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ABSTRACT

Prokaryotes have engineered sophisticated surface nanomachines that have allowed them to colonize Earth and thrive even
in extreme environments. Filamentous machineries composed of type IV pilins, which are associated with an amazing
array of properties ranging from motility to electric conductance, are arguably the most widespread since distinctive
proteins dedicated to their biogenesis are found in most known species of prokaryotes. Several decades of investigations,
starting with type IV pili and then a variety of related systems both in bacteria and archaea, have outlined common
molecular and structural bases for these nanomachines. Using type IV pili as a paradigm, we will highlight in this review
common aspects and key biological differences of this group of filamentous structures.
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INTRODUCTION

Since the inception of cellular life, prokaryotes (bacteria and
archaea) have been faced with a conundrum crucial for their
survival: How to efficiently interact with their environment
through the formidable barriers that define their very existence?
These unicellular organisms have therefore engineered a vari-
ety of macromolecular nanomachines on their surface, which
are assembled across highly impermeable membrane(s) and/or
thick cell walls, and play important and diverse roles in micro-
bial biology. One exceptionally widespread and multipurpose
group of nanomachines uses filaments composed of subunits
with a characteristic N-terminal sequence motif named class
III signal peptide (Szabó et al., 2007), generically named type
IV pilins. Because they were the first to be identified and have
been extensively studied ever since, the paradigm of this class
are the surface-exposed organelles known as type IV pili (Tfp)
(Pelicic 2008). Tfp—also known as bundle-forming pili (Bfp)
in enteropathogenic Escherichia coli (EPEC) (Donnenberg, Zhang

and Stone 1997), toxin co-regulated pili (Tcp) in Vibrio cholerae
(Manning 1997), fimbrial low-molecular-weight protein (Flp) pili
inAggregatibacter actinomycetemcomitans (Tomich, Planet and Fig-
urski 2007), etc.—are long surface-exposed filaments composed
of type IV pilins, whose biogenesis depends on a set of distinc-
tive proteins. Studies in numerous species of bacteria and ar-
chaea have later revealed that several other systemswithwidely
different morphological features are evolutionarily related to
Tfp (Hobbs and Mattick 1993; Jarrell, Bayley and Kostyukova
1996) because they are also composed of type IV pilins and
assembled by similar sets of proteins. These structures have
names as diverse as secreton (Pugsley 1993b), archaellum (Jar-
rell and Albers 2012) or bindosome (Zolghadr et al., 2007).

In this review, we will provide an overview of the complex
biology of the machineries composed of type IV pilins whose
biogenesis depends on a conserved set of proteins, for which
we would like to introduce the unifying name type IV filaments
(Tff). We will briefly list known Tff systems, the wide array of
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functions theymediate and their astonishing distribution in two
out of the three domains of life. With an emphasis on the best
characterized Tfp, we will then discuss in detail molecular and
structural aspects of Tff and their complex biogenesis, underlin-
ing the many important commonalities, as well as a few signifi-
cant differences.

TFF: AN AMAZING VARIETY OF
MORPHOLOGIES AND ASSOCIATED
FUNCTIONS

Unlike any other type of prokaryotic surface nanomachines, Tff
come in a variety of shapes and promote a vast array of seem-
ingly unrelated properties such as adhesion, motility, protein
secretion and DNA uptake. Hence, these functionally versatile
nanomachines can be viewed as the prokaryotic equivalents of
theworld-famousmultitool pocket knife, which has inspired the
title of this review. In this section, we will list the different types
of Tff and the variety of functions they have been associated
with.

Bacterial Tfp: the Tff paradigm

Bacterial Tfp conspicuous morphological features (Fig. 1)—i.e.
they are surface-exposed filaments displaying a pronounced
flexibility, a propensity to interact laterally to form bundles and
are up to 1000 times longer (up to several μm) than they are
wide (usually 60–80 Å)—were used in early electron microscopy
(EM) studies to define them as a distinct type of pili (Ottow
1975), hence their Tfp moniker. Tfp have since been found and
studied in many species of Gram-negative (Mattick 2002; Pelicic
2008) and Gram-positive bacteria (Melville and Craig 2013). Un-
like other types of pili, Tfp are capable of retracting and generat-
ing forces ranging from 100 pN per single filament (Maier et al.,
2002), to several nN for bundles (Biais et al., 2008). Retraction,

individual
filament

bundle of
filaments 

Figure 1. Conspicuous morphological features of bacterial Tfp, i.e. several μm
length, 6–8 nmwidth, flexibility and propensity to interact laterally to form bun-
dles. Bundle of filaments produced by N. meningitidis (individual filaments are
60 Å wide) were visualized by EM after negative staining with phosphotungstic

acid.

which occurs through rapid depolymerization of pilin subunits,
has so far been directly demonstrated only for one sub-class of
Tfp (Tfpa see below). This is consistent with the fact that the
PilT ATPase powering this process (Merz, So and Sheetz 2000)
is restricted to the corresponding bacterial species. It remains a
burning question whether other sub-classes of Tfp and/or other
Tff can also retract as there is at best only indirect evidence so far
(Bieber et al., 1998; Zahavi et al., 2011). This huge force gen-
eration makes Tfp the most potent linear molecular motor
described to date. Critically, it endows Tfp with properties not
commonly associated with other pili and can even influence
their morphology, i.e. when under tension Neisseria gonorrhoeae
Tfp reversibly transition into a 40% narrower elongated
conformation (Biais et al., 2010).

Tfp are ‘sticky’ organelles
Like other types of bacterial pili, Tfp mediate attachment to and
colonization of a wide variety surfaces, both abiotic (plastic,
glass, metal, etc.) and biotic (host cells and extracellular matrix
in commensals and pathogens). Attachment to biotic surfaces
makes Tfp key virulence factors in several human pathogens
responsible for infections leading to dramatic morbidity and/or
mortality worldwide—cholera, diarrhoea, meningitis and
gonorrhoea, to cite but a few—and is the main reason Tfp
have been a hot topic for research for decades. Tfp mediate
adhesion in several ways in contrast to other types of pili
that most often harbour a minor (low-abundance) subunit
with intrinsic adhesive properties at their tip, e.g. type I pili
(Lillington, Geibel and Waksman 2014). For example, the major
Tfp subunit itself can have adhesive properties, such as the Bfp
subunit that is a lectin with affinity for N-acetyllactosamine
receptors on human host cells (Hyland et al., 2008), or PilA1
that mediates adhesion of the Gram-positive Ruminococcus
albus to cellulose in the gastrointestinal tract of ruminants
(Pegden et al., 1998; Rakotoarivonina et al., 2002). Alternatively,
minor pilins can play important roles in attachment, such as
PilV in the pathogenic Neisseria species N. meningitidis and N.
gonorrhoeae (Winther-Larsen et al., 2001; Brown et al., 2010).
PilV first binds CD147, mediating tight adhesion to host cells
(Bernard et al., 2014), and then it binds β-adrenergic receptors
(Coureuil et al., 2010) triggering the formation of membrane
protrusions around adhering meningococci and enhancing
their ability to resist mechanical forces generated by the blood
flow (Mikaty et al., 2009). Non-pilin proteins associated with Tfp
can also play key roles in adhesion as shown for PilC/PilY1 in
multiple species (Rudel et al., 1992; Nassif et al., 1994; Kehl-Fie,
Miller and St Geme 2008; Heiniger et al., 2010). Recently, an
Arg-Gly-Asp motif in the N-terminal domain (NTD) of
Pseudomonas aeruginosa PilY1 was found to bind integrin
(Johnson et al., 2011), providing evidence that it is a bona fide
adhesin. Since the NTD of PilC/PilY1 is species-specific, it is
likely that orthologues in different species mediate adhesion
to different receptors. Finally, Tfp retraction can influence their
adhesive properties. For example, N. gonorrhoeae promotes
colonization by mechanically stimulating pathways in host
cells upon pilus retraction (Howie, Glogauer and So 2005).

Tfp promote interbacterial contacts
Another very common property of Tfp that influences attach-
ment to surfaces is their ability to promote interaction be-
tween neighbouring bacteria via pilus–pilus contacts. These
contacts lead to the formation of aggregates or micro-colonies
(Kirn et al., 2000), which can even become biofilms if em-
bedded within a matrix of extracellular polymeric substance



136 FEMS Microbiology Reviews, 2015, Vol. 39, No. 1

(O’Toole and Kolter 1998). Although they both involve pilus–
pilus contacts, it should be pointed out that formation of micro-
colonies and pilus bundling are distinct properties (Kirn et al.,
2000). Formation of micro-colonies can be promoted by the ma-
jor pilus subunit as in V. cholerae Tcp (Chiang et al., 1995), or
by a minor pilin such as PilX in N. meningitidis (Helaine et al.,
2005). PilX subunits in the filaments of interactingmeningococci
are thought to brace against each other upon pilus retraction
through surface-exposed ‘hooks’ and thereby stabilize micro-
colonies in face of pilus retraction (Helaine et al., 2007), although
an alternative hypothesis has recently been proposed (Imhaus
and Dumenil 2014). The formation of micro-colonies, which can
also be seen in liquid culture, is however not limited to enhanc-
ing surface colonization. As shown for the R64 plasmid thin
pilus of E. coli (Yoshida et al., 1998), Tfp-mediated aggregation
promotes subsequent exchange of DNA between cells.

