous studies
and will be used here. The following paragraphs summarise
the methodology.

The surface profile is two-dimensional, here the variation in
height is defined to be in the y-axis, the defined rough surface
profile runs along the x-axis, with any variations always
remaining perpendicular to the z-axis (physically appearing
corrugated or rutted). The function defining the surface is
given by (1).

y = h(x) (1)

Where h is the height deviation from the plane y = 0, the
mean plane passing through the rough surface defined by (2).

< h >= 0 (2)

Assuming Gaussian surface statistics, the surface can there-
fore be characterised by (3).

p(h)dh =
1

σ
√
2π
exp

[
− h2

2σ2

]
dh (3)

Where p(h), is the probability of the surface being at height
between h and h + dh for a given surface rms, σ. Because
the FE model used to represent the surface will be spatially
discretised, the rough surface must be represented by discrete
spatial values. Rather than the continuous function given by
(3), a discretised equivalent must be used which gives the
probability density function for the height of a single discrete
point on the surface, yi, (4).

p(yi) =
1

σ
√
2π
exp

[
− y2i
2σ2

]
(4)

The subscript i represents incremental changes along the x-
axis, separated by an element width [11]. A second parameter
is required to describe the characteristics of the roughness
in the direction along the profile (x) of the surface. This is
the correlation length and can be characterised by use of a
correlation function, described by Ogilvy [4], (5).

C(R) =
< h(r)h(r +R) >

σ2
(5)

The distance over which the correlation function, C(R),
falls by 1

e is called the correlation length, λ0. By defining
surfaces in this manner the statistical nature of the surface
can be directly related to the scattering behaviour.

For an infinite crack, the scattered ultrasonic wave can be
defined by two components, termed the coherent and diffuse
fields [10]. The coherent field is the same and in constant
phase for all rough surfaces from the same statistical class
and is located in the specularly reflected direction. The diffuse
field is the random component of the ultrasonic signal which
is introduced by the correspondingly random nature of the
rough surface and contributes to the field in all scattering
directions; this remains incoherent with respect to scattering
signals from multiple realisations of surfaces within the same
statistical class. These concepts are illustrated in Fig. 1.

Diffuse Signal

Incident Signal Coherent Signal

θinc

Rough Surface

y

x
z

Fig. 1: Scattering of waves from a crack-like defect with a
rough surface. For an infinite crack, the scattered field is shown
separated into coherent and diffuse components. The coherent
field lies in the specularly reflected direction such that the
magnitude of the incident angle, θinc, equals the magnitude
of the scattering angle, θsc. The diffuse field has a component
in all scattering directions. The total field that is measured at
any scattering angle from a specific rough surface is therefore
comprised of the components from the coherent and diffuse
fields.

When making measurements of waves scattered from rough
defects, it is first necessary to make the assumption that
the response from an infinite crack can be approximated to
the response from a large crack, whereby the extent of the
defect surface is greater than the beam width. By considering
this assumption, the total signal received at any scattering
angle, for a specific rough surface, is therefore comprised of
a component from the coherent signal (which is common to
all rough surfaces with the same surface statistics and lies in
the specular direction) and a component of the diffuse field
(specific to surface under consideration and has a component
in all scattering directions).

An important distinction must be made between these fields
and the, commonly referred to, specular signal. The specular
signal is that which is observed in the specular (or mirror-like)
direction. For rough surfaces, this is comprised of the whole
of the coherent signal and a contribution from the diffuse field.
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Since the coherent signal is in-phase for all realisations of the
same statistical class, it must lie in the specular direction only.
Parts of the wave that scatter away from the specular direction
are random and therefore diffuse.

Currently, in industrial practice in the power generation
industry, predictions of the backscattered signals from rough
defects are generally made through an extension of Kirchhoff
theory provided by Ogilvy [10]. For this reason, the numerical
models developed here will be compared directly to findings
from Kirchhoff theory in order to confirm the equivalent per-
formance of both approaches under conditions when Kirchhoff
theory is known to be accurate, and demonstrate the advantage
of using the FE approach when the surface characteristics are
out of range of Kirchhoff theory.

A. The application of Kirchhoff theory

The application of Kirchhoff theory to the prediction of
back-scattered signals by Ogilvy [10], has resulted in the
derivation of a single expression for the reduction in coherent
ultrasonic signal amplitude due to increasing defect roughness,
(6).

|φσcoh|
|φσ=0
coh |

= exp

[
− (kinccosθinc + ksccosθsc)

2 σ
2

2

]
(6)

The magnitude of the coherent signal, |φσcoh|, is a function
of σ, the rms height of the defect surface, and kinc and ksc, the
wavenumbers of the incident and scattered signals in directions
θinc and θsc respectively. The magnitude of the coherent signal
is normalised against |φσ=0

coh |, the magnitude of the coherent
reflected signal from a smooth surface.

