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Abstract 

The accurate simulation of complex dynamic phenomena requires the availability of advanced 

constitutive models capable of simulating a wide range of features of soil behaviour under cyclic 

loading. One possible strategy is to improve the capabilities of existing bounding surface plasticity 

models, as this framework is characterised by its modularity and flexibility. As a result, specific 

components of the formulation of this type of model may be adjusted to improve the 

reproduction of any aspect of soil behaviour deemed essential to the problem being analysed. In 

this paper, a series of computational studies are performed in order to establish the impact of 

expanding a bounding surface plasticity model for sands on its modelling capabilities and to 

suggest ways of mitigating the associated increase in complexity. Changes to three distinct aspects 

of the selected constitutive model are examined: the shape of the Critical State Line in 𝑝′ − 𝑒 

space, the expression used for calculating the hardening modulus and the form of the yield 

surface. It is shown that the introduced changes have the potential to increase significantly the 

ability to control how certain aspects of soil response, such as degradation of stiffness and flow 

liquefaction with limited deformation, are reproduced by the model. Moreover, this paper 

presents a systematic approach to the expansion of this type of constitutive model, establishing 
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how alterations to the formulation of a model may be assessed in terms of improved accuracy and 

potential benefits. 

 

1. Introduction 

The adequate simulation of certain complex dynamic phenomena is only possible if the 

constitutive framework employed in the analysis is capable of reproducing a wide range of 

features of soil behaviour under cyclic loading. One of the strategies proposed to deal with this 

challenging aspect of numerical modelling is to employ bounding surface plasticity models. Initially 

developed for metal plasticity [1], this framework uses the distance from the current stress point 

to its projection on the bounding surface to quantify the material’s plastic response. Following 

early applications of this approach to soil behaviour (e.g. [2]), this type of model was extended by 

Manzari and Dafalias [3] to incorporate concepts of Critical State Soil Mechanics [4], rendering it a 

very powerful analysis tool. Given its flexibility and modularity, it is perhaps unsurprising that this 

model has been constantly extended by other authors in order to increase its capabilities [5-10]. 

However, as different researchers focus on improving the accuracy of the model when 

reproducing distinct aspects of soil response, the choice of version depends greatly on the 

boundary value problem being analysed. In the present case, the formulation proposed by 

Papadimitriou and Bouckovalas [5] is chosen as a starting point for a detailed computational study 

on the expansion of this type of model, as it was the first version specifically developed to address 

the simulation of cyclic loading under a wide range of strain amplitudes. Indeed, such an approach 

is adopted in order to characterise the effect of altering different components of the model and, 

therefore, to establish whether the increase in its complexity (e.g. larger number of parameters, 

higher nonlinearity, etc.) is offset by the associated benefits in terms of added flexibility and 

accuracy. In this paper, after briefly introducing the original formulation of the model proposed by 
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Papadimitriou and Bouckovalas [5], exhaustive studies on the impact of modifying three 

components of this model are presented: the shape of the Critical State Line (𝐶𝑆𝐿) in 𝑝′ − 𝑒 space, 

the expression adopted for the hardening modulus and the form of the yield function.  

 

2. Original formulation 

As mentioned in the previous section, the chosen starting point for the work presented in this 

paper is the bounding surface plasticity model described by Papadimitriou and Bouckovalas [5], 

which is a generalisation to multiaxial space of the model proposed by Papadimitriou et al. [11], as 

both its elastic and plastic components were specifically designed with the objective of simulating 

a wide range of features of cyclic soil behaviour. This model, the formulation of which is 

summarised in Table 1, is an evolution of that proposed by Manzari and Dafalias [3]. Therefore, it 

includes the same four distinct surfaces in triaxial stress space, each characterised by a constant 

value of the stress ratio 𝜂 = 𝑞/𝑝′, to define the response of the material (Figure 1): the yield 

surface, the critical state surface, the dilatancy surface and the bounding surface. The first of these 

surfaces, which determines the onset of plasticity and is defined by Eq. 10, has the shape of a 

narrow cone with its apex at the origin of the stress space. The intersection of this surface with the 

deviatoric plane normalised with respect to the mean effective stress, 𝑝’, is a circle of radius 

proportional to parameter 𝑚 and centre given by tensor 𝛂 (Figure 2). Unlike in the model 

proposed by Manzari and Dafalias [3], this surface only hardens kinematically, meaning that 𝑚 is 

constant, while 𝛂 evolves during shearing. The critical state surface (Eq. 6) defines the failure of 

the material and its shape in stress space is that of an open wedge (Figure 1) characterised by 

parameters 𝑀𝑐
𝑐  and 𝑀𝑒

𝑐 , which denote the stress ratios at critical state in compression and 

extension, respectively. Given that for sands these quantities are different, the intersection of this 

surface with the deviatoric plane, described by Eq. 9a to Eq. 9c is generally noncircular, as 
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illustrated in Figure 2. The loading direction, represented in the aforementioned expressions by 

the Lode’s angle, 𝜃, can be evaluated using: 

𝑐𝑜𝑠 (3 ∙ 𝜃 +
𝜋

2
) =

3 ∙ √3

2
∙

𝐽3̅
(𝐽2̅)3 2⁄

 Eq. 35 

where 𝐽2̅ = 1 2⁄ ∙ �̅�: �̅� , 𝐽3̅ = 1 3⁄ ∙ �̅�: �̅�: �̅�  and �̅�  is the radial tensor. The latter is defined as 

�̅�  = 𝐫 − 𝛂, where 𝐫 is the normalised deviatoric stress tensor given by 𝐫 = 𝐬 𝑝′⁄ = (𝛔 − 𝑝′𝐈3) 𝑝′⁄ . 

According to Eq. 35, 𝜃 = − 𝜋 6⁄  corresponds to triaxial compression states, while for triaxial 

extension a value of 𝜃 = 𝜋 6⁄  is obtained. The dilatancy and bounding surfaces have a shape 

which is identical to that of the critical state surface (Figure 2), with their openings in stress space 

being defined by the respective stress ratios under triaxial compression conditions, 𝑀𝑐
𝑑 and 𝑀𝑐

𝑏, 

defined in Eq. 7 and Eq. 8, respectively. Note that it is assumed that for triaxial extension loading 

the openings of the two surfaces are determined by 𝑀𝑒
𝑑 = 𝑐 ∙ 𝑀𝑐

𝑑  and 𝑀𝑒
𝑏 = 𝑐 ∙ 𝑀𝑐

𝑏 , where 

𝑐 = 𝑀𝑒
𝑐/𝑀𝑐

𝑐  is a shape factor. Unlike the critical state surface, which is entirely described by the 

two model parameters 𝑀𝑐
𝑐  and 𝑀𝑒

𝑐, the openings of the dilatancy and bounding surfaces change 

during shearing, in accordance with Eq. 7 and Eq. 8 introduced by Manzari and Dafalias [3], with 

the state parameter, 𝜓, proposed by Been and Jefferies [12]: 

𝜓 = 𝑒 − 𝑒𝐶𝑆 Eq. 36 

where 𝑒 is the void ratio of the material at a given state and 𝑒𝐶𝑆 is the void ratio at the 𝐶𝑆𝐿 

corresponding to the effective stress level to which the material is subjected. Similar to several 

other models based on the same framework (e.g. [3, 10]), Papadimitriou and Bouckovalas [5] 

proposed the use of a linear expression for the 𝐶𝑆𝐿 in the ln 𝑝′ − 𝑒 plane, as described by Eq. 5. In 

effect, the adoption of a relation between the state parameter and the openings of the dilatancy 

and bounding surfaces (Eq. 7 and Eq. 8) is intended to enable the reproduction of different 

patterns of mechanical response which have been observed depending on whether the current 

state is denser-than-critical (i.e. 𝜓 < 0) or looser-than-critical (i.e. 𝜓 > 0). As a result, this 
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approach allows the simulation of the behaviour of the material under a wide range of initial 

states, characterised in terms of mean effective stress and void ratio, using a single set of 

parameters. However, it then becomes necessary to introduce in the formulation the distances 

between the current stress point and the different surfaces when determining the plastic 

behaviour of the material, a procedure for which the definition of a mapping rule is required. In 

the case of the model presented by Papadimitriou and Bouckovalas [5], the adopted mapping rule, 

which was originally proposed in [3], is schematically represented in Figure 2 (note that others are 

possible, as highlighted by Andrianopoulos et al. [13]). Based on this procedure, the projections of 

the current stress point on the dilatancy and bounding surfaces, denoted as 𝛂𝐝  and 𝛂𝐛 , 

respectively, may be established using: 

𝛂𝐝,𝐛 = √2 3⁄ ∙ (𝑔(𝜃, c) ∙ 𝑀𝑐
𝑑,𝑏 − 𝑚) ∙ 𝐧 Eq. 37 

where 𝐧 is the traceless unit tensor obtained by normalising the radial tensor �̅� by its dimension: 

𝐧 =
�̅�

√2 3⁄ ∙ 𝑚
 Eq. 38 

Given the above definitions, the distances between the current stress point and its respective 

image points, expressed for convenience in terms of the back stress tensor rather than stress 

tensor, can be calculated by: 

𝑑𝑑,𝑏 = (𝛂𝐝,𝐛 − 𝛂): 𝐧 Eq. 39 

The distance to the dilatancy surface, 𝑑𝑑, is used to calculate the volumetric component of the 

plastic potential (Eq. 12), with a positive value of 𝑑𝑑  (i.e. the stress point is within the surface) 

implying plastic contraction of the material, while a negative value of 𝑑𝑑, which occurs when the 

stress point is outside the surface, leads to plastic dilation. Note that by comparing the gradients 

of the yield surface and plastic potential, 𝛛𝐅 𝛛𝛔⁄  (Eq. 11a) and 𝛛𝐏 𝛛𝛔⁄  (Eq. 12), respectively, it can 

be concluded that, in general, this constitutive model does not employ an associated flow rule. 