Tfp power twitching motility
Almost all bacterial species with retractile Tfp undergo surface-
associated motility known as twitching motility (or social motil-
ity inMyxococcus xanthus) because cells exhibit jerkymovements
(Henrichsen 1972). Bacteria use Tfp as ‘grappling hooks’ and
upon PilT-mediated pilus retraction pull themselves towards the
site where the pilus is attached (Mattick 2002). The force gener-
ated by a single filament retraction (Maier et al., 2002) allows the
bacterium tomove 10 000 times its own bodyweight (Baker, Biais
and Tama 2013), which results in rapid movement (Merz, So and
Sheetz 2000). The irregular motion, abrupt turns and changes
of direction, characteristic of twitching, are due to the release
of single filaments, while others are still under tension, so that
the bacterium rapidly ‘slingshots’ to a new orientation (Jin et al.,
2011). Twitching motility has probably evolved to allow surface
exploration that can be random or directed, e.g. towards light
sources in the cyanobacterium Synechocystis sp. (Bhaya et al.,
2000), and can even be optimized for 2D exploration when bac-
teria stand upright and ‘walk’ (Gibiansky et al., 2010).

Tfp promote DNA uptake during natural transformation
In contrast to the widespread nature of twitching motility, only
a subset of bacterial species with retractile Tfp use these to pro-
mote the earliest step of natural transformation, i.e. import (or
uptake) of free extracellular DNA across the outer membrane
and/or thick layer of peptidoglycan (PG) (Chen andDubnau 2004).
In these species, DNA uptake is directly powered by pilus retrac-
tion and is abolished in a pilT mutant (Wolfgang et al., 1998a).
Imported DNA is used to generate genetic diversity, as a tem-
plate for the repair of damaged DNA, or as a source of food (Chen
and Dubnau 2004). Tfp bind extracellular DNA (van Schaik et al.,
2005)most likely through amajor orminor pilin, as confirmed by
the recent discovery that the ComP minor pilin in the Neisseri-
aceae family has intrinsic DNA-binding ability (Berry et al., 2013;
Cehovin et al., 2013). Furthermore, ComP binds better to short
and specific sequence motifs hyperabundant in these species
genomes, explaining how they manage to preferentially take up
their own DNA.

Uncommon and/or indirect Tfp properties
Another property of bacterial Tfp, which further extends the
versatility of this class of filaments, might be viewed as ‘ex-
otic’ or as a mere curiosity. In Geobacter species, Tfp have been
found to be electrically conductive ‘nanowires’ transferring elec-
trons from the cells to extracellular electron acceptors (Reguera
et al., 2005). Although it has been proposed that conductivity
might result from electrons ‘hopping’ between cytochromes at-

tached to Geobacter Tfp (Boesen and Nielsen 2013), filaments are
likely to have intrinsicmetal-like electron-conductive properties
through stacking of aromatic residues of the major pilin PilA.
Accordingly, filaments composed of pilA mutants lacking these
residues have reduced conductive properties (Vargas et al., 2013).

It is worthmentioning here that retractile Tfp have also been
hijacked by bacterial viruses. Some bacteriophages bind to the
side or tip of Tfp, and are brought in contact with a cell surface-
associated receptor upon pilus retraction (Skerker and Shapiro
2000). Historically, this is an important property since it is the
observation by EM that shortening of P. aeruginosa pili occurred
after phage attachment and was necessary for phage infection
that led Bradley to propose that Tfp are capable of retraction
(Bradley 1972). Furthermore, the finding that phage-resistant
mutants that were unable to retract their pili were also defec-
tive for twitching allowed the same author to link Tfp retraction
with twitching motility for the first time (Bradley 1980).

Other widespread bacterial Tff

Competence (pseudo)pili
In most naturally competent bacterial species, DNA uptake is
not mediated by Tfp but rather by elusive Tff structures known
as competence ‘pseudopili’ formed of a major ‘pseudopilin’,
which cannot be directly visualized by EM because they are too
short (Chen and Dubnau 2004). Key evidence for their existence
is the recent discovery of extended competence organelles in
Streptococcus pneumoniae (Laurenceau et al., 2013; Balaban et al.,
2014), which remained unnoticed for decades in this species
where competence has been intensively investigated (Johnston
et al., 2014). Although no PilT is associated with competence
pseudopili, a study in Bacillus subtilis showed that these are nev-
ertheless force-generating motors exerting forces in excess of
40 pN on free DNA, and transporting it into the cell in a lin-
ear fashion (Maier et al., 2004). Transport is powered by proton
motive force but the underlying molecular mechanism for force
generation remains to be determined.

Type II secretion systems
Rather than for DNA import, pseudopili are used bymany Gram-
negative species as part of the secreton machinery to ‘push’
or ‘lift’ fully folded periplasmic proteins or protein complexes
into the extracellular milieu across a dedicated channel in the
outer membrane (Douzi, Filloux and Voulhoux 2012; Korotkov,
Sandkvist and Hol 2012; Nivaskumar and Francetic 2014). Per-
haps misleadingly, this process is known as type II secretion,
whereas type IV secretion is mediated by a machinery unre-
lated to Tfp (Low et al., 2014). However, these unfortunate dif-
ferences in nomenclature predate the discovery that type II se-
cretion systems (T2SS) are evolutionarily related to Tfp, and fur-
ther support our proposal of a unifying Tff name. As for com-
petence pseudopili, T2SS pseudopili have never been directly
visualized, probably because they are too short, barely span-
ning the periplasmic space (Douzi, Filloux and Voulhoux 2012;
Nivaskumar and Francetic 2014). However, a key piece of evi-
dence for their existence is the fact that surface-exposed fil-
aments similar to Tfp, named ‘hyper-pseudopili’, can be seen
when T2SS-harbouring bacteria are genetically engineered to
overexpress the major pseudopilin (Sauvonnet et al., 2000; Du-
rand et al., 2003; Vignon et al., 2003). T2SS-exported proteins,
often enzymes, play important roles in lifestyles of the secret-
ing bacteria by providing them with essential nutrients or by
having toxic effects on host cells in pathogens (Nivaskumar
and Francetic 2014). Interestingly, protein secretion can also be
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mediated by some Tfp machineries as in V. cholerae and
Dichelobacter nodosus (Kirn, Bose and Taylor 2003; Han et al., 2007).
This blurs the lines between the different Tff and strengthens
the notion that they are a homogeneous class of nanomachines.

Archaeal Tff

It is now clear that Tff are alsowidespread in a second domain of
life, archaea. Although they often have different morphological
features from bacterial Tfp—notably diameters up to 140 Å (Jar-
rell et al., 2013)—bona fide Tfp (long surface-exposed organelles
composed of type IV pilins whose biogenesis depends on similar
sets of proteins) have been identified in many archaeal species.
Two main groups of archaeal filaments are distinguished based
on the functions they have been associated with. Those fila-
ments involved in attachment to surface and/or promotion of
interarchaeal contacts are generically called pili. As in bacteria,
Tfp-mediated aggregation can promote subsequent exchange of
DNA between archaeal cells as shown for UV-induced pili of Sul-
folobus (Fröls et al., 2008). Archaeal filaments that power swim-
ming such as in Sulfolobus acidocaldarius are defined as flagella.
Indeed, these Tff drive swimming by rotating (Shahapure et al.,
2014) and are thus functional analogues of bacterial flagella (Jar-
rell et al., 2013). To underline these differences, a new name ‘ar-
chaellum’ has been coined for these archaeal flagella (Jarrell and

Albers 2012), but it is not universally accepted. Intriguingly, it has
been shown that the FlaI ATPase powers both archaellum as-
sembly and rotation (Reindl et al., 2013). The fact that a protein
universally energizing Tff assembly (see below) can power fila-
ment rotation in archaea might have biological implications for
this whole class of filaments, as will be discussed later. Among
the many reasons why archaella might be the only Tff pow-
ering swimming are a higher rigidity, the possibility that they
are Archimedes’ ‘screws’, the presence of additional machinery
components, etc.

Possibly the most peculiar Tff machinery is the elu-
sive S. solfataricus structure named bindosome that facili-
tates sugar uptake, which consists of several surface-exposed
sugar-binding proteins that harbour class III signal peptides
(Zolghadr et al., 2007). The bindosome has never been visualized
and evidence that it produces (or not) even short filaments is still
to be obtained. However, the bindosome surface localization de-
pends on a canonical Tff named Bas.

TFF BIOGENESIS RELIES ON A LARGE AND
CONSERVED SET OF DEDICATED PROTEINS

Tff are not only formed of subunits sharing a well-defined and
conserved N-terminal motif but their biogenesis relies on con-
served multiprotein machineries (Fig. 2), which is in support of
their evolutionary relationship.
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Figure 2. Schematic representation of different Tff nanomachines: Tfp, T2SS, competence pseudopili and archaella. For Tfp, the well-characterized Tfpa system in N.

meningitidis is shown. It should be noted that the protein nomenclature varies widely in other Tfpa-expressing species, although all the proteins are highly conserved.
However, a major difference in Gram-positive piliated species is the absence of the proteins forming the outer membrane sub-complex (PilC, PilP, PilQ and PilW). For
T2SS, the system exporting pullulanase in K. oxytoca is shown, but the proteins have been given their unifying Gsp names. For competence pseudopili, B. subtilis has

been chosen. For archaeal flagella, we have chosen the representative M. maripaludis archaellum. All these systems are evolutionarily related as they are composed
of proteins that show sequence and/or structural similarity and perform the same functions. To facilitate comparisons, proteins of similar function have identical
colour. In brief, major (pseudo)pilins are processed by a dedicated prepilin peptidase, which removes a short hydrophilic leader peptide. For the sake of clarity, minor
(pseudo)pilins that also undergo this processing are not shown. Traffic ATPases power filament extension from the inner membrane through ATP hydrolysis. The

PilT ATPase which powers filament retraction has so far been identified only in Tfpa. The energy generated by ATP hydrolysis is translocated across the membrane
by a multiprotein sub-complex, although the polytopic protein showing universal sequence conservation (purple) has also been proposed to play this role. In Gram-
negative species, the inner membrane sub-complex is linked via a connecting protein to an outer membrane sub-complex centred on a multimeric channel known
as the secretin. Several other proteins important for secretin stability/function are also part of this sub-complex. To facilitate visualization, the secretin dodecamer is

shown as a vertical cross-section. OM, outer membrane; PG, peptidoglycan; CM, cytoplasmic membrane.
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Type IV pilins

