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Modeling, Analysis and Testing of Autonomous
Operation of an Inverter-Based Microgrid
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Abstract— This paper deals with the modeling and analyzing
the autonomous operation of inverter-based microgrids. Each
sub-module is modeled in state-space form and are combined
together on a common reference frame. The complete model is
linearized around an operation point and its system matrix is
obtained to derive the eigenvalues. Eigenvalues (termed ’modes’)
provide the information on the frequency and damping of oscilla-
tory components in the transient response. A sensitivity analysis
is also presented which helps in identifying the origin of each of
the modes and possible feedback signal to design the appropriate
controller to improve the system stability. Experimental results of
a prototype microgrid are provided to verify the results obtained
from the model.

Index Terms— microgrid, small-signal stability, inverter, par-
allel operation.

I. INTRODUCTION

Recent innovations in small-scale distributed power gener-
ation systems combined with technological advancements in
power electronic systems led to the concepts of future network
technologies such as microgrids. These small power systems
are gaining popularity because they offer increased reliability
and efficiency, uses environmental friendly renewable energy
and other forms of distributed generation [1]. Many forms
of distributed generation (DG) systems such as fuel-cells,
photo-voltaic and micro-turbines are interfaced to the network
through power electronic converters [2] [3] [4]. These inter-
facing devices make them more flexible in their operation and
control compared to the conventional power systems. However,
due to their negligible physical inertia they also make the
system potentially prone to network disturbances.

A microgrid can be operated either in grid connected mode
or in stand-alone mode. In grid connected mode, most of the
system-level dynamics are dictated by the main grid due to the
relatively small size of micro sources. In stand-alone mode, the
system dynamics are dictated by micro sources, the network
and the nature of the power regulation control.

One of the important aspects of such a low inertia systems is
their small-signal stability. Previous dynamic analysis of stand-
alone systems is carried out by assuming an ideal inverter
as in[5]. This means that the closed-loop inner controllers
(voltage and current) are assumed to be able to generate the
required output at the inverter terminals and they do not have
any effect on the small signal stability. This assumption is
based on the fact that the closed-loop bandwidth of the inverter
is well above the bandwidth of power sharing controllers. The
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modeling approach presented in [6] concentrates on individual
inverter stability issues when connected to a stiff ac bus.
However, a complete analysis of inverter-based microgrids
involving fast acting controllers is necessary.

In this paper a systematic approach to model an inverter-
based microgrid is presented. Each DG inverter will have an
outer power loop based on droop control to share the funda-
mental real and reactive powers with other DGs. Inverter inter-
nal controls include voltage and current controllers which are
designed to reject high frequency disturbances and damp the
output LC filter to avoid any resonance with external network.
A small-signal state-space model is constructed including the
controls, output filter and coupling inductor on a synchronous
reference frame whose rotation frequency is set by the power
controller of individual inverter. An arbitrary choice is made
to select one inverter frame as the common reference frame
and all the network state equations are represented on this
common reference frame. All other inverters are translated
to this common reference frame using simple transformation
techniques as used with synchronous machine systems.

Once the small-signal model has been formed, eigenvalues
(or modes) are identified that express the typical frequency
components present and their available damping. In such a
way, the relation between system stability and system pa-
rameters, including the gains of controllers, is established.
A sensitivity analysis is then conducted which provides the
sensitivity of different modes to the system state variables and
point out the role of each controller in forming of these modes.

II. M ICROGRID MODEL IN AUTONOMOUS OPERATION

A typical characteristic of a microgrid is that it can be
operated either in grid connected or in islanded (autonomous)
mode. Normally, when a microgrid is operated in grid con-
nected mode the micro sources act as constant power sources
which means that they are controlled to inject the demanded
power in to the network. In autonomous mode the micro
sources are controlled to supply all the power needed by
the local loads while maintaining the voltage and frequency
within the allowed limits. Autonomous operation of a mi-
crogrid might be initiated for either of the following two
reasons. First, because of pre-planned (intentional) islanding
due to maintenance or economical reasons. Depending on the
market situation the owner of a microgrid can chose between
autonomous and grid connected modes [7]. Second, because
of un-planned (un-intentional) islanding due to the failure of
the main grid caused by a network fault.