Unlike a more general Kirchhoff formulation in which an
arbitrary surface can be discretised into facets [28], the expres-
sion given in (6) is for a particular, simplified, formulation
of Kirchhoff that is limited to a number of fundamental
assumptions. These translate to a solution in the far-field of
the defect, from an incident plane wave scattering from an
infinitely wide rough surface (i.e. no crack tips), described by
a Gaussian distribution of roughness, for instances where the
scattering can be assumed to be independent of the correlation
length.

Fig. 2 shows the predicted attenuation of the reflected
coherent signal amplitude, due to increasing roughness σ, for a
normally incident plane wave with wavelength λinc, expressed
as a function of the incident wavelength and normalised
against the response from a smooth surface [10].

As defect roughness increases, the magnitude of the co-
herent signal that is scattered from the rough surface is
reduced. The expression given by (6) represents the reduction
in the coherent signal only. It is not possible to calculate an
exact expression for the diffuse signal amplitude due to its
incoherent nature. However, an approximate calculation that
takes the average field intensity is used to give an order of
magnitude estimate. This partly explains the reason for highly
pessimistic predictions for reduction in signal amplitude made
using this expression, since the total field signal amplitude is
not considered.
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Fig. 2: Amplitude of the coherent and diffuse signals when
compared to a smooth surface, for a normal incident plane
wave with wavelength λinc, scattering from a defect with
surface roughness, σ, as predicted by Kirchhoff theory [10].

The amplitude of the reflected field given by (6) is not sen-
sitive to the correlation length, λ0. Equation (6) is applicable
to scenarios where the correlation length, λ0, is such that
the profile of the rough surface remains ergodic, and must
therefore be small in comparison to the extent of the surface.
The results presented in Fig. 2 assume an infinite rough surface
making the results independent of the correlation length. For
the purpose of NDE, finite sized defects with rough surfaces by
their very nature will be ergodic. Furthermore, the width of the
field from the transducer will typically be much larger than the
correlation length of the defect. Therefore, the independence
of correlation length is a valid assumption for this application.

B. The Finite Element model

Using a FE model overcomes the limitations of applying
Kirchhoff theory and it is possible to calculate both the coher-
ent signal and the total scattered field, by performing multiple
simulations of the scattering from different surface realisations
that satisfy the same statistical description. The results for the
coherent field can then be compared against predictions for
coherent signal amplitude obtained using Kirchhoff theory.

In order for a fair comparison to be made between the
FE and Kirchhoff theory solutions it is important that the FE
model is defined to represent the same setup that was assumed
for the Kirchhoff approach. As previously mentioned, the
expression given by (6) is limited to a number of fundamental
assumptions. These conditions can be represented in the FE
model by using a two-dimensional, plane strain, Unit Cell
model [29]. The model has symmetric (periodic) boundary
conditions at the lateral boundaries of its domain (Fig. 3)
such that the scattering from a small section of an infinitely
long periodic defect can be calculated; provided the width of
the cell is significantly larger than the correlation length. The
width of the Unit cell is set to be equal to 10 λ0. This is
deemed to be sufficiently wide so as to include an accurate
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representation of the surface, yet not so wide as to drastically
increase the computational size of the model. The Unit Cell
model can provide a good representation of the reflection
behaviour of the infinitely wide case, hence, the FE model
assumptions are essentially the same at those used in (6),
except for the nature of the solver itself.

The model is set up such that all scalar quantities (including
defect roughness, σ) can be expressed as a function of the inci-
dent wavelength. Thus, the results are shown for an excitation
frequency of 1Hz, in a material in which the bulk velocities
are 2 and 1 units for compression and shear waves respectively,
with a triangular the mesh discretised at 30 nodes per incident
wavelength. Forcing along the nodes of the excitation line (Fig.
3) represents the generation of an infinitely wide plane wave
at normal incidence to the rough surface.

Monitoring 

Line

Excitation 

Line

Symmetric

Boundaries

RMS 

Height

Fig. 3: Unit Cell FE model with symmetric boundaries to
simulate an infinite periodic surface, used to calculate the
elastic wave scattering of a normally incident compression
wave. The model is repeated for multiple realisations of
defects defined by the same statistical class of roughness. The
signal is monitored parallel to the plane of the incident wave
along a monitoring line.

The signal is monitored parallel to the plane of the incident
wave at range that is sufficient to distinguish between the
reflected compression and shear wave modes. A plane wave
solution is obtained by averaging the response along the length
of the monitoring line to produce a single time history for the
response from the rough surface.