Conversely, the distance to the bounding surface, 𝑑𝑏, affects directly the magnitude and sign of 
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the hardening modulus, 𝐴 (Eq. 13a), meaning that a positive value of 𝑑𝑏 leads to the simulation of 

the hardening of the material, while softening occurs when 𝑑𝑏, and therefore 𝐴, are negative. 

Indeed, the latter aspect of the model distinguishes it from other bounding surface plasticity 

models (e.g. [14, 15]), as it implies that it is possible for the stress point to be located outside the 

bounding surface.  

In addition to the position of the stress point in relation to the bounding surface, the value of the 

hardening modulus is also affected by the value of ℎ𝑓, which is a scalar computed based on the 

evolution of the fabric tensor (Eq. 13d). This aspect of the formulation, which was firstly proposed 

by Papadimitriou et al. [11] and then further developed for inclusion in the version of the model 

described by Papadimitriou and Bouckovalas [5], is defined by Eq. 15a to Eq. 15d. Its introduction 

improved considerably the simulation of soil response under undrained cyclic loading and, as a 

result, it has been retained by subsequent versions of this constitutive model (e.g. [10]). It should 

be noted, however, that the evolution of the fabric tensor and its contribution to the plastic 

response of the material only take place for samples which are initially in a denser-than-critical 

state (i.e.  𝜓0 < 0 in Eq. 15c).  

Lastly, Papadimitriou and Bouckovalas [5] proposed a cyclic non-linear formulation based on a 

Ramberg-Osgood approach [16] for the elastic component of the model (Eq. 1 to Eq.4). This 

addition successfully improved the simulation of cyclic soil response at small-strains, both in terms 

of stiffness degradation and hysteretic damping, resulting in its adoption by subsequent models 

based on the same framework (e.g. [9, 10]). It essentially consists of the adoption of the 

expression proposed by Hardin and Richart [17], which establishes the maximum shear modulus of 

the material based on the current mean effective stress level and void ratio (Eq. 1), coupled with a 

degradation law (Eq. 2a) based on the quantity: 

𝜒𝑟𝑒𝑓
𝑟 = √1 2⁄ ∙ (𝐫 − 𝐫𝐒𝐑): (𝐫 − 𝐫𝐒𝐑) Eq. 40 
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which corresponds to the distance measured in the deviatoric plane between the current stress 

state, 𝐫, and that at the last shear reversal, 𝐫𝐒𝐑. The latter, together with 𝑝′𝑆𝑅, 𝐺𝑚𝑎𝑥
𝑆𝑅  in Eq. 2b, are 

updated whenever a shear reversal takes place, a situation which is deemed to have occurred 

when a given incremental solicitation reduces the value of the scalar 𝜒𝑟𝑒𝑓
𝑒  defined as: 

𝜒𝑟𝑒𝑓
𝑒 = √1 2⁄ ∙ (𝐞 − 𝐞𝐒𝐑): (𝐞 − 𝐞𝐒𝐑) Eq. 41 

where 𝐞 = 𝛆 − 𝜀𝑣𝑜𝑙 3⁄ ∙ 𝐈𝟑 is the deviatoric strain tensor, 𝛆 is the strain tensor and 𝜀𝑣𝑜𝑙 = 𝜀𝑥 +

𝜀𝑦 + 𝜀𝑧 is the volumetric strain. Clearly, by comparing Eq. 40 and Eq. 41, it can be observed that 

𝜒𝑟𝑒𝑓
𝑒  represents the equivalent distance to 𝜒𝑟𝑒𝑓

𝑟  but in strain space. Moreover, the value of scalar 

𝑁 in Eq. 2a, which is initially set to 1, is altered to 2 when the first shear reversal is detected. This 

procedure scales the stress-strain curve by a factor of 2, thus ensuring that the simulated cyclic 

response complies with the original Masing rules ([18, 19]). To complete the definition of the 

elastic stiffness of the material, a constant Poisson’s ratio, 𝜈, is assumed (Eq. 4). 

The model proposed by Papadimitriou and Bouckovalas [5] clearly presents considerable 

advancements over the original formulation by Manzari and Dafalias [3], particularly with respect 

to the simulation of soil behaviour under cyclic loading. Furthermore, the modularity and flexibility 

of the framework upon which it is based allow for alterations to its initial formulation to be 

gradually introduced and thoroughly tested. This process, which is described in the following 

sections, was carried out by firstly implementing the model proposed by Papadimitriou and 

Bouckovalas [5] into the Finite Element code 𝐼𝐶𝐹𝐸𝑃 [20], a procedure described by Taborda [21]. 

Subsequently, three distinct components of the model, namely the shape of the 𝐶𝑆𝐿 in 𝑒 − 𝑝′ 

space, the expression used in the calculation of the hardening modulus, 𝐴, and the yield surface, 

were independently modified and the respective impact on the simulation of soil behaviour was 

characterised. In each of the discussed tests, unless otherwise stated, the parameters for Nevada 

sand proposed by Papadimitriou and Bouckovalas [5] were used (Table 2). 
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3. Shape of the Critical State Line in 𝒑′ − 𝒆 space 

The first aspect of the model to be investigated was the shape of the 𝐶𝑆𝐿 in the 𝑒 – 𝑝’ space, as it 

controls the value of the state parameter, 𝜓, a concept which occupies a central role in its 

formulation. As described in the previous section, Papadimitriou and Bouckovalas [5] proposed 

the use of a linear expression in ln 𝑝′ − 𝑒 space (Eq. 5), in accordance with the principles of critical 

state soil mechanics established for clays [4]. However, results obtained from undrained triaxial 

compression tests, such as those shown in Figure 3a for Leighton Buzzard sand presented by Been 

et al. [22], show that a single linear expression is unable to describe the observed 𝐶𝑆𝐿 for the 

complete range of stress values. As a result, a hypothetical stress path under undrained conditions 

starting from a void ratio of 0.80 and a mean effective stress of 100 kPa (point 𝐴 in Figure 3a), 

would reach critical state at drastically different stress levels (points 𝐵 and 𝐶), depending on which 

of the linear approximations for the 𝐶𝑆𝐿 would be adopted. 

The first solution to improve the reproduction of the observed 𝐶𝑆𝐿 for a wide range of values of 

stress consisted of using a bilinear form, such as the one depicted in Figure 3b [22]. However, 

while this approach addressed the main concerns raised over the adoption of a single linear 

expression, the use of a logarithm function still had the major drawback of predicting high void 

ratios at critical state for very low stresses. Indeed, it was observed by Verdugo and Ishihara [23] 

that the 𝐶𝑆𝐿  seems to curve towards a horizontal position as the stress level decreases, 

intercepting the axis of zero mean effective stress at a value which can be considered to be close 

to the maximum void ratio at atmospheric pressure [24]. As a result, to reproduce the required 

shape at both low and high values of mean effective stress, a power law was proposed by Li and 

Wang [25]: 
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𝑒𝐶𝑆 = (𝑒𝐶𝑆)𝑟𝑒𝑓 − 𝜆 ∙ (
𝑝′

𝑝′𝑟𝑒𝑓
)

𝜉

 Eq. 42 

where 𝜉 is an additional parameter controlling the overall curvature of the 𝐶𝑆𝐿, while (𝑒𝐶𝑆)𝑟𝑒𝑓, 

rather than being related to the reference pressure 𝑝𝑟𝑒𝑓
′ , is now the void ratio under zero mean 

effective stress. The advantages of using such a form are clearly illustrated in Figure 3b, where a 

unique set of parameters – (𝑒𝐶𝑆)𝑟𝑒𝑓 = 1.01; 𝜆 = 0.08 and 𝜉 = 0.35 – is capable of adequately 

reproducing the entire collection of laboratory results. Therefore, given its flexibility and accuracy, 

it is unsurprising that most versions of the presented model have adopted a power law for the 

𝐶𝑆𝐿 (e.g. [6, 8, 9, 26, 27]). However, it should be noted that the quality of the approximation 

provided by the power law appears to degrade for extremely high stress levels (i.e. 𝑝′ > 10 𝑀𝑃𝑎), 

a range where, if deemed necessary, a linear form seems to be more appropriate [24]. 

To characterise the impact of altering the expression used for the 𝐶𝑆𝐿 on the modelled soil 

response, a series of undrained triaxial compression tests on Nevada sand was simulated. The two 

adopted 𝐶𝑆𝐿𝑠 were those proposed by Papadimitriou and Bouckovalas [5] for the linear shape and 

by Ling and Yang [28] for the power law. The corresponding parameters are listed in Table 3 and 

the resulting 𝐶𝑆𝐿𝑠 are depicted in Figure 4. In all tests, an initial mean effective stress of 45 kPa 

was chosen, since the two 𝐶𝑆𝐿𝑠 coincided at this point, thus guaranteeing similar values of the 

state parameter at the start of shearing. Furthermore, the analyses were conducted for two 

distinct values of density, 𝑒1 = 0.80 and 𝑒2 = 0.70, in order to investigate the effect of the 

distance to the 𝐶𝑆𝐿 on the differences obtained in soil behaviour. The four distinct tests are 

labelled as 1.L, 1.P, 2.L and 2.P, where the number refers to the void ratio of the material and the 

letter to the shape of the 𝐶𝑆𝐿, with L corresponding to the linear expression and P to the power 

law. 

The results for the looser samples (1.L and 1.P) are presented in terms of stress-strain curve and 

generation of excess pore water pressures in Figure 5a and 5b, respectively. From Figure 4, it is 
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evident that an undrained test starting from position 1 would first meet the linear 𝐶𝑆𝐿. As a 

consequence, the axial strain at which critical state was reached was slightly lower when this form, 

rather than the power law, was used. Since no other significant differences can be detected, it can 

be concluded that, for this initial state and test type, the adopted shape of 𝐶𝑆𝐿 does not appear to 

be important. In Figure 6a and 6b, the results for the denser samples (2.L and 2.P) are shown in 

terms of stress-strain response and evolution of excess pore water pressures, respectively. Clearly, 

unlike for the tests on looser samples, there is a great disparity in the axial strain levels required to 

reach critical state: 3% when the power law was adopted and 40% when the linear form was used. 