Autonomous operation is realised by opening the isolating
switch (shown in Fig. 1) which disconnects the microgrid
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from the main grid. Once the microgrid is isolated the micro
sources feeding the system are responsible for maintaining
the voltage and frequency while sharing the power. During
the autonomous operation it is important to avoid the over-
loading of inverters so it is also important to ensure that
changes in load are taken by inverters in a pre-determined
manner. Control techniques based on a communication link,
such as the master-slave approach [8], can be adapted in
systems where micro sources are connected to a common bus
or located in close proximity. However, communication link
makes the system more expensive and less reliable. Also, in a
typical microgrid micro sources can be located far away from
each other making communication link less attractive. Control
techniques based on local measurements which do not require
expensive communication facilities have been proposed [9]. In
this paper the later method is adopted.
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Fig. 1. A typical structure of inverter-based microgrid

The modeling approach presented in this paper divides the
whole system into three major sub-modules; inverter, network
and loads (Fig.2). Each inverter is modeled on its individual
reference frame whose rotation frequency is set by its local
power sharing controller. The inverter model includes the
power sharing controller dynamics, output filter dynamics,
coupling inductor dynamics and voltage and current controller
dynamics. This last element introduces high frequency dynam-
ics which are apparent at peak and light load conditions and
during large changes in load. The small-signal flow among the
sub-modules shown in Fig. 2 will be explained in the following
sections.

Network dynamics are generally neglected in small-signal
modeling of conventional power systems. The reason behind
this is that the time constants of rotating machines and their
controls are much larger than those of the network. In the
case of microgrids, the micro sources are connected through
inverters whose response times are very small and network
dynamics would influence the system stability. Previous work
[5] on small-signal modeling of parallel connected inverters
was carried out without considering the network dynamics.

Here, the state equations of the network and the loads are
represented on the reference frame of one of the individual
inverters. This reference frame is considered as the com-
mon reference frame. All the other inverters are translated
to this common reference frame using the transformation
technique [10] depicted in Fig. 3 and defined in (1). Here,
the axis set(D − Q) is the common reference frame rotating

Fig. 2. Block diagram of complete small-signal state-space model of a
microgrid

Fig. 3. Reference frame transformation

at a frequencyωcom, where as axes(d− q)i and(d− q)j are
the reference frame ofith and jth inverters rotating atωi and
ωj , respectively .

[

fDQ

]

=
[

Ti

] [

fdq

]

(1)

[

Ti

]

=

[

cos(δi) −sin(δi)
sin(δi) cos(δi)

]

(2)

In (1) and (2),δi is the angle of the reference frame of
ith inverter with respect to the common reference frame. In
the following sections the internal modeling of all the three
modules is discussed more in detail.

A. State-Space Model of Voltage Source Inverter

Voltage source inverter is commonly used to interface
distributed generators to the network. Fig. 4 shows the block
diagram of an inverter connected to the microgrid. The power
processing section consists of a three-leg inverter, an output
LC filter and coupling inductor. Assuming an ideal source
from the DG side, the dc bus dynamics can be neglected. With
the realization of high switching frequencies (4-10 kHz), the
switching process of the inverter may also be neglected.
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Fig. 4. DG Inverter Block Diagram

The control section can be divided into three different parts.
First is an external power control loop which sets the mag-
nitude and frequency (and hence phase) for the fundamental
component of the inverter output voltage according to its droop
characteristics set for the real and reactive powers. Harmonic
power sharing has been treated as an additional function with
a different control topology [11]. The second and third parts
of the control system are the voltage and current controllers,
which are designed to reject high frequency disturbances and
provide sufficient damping for the output LC filter [12] [13].

In this section a state space model is presented for all of the
subsystems: control loops, output filter and coupling inductor.
The model is constructed in a rotational reference frame set
by the external power controller of individual inverter.

1) Power Controller: The basic idea behind the droop
control is to mimic the governor of a synchronous generator.
In a conventional power system, synchronous generators will
share any increase in the load by decreasing the frequency
according to their governor droop characteristic. This princi-
ple is implemented in inverters by decreasing the reference
frequency when there is an increase in the load. Similarly,
reactive power is shared by introducing a droop characteristic
in voltage magnitude.
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Fig. 5. Power Controller

As shown in Fig.5, instantaneous active and reactive power
components̃p and q̃ are calculated from the measured output
voltage and output current as in (3).

p̃ = vodiod + voqioq

q̃ = vodioq − voqiod (3)

The instantaneous power components are passed through
low-pass filters, shown in (4), to obtain the real and reactive
powers P and Q corresponding to the fundamental component.
ωc represents the cut-off frequency of low-pass filters.

P =
s

s + ωc

p̃, Q =
s

s + ωc

q̃ (4)

The real power sharing between inverters is obtained by
introducing an artificial droop in the inverter frequency as
in (5). The frequencyω is dropped according to the droop
gain (mp) and phase is set by integrating the frequency. In the
following equationsωn will represent the nominal frequency
set-point.