Tff subunits, which are synthesized as precursors, share a
N-terminal class III signal peptide (Fig. 3) that is well de-
fined and distinctive (Dalrymple and Mattick 1987; Szabó et al.,
2007). These subunits will be generically referred to as type
IV pilins, although this might be a misnomer because not
all of them are involved in the biogenesis of pili. The class
III signal peptide starts with a leader peptide containing a
majority of hydrophilic and neutral residues, whose length
varies between 6 and 26 amino acids (aa) in P. aeruginosa PilA

(Paranchych et al., 1979) and A. actinomycetemcomitans Flp1
(Kachlany et al., 2001), respectively. Although there are many
exceptions in archaea, this leader peptide invariably ends with
a conserved Gly, and is followed by a tract of 21 predomi-
nantly hydrophobic residues (Fig. 3). A negatively charged Glu5

residue almost invariably interrupts this stretch, although it is
often absent in archaeal pilins (Szabó et al., 2007; Jarrell et al.,
2013). Importantly, these features distinguish class III signal
peptides, which are processed by a dedicated prepilin pepti-
dase after the conserved Gly on the cytoplasmic side of the
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Figure 3. Conserved N-terminal sequence motif defining pilin subunits in a variety of Tff. This motif, known as class III signal peptide (Szabó et al., 2007), is composed
of a hydrophilic leader peptide followed by a stretch of hydrophobic residues (except for a negatively charged Glu5). The 6–26 aa leader peptide contains a majority
of hydrophilic (shaded in orange) and neutral (no shading) residues, and invariably ends with a Gly (except in archaea). The following tract of 21 predominantly
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by a dedicated prepilin peptidase and cleaved (indicated by a vertical arrow) after the conserved Gly-1. ∗Filaments in these speciesmight be composed of more than one
major pilin. Nme, N. meningitidis; Pae, P. aeruginosa; Cdi, C. difficile; Ssa, Streptococcus sanguinis; Vch, V. cholerae; Eco, E. coli; Aac, A. actinomycetemcomitans; Ccr, C. crescentus;
Kox, K. oxytoca; Sac, S. acidocaldarius; Mma, M. maripaludis; Iho, Ignicoccus hospitalis; Sso, S. solfataricus.
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membrane (Nunn and Lory 1991) (Fig. 2), from standard (class
I) and lipoprotein (class II) signal peptides, which are processed
by different peptidases on the periplasmic side (Pugsley 1993b).

Historically, differences in length of prepilins and their leader
peptides in the extensively studied Tfp systems were used to
define two sub-classes of Tfp, Tfpa and Tfpb (Giltner, Nguyen
and Burrows 2012). Prepilins of Tfpa are shorter (140–170 aa)
with shorter leader peptides (less than 10 residues), while Tfpb
prepilins are longer (180–200 aa) with longer leader peptides
(about 15–30 aa) (Fig. 3). This distinction is consistent with im-
portant differences between the machineries involved in their
biogenesis (Pelicic 2008). The discovery and study of many other
Tff in more varied species means that these traditional length
parameters are not valid anymore. Nevertheless, phylogenetic
analysis of bacterial prepilins showed that two families con-
sistent with the original classification can be distinguished
(Kachlany et al., 2001). Type IVa prepilins, some of which
have leader peptides as long as 18 residues, share substan-
tial sequence homology in their N-terminal hydrophobic stretch
(Fig. 3) and they are by far the most widespread, being found
both in pili and pseudopili (Giltner, Nguyen and Burrows 2012).
Type IVb prepilins, which can be as short as 44 residues in
Caulobacter crescentus (Skerker and Shapiro 2000), also group to-
gether although they show less sequence homology, except for
the Flp sub-family (Tomich, Planet and Figurski 2007). Most ar-
chaeal prepilins do not readily fit in the above two families and
are likely to form one or more families of their own (Desmond,
Brochier-Armanet and Gribaldo 2007; Szabó et al., 2007), which
could tentatively be named type IVc, type IVd, etc.

Tff biogenesis machineries

The complete sets of proteins dedicated to Tff biology have been
defined by systematic genetic studies in several model systems:
Tfpa in P. aeruginosa and N. meningitidis (Alm and Mattick 1997;
Carbonnelle et al., 2006), Tfpb in EPEC, V. cholerae and E. coli
(Yoshida, Kim and Komano 1999; Kirn, Bose and Taylor 2003)
and T2SS in multiple species such as Klebsiella oxytoca, Erwinia
chrysanthemi and P. aeruginosa (Douzi, Filloux and Voulhoux 2012;
Nivaskumar and Francetic 2014). This revealed that although
Tff are primarily polymers of a single protein, their biogene-
sis requires complex machineries of 10–18 proteins. In most
systems—Tfpb, T2SS, archaeal Tff—the corresponding genes
cluster together but they are scattered throughout the genome
for Tfpa, except in the few Gram-positive species in which these
are found (Pelicic 2008; Douzi, Filloux and Voulhoux 2012; Jar-
rell and Albers 2012; Melville and Craig 2013; Nivaskumar and
Francetic 2014). Unlike for Tfpb that are more heterogeneous—
Flp that are assembled by the conserved tight adherence (Tad) lo-
cus are an exception (Tomich, Planet and Figurski 2007)—genes
are conserved ‘en bloc’ for Tfpa or T2SS with similar genetic or-
ganizations. In Tfpa for example, there are virtually no differ-
ences between P. aeruginosa and N. meningitidis that are distant
γ and β Proteobacteria. The only major difference might be the
pilY2 gene essential for piliation, which is restricted to P. aerug-
inosa (Alm et al., 1996b). It should be noted here that additional
‘accessory’ proteins are often key for Tff function(s) while be-
ing dispensable for filament biogenesis, which makes Tff biol-
ogy evenmore complex. For example, inN. meningitidis, there are
seven accessory proteins—three of which (PilT, PilU and PilZ) are
widely conserved—that modulate one or several Tfpa functions
(Brown et al., 2010): threeminor pilins (ComP, PilV and PilX), three
ATPases (PilT, PilT2 and PilU) and PilZ.

Themost important finding in the above studies was that Tff
are unequivocally a homogeneous class of filaments sincemany
proteins involved in their biogenesis show sequence homology,
several of which are even universally conserved (Fig. 2). These
conserved proteins are often designated ‘core’ but recent struc-
tural findings (see below) show that this distinction is mislead-
ing and should probably be abandoned. This set of conserved
proteins consists of at least one protein (but more often sev-
eral) with a class III signal peptide, a dedicated prepilin pepti-
dase for prepilin processing, a ‘traffic’ ATPase to power filament
assembly and a polytopic cytoplasmic membrane protein of un-
known function. Intriguingly, many of the other non-core pro-
teins important for Tff biogenesis exhibit no obvious sequence
conservation between the different systems, which led to ques-
tioning whether a unique mechanism was used for Tff biogen-
esis (Pelicic 2008). This is nevertheless likely to be the case as
suggested by recent structural data showing that non-core pro-
teins exhibiting no sequence homology have strikingly simi-
lar 3D structures. For example, the structure of the N-terminal
part of BfpC that is involved in Tfpb biogenesis (Yamagata
et al., 2012) is similar to the structures of PilM involved in Tfpa
biogenesis (Karuppiah and Derrick 2011) and GspL from T2SS
(Abendroth et al., 2004a). Unfortunately, although a unified Gsp
(general secretory pathway) nomenclature has been proposed
for T2SS (Pugsley 1993b), these proteins have different names
in different species or systems, which makes comparisons diffi-
cult. To help the reader, proteins performing the same function
in different systems have the same colour in Fig. 2. It should
also be noted that, unless stated otherwise, the N. meningitidis
nomenclature will be privileged in the rest of this review.

TFF ARE VIRTUALLY UNIVERSAL
IN PROKARYOTES

Various types of Tff nanomachines have been identified and
experimentally studied in many prokaryotic species. However,
their global distribution remains an open question. This can
be addressed by mining the ever increasing amount of se-
quence data in the databanks in search of signature motifs
found uniquely in proteins dedicated to Tff biogenesis. Using
BioMart (Guberman et al., 2011), we have therefore performed
a global search of the InterPro database (Hunter et al., 2012) for
the distribution of such motifs across all the species sequenced
so far. This analysis shows that Tff are one order of magnitude
more widespread than previously anticipated (Pelicic, 2008), and
are actually virtually universal in prokaryotes (Fig. 4). This is
likely to be a consequence of their extreme functional versatility
and their ancient nature since a Tff, whose function can only be
guessed, was already present in a common ancestor to bacteria
and archaea that have diverged more than 3 billion years ago.

