Computer Architectures to Close the Loop in Real-time Optimization

E. C. Kerrigan, G. A. Constantinides, A. Suardi, A. Picciau and B. Khusainov

Abstract— Many modern control, automation, signal pro-
cessing and machine learning applications rely on solving a
sequence of optimization problems, which are updated with
measurements of a real system that evolves in time. The
solutions of each of these optimization problems are then
used to make decisions, which may be followed by changing
some parameters of the physical system, thereby resulting
in a feedback loop between the computing and the physical
system. Real-time optimization is not the same as ‘fast’ opti-
mization, due to the fact that the computation is affected by
an uncertain system that evolves in time. The suitability of a
design should therefore not be judged from the optimality of
a single optimization problem, but based on the evolution of
the entire cyber-physical system. The algorithms and hardware
used for solving a single optimization problem in the office
might therefore be far from ideal when solving a sequence of
real-time optimization problems. Instead of there being a single,
optimal design, one has to trade-off a number of objectives,
including performance, robustness, energy usage, size and cost.
We therefore provide here a tutorial introduction to some of
the questions and implementation issues that arise in real-time
optimization applications. We will concentrate on some of the
decisions that have to be made when designing the computing
architecture and algorithm and argue that the choice of one
informs the other.

I. WHAT’S IN A NAME?

Suppose you need to drive from your home to an important
meeting. You would not be happy if your in-car navigation
system told you to take turns after you have passed the points
where you should have turned, causing you to be lost and late.
As you have probably also discovered, the traffic situation on
even a short journey can change very fast — the fastest trip at
the beginning of the journey may have resulted in you being
stuck in a traffic jam and arriving much later than expected. If
only you had upgraded your navigation system with the real-
time traffic option, which would have continuously monitored
the situation and updated your journey before you got stuck
on the road with everybody else...

The key challenge in real-time optimization applications
is clearly how best to deal with time. In the real world,
correctness of a computation is a function of time. The
late arrival of a computation might be undesirable or, in
some cases, even fatal. The opposite is also true. If a result
arrives too soon, then it might be invalid when it is needed if
the situation has changed. The computation would therefore
have to be restarted, meaning that the previous processing,
communication and storage needed to produce the result
would have been unnecessary.

The authors are with the Department of Electrical & Electronic Engineer-
ing, Imperial College London, SW7 2AZ London, UK. E. C. Kerrigan is also
with the Department of Aeronautics. e.kerrigan@imperial.ac.uk

Unknown

EE—
Inputs Unknown
SYSTEM Outputs
Known
Inputs —_—
—
MODEL Known
Estimates Outputs
Corrections of Known
Outputs
Estimates of ALGORITHM
Unknown
—
Outputs)
ESTIMATOR
Fig. 1. Block diagram of a model-based estimator.

The reason why time is an issue, is because of uncertainty.
Without uncertainty, one could set up and solve a single
optimization problem, whose solution would be valid for all
time and there would be no need to take new measurements
of the system. In real-time optimization, on the other hand,
measurements of an uncertain system or process are used
to formulate and solve a sequence of optimization problems.
By using the latest measurements, one can ensure that the
solution to the optimization problem remains valid. Without
uncertainty, measurements would not be necessary. This
is why real-time optimization is more than just ‘fast’ or
‘robust’ optimization — a computation that arrived too soon
may not be valid in the future and a solution that does not
require measurements might result in an unnecessarily over-
engineered system.

Broadly speaking, real-time optimization applications can
be divided into two categories, namely signal processing and
control. In the former, the goal is usually to estimate (or
learn) some variables of a system or process. In the latter,
the aim is to manipulate some inputs of a system to ensure
that certain variables satisfy some constraints or that some
cost function is minimized. In both cases, feedback is the
key tool used to manage the effect of uncertainty.

Consider Figure [T} which is a block diagram for a typical
model-based signal processing (or machine learning) algo-
rithm. Measurements of an actual system are compared against
the predictions of an internal model. If there is a difference,
then some internal model variables are updated until the
predictions and measurements (and/or their differences) satisfy
given constraints. Note that there is feedback (a closed loop)
between the model and the algorithm, i.e. the algorithm is

Unknown —
Unknown
Inputs ———
SYSTEM Outputs
Known
Inputs —_—
! S
MODEL Known
Estimates Outputs
) of Known
Corrections| Outputs
Estimates of ALGORITHM
Unknown
-/
Outputs
CONTROLLER

Fig. 2. Block diagram of a model-based controller.

trying to control the model to ensure that the model and
system outputs satisfy some criteria.