ω = ωn − mpP, θ̇ = ω (5)

Similarly, to share the reactive power among multiple in-
verters, a droop is introduced in voltage magnitude as given
in (6). Here,Vn stands for the nominal set point of d-axis
output voltage. The control strategy is chosen such that the
output voltage magnitude reference is aligned to the d-axis of
the inverter reference frame, where as q-axis reference is set
to zero.

v∗

od = Vn − nq Q, v∗oq = 0 (6)

The droop gainsmp and nq are calculated using equation
(7) for the given range of frequency and voltage magnitude.

mp =
ωmax − ωmin

Pmax

, nq =
Vod max − Vod min

Qmax

(7)

In small-signal analysis the inverter angleθ can be written
as in (8), whereδ is the angle of the inverter reference frame
seen from an arbitrary common reference frame, similar to
power angle of a synchronous generator. It is to be understood
that each individual inverter is modeled on the reference frame
determined by its own power controller.

θ = ωnt + δ (8)

Hence, from equations (5) and (8),

δ̇ = −mp P (9)

By linearizing and rearranging above equations, the small-
signal power controller model can be written in a state-space
form as in (10). The outputs of the power controller are the
output voltage reference∆v∗

o and small-signal variation of
frequency∆ω. The matrices are defined in (11).

˙



∆δ

∆P

∆Q



 = AP





∆δ

∆P

∆Q



 + BP





∆il
∆vo

∆io





[

∆ω

∆v∗

o

]

=

[

CPω

CPv

]





∆δ

∆P

∆Q



 (10)

AP =





0 −mp 0
0 −ωc 0
0 0 −ωc



 CPω =
[

0 −mp 0
]

CPv =

[

0 0 −nq

0 0 0

]

BP =





0 0 0 0 0 0
0 0 ωcIod ωcIoq ωcVod ωcVoq

0 0 ωcIoq −ωcIod −ωcVoq ωcVod



 (11)
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The d and q axis components of voltages and currents are
joined to form vectors as in (12) to allow a simpler system
presentation.

∆v∗

o =
[

v∗

od v∗

oq

]T
,∆il =

[

ild ilq
]T

∆vo =
[

vod voq

]T
,∆io =

[

iod ioq

]T
(12)

2) Voltage Controller: Fig. 6 shows the voltage controller
block diagram including all feed-back and feed-forward terms.
Output voltage control is achieved with a standard PI con-
troller. Corresponding state equations are

Fig. 6. Voltage Controller

dφd

dt
= v∗

od − vod,
dφq

dt
= v∗

oq − voq (13)

along with the algebraic equations

i∗ld = F iod − ωn Cf voq + Kpv (v∗

od − vod) + Kiv φd (14)

i∗lq = F ioq + ωn Cf vod + Kpv (v∗

oq − voq) + Kiv φq (15)

Equation (16) represents the linearized small-signal state-
space form of voltage controller. Here, the input to the
subsystem is split in to two terms: the reference input and
feedback inputs.

˙[

∆φ
]

=
[

0
] [

∆φ
]

+ BV 1

[

∆v∗

o

]

+ BV 2





∆il
∆vo

∆io





(16)

In equation (16),

∆φ =
[

∆φd ∆φq

]T
(17)

BV 1 =

[

1 0
0 1

]

, BV 2 =

[

0 0 −1 0 0 0
0 0 0 −1 0 0

]

(18)

[

∆i∗l
]

= CV

[

∆φ
]

+ DV 1

[

∆v∗

o

]

+ DV 2





∆il
∆vo

∆io





(19)

CV =

[

Kiv 0
0 Kiv

]

, DV 1 =

[

Kpv 0
0 Kpv

]

DV 2 =

[

0 0 −Kpv −ωnCf F 0
0 0 ωnCf −Kpv 0 F

]

(20)

3) Current Controller: Fig. 7 shows the current controller
structure. Output filter inductor current control is achieved
with a standard PI controller. Corresponding state equations
are

Fig. 7. Current Controller

dγd

dt
= i∗ld − ild

dγq

dt
= i∗lq − ilq (21)

along with the algebraic equations

v∗

id = vod − ωn Lf ilq + Kpc (i∗ld − ild) + Kic γd (22)

v∗

iq = voq + ωn Lf ild + Kpc (i∗lq − ilq) + Kic γq (23)

Equation (24) represents the linearized small-signal state-
space form of current controller,