III. RESULTS FROM NORMAL INCIDENT INSPECTIONS

The FE model considers twenty classes of roughness within
a range from σ = 0.017λinc up to and including a value of
σ = 0.340λinc. For each class, multiple realisations of defects
all defined by the same statistical class are processed using
the Unit Cell model. The number of realisations required to

calculate the mean signal attenuation is dependent upon the
class of defect roughness. When defect roughness is low, the
number of realisations required for a convergent solution is
less than for greater degrees of roughness, therefore surface
realisations are considered until a convergent solution has been
obtained. Results from the convergence study are discussed
and compared to work presented by Zhang et al, [13], who
discusses converging solutions obtained from Kirchhoff theory
simulations.

A. Coherent signal amplitude

To extract the coherent signal amplitude the responses from
each defect realisation within the statistical class of roughness
must be superposed, as governed by (7).

φσcoh =

∑N
i=1 φ

σ
i

N
(7)

Where φσi denotes the scattering response from an individ-
ual surface realisation i, within the statistical class of defect
surface roughness, σ, for the total number of realisations for
that class of roughness, N .

By summing the responses from each defect realisation
within the statistical class, the effects of superposition cause
any out-of-phase artefacts that are inconsistent across all the
surfaces to be canceled out. What remains is the in-phase
coherent signal which is common to all surfaces within that
class of roughness. Using (7), the reduction in coherent signal
amplitude for the rough surface with respect to the smooth
surface becomes

|φσcoh|
|φσ=0
inc |

=
|
∑N
i=1 φ

σ
i

N |
|φσ=0|

(8)

where φσ=0 is the scattering response from a smooth defect
with σ = 0. Fig. 4 shows the comparison between the
analytical solution, (6), and numerical solution, (8).

For low levels of roughness there is excellent agreement
between the two techniques. This is as expected, since the
FE method provides a highly accurate solution to elastic
wave scattering and Kirchhoff theory is known to be a good
approximation at low levels of roughness [10].

At high levels of roughness disagreement is observed con-
firming the pessimism of Kirchhoff theory. Due to the limita-
tions of Kirchhoff theory, scenarios where multiple reflections
or surface shadowing occur are not accounted for. An accurate
scattering solution is only obtained from the scatterer if the
deviation of the surface from flat (over a distance comparable
to the incoming wavelength) is small in comparison to the
wavelength of the incoming wave [2].

This surface property can be expressed quantitatively as
a function of the radius of curvature of the defect, a. The
Gaussian nature of the surface means that this parameter is
itself defined by a distribution function. It is important to know
the minimum value within this spread amin, (defined by the
95th percentile), since these smaller surface artifacts are not
considered in the analytical solution [4].

amin =
0.1λ20
σ

(9)
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 Kirchhoff theory coherent signal amplitude
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Fig. 4: Reduction of amplitude of wave reflecting from a rough
surface, with respect to a perfectly smooth surface. Results
shown for coherent component, comparing Kirchhoff theory
and Finite Element simulations. Results are for a normally
incident compression wave with wavelength λinc, scattering
from a defect with surface roughness, σ.

where λ0 is the surface correlation length. From (9) it can
be seen that amin is inversely proportional to roughness
explaining why Kirchhoff theory is no longer valid at high
levels of roughness. The accuracy of Kirchhoff theory at high
levels or roughness (as described by Bass and Fuks [2]) can
be quantitatively expressed by the condition:

kincamincos
3θinc >> 1. (10)

which relates the physical size of the radius of curvature,
amin, to the incident wavenumber kinc and incident angle θinc.
Combining (9) and (10), allows for a single expression that
relates the validity of Kirchhoff theory to defect roughness,
(11).

0.1kincλ
2
0cos

3θinc
σ

>> 1. (11)

By plotting (10) as a function of roughness, a valid regime
of Kirchhoff theory can be identified, Fig. 5.

As roughness increases, this function kincamincos
3θinc

tends to a value of 1. This denotes scenarios where Kirch-
hoff theory becomes increasingly inaccurate and explains the
disagreement at high levels of roughness observed in Fig. 4.

Since multiple realisations of rough surfaces from statistical
classes are used to calculate the coherent signal, it is important
to understand how many simulations are required to extract
the true coherent signal. If too few are considered, not all of
the out-of-phase components will have been removed from
the scattered signal. However, running an unnecessarily large
number of surface realisations, drastically increases computa-
tional expense with little benefit to the accuracy of the overall
result.