One popular type of optimization-based signal processing
method, of which the popular Kalman filter is a special case,
is Moving Horizon Estimation (MHE) [1]-[3]. In MHE, only
a finite amount of measured data is kept in memory. At each
sample instant, the oldest measurements are used to update
the data of an optimization problem before being removed
in order to make space for new measurements. Once the
data is updated, the optimization problem is solved in order
to produce estimates of the physical system state sequence,
parameters, unmeasured inputs and measurement noise.

It is interesting to compare Figure [1] with Figure 2} which
is a block diagram of a typical control (or automation) system.
Measurements of a physical system or process are compared
against the predictions of an internal model. If there is a
difference, then some model variables and the inputs to
the actual system are updated until the predictions and the
measurements satisfy some constraints. There is feedback
between the algorithm and the system as well as the algorithm
and the model. Note also that there is a difference between
Figure [T] and Figure [2] — in Figure [T| the known input of the
system is also an input of the algorithm, whereas in Figure
the known input of the system is an output of the algorithm.

Model Predictive Control (MPC) is a very popular
optimization-based control method [2], [4]. In MPC, only part
of the solution to an optimization problem is used to update
the control input after each sample instant. At each sample
instant, a new measurement is taken in order to update the
data to the optimization problem, often after first solving an
estimation problem. The optimization problem is then solved
with the new data in order to compute a new control update.

There has been considerable research in the MPC and MHE
communities in the last few decades in the development
of efficient algorithms for real-time optimization [4], [5].
Much of this literature abstracts away the hardware details
of the computing system on which the algorithm will be
implemented. However, recently there has been a growing
interest in understanding how best to exploit the particular

features of certain processors for real-time optimization,
which has opened up new application areas for real-time
optimization.

The aim of this paper is therefore to give a tutorial
introduction on computer architectures and in order to help
inform the choice real-time optimization algorithm, and vice
versa. The development has been kept at a high level in order
to allow for a relatively large readership, which will hopefully
include advanced undergraduates, practising engineers and
expert researchers who would like to know a little bit more
about the state of the art and future trends.

Much of the discussion here also applies to numerical
algorithms in general and not just real-time optimization.
In many cases it makes sense to first explore the limits of
existing methods and architectures in order to justify the
need for developing new, tailor-made solutions. When doing
fundamental research on any specific topic, such as real-time
optimization, it is also often the case that new results and
design methods of more general interest are developed.

The paper does not attempt at providing mathematically rig-
orous answers or design procedures to well-defined questions
on how best to match current algorithms to current hardware,
or vice versa. This is partly because the combination of
algorithms, hardware and questions are too numerous for
an introduction to this topic, but mostly because this is a
significant research activity still in its early stages. Instead,
we will give a flavour of the variety of design choices and
trade-offs that could be made and have included references
to selected papers that aim to provide answers to particular
questions.

Section [l argues that, when assessing the performance of a
real-time optimization algorithm, one should not consider the
behavior of the algorithm in isolation, but instead consider
the performance of the combined cyber-physical system.
Section [III] defines a general class of mathematical problems
that arise in real-time optimization applications, where the
sequence of optimization problems is an explicit and/or
implicit function of time and the outputs of the resulting cyber-
physical system. A brief introduction to the main concepts
in computer architecture, relevant to real-time optimization,
are given in Section [[V] Section [V] discusses some of
the advantages and disadvantages of current hardware and
software technologies for implementing real-time optimization
algorithms. A very brief look into the future of computer
architectures is given in Section [VI| before presenting some
concluding remarks in Section

II. TIME AND UNCERTAINTY IN CYBER-PHYSICAL
SYSTEMS

Suppose that, as depicted n Figure [3 we have a causal,
dynamic system

P:(u,w)— (y,2)

that evolves in (real-world) time with measured output y :
R — Y and where v : R — U are (control) inputs that can
be changed/manipulated in time. The output z : R — Z
includes measured and unmeasured variables that we wish to

w)) Z

=
e 1 C v,

_
H

Fig. 3. Block diagram of a cyber-physical system

estimate, optimize, constrain or regulate. The input w : R —
W represents unknowns, which include measurement noise,
unmeasured disturbances, time-varying set-points that are
not known in advance, uncertain parameters and unmodelled
dynamics.