˙[

∆γ
]

=
[

0
] [

∆γ
]

+ BC1

[

∆i∗l
]

+ BC2





∆il
∆vo

∆io





(24)

where,

∆γ =
[

∆γd ∆γq

]T
(25)

BC1 =

[

1 0
0 1

]

, BC2 =

[

−1 0 0 0 0 0
0 −1 0 0 0 0

]

(26)

[

∆v∗

i

]

= CC

[

∆γ
]

+ DC1

[

∆i∗l
]

+ DC2





∆il
∆vo

∆io





(27)

CC =

[

Kic 0
0 Kic

]

, DC1 =

[

Kpc 0
0 Kpc

]

DC2 =

[

−Kpc −ωnLf 0 0 0 0
ωnLf −Kpc 0 0 0 0

]

(28)
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4) Output LC Filter and Coupling Inductance: Output LC
filter and the coupling inductance small-signal model can be
represented with the following state equations by assuming
that inverter produces the demanded voltage (vi = v∗

i ).

dild

dt
=

−rf

Lf

ild + ω ilq +
1

Lf

vid −
1

Lf

vod (29)

dilq

dt
=

−rf

Lf

ilq − ω ild +
1

Lf

viq −
1

Lf

voq (30)

dvod

dt
= ω voq +

1

Cf

ild −
1

Cf

iod (31)

dvoq

dt
= −ω vod +

1

Cf

ilq −
1

Cf

ioq (32)

diod

dt
=

−rc

Lc

iod + ω ioq +
1

Lc

vod −
1

Lc

vbd (33)

dioq

dt
=

−rc

Lc

ioq − ω iod +
1

Lc

voq −
1

Lc

vbq (34)

Following equations represents the linearized small-signal
state-space form of the LC filter and coupling inductance.
Frequencyω0 is the system steady-state frequency at the given
operating point.

˙



∆il
∆vo

∆io



 = ALCL





∆il
∆vo

∆io



 + BLCL1 [∆vi] +

BLCL2 [∆vbdq] + BLCL3 [∆ω] (35)

ALCL =





















−rLf

Lf
ω0

−1
Lf

0 0 0

−ω0
−rLf

Lf
0 −1

Lf
0 0

1
Cf

0 0 ω0 − 1
Cf

0

0 1
Cf

−ω0 0 0 − 1
Cf

0 0 1
Lc

0
−rLc

Lc
ω0

0 0 0 1
Lc

−ω0
−rLc

Lc





















BLCL1 =

















1
Lf

0

0 1
Lf

0 0
0 0
0 0
0 0

















BLCL2 =

















0 0
0 0
0 0
0 0

− 1
Lc

0

0 − 1
Lc

















BLCL3 =
[

Ilq −Ild Voq −Vod Ioq −Iod

]T

(36)

5) Complete inverter model: To connect an inverter to the
whole system the output variables need to be converted on
to common reference frame. In this case the output variables
of an inverter are the output currents represented as vector
∆ioDQ. Using the transformation technique introduced in (1)
and (2), the small-signal output current on common reference
frame can be obtained, as in (37). The small signal equivalent
of the reference transformation is shown in Fig. 8.

Fig. 8. Small-signal equivalent of reference frame transformation

[

∆ioDQ

]

= [TS ]
[

∆io
]

+ [TC ]
[

∆δ
]

(37)

where,

TS =

[

cos(δ0) −sin(δ0)
sin(δ0) cos(δ0)

]

TC =

[

−Iodsin(δ0) − Ioqcos(δ0)
Iodcos(δ0) − Ioqsin(δ0)

]

(38)

∆δ =

∫

(∆ω − ∆ωcom) (39)

Similarly, the input signal to the inverter model is the bus
voltage which is expressed on common reference frame. The
bus voltage can be converted on to individual inverter reference
frame using reverse transformation, given by (40),

[

∆vbdq

]

=
[

T−1
S

] [

∆vbDQ

]

+
[

T−1
V

] [

∆δ
]

(40)

where,

T−1
V =

[

−VbDsin(δ0) + VbQcos(δ0)
−VbDcos(δ0) − VbQsin(δ0)

]

(41)

It is to be noted that the inverter whose reference frame
is taken as the common reference frame has to provide
its reference frequency∆ωcom to all the sub-modules as
shown in (39). Also, care should be taken to introduce this
modification in the power controller output (10).