The most obvious sequence signature to start this bioinfor-
matic search was the one found in Tff subunits: the distinc-
tive class III signal peptide motif (Fig. 3) (Dalrymple and Mattick,
1987; Szabó et al., 2007). A simple query using InterPro domains
absolutely specific for bacterial (IPR012912 and/or IPR007047)
and archaeal type IV prepilins (IPR002774) suggests that Tff ma-
chineries are encoded in the genomes of approx. 1800 different
species. These species span 4/5 phyla of archaea (Korarchaeota
are apparently the only exception) and all 26 phyla or group of
phyla of bacteria (Fig. 4). Strikingly, this estimate is even likely
to be conservative since simple queries using domains spe-
cific for other components invariably found in Tff machineries,
namely the prepilin peptidase (IPR010627 and/or IPR000045), the
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Figure 4. Phylogenetic distribution of the proteins involved in Tff biogenesis in archaea and bacteria. Using BioMart (Guberman et al., 2011), we have performed a
global search of the InterPro database (Hunter et al., 2012) for signature motifs found only in proteins dedicated to Tff biogenesis. A black box indicates that the
corresponding protein is found in the analysed phylum, while a white box indicates that it is absent. PilE, IPR007047, IPR002774 or IPR012912; PilD, IPR010627 or
IPR000045; PilF, IPR007831 or IPR001482; PilG, IPR018076; PilM, IPR005883; PilN, IPR007813; PilO, IPR007445; PilP, IPR007446; PilQ, IPR001775 or IPR013355; PilC, IPR008707;

PilW, IPR013360; PilT, IPR006321. In Firmicutes, the outer membrane sub-complex proteins (PilP, PilQ and PilW) are found only in the very few Gram-negative species
in this phylum.

traffic ATPase (IPR007831 and/or IPR001482) and the PilG poly-
topic membrane protein (IPR018076), each returned more than
2000 different species, including some in which no prepilins
could be found. The possibility that prepilins not readily iden-
tified using the above pilin signatures might be present in those
‘extra’ species is supported by the PilFind algorithm that predicts
many non-canonical type IV prepilins (Imam et al., 2011), includ-
ing a new class that we are currently characterizing (Pelicic, un-
published). This new class of prepilins corresponds to a well-
defined domain of so far unknown function that is widespread
in Actinobacteria (275 different species).

These findings are strengthened by amultiquery using all the
above domains. This search revealed that the genomes of 1656
different species, in which type IV prepilins are found, encode
simultaneously a prepilin peptidase, a traffic ATPase and the
polytopic cytoplasmic membrane protein (Fig. 4). These species
span all the phyla of archaea and bacteria listed above, ex-
cept Nanoarchaeota in which no prepilin peptidase could be de-
tected. Several other interesting observations arose from these
queries. Firstly, prepilin peptidases often consist of two do-
mains, one of which (IPR000045) always corresponds to the pep-
tidase domain. In bacteria, the most common second domain
(IPR010627) is almost certainly responsible for the well-known
N-methylation of the first residue of many mature pilins (Strom
et al., 1993). In archaea,where this N-methylation is not observed

(Jarrell et al., 2013), IPR010627 is replaced by IPR009655 whose
function is unknown. This suggests that archaeal pilins might
undergo another sort of N-terminal modification. Interestingly,
inMethanococcusmaripaludisTfp, theN-terminal Gln of themajor
pilin is modified into a pyroglutamate (Ng et al., 2011). Secondly,
almost 1000 species encode the above four proteins as well as
PilT retraction ATPase (IPR006321), and are likely to express Tff
capable of retraction. Of these 1000 species, 500 also encode the
PilM, PilN, PilO proteins (IPR005883, IPR007813 and IPR007445,
repectively) and are likely to express bona fide Tfpa (Pelicic, 2008).
Strikingly, the entire set of 15 proteins involved in Tfpa biogene-
sis in N. meningitidis is found in as many as 270 different species
of Proteobacteria.

TFF: COMMON STRUCTURAL ASPECTS

Tff have been intensively studied from a structural point of view.
This has confirmed that they are a homogeneous group of fila-
mentous nanomachines in which pilin subunits share a distinc-
tive fold and are assembled in a similar way (Fig. 5).

Type IV pilins: a universally conserved structural fold

Once their leader peptide is processed, Tff subunits share an
N-terminal tract of highly hydrophobic residues with predicted
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Figure 5: Common structural features of Tff and their subunits illustrated with N. gonorrhoeae Tfpa (Craig et al., 2006). (A) Structure of the full-length PilE from N.

gonorrhoeae (PDB entry 2HI2) showing the conserved lollipop shape with a protruding α1N-helix (back view on the left, front view on the right). Post-translational

modifications on the αβ-loop, carbohydrate at Ser63 and phosphate at Ser68, are shown in magenta. (B) Structural model of gonococcal Tfp (PDB entry 2HIL) obtained
by combining X-ray crystallography and cryo-EM (side view on the left, top view on the upper right, bottom view on the lower right). In the 60 Å diameter right-handed
1-start helical assembly, the pilins are arranged in an ‘ear of wheat’ fashion (side view). The α1N-helices provide the main polymerization interface and are buried
within the filament core parallel to its long axis (top and bottom views). Figures were generated using PyMOL (http://www.pymol.org).

propensity to form an extended α-helix. There is little, if any, se-
quence homology in the rest of these proteins. Notwithstanding,
structural studies have revealed that type IV pilins share a com-
mon 3D architecture (Craig, Pique and Tainer 2004). Full-length
structures of mature Tfp-forming type IVa pilins from N. gon-
orrhoeae (Parge et al., 1995), P. aeruginosa (Craig et al., 2003) and
D. nodosus (Hartung et al., 2011), all resemble ‘lollipops’, with a
‘stick’ and a globular head (Fig. 5A). The stick corresponds to
the N-terminus of the pilins and consists of a ∼50 residue α-
helix (α1). The N-terminal half of α1 (α1N) protrudes from the C-
terminal globular head and corresponds primarily to the stretch
of 21 highly hydrophobic residues that is part of the class III sig-
nal peptide (Fig. 3). The C-terminal half of α1 (α1C) is packed
against the globular head that consists mainly of a β-meander
motif of four antiparallel β-strands. Most of the structural di-
versity between pilins lies in the two regions flanking the β-
meander, the αβ-loop that connects α1 and the first β-strand of
the β-meander, and the C-terminus known as the D-region be-
cause it is usually stapled to the last β-strand of the β-meander
by a disulphide bond. D-region is, however, a misnomer since
these C-terminal Cys are not always conserved and the disul-
phide bond can be replaced by a network of hydrogen bonds as
in the D. nodosus pilin (Hartung et al., 2011). Recently, the full-
length structure of a much shorter (66 aa) type IVa pilin sub-
unit of Geobacter sulfurreducens nanowires has been determined
in detergentmicelles (Reardon andMueller 2013). This structure,

which almost exclusively consists of α1 (i.e. there is no globular
head), confirmed that the first 21 residues are inserted within
the membrane prior filament assembly and showed that an ex-
tendedN-terminal α-helixmight be viewed as theminimal com-
mon feature of type IV pilins.

The many other structures available for type IVa and type
IVb major and minor (pseudo)pilins lack the protruding and
highly hydrophobic α1N—for a review see Giltner, Nguyen and
Burrows (2012). Truncationmakes the recombinant proteins sol-
uble and more readily amenable to purification and structural
characterization. It has (i) minimal structural impact as shown
with the P. aeruginosa PAK pilin for which full-length and trun-
cated structures are essentially identical (Craig et al., 2003), and
(ii) no consequence on the utility of these structures since the
missing hydrophobic region can reliably be modelled as an ex-
tended α-helix. All these structures confirm that the overall ar-
chitecture of type IV pilins is conserved, i.e. α1C packs against
a β-meander motif that is composed of three to seven antipar-
allel β-strands depending on the size of the protein. As men-
tioned above, the structural diversity, which accounts for the
functional differences between corresponding proteins and/or
filaments, lies in the αβ-loop and D-region. For example, the D-
region of the minor pilin PilX that is key for the formation of
bacterial aggregates in N. meningitidis consists of a short ‘pigtail’
α-helix and a hook that protrudes from the surface of the fila-
ments (Helaine et al., 2007). Interestingly, major pilins undergo

http://www.pymol.org
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post-translational modifications in these regions (Fig. 5A), most
often addition of glycans, although phosphorylcholine, phos-
phoethanolamine and phosphoglycerol, have also been de-
scribed (Forest et al., 1999; Hegge et al., 2004; Gault et al., 2013).
The functional significance of thesemodifications is unclear and
varies from system to system. In bacteria, they are usually dis-
pensable for Tfp assembly and have little effect on Tfp-mediated
functions (Marceau et al., 1998; Smedley et al., 2005), while in ar-
chaea non-glycosylated subunits cannot be assembled in fila-
ments (Chaban et al., 2006; VanDyke et al., 2008).

Until very recently, only structures of pilins from Gram-
negative bacteria were available and it could only be speculated
that the above architecture was universally conserved. However,
the recently determined structure of the minor pilin PilJ from
theGram-positiveClostridium difficile (Piepenbrink et al., 2014) not
only displays the typical pilin fold but is, curiously, the only type
IV pilin with a dual pilin fold likely to have resulted from a du-
plication or a fusion event (Piepenbrink et al., 2014). This finding
is important because it strengthens the notion that the classi-
cal fold is likely to be universal in type IV pilins. However, it
would be interesting to determine the structures ofmore distant
members, notably pilins from archaea (Szabó et al., 2007) which
display important sequence differences (Fig. 3) or the very short
pilins from the Flp sub-family (Kachlany et al., 2001). The latter
ones are puzzling because they are even shorter than the G. sul-
furreducens pilin (Reardon andMueller 2013) and possibly consist
only of the α1N-helix, which might thus be viewed as the mini-
mal universally conserved structural fold defining type IV pilins.

Similar Tff models

Consistent with this universally conserved fold, all models pre-
dicting how type IV pilins are arranged within filaments agree
that Tff are helical polymers in which α1N-helices provide the
principal polymerization interface and are buried within the fil-
ament core parallel to the filament axis, in an ‘ear ofwheat’ fash-
ion (Fig. 5B). This is true even in archaeal species producing ‘un-
orthodox’ Tff (Wang et al., 2008; Yu et al., 2012). Several different
helical models have been proposed using a variety of methods.
The prototypemodel for Tfpa, which has been determined forN.
gonorrhoeae filaments (Craig et al., 2006), is marked by high ridges
(corresponding to the αβ-loop and D-region) and deep grooves
that wind around the filament axis (Fig. 5B). The α1-helices are
within the core of the filament, almost parallel to its long axis.
In the 60 Å diameter right-handed 1-start helix, consecutive sub-
units are separated by a rise of 10.5 Å and show 101o azimuthal
rotation. In this pseudo-atomic resolution model, charges in α1
are neutralized by inter-subunit salt bridges, such as the one be-
tweenGlu5 of one protomer (P) and theN-terminal amide of Phe1
of the next (P+1) (Craig et al., 2006). A 3-startmechanism for Tfpa
assembly was proposed (Craig et al., 2006), in which three pilin
subunits are added simultaneously around the filament circum-
ference.