The computing system, which contains an implementation
of the real-time optimization algorithm, is a strictly causal
dynamic system

C:(y,e) = (u,v),

where the input e : R — & represents computational errors,
e.g. due to finite precision arithmetic errors, early termination
of the algorithm or because the solver could only compute a
locally optimal point. The output v : R — V' contains results
of computations, including estimates of the accuracy and
precision of these computations.

One of the main points to note is that the performance and
robustness of a real-time optimization algorithm should be
evaluated by including the evolution of the physical system
in the analysis. In other words, the correctness of the real-
time optimization algorithm should be based on whether the
cyber-physical system

H: (w,e)— (z,v)

satisfies given constraints on performance and robustness.
The abstract ideas above can be illustrated with a simple
optimal control example. Consider the problem of computing
the input trajectory (with I/ := R) to an integrator such that
the output (with) := R) is driven from zero to one in one
second, while minimizing the integral of the square of the
input. Suppose a given computer system (i.e. algorithm and
hardware) is guaranteed to produce a feasible trajectory to
this problem in § seconds and that the input is arbitrarily
set to zero until a result is available. The optimal control
problem can therefore be defined as solving the following
infinite-dimensional optimization problem:

(u*(-,0),y"(-,0)) := arg (mig V(u) (1a)
subject to
y(0) =0, y(1) =1, (1b)
u(t) =0, vt € [0,0), (1c)
y(t) = u(t), Vt € [0,1) ae., (1d)
where the cost function
1
Viu) := / u(t)?dt (le)
0

It is possible to prove that the optimal input trajectory is

given by
t
(1, 8) = 0 Yt € [0,9))
1/(1—-90) Vtels1)
and that the minimum of the cost function is given by
V*(8) == V(u*(-,8)) = 1/(1 - §). 3)

Note that V* is a continuous, monotonically increasing
function of the delay .

Of course, this is a trivial example for which it is arguably
not necessary to use a numerical method and a computer to
produce the solution. However, it will suffice for our purpose
in making an important point about real-time optimization,
namely that the correctness of a computation should be
expressed as a function of time.

Consider, for the sake of illustration, that the computer
generates a sequence of feasible, but sub-optimal input
trajectories of the form

0 Yt € [0,9)
ﬂ(tvav :u) =AM vt e [67 25) 4)
(1= u6)/(1—25) Vte[26,1)

where 1 € R changes at each iteration of the algorithm. The
resulting value of the cost function for this trajectory is

(n6 —1)*

1-26 °
Note that if 4 = 1/(1 — §), then the trajectory @ is optimal,
ie. V(a(,6,1/(1 —0))) = V*(9).

Suppose that it takes § = 0.4s for the computer to find
the optimal input sequence, i.e. i =~ 1.67 after termination.
The optimal value of the cost function in this case is
V(a(-,d,u)) = V*() ~ 1.67. It follows from (3] that a
smaller latency ¢ results in a lower value for the minimum.
Hence, it is possible that a sub-optimal trajectory to the
optimal control problem (I}) with a smaller § will result in a
lower value of the cost function than an optimal trajectory
with a larger §.

Consider therefore the scenario where it is known in
advance that the algorithm will be terminated prematurely at
d = 0.2 and that the data of the optimal control problem (T}
is updated to reflect this. Suppose it turns out that the resulting
sub-optimal trajectoryﬂ has . = 0.5, hence the resulting value
of the cost function is V'(a(+,d, 1)) = 1.4. In other words, a
trajectory that is sub-optimal for § = 0.2's results in a lower
cost than a trajectory that is optimal for § = 0.4s.