A complete state-space small-signal model of inverter can
be obtained using the state models of power controller, voltage
controller , current controller and output LCL filter, given by
equations (10), (16), (19), (24), (27), (35), (37) and (40),

˙[∆xinvi] = AINV i [∆xinvi] + BINV i [∆vbDQi] (42)

[

∆ωi

∆ioDQi

]

=

[

CINV ωi

CINV ci

]

[∆xinvi] (43)

where,

∆xinvi = [∆δi ∆Pi ∆Qi ∆φi ∆γi ∆ili ∆voi ∆ioi]
T (44)

BINV i =









0
0
0

BLCL2T
−1
S









(46)
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AINV i =

26666666666664
APi 0 0 BPi

BV 1iCPvi 0 0 BV 2i

BC1iDV 1iCPvi BC1iCV i 0 BC1iDV 2i + BC2i

BLCL1iDC1iDV 1iCPvi+
BLCL2i

�
T−1

V i 0 0
�
+

BLCL3iCPωi

BLCL1iDC1iCV i BLCL1iCCi
ALCLi+

BLCL1i (DC1iDV 2i + DC2i)

37777777777775
∆δi

∆Pi

∆Qi

∆φi

∆γi

∆ili
∆voi

∆ioi| {z }
states

(45)

CINV ωi =

{ [

CPCω 0 0 0
]

i = 1
[

0 0 0 0
]

i 6= 1
(47)

CINV ci =
[

[TC 0 0] 0 0 [0 0 TS ]
]

(48)

Now the states of all inverters in the system can be com-
bined to form inverter state-space model and represented as
in (49).

[∆xinv] = [∆xinv1 ∆xinv2 ... ∆xinv s]
T (49)

B. Network Model

An example network ofn lines andm nodes withs inverters
andp load points is shown in Fig. 9. On a common reference
frame the state equations of line current ofith line connected
between nodesj andk are

Fig. 9. Network representation

dilineDi

dt
=

−rlinei

Llinei

ilineDi + ωilineQi+

1

Llinei

vbDj −
1

Llinei

vbDk (50)

dilineQi

dt
=

−rlinei

Llinei

ilineQi − ωilineDi+

1

Llinei

vbQj −
1

Llinei

vbQk (51)

Hence, the small-signal state-space model of a network
with n lines is given by (52).

˙[

∆iline

]

= ANET

[

∆iline

]

+ B1NET [∆vbDQ] +

B2NET ∆ω (52)

In (52),

[

∆iline

]

= [∆iline 1 ∆iline 2 ... ∆iline n]
T (53)

[

∆vbDQ

]

= [∆vbDQ 1 ∆vbDQ 2 ... ∆vbDQ m]
T (54)

∆ω = ∆ωcom (55)

ANET =









ANET 1 0 ... 0
0 ANET 2 ... 0
... ... ... ...

0 0 ... ANET n









2n×2n

(56)

B1NET =
[

B1NET 1 B1NET 2 ... B1NET n

]T

B2NET =
[

B2NET 1 B2NET 2 ... B2NET n

]T
(57)

where,

ANETi =

[

−rlinei

Llinei
ω0

−ω0
−rlinei

Llinei

]

B2NETi =

[

IlineQi

−IlineDi

]

B1NETi =

[

... 1
Llinei

0 ... −1
Llinei

0 ...

... 0 1
Llinei

... 0 −1
Llinei

...

]

2×(2m) (58)

(c) 2007 IEEE. Personal use of this material is permitted.  
Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, 

creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.



7

C. Load model

Although, many types of load can exist in microgrids, a
general RL load dynamic model is considered in this paper.
The state equations of the RL load connected atith node are

diloadDi

dt
=

−Rloadi

Lloadi

iloadDi + ωiloadQi +
1

Lloadi

vbDi (59)

diloadQi

dt
=

−Rloadi

Lloadi

iloadQi − ωiloadDi +
1

Lloadi

vbQi (60)

Hence, for a network withp load points the small-signal
state-space model of loads is given by (61).

˙[

∆iload

]

= ALOAD

[

∆iload

]

+ B1LOAD [∆vbDQ] +

B2LOAD∆ω

(61)

In (61)
[

∆iload

]

= [∆iload 1 ∆iload 2 ... ∆iload p]
T (62)

ALOAD =









ALOAD 1 0 ... 0
0 ALOAD 2 ... 0
... ... ... ...

0 0 ... ALOAD p









2p×2p

(63)

B1LOAD =
[

B1LOAD 1 B1LOAD 2 ... B1LOAD p

]T

B2LOAD =
[

B2LOAD 1 B2LOAD 2 ... B2LOAD p

]T

(64)

where,

ALOADi =

[

−Rloadi

Lloadi
ω0

−ω0
−Rloadi

Lloadi

]

B2LOADi =

[

IloadQi

−IloadDi

]

B1LOADi =

[

... 1
Lloadi

0 ...