Although the corresponding pilin subunit and the filament
are significantly larger, a similar approach (which was refined by
comparing solvent accessibility of the pilin residues inmonomer
versus in filaments) yielded a similar architecture for Tfpb from
V. cholerae (Li et al., 2008; Li, Egelman and Craig 2012). In this
model, consecutive subunits in a 88 Å diameter right-handed
1-start helix are separated by a rise of 8.4 Å and show 97o az-
imuthal rotation. Unlike in the Tfpa model in which they are ex-
posed on the surface, the αβ-loops are implicated in holding the
subunits together and are buried within the filament, whereas
a sizeable segment of α1N is curiously more exposed to the sol-

vent (Li et al., 2008). This looser packingmight explain, at least in
part, the reduced resistance of Tfpb to denaturing agents when
compared to Tfpa (Li, Egelman and Craig 2012).

A different approach has been used tomodel the T2SS hyper-
pseudopilus of K. oxytoca (Campos et al., 2010). In this com-
putational approach, a multistage minimization and molecu-
lar dynamics modelling procedure used the structure of the
PulG subunit and symmetry parameters of the helix obtained
from classical EM studies (Campos, Francetic and Nilges 2011).
This procedure allows the protomers to ‘explore’ conforma-
tions that would be missed in the above ‘rigid’ approaches. It
led to one major model that closely resembles that of N. gon-
orrhoeae Tfpa, i.e. a right-handed 1-start helix with an axial
rise of 10.4 Å between consecutive subunits. The salt bridges
and hydrophobic contacts predicted between α1N-helices have
been elegantly validated by single and complementary charge
inversions and/or double Cys substitutions and cross-linking
(Campos et al., 2010). Using this strategy, reliable models con-
sistent with the above ones could also be obtained for Tfpa
and Tfpb (Campos, Francetic and Nilges 2011). Interestingly, in
this flexible modelling approach, the predicted salt bridge be-
tween Glu5 (P) and Phe1 (P+1) in Tfpa (Craig et al., 2006) and Tfpb
(Li, Egelman and Craig 2012) was found only in a minority of
models, since in the most stable conformation charged residues
in α1C of P formed a salt bridge with Glu5 from P+3. This sug-
gested that several conformational states might coexist, which
is supported by EM in which a continuum of structures with dif-
ferent azimuthal rotations between subunits could be observed
(Nivaskumar et al., 2014). It was proposed that three main con-
formational groupsmight be consecutive transitions during fila-
ment assembly, which led to a model for hyper-pseudopilus as-
sembly. In this model, a rotation-driven mechanism was pro-
posed (Nivaskumar et al., 2014) in which filament assembly is
initiated by P−P+1 contacts between pilins still localized in the
membrane (docking step). Then, the force generated by the traf-
fic ATPase spools a newly docked protomer into the fibre, leading
to its partial extraction from the membrane and its rotation by
an average 84o. Two subsequent rounds of elongation/rotation
lead to full extraction of this protomer from the membrane, and
the overall 252o rotation allows P−P+3 contacts that consoli-
date the filament. The finding that archaella are rotating Tfp
(Shahapure et al., 2014) gives further support to this rotation-
coupled assembly as a commonmechanism for all Tff (although
angles will be different in different systems).

MOLECULAR MECHANISM OF TFF BIOGENESIS

Molecular mechanisms of Tff biogenesis are still poorly under-
stood and we cannot definitely answer the fundamental ques-
tion: How are Tff assembled? However, much progress has been
made with the identification of several discrete steps in Tff bio-
genesis, much better knowledge of the different protein sub-
complexes involved (Fig. 2) and (at least partial) 3D structural
information for all the key players. Important parallels between
different systems can now be drawn, but it would be imprudent
to make generalized conclusions at this stage.

Prepilin transport and processing

The translocation of prepilins across the cytoplasmic mem-
brane and subsequent processing by the prepilin peptidase is the
first and best understood stage of Tff biogenesis. As shown in
E. coli in the absence of any other component of the Tff ma-
chinery (Strom and Lory 1987; Dupuy et al., 1991), the conserved
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N-terminal motif of prepilins is sufficient to promote their
insertion in the cytoplasmic membrane. Membrane topology is
determined by the conserved sequence features of the class III
signal peptide. Following the ‘positive-inside’ rule (von Heijne
and Gavel 1988), the hydrophilic leader peptide remains in the
cytoplasm, the hydrophobic α1N-helix behaves as a transmem-
brane domain, while the rest of the prepilin is exposed to the
periplasmic space (Strom and Lory 1987; Dupuy et al., 1991). In-
sertion of prepilins in the membrane relies on a universal ma-
chinery composed of the signal recognition particle (SRP) and
the Sec translocon (Arts et al., 2007b; Francetic et al., 2007). The
SRP binds the conserved N-terminal motif when the nascent
prepilin polypeptide emerges from the ribosome and feeds it
to the Sec translocon, which translocates it across the cytoplas-
mic membrane and integrates it into this lipid bilayer where it
adopts its typical 3D structure.

Since class III signal peptides lack the specific cleavage
residues found after the hydrophobic tract in class I and class
II signal peptides (Pugsley 1993b), prepilins are catalytically pro-
cessed by dedicated prepilin peptidases (Kaufman, Seyer and
Taylor 1991; Nunn and Lory 1991), which in many (but not all)
bacteria also often methylate the first residue of mature pilins
(Strom, Nunn and Lory 1993). Prepilin peptidases form a new su-
perfamily of polytopic membrane aspartic acid proteases lack-
ing the canonical cleavage site and low pH requirements of clas-
sical aspartate proteases (LaPointe and Taylor 2000). Cleavage of
the leader peptide occurs after the conserved Gly on the cyto-
plasmic side of the membrane (Fig. 2) and effectively leaves the
mature pilin as a membrane protein with no remaining domain
in the cytoplasm (Lemkul and Bevan 2011). Prepilin processing
and N-methylation by the prepilin peptidase do not require any
other component of the Tff biogenesismachinery, since they can
be observed upon co-synthesis of these two proteins in a cell-
free translation system (Aly et al., 2013). It is very likely (although
it remains to be formally demonstrated) that the IPR010627 do-
main catalyzes theN-methylation activity since zinc-binding via
a CysXXCys-Xn-CysXXCys motif was found to be important (Aly
et al., 2013). It remains to be determined whether IPR009655 in
archaeal prepilin peptidases catalyzes an alternative N-terminal
modification, perhaps the cyclization into a lactam ring of the N-
terminal-free amino group as identified in M. maripaludis pilin
(Ng et al., 2011). Importantly, although there are exceptions
(de Bentzmann et al., 2006; Szabó et al., 2007), many prepilin
peptidases show substrate promiscuity and can process pro-
teins harbouring (even non-canonical) class III signal peptides
(Winther-Larsen et al., 2005) from other Tff systems in the stud-
ied species (Nunn and Lory 1993), or even from pilins coming
from other species (Nunn and Lory 1991).

Many site-directedmutagenesis studies have highlighted the
importance of two conservedAsp residues in prepilin peptidases
for efficient prepilin processing (LaPointe and Taylor 2000; Bardy
and Jarrell 2003; Akahane et al., 2005; Tomich, Fine and Figurski
2006). Critically, the recent crystal structure of theM. maripaludis
FlaK prepilin peptidase (Hu et al., 2011) provided a framework
for understanding the mechanism of catalysis. FlaK, which is
‘tilted’ in themembrane, consists of amembrane-spanning cen-
tral domain composed of six transmembrane helices and a solu-
ble domain with four anti-parallel β-strands protruding into the
cytoplasm, which constitutes the bulk of the archaea-specific
IPR009655 motif. Strikingly, the crystal structure indicated that
FlaK must undergo significant conformational change to bring
the two catalytic Asp residues—separated by as much as 12 Å—
close enough for catalysis to occur. This change in conforma-
tion is likely to occur upon loading of the prepilin substrate.

Accordingly, interferingwith this conformational shift abolished
the peptidase proteolytic activity (Hu et al., 2011).

Site-directed mutagenesis studies have also been performed
on prepilins and revealed common principles (Strom and Lory
1991; Pugsley 1993a; Horiuchi and Komano 1998; Thomas, Chao
and Jarrell 2001). The leader peptide is necessary for efficient
processing—but it can in some systems be shortened without
adverse effects (Horiuchi and Komano 1998; Ng et al., 2009)—and
the last residue (the conserved Gly) is absolutely critical. In con-
trast, the conserved Glu5 in the hydrophobic stretch of bacte-
rial (pseudo)pilins, which appears to be important for methy-
lation in Tfp (Pasloske and Paranchych 1988; Strom and Lory
1991) but not in T2SS (Pugsley 1993a), is always dispensable for
processing. Glu5 pilin mutants cannot be assembled into ho-
mopolymeric Tfp (Pasloske, Scraba and Paranchych 1989; Strom
and Lory 1991; Horiuchi and Komano 1998), but they can be
efficiently incorporated together with wild-type subunits into
compoundfilaments (Pasloske, Scraba and Paranchych 1989; Aas
et al., 2007). The lack of homopolymerization of Glu5 mutants is
unlikely to be due to their lack of methylation since other mu-
tants that are not methylated can be efficiently assembled into
functional Tfp (Strom and Lory 1991). Therefore, the functional
role of N-terminal methylation of some bacterial pilins remains
enigmatic.