This example demonstrates that, because the physical
system continues to evolve with time while the computation is
being carried out, it might be better to implement a result with
some numerical error (such as sub-optimality) instead of an
exact or more accurate answer at a later time. Furthermore, the
physical system is constantly subject to unknowns and there is
nearly always some modelling error. One might therefore be

V(a(-, 6, p) = p*s + (5)

I'The optimal trajectory for § = 0.2 has p = 1.25 with V (i(-, 6, p)) =
V*(6) = 1.25.

able to use a cheaper microprocessor and simpler algorithm,
but increase the measurement, actuation and communication
rate, while improving the performance as judged from the
perspective of the continuous-time physical system.

Methods for real-time optimization build on ‘efficient’,
‘fast’ or ‘robust’ optimization theory. However, because of
the presence of uncertainty and the fact that time does not
stop, real-time optimization has its own unique set of features,
problems and solutions, which do not necessarily arise in
other areas of optimization.

III. REAL-TIME OPTIMIZATION

In real-time optimization, one has to solve a sequence of
optimization problems where only part of the problem data
changes explicitly or implicitly with time. Each problem in
the sequence is typically of the form

min{J(z,d,t) | x € X(d,t), d = D(y,v,1)}, (6)

where t € T C R denotes (real-world) time and z € X
is the decision variable, which can include estimates of the
parameters of the physical system, as in signal processing
applications, and/or variables that are to be fed back into the
physical system, as in control applications. The time-varying
component of the problem data d is given by a function
D :Y xV xT — D of the measured outputs, previous
computations and time, while J : X x D x T — 7 is the
cost function and X : D x T — X defines the set of feasible
points.

An important point is that the data d often only changes
slightly from one time instant to the next. Furthermore, in
many practical applications, the size of this difference tends to
zero as the difference between time instants tend to zero. This
fact can be exploited at both the algorithmic and hardware
level to design efficient optimization solvers. For example,
one could modify previous computations to ‘warm-start’ the
optimization solver with a good initial point in order to reduce
the number of iterations, minimize the amount of access to
slower, off-chip memory and decrease the bandwidth required
for communication between various sub-systems.

A. Dynamic Optimization

The optimization problem (6) may be defined in a variety
of ways. In many cases, such as MPC and MHE, a dynamical
model of the physical system is employed to define an optimal
control or estimation problem, which can be mapped into an
equivalent infinite- or semi-infinite dimensional optimization
problem. This problem is usually discretized in order to
formulate a finite dimensional optimization problem, which
can then be solved using a numerical method. This so-called
dynamic optimization problem often has a particular structure,
which can be exploited when designing and implementing a
real-time optimization solver [5], [6].

In many cases, the dynamic optimization problem can be
written in the form:

N-1
min 0(q;, Si, Si41,1,d,t 7a
1€Q,5€S ; (Qz iy 2141) ()

subject to
f(qi,Si,Si+1,i,d,t):O,iZO,...,N—l, (7b)
g(qiasi78i+17i7d7t)§07Z.:O7"'7N_17 (70)

where the problem data d changes at each time instant ¢ and
{ is the stage cost. Estimates of the state or parameters of the
dynamical system are usually included in the sequence s :=
(so,-..,8n), while the sequence ¢ := (qo, ...,qn—1) often
includes estimates of the unmeasured and manipulated/control
inputs. The equality constraints defined by the function
f often arise due to the dynamic model of the physical
system and path constraints, while the inequality constraints
defined by g capture physical, performance, safety and other
constraints.

A key observation here is that can be re-written as
an optimization problem for which the cost and constraint
functions are block separable, provided the decision variable
is defined by interleaving the components of s and ¢ as
Z := (80,40, 51,q1, -5 SN—1,4dN—1,SNn). If ¢, f and g are
sufficiently differentiable, then the Jacobian and Hessian of
the optimization problem are block tridiagonal. This structure
can be exploited with efficient implementations of direct [7]
or iterative [8] sparse linear algebra algorithms [5], [6], [9].