... 0 1
Lloadi

...

]

2×(2m)

(65)

D. Complete microgrid model

It can be seen in (42), (52) and (61) that the node voltages
are treated as inputs to each sub-system. To establish the node
voltage a virtual resistorrN is assumed at each node of the
network. The resistance of virtual resistor is chosen sufficiently
large such that its introduction would have minimum influence
on the dynamic stability of the system. Hence, the voltage of
ith node is given by

vbDi = rN (ioDi − iloadDi + ilineD i,j) (66)

vbQi = rN (ioQi − iloadQi + ilineQ i,j) (67)

In symbolic form, for a network withm nodes
[

∆vbDQ

]

= RN (MINV [∆ioDQ] +

+MLOAD [∆iload] + MNET [∆iline]) (68)

In (68), matrix RN is of size 2m × 2m, whose diagonal
elements are equal torN . The mapping matrixMINV is of
size2m× 2s, which maps the inverter connection points onto
network nodes. For example, ifith inverter is connected at
jth node, the elementMINV (j, i) will be 1 and all the other
elements in that row will be 0. Similarly,MLOAD is of size
2m×2p maps load connection points onto the network nodes
with -1. Matrix MNET of size2m× 2n maps the connecting
lines onto the network nodes. Here care should be taken to
put either +1 or -1 based on whether the given line current is
leaving or entering the node.

Now, the complete microgrid small-signal state-space model
and hence the system state matrix (as given in equation (69))
can be obtained by using the individual sub-system models
given by (42), (43), (52), (61) and (68).

˙



∆xinv

∆iline

∆iload



 = Amg





∆xinv

∆iline

∆iload



 (69)

The complete system state matrixAmg is given in (70). The
small-signal flow among all the sub-modules is shown in Fig.
2.

III. EIGENVALUE AND SENSITIVITY ANALYSIS

The eigenvalue concept of control theory has been exten-
sively used to determine the stability of conventional power
systems. Eigenvalues, termedmodes, are the solution of char-
acteristic equation of a system’s linearized state matrix [14].
Eigenvalues reveal the different frequency components in the
system and their available damping.

A. Sensitivity analysis

Further information on the origin of different frequency
components can be obtained by observing the participation of
different state variables in a particular mode [14]. This can be
achieved with a sensitivity analysis conducted on the system
state matrix. The sensitivity factorpki, given by (71), is the
measure of the association between the state variables and the
modes and is equal to the sensitivity of the eigenvalueλi to the
diagonal elementakk of the system state matrix. Sensitivity
factors can be calculated using left and right eigenvectors.

pki =
∂λi

∂akk

(71)

IV. EXPERIMENTAL VERIFICATION OF MODEL

A 220 V (per phase RMS), 50 Hz prototype microgrid was
built to test and verify the model results. As shown in Fig. 10
the test system consist of three inverters of equal rating with
two load banks, one at each bus 1 and bus 3. These inverters
are controlled to share the real and reactive powers over the
lines 1 and 2. System parameters are given in Table I. It can
be seen that the prototype system represents a general possible
case of a microgrid. Network is more resistive as is the case
in low voltage distribution systems. DG1 and DG2 are located
relatively close together compared to DG3. In this test system
only resistive loads were used to verify the model. A resistive
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Amg =

26664 AINV + BINV RNMINV CINV c BINV RNMNET BINV RNMLOAD

B1NET RNMINV CINV c + B2NET CINV ω ANET + B1NET RNMNET B1NET RNMLOAD

B1LOADRNMINV CINV c + B2LOADCINV ω B1LOADRNMNET ALOAD + B1LOADRNMLOAD

37775 (70)

load of 5.8 kW (=25Ω per phase) at bus 1 and 7.3 kW (=20Ω
per phase) at bus 2 is considered as an initial operating point.

The droop gains of all the inverters were chosen to be
equal so that they share equal fundamental power. The nominal
frequency droop was 0.3% at the maximum real power output,
whereas the nominal voltage droop was 2% at the maximum
reactive power output. The voltage controller was designed to
have a bandwidth of 400 Hz while the current controller was
designed for 1.6 kHz bandwidth with good rejection of high-
frequency disturbance. Although, the control was implemented
in discrete-time domain, the equivalent continuous domain
gains are provided (in Table. I) to construct the model.