Similarly, the stress state and excess pore water pressure predicted at this stage were also 

extremely different, with the test where a power law was adopted (2.P) terminating at 𝑝′ = 1000 

kPa and Δ𝑢 = -500 kPa, while the one using a linear expression (2.L) carried on to reach 𝑝′ = 16000 

kPa and Δ𝑢 = -8000 kPa. Naturally, these are very significant discrepancies, illustrating that the 

choice of the shape of 𝐶𝑆𝐿 does have a great influence on the modelled soil behaviour. In 

particular, it may be concluded that the adoption of a linear expression is not recommended as it 

may lead to the severe overestimation of the maximum stress and strain levels that a relatively 

dense material is able to sustain prior to reaching failure. This limitation has obviously more grave 

implications when analysing the performance of structures transmitting large loads to the soil, 

such as footings and piles. 

 

4. Formulation of the hardening modulus 

4.1 General considerations 

By comparing the various evolutions of the model originally proposed by Manzari and Dafalias [3], 

it is easily concluded that the hardening modulus is the component which registers the largest 

number of different formulations. Despite the evident diversity, the expressions can be essentially 

described as a product of a value ℎ by the mean effective stress, 𝑝′, and the distance between the 
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current stress point and the bounding surface, 𝑑𝑏. As described by Eq. 13a, Papadimitriou and 

Bouckovalas [5] proposed that the value of ℎ should be calculated based on the current distance 

to the bounding surface in relation to its overall diameter, an aspect summarised by ℎ𝑏 (Eq. 13b 

and Eq. 13c), and the current characteristics of the fabric tensor, 𝐅, which is introduced in the 

hardening modulus by the scalar ℎ𝑓 (Eq. 13d). Despite the already substantial sophistication of this 

expression, it is important to observe that it does not take into account important aspects such as 

the density and elastic stiffness of the material. Moreover, the function defining the influence of 

the distance from the current stress point to the bounding surface may be altered in order to 

enable the degradation rate of the plastic modulus with the shearing process to be adjusted. 

However, independently of the extent of algebraic changes needed to solve these perceived 

limitations of the model, it is important to allow the possibility of reverting to the original 

expression by choosing an appropriate set of parameters. This latter aspect is particularly 

important in cases where the calibration procedure indicates that the influence of any of the 

variables involved is not sufficiently significant to be considered. Clearly, this observation extends 

to the influence of the mean effective stress, which is already a part of the model through the 

adopted expression for ℎ𝑏 (Eq. 13b).  

It should be noted that unlike the modifications introduced to the shape of the 𝐶𝑆𝐿, which are 

supported by results from laboratory tests, altering the hardening modulus lacks a well-defined 

physical motivation. Consequently, the impact of the changes described in the following sections 

on the simulated soil behaviour will only be illustrated through parametric studies. Moreover, the 

parameters proposed for Nevada sand by Papadimitriou and Bouckovalas [5] (Table 2) will be 

used, with the exception of 𝐻0, which will be set to 0.0 in order to remove the effect of fabric on 

the magnitude of the hardening modulus. 

 

4.2 Effect of void ratio 
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The influence of the density of the material on the hardening modulus can be introduced by 

replacing the constant ℎ0, which is a material parameter in the original formulation (Eq. 13b), by 

the linear function of the void ratio, ℎ𝑒 (Eq. 43). The resulting form is similar to that found in other 

versions of the model (e.g. [6]) and requires the definition of only one additional parameter (𝛾). 

However, since for very loose samples the proposed expression may lead to the undesirable 

situation where negative values of ℎ𝑒 are calculated, a cut-off level for the void ratio, 𝑒𝑚𝑎𝑥, 

corresponding to a minimum value of ℎ𝑒 (Eq. 44), is necessary (alternatively, one could have 

adopted a power law [9]). 

ℎ𝑒 = ℎ0 ∙ (1 − 𝛾 ∙ 𝑒) ≥ ℎ𝑒,𝑚𝑖𝑛 Eq. 43 

ℎ𝑒,𝑚𝑖𝑛 = ℎ0 ∙ (1 − 𝛾 ∙ 𝑒𝑚𝑎𝑥) Eq. 44 

To illustrate the impact of the proposed change to the formulation of the hardening modulus, 

undrained triaxial compression tests were simulated for two distinct situations: one where a 

constant value of ℎ𝑒 was used, as enforced by the original formulation of the model (ℎ0 = 5000.0 

and 𝛾 = 0.0), and one using a variable ℎ𝑒, defined by ℎ0 = 16666.7 and 𝛾 = 1.0. Note that the 

magnitude of 𝛾 was chosen according to data found in the literature for similar sands [6], while 

the corresponding value of ℎ0 was determined by imposing that both sets of parameters should 

yield the same value (ℎ𝑒 = 5000.0) for a void ratio of 0.70. Moreover, since 𝛾 was introduced with 

the intent of improving the accuracy of the model for a wider range of soil densities without 

requiring any adjustment of parameters, the true impact of adopting a linear function for ℎ𝑒 can 

only be illustrated if simulations for at least two different initial void ratios are compared. 

However, to allow for clear conclusions to be drawn, the average ℎ𝑒 for the two simulations 

should be identical to the value used with the original formulation (i.e ℎ𝑒 = 5000.0). In the present 

case, the void ratios of 0.65 (ℎ𝑒= 5833.3) and 0.75 (ℎ𝑒 = 4166.7) were chosen. All the tests started 

from an isotropic stress state of 𝑝′ = 100 kPa and the results obtained are shown in Figure 7. 
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As expected, the results of the simulations confirmed that the global stiffness of the looser sample 

(𝑒 = 0.75) decreased when a variable ℎ𝑒 was employed (𝛾 = 1.0), while for the denser sample (𝑒 = 

0.65) a stiffer response was observed. Furthermore, it is important to note that, if one would 

assume that real soil behaviour would coincide with that obtained for 𝛾 = 1.0, then the use of a 

constant value of ℎ𝑒 = 5000.0 would have resulted in a relatively poor approximation. Thus, the 

performed parametric study shows that the introduction of the extra parameter does increase the 

flexibility of the model, improving its accuracy when the modelling of materials with significantly 

different densities is required. Similarly, the modified formulation of the hardening modulus may 

have a substantial impact when dealing with sands which undergo densification, for example 

during post-liquefaction reconsolidation. However, if no sufficient experimental evidence is 

available or if it is concluded that an average value of ℎ𝑒 provides sufficient precision, then the 

original formulation can be employed by simply setting 𝛾 to 0.0. 

 

4.2 Relationship with the elastic stiffness 

The Ramberg-Osgood formulation was originally proposed for the elastic component of the 

constitutive model by Papadimitriou et al. [11] and was retained by Papadimitriou and 

Bouckovalas [5] as a form of improving the simulation of the variation of stiffness over a wide 

range of deformation levels. However, given that the size of the yield surface is usually small, 

plasticity tends to dominate the modelled response for the majority of the shearing process. 

Therefore, since the latter type of behaviour is generally controlled by the flow rule and the 

hardening modulus, the adoption of a Ramberg-Osgood approach may be insufficient to guarantee 

that the stiffness of the material degrades in a consistent way as shearing progresses. To illustrate 

such a situation, three undrained triaxial compressions tests on samples consolidated isotropically 

to 𝑝′ = 100 kPa with a void ratio of 0.70 were simulated using distinct values of parameter 𝛾1: 

2.5×10-4, which is the original value proposed by Papadimitriou and Bouckovalas [5] for Nevada 
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sand (Table 2), 2.5×10-3 and 2.5×10-2.  The obtained results, in terms of stress-strain curves and 

variation of secant shear stiffness with strain level, are illustrated in Figure 8. 

By increasing the magnitude of parameter 𝛾1, which controls the strain level above which no 

degradation of the elastic shear modulus takes place, it would be expected that an increasingly 

stiffer response would be observed. However, as it can be seen in Figure 8, for axial strain levels 

between 0.05 % and 0.35%, the abovementioned trend is inverted, with the simulation using the 

highest value of 𝛾1 being characterised by the lowest shear stiffness. Thus, to guarantee that the 

specified degradation of the elastic stiffness is adequately reflected on the plastic stiffness of the 

material, it is proposed to include the current value of the elastic shear modulus as an additional 

factor in the expression of the hardening modulus (Eq. 45). Clearly, by setting parameter 𝛼 to 0.0, 

the original formulation of the model is obtained. Moreover, it should be noted that although a 

specific law is not usually defined, other versions of the model presented in the literature also 

include the elastic shear modulus in the determination of the plastic modulus (e.g. [6, 8, 9]), which 

is achieved by introducing the additional multiplier ℎ𝑔: 

ℎ𝑔 = 𝐺𝑡𝑎𝑛
𝛼  Eq. 45 

The previously described simulations were repeated for 𝛼 = 1, meaning that a full contribution of 

the elastic shear stiffness to the value of the hardening modulus was assumed. Moreover, with the 

inclusion of ℎ𝑔, the magnitude of ℎ0 was reduced from 5000.0 to 0.1450 to ensure that the global 

value of the hardening modulus at the start of shearing would be similar to that employed in the 

previous set of tests. Clearly, as it can be seen in Figure 9a, the relative positions of the stress-

strain curves for the whole range of axial strain levels are in accordance with the relation between 

the values of 𝛾1 employed in each situation, with larger values of this parameter leading to stiffer 

responses, as confirmed by the variations of secant shear stiffness with deformation level (Figure 

9b). Therefore, the introduction of the nonlinear stiffness in the calculation of the hardening 
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modulus establishes an efficient link between elastic and plastic behaviour, yielding more 

consistent results. 