B. Matching Algorithms and Hardware

The sequence of problems that need to be solved at
each time instant can take many different forms, from
unconstrained linear least squares problems to constrained
nonlinear optimization problems, such as quadratic or semi-
definite programs. Since the performance of an algorithm is a
function of the computer architecture of the system on which
it is implemented, the choice of one has to inform the other
and vice versa. Examples of this include:

o Direct methods for solving linear systems, such as
Cholesky factorization, often include many square root
computations, which are significantly more complicated
to realise in hardware than addition, and can be very
difficult to parallelise. Some iterative methods, such
as the conjugate gradient method, have relatively few
square root computations and are also much easier to
parallelise. On the other hand, Cholesky factorization
is often less sensitive to truncation and round-off errors
than the conjugate gradient method.

o The matrices that are generated at each iteration of an
interior point method often have the same size, whereas
this is not the case with active set methods [10]. It can be
easier to map algorithms to hardware if the matrices are
of the same size. On the other hand, in some situations
it might be better to generate a sequence of matrices
whose dimensions are time-varying, but smaller.

o Newton-based methods involve computing second-order
derivates and solving a sequence of linear equations.
Though second-order methods have superior convergence
rates compared to first-order methods, which only use
gradient information, first-order methods are often easier
to implement and might be preferable to second-order
methods in certain applications [11].

Algorithmic parameters could also affect the required
computational resources and hence the overall performance
of the cyber-physical system. For example,

e Including a high-order model of the dynamics of the
system in the optimization problem might provide
more accurate answers, but is likely to require more
computational resources. Since the actual system is
subject to disturbances inbetween sample instances, it
might be better to use a low-order, less accurate model
if the time between samples can be reduced, so that new
measurement can be used to correct for errors.

o One might be able to trade off the number of iterations
and accuracy of computations at various levels in an
algorithm against the final result. For example, with
inexact Newton methods the resulting linear equations
are only solved approximately using iterative solvers,
such as the conjugate gradient method. This might
result in more Newton steps, but since each iteration is
more efficient than for an exact Newton method with
Cholesky factorizations, the overall time taken by an
inexact method might be less than that for an exact
method [12].

IV. COMPUTER ARCHITECTURES

The computing system is a standalone computer or em-
bedded system that executes the optimization algorithm and
communicates with the physical or other computing systems.
This is a causal system where the following tasks are executed
in a certain amount of time:

e acquisition phase: read the output data from the physical
system or neighboring computing system;

e processing phase: execute the algorithm, processing
input data together with the data stored locally;

e output phase: output the results of the computation to the
physical system and send information to the neighboring
computing systems.

Figure |4| shows the resulting computer architecture, which
consists of three main sub-systems: processor, communi-
cation and storage. The processor (Section is the
computational unit of the system, where the optimization
algorithm runs. The communication module (Section
transfers data in and out via sensors, actuators and network
interfaces. Finally, the storage module (Section is an
external memory that allows one to store algorithm setup
data, intermediate data and results whenever this data does
not fit into the limited-size internal processor memory.

When designing the computer architecture, there is a large
choice of processor, communication and storage modules
available to purchase and connect. However, the computer
architecture is tightly coupled with the optimization algorithm
when the objective is to build a high performance system.
In Section [V-D| we will discuss this relationship and the
main design trade-offs involved. We will also introduce a
systematic co-design methodology to address the problem.

> Com_munication Processor Communication
(inputs) (outputs)

Fig. 4. Computing sub-systems

A. Processing

The processor is the computational device that executes the
optimisation algorithm. The performance of the algorithm, in
terms of execution delay and quality of the results, depends
on how well the algorithm can be mapped onto the available
processor’s computing resources. Many design techniques
can be embraced to achieve a target computing performance.
They range from inferring parallellization and pipelining
data instruction processing (Section to selecting the
appropriate numerical precision and accuracy (Section
A.2).

1) Parallel Processing: The execution time of an opti-
mization algorithm depends on how the algorithm itself
can be mapped onto the processor architecture. A classical
approach to reduce the execution time is to perform many
computations simultaneously, i.e. in parallel. However, this
technique can only be embraced if the target processor
architecture supports this and the algorithm allows concurrent
computations. For example, the multiplications in a dot
product can be parallelized, but not conditional branches.
On the other hand, a multicore CPU or a GPU have a
specific hardware architecture that enables these types of
parallellizable operations, but many micro-controllers do not.