To illustrate this point, the variation in coherent signal
amplitude with increasing number of simulations is shown for
three classes of roughness, Fig. 6.
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Fig. 5: The variation in the function kincamincos
3θinc with

increasing roughness for a normally incident compression
wave, which must be significantly greater than 1 for a valid
application of Kirchhoff theory [4].
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Fig. 6: Variation in coherent signal amplitude with increasing
number of surface realisations for three classes of surface
roughness to show the number of realisations required to tend
towards a convergent result.

The values selected (σ = 0.100λinc, σ = 0.150λinc,
σ = 0.333λinc) relate to low, medium and high levels of
roughness. It can been seen that for low levels of roughness
relatively few realisations are required, typically of the order
of a hundred. Little benefit is gained over the accuracy of the
reduction of the coherent signal amplitude by running further
simulations. For rougher surfaces this is no longer the case.
In this instance thousands of surface realisations are required.
This results from the increased variation in the surface profile
height that can be expected with surfaces that are defined by
much larger rms values. It is thought that by extending the
crack length, it would be possible to reduce the number of
surface realisations required to obtain a convergent solution
for the coherent field. However, this would be at the expense
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of increasing the computation required to solve each Unit cell.
The relationship of such a trade-off has not been considered
here.

Studies of simulated reflections from multiple realisations
of rough surfaces have previously been considered by Ogilvy,
[11], using Kirchhoff theory for acoustic wave scattering and
Zhang et al, [13], using Kirchhoff theory for the elastic case.
Zhang also includes the use of a FE model, presenting the
scattering from the defect in the form of a scattering matrix.
The numerical model is used to identify a valid regime of
Kirchhoff theory, concluding that for defects with low levels
of roughness, the computational efficiency of the Kirchhoff
approach out-weighs the increased accuracy offered by FE.
Zhang et al, [13] also investigates convergence of the total
field (not the coherent field) with increasing numbers of
simulations. Although different to the coherent field discussed
here, the same principles are observed with increasingly rough
surfaces requiring a greater number of surface realisations to
tend towards convergence. It is also clear that for low levels
of roughness, the difference between Kirchhoff theory and FE
is small, however, as defect roughness is increased, Kirchhoff
theory becomes increasingly inaccurate and a fully numerical
approach is therefore required.

B. Total signal amplitude

The convention in dealing with the ultrasonic NDE of rough
defects in the power generation industry has been to quantify
the reduction of amplitude of the reflection by calculating
the expected coherent signal. Of greater practical interest
is the mean of the total signal amplitude, which considers
both the coherent and diffuse signal amplitudes combined.
Multiple realisations must still be considered, but in this
instance, instead of superposing the scattering response to
obtain a coherent average, the amplitude of the signal from
each simulation is obtained, and then the average of these
amplitudes is calculated. This removes any dependence of
phase variation from the results and instead delivers the value
of the amplitude of the reflected signal that would be expected,
on average, in an experimental setup. This is the total field,
comprising the coherent field and the contribution of the
diffuse field in this back-scatter direction. The consideration
of the total field that results from the combination of coherent
and diffuse fields has been previously reported by Ogilvy using
a Kirchhoff theory solution, [4]. The extension made here is
to consider a large number of surface realisations with the use
of a fully numerical approach.

φσtot =< |φσi,N | > (12)

Using (12), the reduction in total signal amplitude due to
increasing roughness becomes

|φσtot|
|φinc|

=
< |φσi,N | >
|φσ=0|

(13)

Fig. 7 shows the comparison between the analytical solution
for the reduction in coherent signal amplitude, (6), and the
numerical solution for the reduction in total signal amplitude,

(13). Usually, these two signals would not be directly com-
pared, however, as stated earlier, in NDE the inspection of
safety critical components has often relied upon the coherent
signal amplitude only, as a means to calculate attenuation due
to defect roughness. Furthermore, an analytical expression for
the total signal amplitude can not be deduced.

The significance of identifying this total field for evaluation
is that it is consistent with what is observed when performing
an NDE inspection. During an inspection there is normally
only a single defect under consideration, therefore there is no
means to calculate the coherent signal. On the other hand, the
calculation of the amplitude of the total field from multiple
realisations of defects of the same statistical description pro-
vides the best possible estimate of the expected amplitude:
the average value of the amplitude of the received signal for
different realisations of such a surface.
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Fig. 7: Comparison between the reduction in signal amplitude
for the mean total reflected signal (calculated using FE) and
the coherent signal (predicted from Kirchhoff theory). The
total reflected signal is plotted with the 95.4% spread (or 2σ
confidence) about the mean value.