Traffic ATPases power Tff (dis)assembly

Once they have been processed, mature pilins remain mem-
brane proteins (Strom and Lory 1987; Dupuy et al., 1991) and
must be actively extruded from the lipid bilayer in order to be
polymerized into the base of growing filaments. This process is
powered by cytoplasmic proteins from the superfamily of traf-
fic ATPases (Planet et al., 2001; Peabody et al., 2003), which are
thought to invariably function as oligomers (Sakai, Horiuchi and
Komano 2001; Rose et al., 2011). These are associated with the
membrane in a non-covalent fashion, via interaction with the
membrane proteins involved in Tff assembly (Fig. 2) (Sandkvist
et al., 1995; Tripathi and Taylor 2007). Oligomerization occurs
once the traffic ATPase binds ATP, which leads to its association
with a membrane partner and stimulates ATPase activity (Shiue
et al., 2006). Consistent with membrane localization of this com-
plex, ATPase activity is dramatically increased in the presence of
phospholipids (Camberg et al., 2007). In Tfpa, the extension AT-
Pase PilF also interacts stronglywith the cytoplasmic PilZ protein
(Guzzo et al., 2009; Georgiadou et al., 2012), but the functional sig-
nificance of this is unclear (Alm et al., 1996a; Brown et al., 2010).
As shown by site-directed mutagenesis, the highly conserved
Walkermotifs in traffic ATPases are essential for their enzymatic
activity (Turner et al., 1993; Possot and Pugsley 1994; Jakovljevic
et al., 2008; Patrick et al., 2011). These properties are shared by the
retraction ATPase PilT (Brossay et al., 1994; Herdendorf, McCaslin
and Forest 2002; Chiang, Habash and Burrows 2005). PilT powers
disassembly of pilin subunits from the base of filaments, which
form a pool in the cytoplasmic membrane ready to be polymer-
ized again (Morand et al., 2004). These different traffic ATPases
have distinctive sequence features which probably account for
their different functional roles. For example, the C-terminal do-
main (CTD) of PilT contains a helical AIRNLIRE motif, which is
critical for pilus retraction but is not required for ATPase activ-
ity or oligomerization (Aukema et al., 2005). Two-hybrid studies
in N. meningitidis have recently identified an intricate interaction
network between the four-traffic ATPases found in this species
(Georgiadou et al., 2012). This introduced the notion that the situ-
ation might be more complex than alternative switching of two
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steadfast antagonistic motors at the base of the Tff, and that
hetero-hexamers or higher order complex motors might exist.
Therefore, the highly dynamic nature of Tfpawould be under the
dependence of the composition of these ‘hybrid’ motors, which
remains to be formally demonstrated.

Several crystallographic studies of extension motors
(Yamagata and Tainer 2007; Lu et al., 2013), the PilT retraction
motor (Satyshur et al., 2007; Misic, Satyshur and Forest 2010) and
the archaellum FlaI ATPase (Reindl et al., 2013), have provided
insight into how chemical energy resulting from ATP hydrolysis
might be transformed into mechanical energy. All of these
structures describe a hexameric ring arrangement of bilobed
monomers, in which distinct NTD and CTD are connected
by flexible linkers. In each case, the NTD adopts a PAS-like
fold usually comprising six anti-parallel β-strands flanked on
one side by two or three α-helices. The CTD is topologically
similar to RecA-like proteins with four signature ATPase motifs
(Walker A and B motifs, and Asp and His boxes) which surround
the nucleotide-binding pocket and form the catalytic centre.
A striking feature of these hexameric rings is their dynamic
nature, as they undergo dramatic domain movements and
consequently adopt very different conformations upon ATP
binding and hydrolysis. In brief, binding of the ATP involving
conserved Arg residues forming a ‘basic clamp’ brings NTD and
CTD from one subunit closer together (a ‘closure’ stage later re-
leased upon ATP hydrolysis), driving a ‘swinging’ motion of the
neighbouring subunit CTD with some residues moving tens of Å
(Satyshur et al., 2007; Reindl et al., 2013).

Assembling Tff: the last frontier

How themechanical energy generated by domainmotionwithin
traffic ATPases is translated to pilins during Tff (dis)assembly
remains the main mystery in the field. Since mature pilins do
not have a cytoplasmic domain (Lemkul and Bevan 2011) and
Tff assembly occurs on the periplasmic side of the membrane,
this mechanical energy must be transduced to pilins across the
membrane, via one or several membrane proteins that together
form a Tff assembly sub-complex (Fig. 2). Although there is
widespread agreement on this point, discrepant findings have
been reported and two different models coexist.

A seminal finding concerning this step comes from Tfpa
studies showing that not all proteins essential for pilus biogen-
esis are involved in filament assembly per se. This was first es-
tablished in N. gonorrhoeae by showing that the piliation defect
in a pilC mutant could be suppressed by a second mutation in
pilT (Wolfgang et al., 1998b). PilC is thus dispensable for Tfp as-
sembly in the absence of pilus retraction, suggesting that PilC
exerts its role in Tfp biogenesis at a late stage (see below). Impor-
tantly, piliation is also restored in a pilY1/T double mutant in the
phylogenetically distant P. aeruginosa, where PilY1 is the ortho-
logue of meningococcal PilC (Heiniger et al., 2010). An important
caveat is that when piliation is not restored in a double mutant,
this is (indirect) evidence that the corresponding protein might
be involved in pilus assembly. This approach has been used in
a systematic fashion in N. meningitidis and revealed that, out of
the 15 proteins required for piliation, a surprisingly small num-
ber might be involved in filament assembly (PilD, PilE, PilF, PilM,
PilN, PilO and PilP) since piliation could be restored in all the
other double mutants (Carbonnelle et al., 2006). Many of these
findings are consistent with those in the closely related N. gon-
orrhoeae (Wolfgang et al., 2000; Winther-Larsen et al., 2005).

Therefore, since the roles of PilD, PilE and PilF are known,
these results suggested that it is the PilMNOP sub-complex that

uses the energy generated by PilF in the cytoplasm and translo-
cates it across the membrane to mature pilins while polymer-
izing them into helical filaments (Fig. 2). Although they share
little, if any, sequence homology, structural data have clearly
shown that structural homologues of PilMNOP are found in other
well-studied Tff systems (Korotkov, Sandkvist and Hol 2012).
The structure of PilM (Karuppiah and Derrick 2011) is simi-
lar to the cytoplasmic domains of BfpC and GspL that are in-
volved in Tfpb biogenesis and T2SS, respectively (Abendroth
et al., 2004a; Yamagata et al., 2012). The structures of PilN and PilO
(Sampaleanu et al., 2009; Karuppiah et al., 2013), which exhibit
similar circular permutations of the ferrredoxin fold, are simi-
lar to the periplasmic domain of GspL and to GspM, respectively
(Abendroth et al., 2004b; Abendroth, Kreger and Hol 2009a). Fi-
nally, PilP is a structural homologue of the homology region (HR)
domain that is found in all GspC proteins (Golovanov et al., 2006;
Korotkov et al., 2011b; Tammam et al., 2011; Gu et al., 2012). There
is now a wealth of functional information confirming the exis-
tence of a PilMNOP sub-complex at the cytoplasmic membrane.
This was obtained in different bacterial species and systems, us-
ing a wide variety of approaches (stability assays in which the
absence of one of these proteins negatively impacts the stabil-
ity of the others, two-hybrid studies, co-immunoprecipitation,
co-purification and/or co-crystallization). In brief, PilM inter-
acts with the short cytoplasmic portion of PilN (Karuppiah and
Derrick 2011; Georgiadou et al., 2012), making the PilMN com-
plex an orthologue of GspL (Fig. 2). PilN interacts with PilO
(Ayers et al., 2009; Sampaleanu et al., 2009; Georgiadou et al.,
2012), which is also well documented for their GspL and GspM
counterparts (Sandkvist et al., 1999; Py, Loiseau and Barras 2001),
forming together a PilMNO complex (Karuppiah et al., 2013). PilP
is also part of this complex, but it is unclear whether it inter-
acts with PilN, PilO or both (Georgiadou et al., 2012; Tammam
et al., 2013). Critically, consistent with a role in Tff assembly,
this complex interacts with the pilin substrate and the traffic
ATPase. Interaction with pilin subunits (Karuppiah et al., 2013;
Tammam et al., 2013) occurs either via PilN (or the equivalent
periplasmic portion of GspL), PilO, or both (Gray et al., 2011;
Georgiadou et al., 2012). There is extensive experimental evi-
dence in T2SS that the traffic ATPase GspE interacts with GspL
(Sandkvist et al., 1995; Py, Loiseau and Barras 1999; Possot et al.,
2000; Robert, Filloux and Michel 2005; Shiue et al., 2006), in-
cluding the 3D structure of a complex between the cytoplas-
mic domain of GspL (GspLcyto) and an N-terminal fragment of
GspE (Abendroth et al., 2005). In the absence of GspL, GspE
mislocalizes to the cytoplasm (Sandkvist et al., 1995), which is
a strong indication that GspL anchors traffic ATPases to the
membrane where they power Tff (dis)assembly. The very re-
cent crystal structure of the full length GspE–GspLcyto complex
(Lu, Korotkov and Hol 2014b) identified linear ‘arrays’ of GspLcyto,
which could be the driving force for the formation of the assem-
bly sub-complex. The subsequent swinging motion of traffic AT-
Pase domains within a hexamer would thus ‘drag’ interacting
GspL together with GspM, thereby powering pilin assembly into
Tff. The possibility that PilM links PilF (and PilT) with the rest of
the (dis)assembly sub-complex remains to be formally demon-
strated, but it is very likely since the patch of residues that me-
diate the interaction of GspL with GspE is conserved in PilM
(Abendroth et al., 2005; Karuppiah and Derrick 2011). Impor-
tantly, this might also be the norm in archaea as suggested by
the finding that FlaH (that is an ATP-binding protein like PilM)
interacts with the FlaI traffic ATPase (Banerjee et al., 2013).