Parallelism can be exploited at different levels within an
algorithm:

e Task level is the case when the calculations can be split
across multiple processing units and processed at the
same time using either the same or different sets of data.
Two processor architectures are suitable for this type of
parallelism: i) multicore CPU-like multiple instruction,
multiple data (MIMD), where each computational unit
can perform different operations on different data sets;
i) GPU-like single instruction, multiple data (SIMD),
where the same operation is executed at the same time
over many data sets. As an example, the former is suit-
able to implement linearization algorithms and the latter
to implement dense matrix-by-vector multiplication.

o Instruction or data pipelining is a technique where
a set of instructions/operations are arranged into a
sequence of dependent steps executed concurrently and
by different hardware circuits. This approach increases
the throughput, but does not reduce the execution time.
Pipelining at instruction level is available in most CPU-

Algorithm 1 Example algorithm
Z=x+Y
W=
vV=wOI

35¢

w
=]
7
[]

® no parallelism
4 pipeline parallelism
m task parallelism

latency [unit time]
5 & 8 &

S

° 2 4 6 8
resources [compute units]

Fig. 5. Comparison of different types of parallelism on the resources usage
(compute units) and execution time (latency) of Algorithm [T] when n = 10.

and GPU-like architectures and pipelining at data level
is available in FPGAs.

e Bit level exploits parallelism for the execution of a single
operation (i.e. addition, multiplication, etc.) so that the
computation is completed in one clock cycle. Nowadays,
this type of parallelism is available on most processor
architectures.

Consider Algorithm |1} composed of a sequence of three
vector operations (e.g. operations within the loop of a
gradient-based optimization algorithm) in order to illustrate
the advantages/disadvantages of task and pipeline parallelism:
where « is a scalar and x,y,z,v € R". Figure |5 shows
resources usage (compute units) and algorithm execution
time (latency) for an implementation without parallelism and
with task and pipeline level parallelism. It could be noted
that:

o The case with no parallelism is the slowest, but uses just
one compute unit. Each element of the resulting vector
will be computed every 3 time steps and all the results
will be computed in 3n time steps. This would be the
case when a single-core CPU or a micro-controller is
used.

o Task level parallelism is the fastest. In the best case,
this takes a number of steps equal to the number of
operations (3 for our example) to provide the result, but
requires as many compute units as the dimension n of
the the vectors. A multi-core CPU or a GPU processor
architecture supports this type of parallelism.

o Pipeline parallelism is a compromise approach. This
provides a smaller delay and higher throughput (1 unit
time), compared to the sequential case, while at the
same time requiring fewer resources compared to task
parallelism. This approach is commonly used in FPGA

processors.

2) Number Representation: Choosing an appropriate way
for representing numerical data may have a significant
effect on the speed, robustness and cost of the entire cyber-
physical system. Conventional optimization platform design
approaches propose developing the high-level algorithm,
followed by hardware implementation with a certain type
of number representation. This decoupled approach leads to
sub-optimal results, since some of the hardware platform
capabilities are left unexploited [13].

The vast majority of today’s computational platforms use
either floating or fixed point arithmetic. A binary representa-
tion of a floating point number consists of three components:
sign bit, mantissa and exponent, which defines the location of
the radix point relative to the mantissa and hence determines
the dynamic range. The term dynamic range is usually defined
as the ratio of the maximal to minimal representable numbers.
The first bit of the mantissa is assumed to be 1 and not
explicitly stored in the normalized form. In contrast to floating
point, fixed point data representation allocates a fixed number
of bits for the integer and fraction parts without any flexibility
in terms of the radix point location.

The high dynamic range of floating point arithmetic is
achieved at the cost of increased latency, silicon usage and
power consumption. Since exponents of two numbers are not
the same, in general, even simple addition is preceded by
denormalization and followed by normalization. For example,
in some FPGAs fixed point addition of 32 bit numbers requires
one clock cycle and 32 Lookup Tables (LUTs), whereas
addition of IEEE 754 single precision floating point numbers
with the same bit length would employ 500 LUTs and take
6 clock cycles at 350MHz clock rate [14]. On the other
hand, fixed-point arithmetic introduces additional overflow
and round off errors. Overflow errors happen due to lack of
dynamic range and can be avoided by pre-calculating the
largest possible absolute value and allocating an appropriate
scaling factor. It is also essential to prove stability of iterative
optimization algorithms under the presence of round-off
errors. Even transforming the original problem to fixed point
representation may lead to loss of favorable properties of the
objective function, such as convexity, or distort the set of
feasible points [15].