Fig. 10. Test system

TABLE I

TEST SYSTEM PARAMETERS

Inverter parameters (10 kVA rating)
Parameter Value Parameter Value
fs 8 kHz mp 9.4e-5
Lf 1.35 mH nq 1.3e-3
Cf 50 µF Kpv 0.05
rf 0.1 Ω Kiv 390
Lc 0.35 mH Kpc 10.5
rLc 0.03Ω Kic 16e3
rating 10 kV A F 0.75
Network and Load parameters (see Fig. 10)

A. Modeling Results

A complete model of the test system was obtained using
the procedure outlined in section II. Initial conditions of the
system are given in Table II. These steady-state operating
point conditions were obtained from MATLAB/SIMULINK
time-step simulation of the system. However, it is possible
to use a more general load-flow solution as is often done in

conventional power system modeling to obtain initial steady-
state conditions [14].

Fig. 11 shows the complete eigenvalues of the system for the
initial conditions given in Table II. It can be seen that a large
range of frequency components exist and that these fall in to
three different clusters. Using (71), participation of different
states in these eigenvalues was obtained. It can be seen that the
high frequency modes in cluster ‘3’ are sensitive to the state
variables of LCL filter block of inverters and line currents. The
modes in cluster ‘2’ are largely sensitive to the state variables
of voltage controller, current controller, and output LC filter.
The low frequency dominant modes shown in cluster ‘1’ are
largely sensitive to the state variables of power controller.

TABLE II

INITIAL CONDITIONS

Par. Value Par. Value
Vod [380.8 381.8 380.4] Voq [0 0 0]
Iod [11.4 11.4 11.4] Ioq [0.4 -1.45 1.25]
Ild [11.4 11.4 11.4] Ilq [-5.5 -7.3 -4.6]
Vbd [379.5 380.5 379] Vbq [-6 -6 -5]
ω0 [314] δ0 [0 1.9e-3 -0.0113]
Iline1d [-3.8] Iline1q [0.4]
Iline2d [7.6] Iline2q [-1.3]
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Fig. 11. The eigenvalue spectrum of the system indicating various modes

Fig. 12 shows the trajectory of the two-pairs of complex-
conjugate dominant low frequency eigenvalues (part of clus-
ter 1) as a function of real power droop gainmp of all
the three inverters. The eigenvalues marked withλ1−2 are
largely sensitive to the state variables of real power part of the
power controllers of inverters 1 and 2, as given in Table III.
Similarly, eigenvalue marked asλ1−3 are highly sensitive to
the state variables of real power part of the power controllers
of inverters 1 and 3. It is therefore apparent that the modes
λ1−2 andλ1−3 represent the dynamics of real power sharing
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Fig. 12. Trace of low-frequency modes:1.57e−5 ≤ mp ≤ 3.14e−4

of the DGs. However, these modes are also sensitive to the
reactive power. This in fact represents the coupling of real
and reactive powers in the network due the presence highly
resistive lines.

Fig. 12 shows that asmp is increased, modesλ1−2 and
λ1−3 move towards unstable region making the system more
oscillatory and eventually leading to instability. It is to be
noted that large droop gain is necessary to improve the
transient response of DGs, whereas a low-pass filter with low
cut-off frequency is needed to achieve good attenuation of high
frequency distortion components in the measured power and
to avoid any interaction with inner current controllers. Also,
from table III it can be observed that the most dominant mode
λ1−2 is highly sensitive to the states of the power controller of
inverter 2. Hence, in this system, inverter 2 is the most critical
element from the point of view of system stability.

TABLE III

SENSITIVITY OF LOW FREQUENCY DOMINANT MODES

Sensitivity ofλ1−2 Sensitivity ofλ1−3

state participation state participation
P1 0.15 P1 0.12
Q1 0.05 Q1 0.06
P2 0.3 P3 0.32
Q2 0.03 Q3 0.03
δ2 0.5 δ3 0.57

remaining states≤0.005

B. Experimental results

In this section results obtained from the model are verified
against the experimental testing using the system described at
the beginning of Section IV. First, to verify the low frequency
modes within the model, a disturbance in load currentiload 1

was modeled. This requires the addition of a controlled current
source in parallel toRload1 shown in Fig.10 and the addition
of a disturbance term to (69). The disturbance was chosen to
be equal to the step change of 3.8 kW real power. Then, the
experimental system was excited with the same 3.8 kW step
change in load at bus 1. A second of tests was used to examine
the high frequency modes. Due to the presence of significant

P1 2kW/ P2 2kW/ P3  2kW/ Time  100ms/

P3

P2

P1

P1

P2

P3

Experiment

Model

Fig. 13. Output power (filtered) response of micro-sources with 3.8 kW of
step change in load power at bus 1

1 1kVAR/ 2 1kVAR/ 3 1kVAR/ Time  100ms/

Q
1

Q
2

Q
3

Q
1

Q
2

Q
3

Experiment

Model

Fig. 14. Reactive power exchange between the micro sources with 3.8 kW
of step change in load power at bus 1

damping, a large disturbance in the load was needed to capture
the high frequency modes. A step change of 27 kW (from no
load) at bus 1 was considered.