 

4.3 Distance to the bounding surface  

The last of the modifications introduced to the formulation of the hardening modulus concerns 

the function which defines the contribution of the distance between the current stress point and 

the bounding surface, 𝑑𝑏. In the expression presented by Papadimitriou and Bouckovalas [5], 

which was inherited from the early Manzari and Dafalias [3] proposal, the effect of the proximity 

to the bounding surface is given by the factor 𝑚𝑏: 

𝑚𝑏 =
|𝑑𝑏|

〈𝑑𝑟𝑒𝑓
𝑏 − |𝑑𝑏|〉

=

|𝑑𝑏|

𝑑𝑟𝑒𝑓
𝑏

〈1 −
|𝑑𝑏|

𝑑𝑟𝑒𝑓
𝑏 〉

 Eq. 46 

where 𝑑𝑟𝑒𝑓
𝑏  is the opening of the bounding surface measured along the current loading direction 

(Eq. 13c in Table 1) and 〈 〉 are the Macauley brackets (i.e. 〈𝑥〉 = 𝑥 if 𝑥 > 0 and 〈𝑥〉 = 0 if 𝑥 < 0). 

As a result, Eq. 46 returns positive values ranging from 0 (stress point is on the bounding surface, 

𝑑𝑏 = 0) to infinity (point on the opposite extremity of the bounding surface, 𝑑𝑏 = 𝑑𝑟𝑒𝑓
𝑏 ). However, 

these are not the true limiting cases since, as it has been referred to before, the stress point can 

be located outside the bounding surface, meaning that two additional situations can occur: 𝑑𝑏 < 0 

(point above the bounding surface) and 𝑑𝑏 ≥ 𝑑𝑟𝑒𝑓
𝑏  (point on or below the opposite extremity of 

the bounding surface). Indeed, it was perhaps to prevent unreasonable values from being 

obtained when calculating 𝑚𝑏 for the first of these two conditions, that the modulus operator was 

included in Eq. 46 by [3] . Conversely, the use of the Macauley brackets, proposed by [11] and 

retained by [5], implies that an infinite value of the plastic modulus should be calculated for the 

second of the aforementioned cases, a potentially problematic situation from a computational 

point of view, which requires appropriate care when implementing the model in a finite element 
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code. The expression for 𝑚𝑏 (Eq. 46) was later altered by Li and Dafalias [26] with one of the 

arguments being that an infinite hardening modulus should be predicted at the beginning of the 

shearing process, in order to ensure a smooth transition from elastic to plastic behaviour. In fact, 

subsequent versions of the model generally adopted this new proposal (e.g. [6]) or a variation of it 

(e.g. [9]). Other recent versions (e.g. [8]), however, abandoned this approach and reverted to a 

form similar to the original Manzari and Dafalias [3] expression, amply demonstrating the lack of 

consensus over the formulation of this component of the model. 

A complete assessment and comparison between the different approaches would necessarily 

involve the need to implement both and carry out an exhaustive testing programme. Since a clear 

conclusion about this issue cannot be found in the literature, there is no apparent motivation to 

change the type of function chosen by Papadimitriou and Bouckovalas [5]. It is however 

acknowledged, that an identical procedure to that suggested by Loukidis and Salgado [9] could 

increase the flexibility of the model and could be, therefore, beneficial to its overall performance. 

Eq. 47 shows the altered expression, where β is a new material parameter. Note that, similar to 

the other proposed alterations, its value can be set to 0.0 if the original formulation is to be used.  

𝑚𝑏 = (
|𝑑𝑏|

〈𝑑𝑟𝑒𝑓
𝑏 − |𝑑𝑏|〉

)

𝛽+1

 Eq. 47 

Figure 10 shows the effect of 𝛽 on the values returned by the new function. As it can be seen, 

increasing the value of 𝛽 leads to a faster decrease of the function in the regions closer to the 

bounding surface (𝑑𝑏/𝑑𝑟𝑒𝑓
𝑏  < 0.5) and to higher values being used for points located further away 

from this surface. To illustrate the impact of this modification on the modelled soil behaviour, 

undrained triaxial compression tests on samples isotropically consolidated to 𝑝′ = 100 kPa and 

with a void ratio of 0.70 were simulated for 𝛽 = 0.0 (original formulation), 0.25, 0.50 and 1.00.  

In the first set of tests, which focussed on the impact on the modelled response during the initial 

stages of shearing, ℎ0 was recalculated for each value of 𝛽 in order to match the stress-strain 
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curve registered for axial strains above 3% when employing the original formulation (i.e. 𝛽 = 0.0 

and ℎ0 = 5000.0). The obtained results are shown in Figure 11. Clearly, by varying parameter 𝛽, it 

is possible to control certain aspects of the stress path in 𝑝′ − 𝑞 space, such as the stress state at 

which phase transformation, i.e. the quasi-steady state as defined by Ishihara [29], occurs. In fact, 

as 𝛽 increased, the minimum mean effective stress registered during the test also increased 

significantly. Moreover, the shape of the stress-strain curves suggests that 𝛽 also influences the 

variation of stiffness during the subsequent dilatant stage. For the second parametric study, ℎ0 

was recalculated for each value of 𝛽 in order for the stress state at phase transformation to be 

identical in all the tests. As the resulting stress paths and stress-strain curves depicted in Figure 12 

illustrate, parameter 𝛽 influences the stress state at which the temporary peak in deviatoric stress 

is reached, before dropping towards the quasi-steady state. In fact, for larger magnitudes of 𝛽, a 

higher peak value is obtained and larger deformations are needed before the dilatant phase is 

initiated. The possibility of controlling the characteristics of flow liquefaction with limited 

deformation, which is an important feature of sand behaviour [29], reinforces the usefulness of 

introducing the proposed changes to the formulation of the hardening modulus. 

 

5. Low-stress yield surface 

The framework upon which the presented model is based relies greatly on the position of the 

stress state in the deviatoric plane to determine the behaviour of the material. In fact, the 

normalisation of the stress tensor by the mean effective stress is a recurring aspect of the 

formulation. This particularity of the model naturally raises concerns about its precision in 

situations where the stress level is very low, such as when liquefaction is being simulated. Thus, to 

avoid potential losses of accuracy and to reduce the computational cost of the integration of the 

constitutive equations under these conditions, an additional yield surface, termed “secondary”, is 

proposed. The chosen form is simple and consists of imposing a limit value to the mean effective 
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stress, 𝑝𝑌𝑆
′ , as defined in Eq. 48. Note that the subscript “2” is introduced in order to distinguish 

the equations presented in this section from those used for the original yield surface. 

𝐹2 = 𝑝𝑌𝑆
′ − 𝑝′ = 0 Eq. 48 

The plastic behaviour predicted when this yield surface is activated is characterised by an 

associated flow rule (Eq. 49) and is considered to be perfectly plastic. Thus, for this surface, 𝑝𝑌𝑆
′  is 

a material constant, rather than a hardening parameter, and the corresponding hardening 

modulus, 𝐴2, is 0.0 [20]. 

𝛛𝐅𝟐

𝛛𝛔′
=

𝛛𝐏𝟐

𝛛𝛔′
=

1

3
𝐈𝟑 Eq. 49 

Based on these expressions, the calculation of the resulting incremental plastic strains, ∆𝛆𝟐
𝐩

, 

follows the procedure outlined in Appendix A, allowing for changes in hardening parameters to be 

determined. Indeed, although the fabric tensor, 𝐅, has not been considered when describing the 

plastic behaviour introduced by this surface, both its spherical and deviatoric components must 

still be updated (Eq. 50 and Eq. 51). The other hardening parameter, the tensor 𝛂, remains 

unchanged as it is exclusively used to characterise the position of the original yield surface. In the 

event of both primary and secondary yield surfaces being activated, additional modifications are 

needed to determine the incremental plastic strains and to formulate the elasto-plastic matrix, as 

described in Appendix B. 

∆𝑓𝑝 = 𝐻 ∙ ∆𝜀𝑣𝑜𝑙,2
𝑝  Eq. 50 

∆𝐟 = −𝐻 ∙ 〈−∆𝜀𝑣𝑜𝑙,2
𝑝 〉 ∙ [𝐶 ∙ 𝐧 + 𝐟] Eq. 51 

The precise magnitude of parameter 𝑝𝑌𝑆
′ , which determines the position of the newly introduced 

yield surface, is difficult to estimate. It is expected, however, that a small number will not 

efficiently solve issues related to loss of precision due to low values of mean effective stress, while 

large values will alter significantly the behaviour predicted by the model. Consequently, tests must 

be conducted to evaluate the impact of 𝑝𝑌𝑆
′ . In the present case, a cyclic undrained direct shear 
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test on Nevada sand, identical to that used by Papadimitriou and Bouckovalas [5] to demonstrate 

the capabilities of the original constitutive model, was used. The initial conditions are 

characterised by 𝜎𝑣
′  = 160.0 kPa, 𝜏𝑥𝑦 = 5.9 kPa and an initial void ratio of 0.66, while the applied 

load amplitude was 13.7 kPa (i.e. shear stresses vary between -7.8 kPa and 19.6 kPa). Three 

different positions of this surface were tested by setting parameter 𝑝𝑌𝑆
′  to 0.1 kPa, 1.0 kPa and 

10.0 kPa.  

The results obtained in the simulations are shown in Figure 13 in terms of evolution of excess pore 

water pressures and shear strain with the number of cycles. Clearly, with respect to the former 

aspect of cyclic soil behaviour, the effect of the new yield surface is restricted to the maximum 

value registered, which, as expected, decreased for larger values of 𝑝𝑌𝑆
′ . Conversely, the shear 

strain histories registered important differences during the final loading cycles. Perhaps the most 

evident impact of the activation of the secondary yield surface was obtained for 𝑝𝑌𝑆
′  = 10.0 kPa, 

where the computed deformations were much lower than those observed in the remaining 

analyses. By imposing a minimum magnitude to the mean effective stress, a lower limit on the 

value of the hardening modulus linked to the primary yield surface was also introduced. As a 

result, the almost perfectly plastic response (i.e. 𝐴1 ≈ 0.0) exhibited under low stresses was 

substituted by a more controlled deformation pattern.  