Recently, however, when the above pilT suppressor assay was
used in P. aeruginosa, important discrepancies with the above
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model emerged. It was reported that pilM/T, pilN/T, pilO/T and
pilP/T mutants exhibit piliation (although at low levels when
compared to the wild type), while the pilC/T remains non-
piliated (PilC is the orthologue of meningococcal PilG) (Takhar
et al., 2013). In contrast, the pilG/T meningococcal mutant is
heavily piliated and even exhibits a partial restoration of Tfp-
linked phenotypes (Carbonnelle et al., 2006). The main experi-
mental difference between the two studies is that piliation was
assessed by immunofluorescence microscopy in N. meningitidis,
which is a direct assay of Tfp production, while in the P. aerugi-
nosa study it was assessed indirectly via immunodetection of the
pilin subunit in sheared supernatant fractions. Their results led
Takhar et al., to propose that the energy generated by the traffic
ATPase in the cytoplasm is translocated to pilinsmainly through
the PilG ‘platform’ protein, and that owing to the interaction be-
tween PilP and the secretin (see below) PilMNOPwould represent
a ‘secretin dynamic-associated’ sub-complex (Ayers, Howell and
Burrows 2010) or a ‘connectingmodule’ between inner and outer
membrane sub-complexes (Nivaskumar and Francetic 2014). A
strong indication against such a merely connecting role is the
finding that PilM, PilN and PilO orthologues are also found in
Gram-positive bacteria expressing Tfp (Melville and Craig 2013).
Nevertheless, the belief that PilG must play a key role in Tff as-
sembly is longstanding (Hobbs andMattick 1993) andmainly de-
rives from the fact that it is universal in Tff systems (Fig. 4). Un-
fortunately, although PilG has been one of the first Tff proteins to
be identified (Nunn, Bergman and Lory 1990), its exact function
remains unknown. What is clear is that PilG is a polytopic cyto-
plasmicmembrane protein with three transmembrane domains
leaving the N-terminus and a large loop in the distal part of the
protein exposed in the cytoplasm, while only a very small loop
and few residues of the C-terminus are located in the periplasm
(Thomas, Reeves and Salmond 1997; Arts et al., 2007a). A differ-
ent topology has also been reported but was judged to be un-
common (Blank and Donnenberg 2001). 3D structures of the N-
terminal cytoplasmic portion of this protein (Abendroth et al.,
2009b; Karuppiah et al., 2010; Kolappan and Craig 2013), which
revealed a six-helix bundle, strongly suggested that it functions
by interacting with other cytoplasmic proteins but offered lit-
tle clue to its exact functional role. Accordingly, and although it
is much less extensive than above, there is evidence that PilG
interacts with the traffic ATPase (Py, Loiseau and Barras 2001;
Chiang, Habash and Burrows 2005; Arts et al., 2007a; Takhar et al.,
2013), with the pilin subunit (Georgiadou et al., 2012), and also
the above PilMNOP sub-complex (Py, Loiseau and Barras 2001;
Georgiadou et al., 2012), all of which are compatible with a role
in Tff assembly.

Surmising that Tfp assembly is even less likely to be differ-
ent in two Tfpa-producing species such as N. meningitidis and
P. aeruginosa that have essentially identical sets of Tfp biogenesis
proteins, than it is in different Tff systems, more direct evidence
will be necessary to confirm and/or refute one, the other or both
of the above models. Furthermore, how the corresponding sub-
complex might then polymerize mature pilins into Tff remains
to be determined.

Crossing the outer membrane

In Gram-negative bacteria, there is an additional sub-complex
in the outer membrane centred on the secretin PilQ, which
forms a gated pore allowing translocation across this second
permeability barrier of the Tff themselves as in the case of
Tfp, or Tff-secreted substrates as in T2SS (Fig. 2). It is the find-
ing in pathogenic Neisseria species that filaments in a pilQ/T

mutant remain trapped in the periplasm that provided the most
compelling evidence that Tfp emerge on the surface through
the secretin pore and that this sub-complex is not involved
in pilus assembly per se (Wolfgang et al., 2000; Carbonnelle
et al., 2006). Secretins are a vast group of outer membrane
proteins found in different bacterial secretion systems (Tff,
T3SS and filamentous phages), and have therefore been in-
tensively studied (Korotkov, Gonen and Hol 2011a). They gen-
erally share a high level of homology at their C-terminus,
which is necessary for oligomerization within the outer mem-
brane to generate multimers of usually 12–14 subunits, often
heat- and SDS-resistant (Kazmierczak et al., 1994; Hardie, Lory
and Pugsley 1996a; Drake, Sandstedt and Koomey 1997). To-
wards their N-terminus there is decreasing homology (Korotkov,
Gonen and Hol 2011a; Berry et al., 2012). This part of the pro-
tein is constituted by a number of discrete and more flexi-
ble globular domains, which extend deeply into the periplasm,
possibly up to the cytoplasmic membrane. The other mem-
ber of the secretin sub-complex in most systems is PilP/GspC
(Fig. 2), an inner membrane lipoprotein/bitopic protein, that in-
teracts with the secretin and connects the inner and outermem-
brane sub-complexes (Possot, Gerard-Vincent and Pugsley 1999;
Balasingham et al., 2007; Tammam et al., 2013). As revealed
by their very similar 3D structures (Golovanov et al., 2006;
Tammam et al., 2011; Gu et al., 2012), PilP and the HR domain
of GspC are functionally equivalent with a long disordered N-
terminal ‘arm’ and a folded C-terminal globular β-sandwich do-
main. The globular domain of PilP interacts with the N0 domain
of the secretin, thus bridging the different sub-complexes in-
volved in Tff biogenesis (Korotkov et al., 2011b; Berry et al., 2012;
Tammam et al., 2013). An ‘outside-in’ assembly model, whereby
the secretin sub-complex would form first and then recruit and
stabilize the other sub-complexes, has been proposed in some
species (Lybarger et al., 2009; Friedrich, Bulyha and Sogaard-
Andersen 2014). However, it is unclear whether this is a gen-
eral feature since in Neisseria species intra-periplasmic Tfp can
be assembled in a pilQ/T double mutant (Wolfgang et al., 2000;
Carbonnelle et al., 2006), suggesting that the other sub-
complexes are assembled and functional in the absence of the
secretin sub-complex. Another important observation consis-
tent with the role of the PilPQ sub-complex is the absence of
both proteins in Gram-positive species expressing Tfp (Melville
and Craig 2013). This suggests that PilP is unlikely to play a role
in Tff assembly, which was inferred from the absence of Tfp in a
meningococcal PilP/T mutant (Carbonnelle et al., 2006). It is pos-
sible that the lack of piliation in thismutant wasmerely a conse-
quence of the dramatic instability of PilN and PilO in the absence
of PilP (Ayers et al., 2009; Georgiadou et al., 2012).

There is an abundance of structural information concern-
ing secretins that has outlined common features. Early visual-
ization of PilQ multimers by EM revealed ring-like dodecameric
structures (Linderoth, Simon and Russel 1997; Nouwen et al.,
1999). Increasingly high-resolution 3D cryo-EM reconstructions
showed cylindrical dodecamers spanning the periplasm consist-
ing of a series of rings defining outermembrane and periplasmic
domains with a closed central cavity (the so-called ‘periplas-
mic vestibule’), the size of which is compatible with the pas-
sage of Tff (Opalka et al., 2003; Collins et al., 2004; Chami
et al., 2005; Burkhardt et al., 2012; Tosi et al., 2014). It has been
demonstrated in vitro that N. meningitidis PilQmultimers are able
to physically accommodate purified Tfp while undergoing im-
portant conformational changes (Collins et al., 2005). Atomic
resolution 3D structure of a full-length secretin is still elu-
sive, but structures for several of the globular domains of the
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periplasmic vestibule have been obtained. The N0 and N1 do-
mains that are found in all secretins form compact and glob-
ular α/β folds (Korotkov et al., 2009; Berry et al., 2012). An im-
portant and unique feature in most Tfp-dependent secretins (T.
thermophilus appears to be an exception) is the presence of one
or two β-sandwich domains (B1/2) at their extreme N-terminus
(Berry et al., 2012).

The secretin sub-complex often contains (sometimes tran-
siently) other components that are necessary for the pore func-
tion and/or stability (Koo, Burrows and Howell 2012). Follow-
ing the seminal studies with GspS from K. oxytoca (Hardie,
Lory and Pugsley 1996a), most of these proteins have been
(mis)named pilotins. GspS, which is a small outer membrane
lipoprotein (D’Enfert and Pugsley 1989), binds the CTD of GspD
monomers (Daefler et al., 1997), protects them from degrada-
tion and is necessary for their correct localization in the outer
membrane (Hardie, Lory and Pugsley 1996a; Hardie et al., 1996b).
In the absence of GspS, or its mislocalization, GspD multi-
mers mislocalize to the cytoplasmic membrane (Guilvout et al.,
2006). These findings, which were confirmed in many differ-
ent species/systems (Shevchik, Robert-Baudouy and Condem-
ine 1997; Schuch and Maurelli 2001), showed that the secretin
does not require GspS for multimerization or membrane inser-
tion, but rather that GspS is a chaperone that ‘pilots’ the secretin
monomers to the outer membrane, which it reaches via the Lol
pathway (hence its pilotin moniker). Strikingly, pilotins in dif-
ferent secretion systems are extremely diverse, showing no se-
quence or structural homology (Lario et al., 2005; Tosi et al., 2011).
Many, possibly most, Tff systems do not need pilotins either be-
cause secretins are lipoproteins themselves (Schmidt et al., 2001;
Viarre et al., 2009) or use general pathways for protein targeting
to the outer membrane (Voulhoux et al., 2003). Another protein
that is often part of secretin sub-complexes is PilW (Fig. 2). This
outer membrane lipoprotein (Carbonnelle et al., 2005), which is
almost exclusively found in Proteobacteria and most likely re-
stricted to Tfpa (Fig. 4), has been found to interact with PilQ (Koo
et al., 2013) and is key for the stability of PilQ multimers. Indeed,
in PilW absence PilQ multimers could not be detected (Carbon-
nelle et al., 2005; Nudleman, Wall and Kaiser 2006; Koo et al.,
2008). Unlike what has been observed for GspS (Hardie et al.,
1996b), PilW mislocalization does not prevent PilQ localization
to the outer membrane and/or piliation (Koo et al., 2008; Szeto
et al., 2011) and it is therefore not a bona fide pilotin. Two PG-
binding proteins, FimV and TsaP, have also been found as part of
the secretin sub-complex in some Tfpa-expressing species, but
it is unclear if this is conserved in other Tff.While FimVhas been
shown in P. aeruginosa to be important for PilQ stability and Tfp-
linked functions (Wehbi et al., 2011), TsaPwas identified as a pro-
tein interacting peripherally with secretin rings inN. gonorrhoeae
(Siewering et al., 2014). Although lack of TsaP did not affect PilQ
multimerization, the secretin channel was apparently inactive
since a tsaP mutant exhibited intra-periplasmic fibres, reminis-
cent of those in a pilQ/T mutant (Wolfgang et al., 2000; Carbon-
nelle et al., 2006). These PG-binding proteins were suggested to
anchor the secretin multimers to the cell wall, enabling them to
withstand dramatic forces generated during pilus (dis)assembly,
which warrants further investigation.