The results, in Fig. 7, show that as defect roughness is
increased, the mean maximum amplitude of the total field is
reduced, but not nearly to the same extent as for the Kirchhoff
predictions for the coherent field, nor for the FE predictions
of the coherent field that were shown in Fig. 4. For defect
roughness above σ = 0.125λinc, the mean reduction in signal
amplitude plateaus to a value of approximately −12.0dB.

Fig. 7 also shows confidence bands, showing the spread of
predicted signal amplitude, that can be applied to this data to
indicate the deviation about this mean value. Since multiple
realisations of defect roughness are considered, in this process,
the uncertainty about the mean reduction can also be shown.
As defect roughness increases, the uncertainty in the mean
signal amplitude also increases. The confidence bands in Fig.
7 show the 95.4% spread (or 2σ confidence) about the mean
value. The confidence bands are calculated using an empirical
cumulative density function, which makes no assumptions over
the nature of the results or their distribution.

By making comparisons with the coherent signal amplitude
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from (6), it can be seen that for low levels of roughness
there is excellent agreement between the two techniques. For
low levels of roughness, Kirchhoff theory is a very good
approximation for the elastic wave scattering. Furthermore,
in this region the majority of the total scattered field consists
mainly of the coherent scattered field, with the diffuse field still
being of relatively low amplitude. However, beyond roughness
values of σ = 0.125λinc the total measured field and coherent
field begin to deviate. This is due to the fact the total field
is now comprised of a diffuse scattering component which
is increasing with increasing roughness. This confirms the
pessimism of Kirchhoff theory for severely rough surfaces
and provides a more accurate estimate as to the attenuation
in signal amplitude due to defect roughness.

The results discussed here are of importance for practical
NDE inspections which are forced to conduct inspections in
the high defect roughness regions. Because of the spread in
the results, it is difficult to predict what the response from
a severely rough defect will be. As previously discussed,
the approach taken by industry has been to take an overly
conservative approach as outlined by Ogilvy [10], and assume
that the reflected back scattered signal from the defect is
severely reduced.

The purpose of this approach is to establish a minimum
reporting threshold on defects, a level above which the back
scattered signal from the defect is deemed unacceptable and
action must be taken to address the indication. The approach
ensures that all defects of concern are found, but at the
expense of drastically increasing the likelihood of oversizing
an indication and making subsequent false calls. This in turn
results in a large increase in costs due to avoidable periods of
extended maintenance or repair.

From Fig. 7 it is possible to establish a new reporting
threshold based upon the lower level in the spread of the
results (with an associated level of confidence), such that any
defect giving a response above this value will be deemed
unacceptable. The application of new reporting threshold will
significantly reduce the number false calls currently associated
with rough defect inspection, removing the overly conservative
approach that is currently taken, but without compromising the
safety of the inspection.

IV. OBLIQUE INCIDENCE BACKSCATTER

For oblique incidence, the scattering from rough surfaces
is still characterised by the total, coherent and diffuse sig-
nals; however, the same attenuation characteristics are not
observed. Convention in the power generation industry has
been to suggests that for the purposes of NDE, rough surfaces
attenuate ultrasonic signals when compared to the equivalent
smooth surface for oblique incidence. However, this is not
necessarily the case, since the rough surface will still maintain
a coherent and diffuse component. This will contribute to the
total field since the magnitude of the diffuse signal is greater
for rough surfaces than it is for the smooth and is scattered in
all directions.

For oblique incidence the combined effect of the coherent
and diffuse scattering signals is difficult to assess quantitatively

using analytical methods; therefore a numerical approach
is applied. This approach is capable of deducing the total
scattered field in any desired direction for any incident angle.
Furthermore, in the manner applied above to the case of
normal incidence, a statistical distribution of results can be
obtained to provide the mean signal amplitude from multiple
realisations of rough defects from the same statistical class.

Here we consider the effects of defect roughness on the total
scattered field for the specific case of back-scatter, that is the
field that is scattered back along the path of the incident wave.
This case has practical importance for pulse-echo inspections
using a single transducer. We consider this case for a range of
oblique angles of incidence. In this case an incident shear wave
is used, with all spatial dimensions expressed in terms of the
incident wavelength. To provide some understanding for the
effect of increasing defect roughness for angular performance,
these simulations are compiled for two different classes of
roughness, σ = 0.063λinc and σ = 0.200λinc. The amplitude
of the total field is then compared to the smooth defect case.