The two remaining analyses also yielded rather different results. In particular, a sharp decrease in 

the shear strain while unloading from a shear stress of 19.6 kPa to -7.8 kPa was only noticeable for 

𝑝𝑌𝑆
′  of 1.0 kPa. Subsequently, upon reversal of the loading direction, most of this accumulated 

shear strain was recovered, leading to levels comparable to those registered when 𝑝𝑌𝑆
′  is 0.1 kPa. 

This effect was caused by the interaction between the secondary yield surface and the evolution 

of the fabric tensor. Indeed, for the mean effective stress to remain constant, the incremental 

elastic volumetric strains were required to be zero. Therefore, for undrained conditions, the 

incremental plastic volumetric strain must also be zero, thus impeding any changes in the 
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spherical and deviatoric components of the fabric tensor (Eq. 15a and 15b, respectively). As a 

result, when the loading direction changes, the magnitude and, consequently, the effect of this 

tensor on the hardening modulus is different.  

In conclusion, the introduction of the proposed secondary yield surface has been shown to 

successfully prevent the mean effective stress from reaching values below the limit defined by 

𝑝𝑌𝑆
′ . Clearly, the use of large values for this parameter, as demonstrated by the results of the 

presented parametric study, may restrict the ability of the model to simulate liquefaction-related 

phenomena, namely the full development of excess pore water pressures under cyclic loading and 

the large shear strains observed under such conditions. Conversely, only modest differences were 

registered between the results for 𝑝𝑌𝑆
′  = 0.1 kPa and 1.0 kPa, suggesting that using a relatively low 

value for this parameter benefits the stability of the model without substantially compromising its 

capabilities. Therefore, as a general guideline, the position of the secondary yield surface and its 

impact on the simulated soil response should be carefully investigated both during model 

calibration and the analysis of boundary value problems. 

 

6. Performance of the modified constitutive model 

The introduction of alterations to the formulation of the constitutive model was presented in the 

previous sections from an abstract perspective, focussing mainly on characterising to which extent 

different aspects of soil response were affected by each of the proposed modifications. Indeed, 

the performed studies have shown that the modified model is inherently more flexible than the 

original proposal upon which it is based, though its complete definition now requires the 

determination of six additional parameters (see Table 4).  

To demonstrate its modelling capabilities, the modified version of the model was calibrated based 

on the results of the extensive laboratory testing on Nevada sand carried out for the VELACS 
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project [30, 31]. The adopted procedure, based on similar techniques as those proposed in [11] 

and [9], is described in detail by Taborda [21] and led to the parameters listed in Table 5.  

Given that one of the potential advantages of basing the formulation of the constitutive model on 

the concept of state parameter is to be able to simulate sand behaviour under a wide range of 

initial conditions, a set of five undrained triaxial compression tests performed on samples of 

Nevada sand prepared with distinct values of relative density and consolidated to different mean 

effective stress levels were chosen to assess the performance of the model. The first set of 

comparisons is illustrated in Figure 14 and concerns the effect of initial mean effective stress (40 

kPa, 80 kPa and 160 kPa) on the behaviour of samples at relative density of 60%. Conversely, the 

impact of varying density (40%, 60% and 70%) on the mechanical response of samples isotropically 

consolidated to a value of mean effective stress of 80 kPa is depicted in Figure 15, together with 

the corresponding numerical predictions. As it can be seen, in both cases, the constitutive model is 

capable of accurately reproducing the observed stress-strain behaviour and the excess pore water 

pressure generated during shearing. 

In terms of undrained cyclic behaviour of Nevada sand, both a direct simple shear test and a 

triaxial test performed on this material were simulated. Note that, similar to the simulated 

monotonic triaxial tests, cyclic tests characterised by different combinations of densities and initial 

stress levels were selected: 𝐷𝑟 = 45.9% and 𝜎𝑣,0
′  = 80 kPa for the direct simple shear test and 𝐷𝑟 = 

62.0% and 𝑝0
′  = 40 kPa for the triaxial test. The numerical predictions are illustrated in Figure 16, 

where it can be seen that the model is capable of reproducing the observed mechanical response 

for both loading modes and initial conditions. 

 

 

7. Conclusions 
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The flexibility and modularity of the constitutive model described by Papadimitriou and 

Bouckovalas [5], which is an evolution of the model originally proposed by Manzari and Dafalias 

[3] and a generalisation of the model presented in Papadimitriou et al. [11], were explored 

through a series of computational studies. Three distinct components of the model were identified 

as needing improvement – the shape of the 𝐶𝑆𝐿 in 𝑝′ − 𝑒 space, the expression of the hardening 

modulus and the yield surface – and the effect of changing their formulation on the simulated soil 

behaviour was characterised.  

Specifically, it was shown that the adoption of a power law for describing the 𝐶𝑆𝐿, which is amply 

supported by experimental evidence, greatly affects the prediction of the deformation level 

required for the material to reach Critical State, in particular for very dense sands. Subsequently, 

three distinct alterations to the hardening modulus were independently introduced and their 

respective impact on soil response analysed: the dependency of this quantity on the void ratio of 

the material, its link to the elastic stiffness and the nonlinearity of the function defining the 

influence of the proximity of the current stress state to the bounding surface. With respect to the 

first of these changes, the performed parametric study demonstrated that the new formulation 

has the potential to extend, if required, the accuracy of the model to a wider range of material 

densities without the need to perform any adjustment to the parameters used. Naturally, this 

capability is important when dealing with situations where a substantial variation of void ratio 

exists, either in space (i.e. deposits composed of both loose and dense sand layers) or in time (i.e. 

repeated liquefaction and solidification of sand deposits leading to an increase in its density). In a 

second set of analysis, it was shown that the inclusion of the elastic shear modulus in the 

expression of the hardening modulus resulted in a more consistent behaviour being obtained. 

Similarly, by introducing a new parameter defining the nonlinearity of the relationship between 

the hardening modulus and the proximity to the bounding surface, the ability of the model to 

simulate flow liquefaction with limited deformation, an important feature of undrained soil 
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response, became controllable. Lastly, a new low-stress yield surface was introduced in the model 

formulation. The performed parametric study illustrated that, unless its position is adequately 

chosen, the use of the new yield surface may lead to the simulation of unrealistic behaviour. 

However, unlike the previous modifications, this change was motivated by the need to limit the 

observed detrimental effect on the computation time of the highly non-linear behaviour simulated 

by the model under low mean effective stress levels. 

The modified formulation of the model is described in Table 4, where it can be seen that six new 

parameters are now required (𝜉, 𝛼, 𝛽, 𝛾, 𝑒𝑚𝑎𝑥 and 𝑝𝑌𝑆). It is important to note that, with the 

exception of the shape of the 𝐶𝑆𝐿, all changes can be deactivated by setting the associated 

parameters to 0.0, thus guaranteeing compatibility with the formulation originally proposed by 

Papadimitriou and Bouckovalas [5]. Moreover, this allows any of the new features to be removed 

whenever there is lack of experimental evidence supporting its use (e.g. no observed effect of the 

void ratio on the hardening modulus). Consequently, rather than focusing solely on expanding the 

original model, this paper presents a systematic approach to characterise the benefits of adjusting 

specific components of its formulation and whether they are offset by the increased complexity. 

Lastly, the modified formulation of the constitutive model was shown to be capable of accurately 

reproducing the undrained behaviour of Nevada sand under monotonic and cyclic loading for a 

wide range of initial relative densities and mean effective stress levels. 
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Figure 1: the model surfaces in triaxial stress space. 
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Figure 2: shape of the model surfaces in the deviatoric plane. 
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    (a)      (b) 

Figure 3: Location of possible Critical State Lines for Leighton Buzzard sand – (a) results of 

undrained triaxial compression tests [22] and (b) approximations provided by bilinear and power 

law expressions. 
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Figure 4: Shape of the Critical State Line and initial conditions of the different tests. 
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    (a)      (b) 

Figure 5: Results obtained for the lower density material (e0 = 0.80) – (a) stress-strain curve and (b) 

excess pore water pressure. 
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    (a)      (b) 

Figure 6: Results obtained for the higher density material (e0 = 0.70) – (a) stress-strain curve and 

(b) excess pore water pressure. 
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    (a)      (b) 

Figure 7: Influence of the inclusion of void ratio in the hardening modulus – (a) stress path in p’-q 

space and (b) stress-strain curve. 
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    (a)      (b) 

Figure 8: Influence of the limit strain 𝛾1 using the original formulation [5] – (a) stress-strain curve 

and (b) stiffness variation with strain. 
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    (a)      (b) 

Figure 9: Influence of the limit strain 𝛾1 for 𝛼 = 1 – (a) stress-strain curve and (b) stiffness variation 

with strain. 
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Figure 10: Effect of parameter 𝛽 on the component of the hardening modulus related to the 

distance to the bounding surface. 
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    (a)      (b) 

Figure 11: Influence of parameter 𝛽 for similar global behaviour - (a) stress path in 𝑝′ − 𝑞 space 

and stress-strain curve. 
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    (a)      (b) 

Figure 12: Influence of parameter 𝛽 for similar minimum 𝑝′ - (a) stress path in 𝑝′ − 𝑞 space and 

stress-strain curve. 