Late stages in Tff biogenesis

As mentioned above, most proteins essential for Tfpa biogene-
sis are actually dispensable for filament assembly per se since
the piliation defect in the corresponding genes could be sup-
pressed by a second mutation in pilT. Except for pilQ/T, all the

other double mutants display surface-exposed Tfp (Carbonnelle
et al., 2006), suggesting that the corresponding proteins (PilC,
PilG, PilH, PilI, PilJ, PilK and PilW) act later than PilQ. Their pu-
tative role is to shift the Tfp dynamics towards assembly and
recent publications have shed light on the function of the pilin-
like proteins (PilH, PilI, PilJ and PilK) and PilC/PilY1.

In each Tff system, there are almost invariably additional
genes beside the major (pseudo)pilin that encode proteins with
class III signal peptides, are cleaved by the prepilin peptidase
and play key roles in Tff biology. PilH, PilI, PilJ and PilK are thus
required for Tfpa biogenesis (Winther-Larsen et al., 2005; Car-
bonnelle et al., 2006), and their GspH, GspI, GspJ and GspK coun-
terparts are essential for T2SS (Lu, Motley and Lory 1997). An
idea of the role of these minor (pseudo)pilins came from the 3D
structure of a GspIJK hetero-trimer that revealed a Tff-like ar-
chitecture with an axial rise of 10 Å between neighbouring sub-
units (Korotkov and Hol 2008). The fourth pseudopilin GspH was
found to bind to GspJ at the base of this trimer (Douzi et al.,
2009) and the T2SS substrate was found to interact with its tip
(Douzi et al., 2011). Importantly, GspK that caps this complex has
a large domain positioned in such a way that no additional sub-
unit can be added above it (Korotkov and Hol 2008), which would
be consistent with a localization at the tip of pseudopili and a
possible role in priming filament assembly. However, in P. aerug-
inosa Tfp, the corresponding proteins have not been detected at
the tip but rather distributed throughout the filaments (Giltner,
Habash and Burrows 2010). Nevertheless, in accordwith this sce-
nario, hyper-pseudopilus abundance and/or length was found
to be affected in mutants in gspI, gspJ and gspK (but not gspH)
and was abolished in the concurrent absence of all these pro-
teins (Durand et al., 2005; Cisneros et al., 2012a). Cysteine cross-
linking experiments and molecular dynamics simulations out-
lined a model in which GspI and GspJ form a staggered com-
plex which recruits GspK, partially extracting it from the mem-
brane by 10 Å (Cisneros et al., 2012a). This was proposed to ‘kick-
start’ initiation of pseudopilus assembly, possibly by activating
the assembly ATPase in the cytoplasm (although this remains
purely speculative). The finding that the E. coli Tfp equivalents
of these pseudopilins (from the PpdD pilus) can complement the
hyper-pseudopiliation defect in a gspHIJK polymutant is strong
evidence that the role of these proteins in Tff assemblymight be
conserved (Cisneros et al., 2012b). In Tfp, however, the finding in
N. gonorrhoeae that wild-type levels of piliation can be restored in
the concurrent absence of PilH, PilI, PilJ and PilKwhen pilT is also
mutated (Winther-Larsen et al., 2005) seems difficult to reconcile
with a role of these proteins in initiating filament assembly.

PilC/PilY1 is a protein found predominantly in Tfpa pro-
duced by Proteobacteria (Fig. 4), first identified in N. gonorrhoeae
(Jonsson, Nyberg and Normark 1991). Orthologues in different
species have diverse NTD, while their C-terminus is highly
conserved. The protein is predicted to be associated with the
outer membrane (Rahman et al., 1997; Carbonnelle et al., 2005),
although a pilus localization has also been proposed (Rudel,
Scheuerpflug and Meyer 1995). A series of studies in different
species have shown that PilC is a bifunctional protein involved
in Tfp-mediated adhesion (already discussed) and pilus biogen-
esis. The conserved CTD is responsible for PilC role in Tfp bio-
genesis (Orans et al., 2010). The 3D structure of the correspond-
ing domain in PilY1 revealed a modified β-propeller fold with
a distinct and highly conserved EF-hand-like calcium-binding
site (Orans et al., 2010). Calcium was proposed to control PilT-
mediated pilus retraction, consistent with the phenotype of a
pilC/Tmutant. Calcium-bound PilY1 inhibits PilT-mediated pilus
retraction, while in a calcium-free state it is unable to do so,



Berry and Pelicic 147

resulting in a non-piliated phenotype. However, although later
studies agree that calcium binding by PilC is key for Tfp biology
in other piliated proteobacterial species as well, no major effect
on piliationwas seen in calcium-freemutants (Cheng et al., 2013;
Porsch et al., 2013).

CONCLUDING REMARKS

Despite considerable progress, our understanding of Tff biology
remains incomplete and there are important gaps in knowledge
to be filled. Obviously, the main challenge consists in improving
our understanding of the molecular mechanisms of Tff assem-
bly. Perhaps themost spectacular advances in recent years came
from structural studies showing that proteins in diverse Tff sys-
tems that have diverged to the point that no sequence homology
is discernible do exhibit highly similar 3D structures. This is a
strong argument in favour of the notion that common molec-
ular principles govern Tff biology. Additional structural infor-
mation has the potential to further improve our understanding
of these principles. For example, cryo-EM combined with direct
electron detectors (Lu et al., 2014a) could be used to obtain much
higher, possibly atomic, resolution reconstruction of various Tff,
including Flp pili that are formed of a ‘minimal’ pilin (Tomich,
Planet and Figurski 2007). The 3D structure of more ‘orphan’ Tff
proteins from less well characterized systems might reveal that
they are structural homologues of bacterial proteins to which
they bear no sequence homology (e.g. is FlaH an orthologue of
PilM?), fuelling the emergence of one unifying mechanism for
Tff assembly. Atomic-resolution structures of a secretin chan-
nel or a bacterial prepilin peptidase in complex with a prepilin
substrate would shed more light on these key steps in Tff bi-
ology. Finally, although this promises to be utterly complex, it
would be worth trying to determine the structure of the various
sub-complexes discussed here (full-length proteins rather than
soluble domains) because this would dramatically improve our
understanding of Tff biology and bring it a little closer to the
exquisite understanding of pilus assembly by the chaperone–
usher pathway (Phan et al., 2011). Such advances will be instru-
mental in the rational design of specific inhibitors of Tff assem-
bly, analogues of ‘pilicides’ interfering with pilus assembly by
the chaperone–usher pathway (Pinkner et al., 2006) or curli bio-
genesis (Cegelski et al., 2009), which would represent exception-
ally broad-spectrum anti-microbial compounds (Fig. 4).

Structural biology is obviously not the only research avenue
that should be privileged, and further genetic, biochemical and
dynamic modelling studies of different Tff properties and/or
proteins are warranted. As confirmed by the wealth of inter-
esting data coming from archaeal Tff (Jarrell et al., 2013), future
research should not only favour the ‘historic’ models (although
there is still plenty to be learned in T2SS, Bfp, Tcp orNeisseria and
P. aeruginosa Tfpa) but should be extended to new models, more
distant from an evolutionary point of view. An in-depth study
of Gram-positive Tfp would be for example of great interest as
such bacteria are inherently ‘simpler’ because of the absence
of an outer membrane (Melville and Craig 2013). This could be
key in understanding how Tff cross the PG. Another attractive
‘reductionist’ approach would be to determine which proteins
are necessary and sufficient for filament assembly by creating a
minimal system, which could be done in several ways. Similar
to what was done for Tfpb or T2SS with the transfer of the entire
corresponding operons (D’Enfert, Ryter and Pugsley 1987; Sohel
et al., 1996; Stone et al., 1996), a surrogate non-piliated organism
could be used to determine which subset of genes is sufficient

to promote Tff assembly. The pilT suppressor assay pioneered
in Neisseria species (Wolfgang et al., 1998b) could be extended by
creating polymutants in a pilT mutant background in which all
the genes not involved in Tff assembly would be deleted. Ulti-
mately, a minimal Tff assembly system could be reconstituted
from proteins expressed in a cell-free system (Aly et al., 2013)
or even purified, as has been achieved for type I pili (Nishiyama
et al., 2008). All of these studies, and many more, will undoubt-
edly continue to ‘feed’ the Tff field with interesting results and
exciting concepts in the years to come.
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