The oblique incidence case cannot be simulated using the
Unit Cell model that was deployed for the normal incidence
study. Therefore, in order to satisfy the requirement for a
Gaussian representation of the surface roughness, for which
the extent of the defect must be significantly larger than the
wavelength of the incident wave, the FE model was set up to
represent a relatively large spatial domain. This also has the
advantage of minimising the influence of the response from the
defect tips on the scattering solution, since they are positioned
sufficiently far from any interaction with the narrow incident
beam. Furthermore, performing multiple realisations, across
multiple angles of incidence, for multiple classes of defect
roughness, dramatically increases the number of computations
required to extract a statistically significant result. For these
reasons, the FE model used had to be adapted slightly through
the use of a domain linking algorithm [21].

This allows for the FE model to only consider the area
immediately surrounding the defect. An algorithm based on
Greens’ functions is used, linking the wave potentials around
the FE domain to any desired location, in this case a position
in the far-field of the defect that is back along the propagation
path of the incident wave. All other model variables remain
consistent with the normal incident case.

The displacements and stresses for the scattered response
are recorded by a monitoring box, and are then passed to the
domain linking algorithm. Here defect roughness remains fixed
whilst the angle of misorientation, θ, is varied from −60o to
60o in 10o increments. This range is limited because greater
values of defect tilt drastically increase the size of the FE
model. Multiple realisations of the same defect roughness are
considered to calculate the mean total field across all angles
of incidence. The results are compared to the response from
a smooth defect at normal incidence, see Fig. 9.

For smooth defects, increasing the misorientation of the
defect results in a reduction of the magnitude of the total
ultrasonic signal that is measured back along the path of propa-
gation. The maximum signal is observed at a misorientation of
0o, which relates to the normal incidence case. The reduction
observed is due to the fact that the specularly reflected signal
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Fig. 8: FE model with significantly reduced spatial domain
(model basis from Rajagopal et al [21]) for an incident shear
wave interacting with a rough defect at oblique incidence
where the extent of the defect is greater than the incident
beam.
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Fig. 9: The mean total reflected signal amplitude as a func-
tion of defect misorientation for an incident shear wave.
The scattered response for two classes of defect roughness
(σ = 0.063λinc and σ = 0.200λinc) is plotted and normalised
against the normal incidence case for a smooth defect.

no longer lies along the path of the incident wave. For smooth
defects the signal amplitude drops off rapidly, indicating that
small degrees of misorientation will hinder the detection of
defects. For an infinite smooth crack, it would be expected
that response should be zero for angles of misorientation. In
this case, the extent of the defect is greater than the width of
the incident beam in-order to minimise the influence of the
defect tips, however, they still maintain a small contribution
to the scattering solution.

For defects with roughness of σ = 0.063λinc, at 0o there is
an observed reduction in the mean amplitude of the total field,
which is consistent with what has been measured in Fig. 7. As

the misorientation increases beyond 10o, the mean amplitude
of the total field is again reduced, however, the reduction in
signal amplitude is less than what is observed for the smooth
case. This is due to an increase in the diffuse scattered field,
which is a dominant component of the total scattered field
measured back along the path of the incident wave.

As defect roughness is increased further still, as is seen for
σ = 0.200λinc, the same trends are observed. Again at 0o

there is an observed reduction in the mean amplitude of the
total field and as the misorientation increases, the amplitude
of the total field is again reduced. But in this case for angles
of misorientation greater than 10o, the increase in roughness
results in an increase in the diffuse component of the scattered
field and therefore a higher amplitude signal than for the
smooth and σ = 0.063λinc cases.

For defects with misorientation greater than 10o, defect
roughness will increase the magnitude of the back-scattered
signal back along the path of propagation, when compared
to the same response from a smooth defect, with the same
misorientation.

V. EXPERIMENTAL VALIDATION

The methodology is validated by comparisons with two
experiments, one involving a simple regular profile that can be
studied in a deterministic non-statistical manner, and the other
involving a real rough surface that is studied statistically.

A. Simple regular profile

A rectangular test piece of thickness 10.0mm with a sinu-
soidal artificial defect machined into the back face is scanned
from the opposite face in contact using couplant to couple
the ultrasound to the test piece. The test piece is made of
304L Stainless Steel. The sinusoidal back-wall, Fig. 10, is
corrugated such that the surface profile varies in one direction
only, with a value of σ = 0.220λinc. Either side of the
sinusoidal defect the back-wall is smooth, this is used to
normalise the response from the rough surface to that from
a smooth surface, so that the results can be presented in the
conventional manner as the reduction of amplitude caused by
roughness. The sample is scanned from the front face with
a 5MHz, 0.25′′ diameter compression wave transducer at
normal incidence.