Figures 13, 14, 15 and 16 shows the response of state
variables P, Q,vod and ild of all the three inverters obtained
from the model and experiment. It is to be noted that the
waveforms corresponding to the experimental results are ac-
tually the internal variables of inverters that were captured by
using on-board D/A converters. Also, all these figures depict
only the variation in the signal from their initial point (relative
change).

Fig. 13 shows the DG fundamental output power response
for a 3.8 kW step change in load 1, for both the model
and experimental system. The dominant, poorly damped low
frequency modesλ1−2 (marked with a circle in Fig. 12) of
frequency 7.2 Hz can be clearly observed in the fundamental
power. Although, a slight difference in the magnitude exists,
the response obtained from the model matches with the
response obtained from the practical test system. Due to a
slight unequal dc off-set in the measured output phase currents
a small 50 Hz component was observed in the output power
in the experimental case.

In Fig. 13 it can be seen that DG1 which is near to the
changed load took the major part of the transient, whereas
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Fig. 15. Output voltage response with 27 kW of step change in load power
at bus 1

DG2 and DG3 have responded slower, depending on the effec-
tive impedance seen from the load point. Hence, during large
changes in the load, closely located DGs may be overloaded
and can be tripped out due to the limited overload capacity of
the inverters.

Fig. 14 shows the fundamental reactive power sharing. It
can be seen that a considerable amount of reactive power was
exchanged between the inverters due to the presence of large
resistance in the lines. This can be reduced by increasing the
voltage magnitude droop but will be at the expense of voltage
quality. This is one of the major limitations of conventional
droop control applied in low voltage grids [15][16]. Again, it
can be observed that the experimental results closely match
with the model results.

Fig. 15 depicts the output voltage response of all the three
inverters for a 27 kW load change. The high frequency modes
of frequency around 350 Hz in cluster ‘2’ shown in fig. 11 can
be observed in the output voltage response. Although, a slight
difference exists in the magnitude of response obtained from
the linear model compared ro the test system, the oscillatory
response in both cases matches. Also, the response obtained
from the experimental set-up is more damped that of the
model. It is to be noted that the participation of the output
voltage state variable is the maximum in these modes. It
would be interesting to investigate the possible excitation of
these modes under harmonic loads because, the lower order
significant harmonic frequencies will fall in the range of
frequencies of these modes. However, this is not in the scope
of this paper.

Fig. 16 shows the inductor current response of all the three
inverters. In this case, high frequency modes with a frequency
of around 800 Hz in cluster ‘3’ in Fig. 11 can be observed
in the response. It was observed that these modes are highly
sensitive to the load condition of the system and that this
determines their damping.

V. CONCLUSIONS

In this paper a small-signal state-space model of a micro-
grid is presented. The model includes inverter low frequency
dynamics, high frequency dynamics, network dynamics and
load dynamics. All the sub-modules are individually modeled

1 20A/ 2 20A/ 3  20A/ Time 1ms/

i
ld1

i
ld3

i
ld2

i
ld1

i
ld2 i

ld3

Experiment

Model

Fig. 16. Inductor current response

and are then interfaced on a common reference frame to obtain
the complete model of the microgrid.

The results of the model were analysed in terms of the
system eigenvalues and their sensitivity to different states.
With the help of this analysis the relation between different
modes and system parameters was established. It was observed
that the dominant low-frequency modes are highly sensitive
to the network configuration and the parameters of the power
sharing controller dynamics of the micro sources. The high
frequency modes are largely sensitive to the inverter high
frequency controller dynamics, network dynamics and load
dynamics.

Results obtained from the model were verified experimen-
tally on a prototype microgrid. It was observed that the model
successfully predicts the complete microgrid dynamics both in
low as well as in high frequency range.

Small signal modeling has had a long history of use in
conventional power system. The inverter models (and the
inclusion of network dynamics) illustrated here allow micro-
grids to be designed to achieve stability margin required of
reliable power systems.
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