  



39 
 

 

 

    (a)      (b) 

Figure 13: Influence of the position of the secondary yield surface on the results of the cyclic direct 

shear test – (a) generation of excess pore water pressures and (b) evolution of shear strain with 

number of cycles. 
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Figure 14: Simulation of undrained triaxial compression tests performed on samples of Nevada 

Sand [31] with a relative density of 60% isotropically consolidated under different stress levels – 

(a) stress-strain curve and (b) generation of excess pore water pressures. 
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Figure 15: Simulation of undrained triaxial compression tests performed on samples of Nevada 

Sand [31] of different density isotropically consolidated to a mean effective stress of 80 kPa – (a) 

stress-strain curve and (b) generation of excess pore water pressures. 
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Figure 16: Simulation of two cyclic tests performed on samples of Nevada Sand [31] – (a) stress 

path and (b) generation of excess pore water pressures measured on a Direct Shear test (𝐷𝑟 = 

45.9%, 𝜎𝑣,0
′  = 80 kPa); (c) stress path and (b) generation of excess pore water pressures measured 

on a Cyclic Triaxial test (𝐷𝑟 = 62.0%, 𝑝0
′  = 40 kPa and 𝑞0 = 5.8 kPa). 
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Table 1: Summary of the original formulation of the model proposed by Papadimitriou and 

Bouckovalas [5]. 

Description  Equation Parameters 

Elastic behaviour    

Small-strain shear modulus (1) 𝐺𝑚𝑎𝑥 =
𝐵 ∙ 𝑝′𝑟𝑒𝑓

0.3 + 0.7 ∙ 𝑒2
∙ √

𝑝′

𝑝′𝑟𝑒𝑓

 𝐵, 𝑝𝑟𝑒𝑓
′  

Tangent shear modulus 

(2a) 
𝐺𝑡𝑎𝑛 =

𝐺𝑚𝑎𝑥

1 + 𝜅 ∙ (
1
𝑎1

− 1) ∙ (
𝜒𝑟𝑒𝑓

𝑟

𝑁 ∙ 𝜂1
)

𝜅−1 
𝜅, 𝑎1 

(2b) 𝜂1 = 𝑎1 ∙ (
𝐺𝑚𝑎𝑥

𝑆𝑅

𝑝′𝑆𝑅
) ∙ 𝛾1 𝛾1 

Limit tangent shear modulus (3) 𝐺𝑡𝑎𝑛 ≥
𝐺𝑚𝑎𝑥

1 + 𝜅 ∙ (
1
𝑎1

− 1)
  

Tangent bulk modulus (4) 𝐾𝑡𝑎𝑛 =
2 ∙ (1 + 𝜈)

3 ∙ (1 − 2 ∙ 𝜈)
∙ 𝐺𝑡𝑎𝑛 𝑣 

Model surfaces    

Critical State Line  (5) 𝑒𝐶𝑆 = (𝑒𝐶𝑆)𝑟𝑒𝑓 − 𝜆 ∙ ln (
𝑝′

𝑝′𝑟𝑒𝑓

) (𝑒𝐶𝑆)𝑟𝑒𝑓 , 𝜆 

Critical State Surface (6) √3 ∙ 𝐽2̅ = 𝑔(𝜃, 𝑐) ∙ 𝑀𝑐
𝑐  ∙ 𝑝′ with 𝑐 = 𝑀𝑒

𝑐 𝑀𝑐
𝑐⁄  𝑀𝑒

𝑐 ,𝑀𝑐
𝑐  

Dilatancy Surface (7) √3 ∙ 𝐽2̅ = 𝑔(𝜃, 𝑐) ∙ 𝑀𝑐
𝑑  ∙ 𝑝′ = 𝑔(𝜃, 𝑐) ∙ (𝑀𝑐

𝑐 + 𝑘𝑐
𝑑 ∙ 𝜓) ∙ 𝑝′ 𝑘𝑐

𝑑  

Bounding Surface (8) √3 ∙ 𝐽2̅ = 𝑔(𝜃, 𝑐) ∙ 𝑀𝑐
𝑏  ∙ 𝑝′ = 𝑔(𝜃, 𝑐) ∙ (𝑀𝑐

𝑐 + 𝑘𝑐
𝑏 ∙ 〈−𝜓〉) ∙ 𝑝′ 𝑘𝑐

𝑏 

Shape in the deviatoric 
plane 

(9a) 𝑔(𝜃, 𝑐) =
2 ∙ 𝑐

𝑖1(𝜃, 𝑐)
– 𝑖2(𝜃, 𝑐)  

(9b) 𝑖1(𝜃, 𝑐) =
1 + 𝑐

2
−

1 − 𝑐

2
∙ 𝑐𝑜𝑠 (3 ∙ 𝜃 +

𝜋

2
)  

(9c) 𝑖2(𝜃, c) =
1 + c

2
+

1 − c

2
∙ 𝑐𝑜𝑠 (3 ∙ 𝜃 +

𝜋

2
)  

Yield surface (10) 𝐹 = √(𝒔 − 𝑝′ ∙ 𝜶): (𝒔 − 𝑝′ ∙ 𝜶) − √2 3⁄ ∙ 𝑚 ∙ 𝑝′ = 0 𝑚 

Gradient of the yield surface 

(11a) 
𝛛𝐅

𝛛𝛔′
= 𝐧 −

𝑉

3
∙ 𝐈𝟑  

(11b) 𝑉 = 𝛂:𝐧 + √2 3⁄ ∙ 𝑚  

Plastic behaviour    

Flow rule  (12) 
𝛛𝐏

𝛛𝛔′
= 𝐧 +

𝐴0 ∙ 𝑑𝑑

3
∙ 𝐈𝟑 𝐴0 

Hardening modulus 

(13a) 𝐴 = 𝑝′ ∙ ℎ𝑏 ∙ ℎ𝑓 ∙ 𝑑𝑏  

(13b) ℎ𝑏 = ℎ0 ∙ (
𝑝′

𝑝′𝑟𝑒𝑓

)

𝜇−1

∙
|𝑑𝑏|

〈𝑑𝑟𝑒𝑓
𝑏 − |𝑑𝑏|〉

 𝜇, ℎ0 
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(13c) 𝑑𝑟𝑒𝑓
𝑏 = √2 3⁄ ∙ ((𝑔(𝜃, c) ∙ 𝑀𝑐

𝑏 − 𝑚) + (𝑔(𝜃 + 𝜋, c) ∙ 𝑀𝑐
𝑏 − 𝑚))  

(13d) ℎ𝑓 =
1 + 〈𝑓𝑝〉

2

1 + 〈𝐟: 𝐧〉
  

Hardening rules    

Axis of yield surface (14) ∆𝛂 = 〈𝛬〉 ∙ ℎ𝑏 ∙ ℎ𝑓 ∙ (𝛂𝐛 − 𝛂)  

Fabric tensor  

(15a) ∆𝑓𝑝 = 𝐻 ∙ ∆𝜀𝑣𝑜𝑙
𝑝

  

(15b) ∆𝐟 = −𝐻 ∙ 〈−∆𝜀𝑣𝑜𝑙
𝑝 〉 ∙ [𝐶 ∙ 𝐧 + 𝐟]  

(15c) 𝐻 = 𝐻0 ∙ (
𝜎′1,0

𝑝𝑟𝑒𝑓

)

−𝜁

∙ 〈−𝜓0〉 𝐻0, −𝜁 

(15d) 𝐶 = 𝑚𝑎𝑥|𝑓𝑝|
2
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Table 2: Parameters proposed by Papadimitriou and Bouckovalas [5] for Nevada sand. 

Parameter Description Value 

Critical state line   

𝑝′𝑟𝑒𝑓   Reference pressure 98.1 kPa 

(𝑒𝑐𝑠)𝑟𝑒𝑓   Void ratio at 𝑝′ = 𝑝′𝑟𝑒𝑓  0.809 

𝜆  Slope of the CSL 0.022 

Surface parameters   

𝑀𝑐
𝑐   Critical state strength in triaxial compression (𝑞/𝑝’) 1.25 

𝑀𝑒
𝑐   Critical state strength in triaxial extension (𝑞/𝑝’) 0.90 

𝑘𝑐
𝑏  Effect of 𝜓 on the position of the bounding surface 1.45 

𝑘𝑐
𝑑   Effect of 𝜓 on the position of the dilatancy surface 0.30 

𝐴0  Dilatancy constant 2.10 

𝑚  Radius of yield surface 0.065 

Nonlinear elasticity   

𝐵  Elastic shear modulus constant 520.0 

𝑎1  Determines 𝐺𝑚𝑖𝑛/𝐺𝑚𝑎𝑥  0.67 

𝜅  Controls nonlinearity of degradation of 𝐺 2.00 

𝛾1  Strain limit for degradation of shear modulus 2.5×10
-4

 

𝜈  Poisson’s ratio 0.31 

Hardening modulus   

ℎ0  Plastic modulus constant 5000.0 

𝜇  Effect of mean effective stress 1.0 

Fabric tensor   

𝐻0  Fabric index constant 68000.0 

𝜁  Effect of principal stress on fabric index 1.0 
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Table 3: Parameters describing the tested shapes for the Critical State Line. 

Parameter 
Linear shape  

(Papadimitriou and Bouckovalas [5]) 
Power law  

(Ling and Yang [28]) 

(𝑒𝐶𝑆)𝑟𝑒𝑓  0.8090 0.8430 

𝜆 0.0220 0.0287 

𝜉 – 0.7000 

𝑝𝑟𝑒𝑓
′  98.1 kPa 101.3 kPa 
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Table 4: Summary of the modified formulation of the model. 