Transducer

σ = 0.220λinc

10.0mm

Fig. 10: Sinusoidal-surface test piece used to validate elastic
scattering from rough surface. This sample is scanned from the
front face with a 5MHz, 0.25′′ diameter compression wave
transducer at normal incidence; this scan is then replicated in
FE.
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The significance of this sample is that it is a well understood
scatterer that can be represented by two-dimensional plane-
strain models used in both the Kirchhoff theory and FE
approaches. Furthermore, because the sample is sinusoidal, the
value of σ remains constant across the surface of the defect.

A pulse-echo configuration is deployed in both the exper-
iment and the modelling, such that the monitored response
is a single time history at a position above the defect. The
transducer scans along the sinusoidal sample extracting the
pulse-echo time history at 1.0mm increments. The signals
from the flat back-wall on each side of the defect are used
to normalise the signals at every rough surface scan position.
The experimental approach is replicated in FE by computing
individual simulations at every scanning position. The scan
results from the experimental and FE simulations are shown in
Fig. 11a) and 11b) respectively. A time domain window is used
to remove transducer ring-down for the experimental results.
A 0.7µs delay is added to the FE model results to calibrate
them against the experimental results. This time difference is
due to the delay associated experimentally with imitating the
ultrasonic pulse, and it being coupled and transfered into the
material.

Figures 11a) and 11b) show good agreement. The time
of arrival of the reflected signals are consistent with one
another, with both showing similar patterns of reduction of
the signal amplitude due to roughness. The response from the
smooth back-wall can be seen at scanning positions 0.0mm
and 37.0mm. To better appreciate the reduction in signal
amplitude due to roughness, the maximum response within
the time window 3.9µs to 5.0µs is plotted against scanning
direction, Fig. 12.

There is excellent agreement between the experiment and
the simulations, with the FE model accurately predicting the
reduction in the scattered amplitude due to roughness. The
mean measured reduction due to roughness is −9.9dB, with
FE slightly over estimating the reduction (−11.0dB).

The previously used approximate Kirchhoff theory solution,
Fig. 2, for this problem predicts a reduction of −33.4dB. Here,
the FE approach for the generic case of this level of roughness,
shown in Fig. 7, predicts a reduction of −12.6dB, showing
that this approach provides a far more accurate representation.

B. Real rough surface

The FE model presented here is a two-dimensional plane-
strain representation of elastic scattering from rough surfaces.
To check the validity of this approach, the attenuation due
to defect roughness shown in Fig. 7, is compared against
experimental data.

Four ferritic alloy A533b rectangular test blocks of length
60.0mm, breadth 40.0mm and thickness 40.0mm have been
produced with back-walls which have roughness varying in
both dimension. In each case, the roughness of the back-wall
has been generated by a combination of cyclic loading and
tearing which has resulted in three types of cracking; fatigue,
ductile tear and brittle fast fracture. The rough back-walls are
scanned using an Alicona microscope (model number ALC13)
to give an highly resolved measurement of their surface

a

b

Fig. 11: Figure to show a) Experiential scan and b) FE scan of
sinusoidal test piece showing (grey scale) reduction in signal
amplitude due to roughness; scans are normalised against the
response from the smooth back-wall at 0.0mm and 37.0mm.
The response from the sinusoidal section has an arrival time
of 3.9µs and is followed by the response from the smooth
section at 4.1µs.

profiles (25µm spatial discretisation). From these profiles,
measurements of surface roughness can be made.

The test blocks are raster scanned from the front face in
contact using couplant to couple the ultrasound to the test
piece. The scan increments at 1.0mm steps with a 4MHz,
0.5′′ diameter, unfocused compression wave transducer at
normal incidence. The roughness of the back-wall varies in
two directions and as a result contains a distribution of rms
values. A small section of the back-wall is smooth which is
used to normalise the responses to established reduction in
signal amplitude due to roughness, Fig. 13.

For each increment over the surface, a single time history
is obtained. Each time history shows the reduction in signal
amplitude of the back-wall signal due to roughness. This
reduction varies over different scanning positions due to local
variations in surface roughness across the sample. From the
surface profile data, the local rms of the surface for the area
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Fig. 12: Reflection coefficient from a scan over sinusoidal
surface, showing comparison between experimental measure-
ments and FE simulations.

Transducer

40.0mm

40.0mm

60.0mm

Rough Back-wall Smooth Back-wall

Fig. 13: Dimensions of test blocks and the position of the
rough back-wall relative to the scanning surface.

immediately beneath the transducer can be calculated. The
local rms is calculated using an area that would have been
equivalent to profile of the transducer on the back face. No
weighting is applied to surface to compensate for any effects
of beam spread. Combining this local rms value of the surface
with the reduction in signal amplitude (compared to a smooth
back-wall) gives an experimental measurement of the reduc-
tion in signal amplitude due to increasing roughness. Across
the four samples, 4396 discrete experimental measurements
have been taken. Scan positions that are close to the test block
edges have been omitted since the effect of the edge of the
test block on the scan data is unknown.

Fig. 14 shows a comparison between predictions made using
the FE model and the experimental data points. As predicted
with the FE model, rough surfaces with the same level of
roughness show a spread in the reduction in signal amplitude,
this being due to the unique nature of each surface within the
statistical class.

The measurements taken experimentally show a plateau in
signal attenuation as roughness is increased. This suggests that
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Fig. 14: Comparison between the reduction in reflection co-
efficients for the mean total reflected signal (calculated using
FE) and the total reflected signal measured experimentally. The
mean total reflected signal is plotted with the 95.4% spread
(or 2σ confidence) about the mean value.

increasing the roughness further will have no effect on the
mean attenuation or the confidence in the spread of data.

From the 95.4% spread (or 2σ confidence), by definition it
is expected that 2.3% of the experimental data points would
lie beneath the lower confidence level. Here, 14.1% of the
data points were found to lie below this line. The largest
difference between the FE model and the experimental data
is at mid-roughness values in the range σ = 0.050λinc to
σ = 0.167λinc. The mean attenuation is still applicable,
however, experimentally an increase in the spread of values is
observed. Therefore, the lower confidence band in this range
for the FE model is optimistic. This discrepancy could be
attributed to the FE model not considering the response of
the transducer or inconsistencies of coupling across the extent
of the scanning surface. The use of a two-dimensional model
has been justified and remains consistent with approximations
imposed on the solution derived from Kirchhoff theory [10],
however, the experimental configuration will only truly be
represented by a three-dimensional model. At this stage it is
unclear what differences would arise. It is expected that the
introduction of an additional dimension of roughness would
cause scattering to occur out of the plane in three-dimensions.
This would lead to a difference between the two and three-
dimensional cases and perhaps a further reduction in the
expected back-scattered signal. FE models could be re-run
to be more representative of the exact system that has been
measured experimentally, however the agreement in general is
very good, and it is not considered worthwhile to pursue such
details.

From all the experimental data points, only 0.1% had a
signal attenuation that was less than −30.0dB. Practically
this implies that the likelihood of encountering a defect that
would attenuate the signal amplitude this severely is rare.
Furthermore, the statistical nature of this problem means that
encountering a crack with such a high signal attenuation across
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the entire crack surface is even less likely.

VI. CONCLUSIONS

Defects which possess rough surfaces greatly affect ultra-
sonic wave scattering behaviour, often reducing the magnitude
of reflected signals. Ultrasonic NDE inspections of safety-
critical components rely upon this response for detecting
and sizing flaws. Reliable characterisation is crucial, so it
is essential to find an accurate means to predict any reduc-
tions in signal amplitude. Kirchhoff theory has been the tool
of choice for modelling elastodynamic scattering problems
from complex geometrical scatterers, however, it has been
widely recognised that this approach often over estimates
signal attenuation, especially for high levels of roughness.
A numerical method, such as a FE model, does not suffer
the same limitations as an analytical technique and offers the
potential to calculate a fully elastic solution to the scattering
from rough surfaces.

Here, the application of FE models to calculate the elastic
scattering from multiple realisations of defects within a sta-
tistical class of roughness for normal and oblique incidence
is used. Results from the FE models were compared with
Kirchhoff theory predictions and experimental measurements
in order to establish confidence in the new approach.

At low roughness excellent agreement was observed, whilst
higher values confirmed the pessimism of Kirchhoff theory.
Furthermore, the mean total signal amplitude was calculated,
which is more representative of the information obtained
during an NDE inspection. Reductions in the total signal
amplitude due to increasing roughness have been found to
be significantly less than indicated by the coherent signal
component alone.

The numerical model was extended to consider the response
for oblique incident cases. It has been shown that for defect
misorientation greater then 10o, as defect roughness increases
the total scattered field reflected in the direction that is
back along the path of the incident signal is increased when
compared to the smooth defect case.

The validity of the FE model has been assessed by com-
paring the predicted attenuation in signal amplitude due to
roughness, to that measured on experimental samples. Good
agreement between the FE and experimental data was demon-
strated. The 95.4% spread (or 2σ confidence) from the FE
model has been shown to be narrower than the spread mea-
sured experimentally, however, the mean attenuation in the
total field amplitude is consistent with the experimental data
points.

The results from this study present a significant improve-
ment that can be used directly for the benefit of inspections
in industry. The analysis provides a robust basis for a less
sensitive, yet safe, threshold for inspection of rough defects in
safety critical components.
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