Description  Equation Parameters 

Elastic behaviour    

Small-strain shear modulus (16) 𝐺𝑚𝑎𝑥 =
𝐵 ∙ 𝑝′𝑟𝑒𝑓

0.3 + 0.7 ∙ 𝑒2
∙ √

𝑝′

𝑝′𝑟𝑒𝑓

 𝐵, 𝑝𝑟𝑒𝑓
′  

Tangent shear modulus 

(17a) 
𝐺𝑡𝑎𝑛 =

𝐺𝑚𝑎𝑥

1 + 𝜅 ∙ (
1
𝑎1

− 1) ∙ (
𝜒𝑟𝑒𝑓

𝑟

𝑁 ∙ 𝜂1
)

𝜅−1 
𝜅, 𝑎1 

(17b) 𝜂1 = 𝑎1 ∙ (
𝐺𝑚𝑎𝑥

𝑆𝑅

𝑝′𝑆𝑅
) ∙ 𝛾1 𝛾1 

Limit tangent shear modulus (18) 𝐺𝑡𝑎𝑛 ≥
𝐺𝑚𝑎𝑥

1 + 𝜅 ∙ (
1
𝑎1

− 1)
  

Tangent bulk modulus (19) 𝐾𝑡𝑎𝑛 =
2 ∙ (1 + 𝜈)

3 ∙ (1 − 2 ∙ 𝜈)
∙ 𝐺𝑡𝑎𝑛 𝑣 

Model surfaces    

Critical State Line  (20) 𝑒𝐶𝑆 = (𝑒𝐶𝑆)𝑟𝑒𝑓 − 𝜆 ∙ (
𝑝′

𝑝′
𝑟𝑒𝑓

)

𝜉

 (𝑒𝐶𝑆)𝑟𝑒𝑓 , 𝜆, 𝜉 

Critical State Surface (21) √3 ∙ 𝐽2̅ = 𝑔(𝜃, 𝑐) ∙ 𝑀𝑐
𝑐  ∙ 𝑝′ with 𝑐 = 𝑀𝑒

𝑐 𝑀𝑐
𝑐⁄  𝑀𝑒

𝑐 , 𝑀𝑐
𝑐 

Dilatancy Surface (22) √3 ∙ 𝐽2̅ = 𝑔(𝜃, 𝑐) ∙ 𝑀𝑐
𝑑  ∙ 𝑝′ = 𝑔(𝜃, 𝑐) ∙ (𝑀𝑐

𝑐 + 𝑘𝑐
𝑑 ∙ 𝜓) ∙ 𝑝′ 𝑘𝑐

𝑑  

Bounding Surface (23) √3 ∙ 𝐽2̅ = 𝑔(𝜃, 𝑐) ∙ 𝑀𝑐
𝑏  ∙ 𝑝′ = 𝑔(𝜃, 𝑐) ∙ (𝑀𝑐

𝑐 + 𝑘𝑐
𝑏 ∙ 〈−𝜓〉) ∙ 𝑝′ 𝑘𝑐

𝑏 

Shape in the deviatoric 
plane 

(24a) 𝑔(𝜃, 𝑐) =
2 ∙ 𝑐

𝑖1(𝜃, 𝑐)
– 𝑖2(𝜃, 𝑐)  

(24b) 𝑖1(𝜃, 𝑐) =
1 + 𝑐

2
−

1 − 𝑐

2
∙ 𝑐𝑜𝑠 (3 ∙ 𝜃 +

𝜋

2
)  

(24c) 𝑖2(𝜃, c) =
1 + c

2
+

1 − c

2
∙ 𝑐𝑜𝑠 (3 ∙ 𝜃 +

𝜋

2
)  

Primary yield surface (25) 𝐹1 = √(𝑠 − 𝑝′ ∙ 𝛼): (𝑠 − 𝑝′ ∙ 𝛼) − √2 3⁄ ∙ 𝑚 ∙ 𝑝′ = 0 𝑚 

Gradient of the primary 
yield surface 

(26a) 
𝛛𝐅𝟏

𝛛𝛔′
= 𝐧 −

𝑉

3
∙ 𝐈𝟑  

(26b) 𝑉 = 𝛂:𝐧 + √2 3⁄ ∙ 𝑚  

Secondary yield surface (27) 𝐹2 = 𝑝𝑌𝑆
′ − 𝑝′ = 0 𝑝𝑌𝑆

′
 

Gradient of the secondary 
yield surface 

(28) 
𝛛𝐅𝟐

𝛛𝛔′
= 𝐈𝟑  

Plastic behaviour – primary yield surface  

Flow rule (29) 
𝛛𝐏𝟏

𝛛𝛔′
= 𝐧 +

𝐴0 ∙ 𝑑𝑑

3
∙ 𝐈𝟑 𝐴0 

Hardening modulus (30a) 𝐴 = 𝑝′ ∙ ℎ𝑒 ∙ ℎ𝑔 ∙ ℎ𝑏 ∙ ℎ𝑓 ∙ 𝑑𝑏  
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(30b) ℎ𝑒 = ℎ0 ∙ (1 − 𝛾) ∙ 𝑒 ≥ ℎ0 ∙ (1 − 𝛾) ∙ 𝑒𝑚𝑎𝑥  ℎ0, 𝛾, 𝑒𝑚𝑎𝑥  

(30c) ℎ𝑔 = 𝐺𝑡𝑎𝑛
𝛼  𝛼 

(30d) ℎ𝑏 = (
𝑝′

𝑝′𝑟𝑒𝑓

)

𝜇−1

∙ (
|𝑑𝑏|

〈𝑑𝑟𝑒𝑓
𝑏 − |𝑑𝑏|〉

)

𝛽+1

 𝜇, 𝛽 

(30e) 𝑑𝑟𝑒𝑓
𝑏 = √2 3⁄ ∙ ((𝑔(𝜃, c) ∙ 𝑀𝑐

𝑏 − 𝑚) + (𝑔(𝜃 + 𝜋, c) ∙ 𝑀𝑐
𝑏 − 𝑚))  

(30f) ℎ𝑓 =
1 + 〈𝑓𝑝〉

2

1 + 〈𝐟: 𝐧〉
  

Plastic behaviour – secondary yield surface  

Flow rule  (31) 
𝛛𝐏𝟐

𝛛𝛔′
= 𝐈𝟑  

Hardening modulus (32) 𝐴2 = 0.0  

Hardening rules    

Axis of primary yield surface (33) ∆𝛂 = 〈𝛬1〉 ∙ ℎ𝑒 ∙ ℎ𝑔 ∙ ℎ𝑏 ∙ ℎ𝑓 ∙ (𝛂𝐛 − 𝛂)  

Fabric tensor  

(34a) ∆𝑓𝑝 = 𝐻 ∙ ∆𝜀𝑣𝑜𝑙
𝑝

  

(34b) ∆𝐟 = −𝐻 ∙ 〈−∆𝜀𝑣𝑜𝑙
𝑝 〉 ∙ [𝐶 ∙ 𝐧 + 𝐟]  

(34c) 𝐻 = 𝐻0 ∙ (
𝜎′1,0

𝑝′𝑟𝑒𝑓

)

−𝜁

∙ 〈−𝜓0〉 𝐻0, −𝜁 

(34d) 𝐶 = 𝑚𝑎𝑥|𝑓𝑝|
2
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Table 5: Parameters for Nevada sand using the modified formulation [21]. 

Parameter Value 

Critical state line  

𝑝′𝑟𝑒𝑓   100.0 kPa 

(𝑒𝑐𝑠)𝑟𝑒𝑓   0.887 

𝜆  0.079 

𝜉 0.250 

Surface parameters  

𝑀𝑐
𝑐   1.290 

𝑀𝑒
𝑐   0.900 

𝑘𝑐
𝑏  2.180 

𝑘𝑐
𝑑   2.350 

𝐴0  1.460 

𝑚  0.065 

𝑝𝑌𝑆
′  1.0 kPa 

Nonlinear elasticity  

𝐵  518.6 

𝑎1  0.300 

𝜅  2.000 

𝛾1  6.5×10
-4

 

𝜈  0.200 

Hardening modulus  

ℎ0  0.613 

𝛾 1.214 

𝑒𝑚𝑎𝑥  0.818 

𝛼 1.000 

𝛽 0.000 

𝜇  1.500 

Fabric tensor  

𝐻0  12239.4 

𝜁  1.590 
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Appendix A: Calculation of plastic strains and formulation of the elasto-plastic matrix 

The formulation of the constitutive model described in this paper has been presented in 

generalised stress space, introducing all quantities as tensors. However, as these are symmetrical, 

only the terms on and above the diagonal need to be stored. For example, the effective stress (𝛔′), 

strain (𝛆) and second order identity (𝐈𝟑) tensors can be represented by the following vectors: 

𝝈′ = {𝜎′𝑥 𝜎′𝑦 𝜏𝑥𝑦 𝜎′𝑧 𝜏𝑥𝑧 𝜏𝑦𝑧}𝑇 Eq. 52 

𝜺 = {𝜀𝑥 𝜀𝑦 𝛾𝑥𝑦 𝜀𝑧 𝛾𝑥𝑧 𝛾𝑦𝑧}𝑇 Eq. 53 

𝑰𝟑 = {1.0 1.0 0.0 1.0 0.0 0.0}𝑇 Eq. 54 

Note that italic has been used to distinguish vectorial from tensorial quantities. Similarly, this 

notation can be used for the gradients of the yield and plastic potential surfaces: 

𝝏𝑭

𝝏𝝈′
= {

𝜕𝐹

𝜕𝜎′𝑥

𝜕𝐹

𝜕𝜎′𝑦

𝜕𝐹

𝜕𝜏𝑥𝑦

𝜕𝐹

𝜕𝜎′𝑧

𝜕𝐹

𝜕𝜏𝑥𝑧

𝜕𝐹

𝜕𝜏𝑦𝑧
}

𝑻

 Eq. 55 

𝝏𝑷

𝝏𝝈′
= {

𝜕𝑃

𝜕𝜎′𝑥

𝜕𝑃

𝜕𝜎′𝑦

𝜕𝑃

𝜕𝜏𝑥𝑦

𝜕𝑃

𝜕𝜎′𝑧

𝜕𝑃

𝜕𝜏𝑥𝑧

𝜕𝑃

𝜕𝜏𝑦𝑧
}

𝑻

 Eq. 56 

The plastic multiplier, can then be determined using: 

𝛬 =

𝝏𝑭
𝝏𝝈′

𝑇

∙ 𝐃 ∙ ∆𝜺

𝝏𝑭
𝝏𝝈′

𝑇

∙ 𝐃 ∙
𝝏𝑷
𝝏𝝈′

+ 𝐴

 Eq. 57 

where 𝐃 is the elastic constitutive matrix: 

𝐃 =

[
 
 
 
 
 
 
 
 𝐾𝑡𝑎𝑛 +

4

3
∙ 𝐺𝑡𝑎𝑛 𝐾𝑡𝑎𝑛 −

2

3
∙ 𝐺𝑡𝑎𝑛 0 𝐾𝑡𝑎𝑛 −

2

3
∙ 𝐺𝑡𝑎𝑛 0 0

𝐾𝑡𝑎𝑛 −
2

3
∙ 𝐺𝑡𝑎𝑛 𝐾𝑡𝑎𝑛 +

4

3
∙ 𝐺𝑡𝑎𝑛 0 𝐾𝑡𝑎𝑛 −

2

3
∙ 𝐺𝑡𝑎𝑛 0 0

0 0 𝐺𝑡𝑎𝑛 0 0 0

𝐾𝑡𝑎𝑛 −
2

3
∙ 𝐺𝑡𝑎𝑛 𝐾𝑡𝑎𝑛 −

2

3
∙ 𝐺𝑡𝑎𝑛 0 𝐾𝑡𝑎𝑛 +

4

3
∙ 𝐺𝑡𝑎𝑛 0 0

0 0 0 0 𝐺𝑡𝑎𝑛 0
0 0 0 0 0 𝐺𝑡𝑎𝑛]

 
 
 
 
 
 
 
 

 Eq. 58 

and 𝐴 is the hardening modulus: 

𝐴 = −
1

𝛬
∙
𝝏𝑭

𝝏𝒌

𝑻

∙ ∆𝒌 Eq. 59 

In the expression above, Δ𝒌 designates the incremental vector of hardening parameters. The 

incremental plastic strain and incremental stress vectors can then be determined using: 

∆𝜺𝒑 =  𝛬 ∙
𝝏𝑷

𝝏𝝈′
 Eq. 60 

∆𝝈′ = 𝐃 ∙ ∆𝜺 − 𝛬 ∙ 𝐃 ∙
𝝏𝑷

𝝏𝝈′
 Eq. 61 

while the elasto-plastic matrix can be calculated by: 
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𝐃𝐞𝐩 = 𝐃 −
𝐃 ∙

𝝏𝑷
𝝏𝝈′

∙
𝝏𝑭
𝝏𝝈′

𝑇

∙ 𝐃

𝝏𝑭
𝝏𝝈′

𝑇

∙ 𝐃 ∙
𝝏𝑷
𝝏𝝈′

+ 𝐴

 Eq. 62 
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Appendix B: Elasto-plasticity when two yield surfaces are simultaneously active 

When a constitutive model employs two separate yield surfaces, it is possible for the stress point 

to activate both simultaneously, thus requiring the equations which govern plasticity, which were 

introduced in Appendix A, to be adequately altered [20]. In the following description, the vector 

form as presented in Appendix A, was used for all quantities.  

If the stress point be located on both yield surfaces, the plastic component of the incremental 

strain vector can be further divided into incremental plastic strains associated with each of the 

two yield surfaces, ∆𝜺𝟏
𝒑

 and ∆𝜺𝟐
𝒑

: 

∆𝜺 = ∆𝜺𝒆 + ∆𝜺𝟏
𝒑
+ ∆𝜺𝟐

𝒑
 Eq. 63 

As presented in Appendix A, the plastic strains can be evaluated by: 

∆𝜺𝟏
𝒑

= 𝛬1 ∙
𝝏𝑷𝟏

𝝏𝝈′
 Eq. 64 

∆𝜺𝟐
𝒑

= 𝛬2 ∙
𝝏𝑷𝟐

𝝏𝝈′
 Eq. 65 

Therefore, the stress increment ∆σ′ can be determined by: 

∆𝝈′ = 𝐃 ∙ ∆𝜺 − 𝛬1 ∙ 𝐃 ∙
𝝏𝑷𝟏

𝝏𝝈′
− 𝛬2 ∙ 𝐃 ∙

𝝏𝑷𝟐

𝝏𝝈′
 Eq. 66 

Since the stress state satisfies both yield surfaces, 𝐹1 = 0 and 𝐹2 = 0 must be verified. Using the 

chain rule of differentiation on the consistency condition, which states that ∆𝐹1 = ∆𝐹2 = 0, 

results in: 

∆𝐹1 =
𝝏𝑭𝟏

𝝏𝝈′

𝑻

∙ ∆𝝈′ +
𝝏𝑭𝟏

𝝏𝒌𝟏

𝑻

∙ ∆𝒌𝟏 Eq. 67 

∆𝐹2 =
𝝏𝑭𝟐

𝝏𝝈′

𝑻

∙ ∆𝝈′ +
𝝏𝑭𝟐

𝝏𝒌𝟐

𝑻

∙ ∆𝒌𝟐 Eq. 68 

where 𝒌𝒊 are the hardening parameters associated to surface 𝑖. Substituting Eq. 66 into Eq. 67 and 

Eq. 68 gives: 

∆𝐹1  =
𝝏𝑭𝟏

𝝏𝝈′

𝑻

∙ 𝐃 ∙ ∆𝜺 − 𝛬1 ∙
𝝏𝑭𝟏

𝝏𝝈′

𝑻

∙ 𝐃 ∙
𝝏𝑷𝟏

𝝏𝝈′

− 𝛬2 ∙
𝝏𝑭𝟏

𝝏𝝈′

𝑻

∙ 𝐃 ∙
𝝏𝑷𝟐

𝝏𝝈′
 − 𝛬1 ∙ 𝐴1 = 0 

Eq. 69 

∆𝐹2  =
𝝏𝑭𝟐

𝝏𝝈′

𝑻

∙ 𝐃 ∙ ∆𝜺 − 𝛬1 ∙
𝝏𝑭𝟐

𝝏𝝈′

𝑻

∙ 𝐃 ∙
𝝏𝑷𝟏

𝝏𝝈′

− 𝛬2 ∙
𝝏𝑭𝟐

𝝏𝝈′

𝑻

∙ 𝐃 ∙
𝝏𝑷𝟐

𝝏𝝈′
 − 𝛬2 ∙ 𝐴2 = 0 

Eq. 70 

where, as previously presented: 
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𝐴1 = −
1

𝛬1
∙
𝝏𝑭𝟏

𝝏𝒌𝟏

𝑻

∙ ∆𝒌𝟏 Eq. 71 

𝐴2 = −
1

𝛬2
∙
𝝏𝑭𝟐

𝝏𝒌𝟐

𝑻

∙ ∆𝒌𝟐 Eq. 72 

Eq. 69 and Eq. 70 can be rewritten in the following form: 

𝛬1 ∙ 𝐿11 + 𝛬2 ∙ 𝐿12 = 𝑇1 Eq. 73 

𝛬2 ∙ 𝐿21 + 𝛬2 ∙ 𝐿22 = 𝑇2 Eq. 74 

where 

𝐿11 =
𝝏𝑭𝟏

𝝏𝝈′

𝑻

∙ 𝐃 ∙
𝝏𝑷𝟏

𝝏𝝈′
+ 𝐴1 Eq. 75 

𝐿22 =
𝝏𝑭𝟐

𝝏𝝈′

𝑻

∙ 𝐃 ∙
𝝏𝑷𝟐

𝝏𝝈′
+ 𝐴2 Eq. 76 

𝐿12 =
𝝏𝑭𝟏

𝝏𝝈′

𝑻

∙ 𝐃 ∙
𝝏𝑷𝟐

𝝏𝝈′
 Eq. 77 

𝐿21 =
𝝏𝑭𝟐

𝝏𝝈′

𝑻

∙ 𝐃 ∙
𝝏𝑷𝟏

𝝏𝝈′
 Eq. 78 

𝑇1 =
𝝏𝑭𝟏

𝝏𝝈′

𝑻

∙ 𝐃 ∙ ∆𝜺 Eq. 79 

𝑇2 =
𝝏𝑭𝟐

𝝏𝝈′

𝑻

∙ 𝐃 ∙ ∆𝜺 Eq. 80 

The system of linear equations composed of Eq. 73 and Eq. 74 can be solved simultaneously since 

𝛬1 and 𝛬2 are the only unknowns, resulting in: 

𝛬1 =
𝐿22 ∙ 𝑇1 − 𝐿12 ∙ 𝑇2

𝐿11 ∙ 𝐿22 − 𝐿12 ∙ 𝐿21
 Eq. 81 

𝛬2 =
𝐿11 ∙ 𝑇2 − 𝐿21 ∙ 𝑇1

𝐿11 ∙ 𝐿22 − 𝐿12 ∙ 𝐿21
 Eq. 82 

The elasto-plastic constitutive matrix is then determined by: 

𝐃𝐞𝐩 = 𝐃 −
𝐃

𝛺
∙ [

𝝏𝑷𝟏

𝝏𝝈′
∙ 𝒃𝟏

𝑻 +
𝝏𝑷𝟐

𝝏𝝈′
∙ 𝒃𝟐

𝑻] ∙ 𝐃 Eq. 83 

where 

𝛺 = 𝐿11 ∙ 𝐿22 − 𝐿12 ∙ 𝐿21 Eq. 84 

and 

𝒃𝟏
𝑻 = 𝐿22 ∙

𝝏𝑭𝟏

𝝏𝝈′
− 𝐿12 ∙

𝝏𝑭𝟐

𝝏𝝈′
 Eq. 85 

𝒃𝟐
𝑻 = 𝐿11 ∙

𝝏𝑭𝟐

𝝏𝝈′
− 𝐿21 ∙

𝝏𝑭𝟏

𝝏𝝈′
 Eq. 86 

 