Depending on the application, it might be justifiable to
use other types of data representation, other than fixed and
floating point. For instance, a logarithmic data representation
is well suited for multiplication and division operations, while
preserving high dynamic range [16], [17]. Another example
of alternative arithmetic is dual-fixed point, which combines
the advantages of fixed and floating point computations [18].

Figure [6] demonstrates how the number of fraction bits for
a fixed point data representation affects algorithm execution
time, resource utilization and closed-loop performance of the
entire cyber-physical system. The results were obtained from
hardware-in-the-loop (HIL) simulations of a fast gradient-
based [15] model predictive controller for a mass-spring-
damper system with n = 10 states and m = 5 inputs. The

x 10

N

VVVVVVVVVVVVVVVY 5

Latency,
clock cycles
(42

5 10 15 20

<

o

—_
o

o RAM blocks [}
x DSPs 0 0O0O0OO

QGOQQQQQQQQxxxxx"

5 10 15 20

FPGA resource
usage, %
o

(=)
o

A

e

A
AAAAAAAAAAAAAAAAAA

Closed loop
cost function
o
[$)]

o

20

o

Number of fraction bits for data representation

Fig. 6. Latency of a fast gradient optimization-based controller, FPGA
resource usage and closed-loop system performance as a function of number
of fraction bits. The number of integer bits is fixed to 8. A lower closed-loop
cost implies better performance.

plant dynamics
Tpy1 = Axy + Buy 3

were simulated on a desktop computer while, the controller
was implemented on the programmable logic of a Xilinx
Zyng-7020 system-on-a-chip. The optimal control problem
for the horizon N and the initial condition £ was formulated
as follows:

N-1
1
*CCNPLLN*F E kudxk+ Q’udeuk) (9a)
k=0

min
ug..-UN—1
Xo...TN
subject to
xo = %, (9b)
Tk41 = Axg + Bug, k=0,1,...,N—1 (9¢)
Umin < Ug < Umaz, kK=0,1,...,N—1 (9d)

where Qg € S, Ry € ST, and P € ST} | are state, input and
terminal penalty matrices accordingly. S} , (S'}) denotes a set
of positive (semi-)definite matrices of size n. Performance of
the cyber-physical system was measured with the closed-loop
cost function:

Nyim—1
s1m 1
V(ax) = Z (gfodxk—kiufRduk) (10)
k=0
where the input sequence u = [uf ul’ ... ,u%sim_l]T and

T]T

s XN, 1]~ were obtained

state sequence x = [x7,xI ...
from HIL simulations.

The notable point on the graph is that after reaching a
certain number of bits (6 bits in this case), no significant

performance improvement is detected. Hence, there is no

need to waist resources by introducing redundant precision.

This example illustrates that number representation for real-
time solvers should be chosen with respect to the closed-
loop system, rather than just considering the accuracy of the
optimization solver on its own.

B. Communication

The communication sub-system is responsible for commu-

nicating between:

« the computing system and the physical world to sample
the current system states and provide the control action
in control applications. Sampling the physical system by
taking measurements affects the optimization algorithm
under many aspects. First of all, the sampling action
involves reading the analog output of the physical system,
which evolves in time. Therefore, this sampling should
ideally be as fast as possible in order to acquire the exact
value. Secondly, the sampled analog value is quantized
and converted into digital form. This process introduces
an error in the measurement that must be considered
during the design of the optimization algorithm and is
also one of the reasons why feedback is used.

o computing sub-systems. This is a communication channel
that enables the data movement between sub-systems,
such as storage and processors or between processors
for a multi-processor system. Because the main role of
this link is to transfer data in and out of sub-systems,
it is fundamental as to how much data can be moved
in a unit of time (data transfer rate) and how much
time data takes to move from one sub-system to another
(latency). The ideal case would be to have the latency
the small as possible and the transfer rate as high as
possible.

o external systems, such as other nodes in a distributed
optimization network. This communication link shares
the same features of the one between sub-systems, but
with the difference that the data has to be sent to a
remote location. Thus, more energy is required when
moving data.

C. Storage

The storage sub-system is an external memory used to store
data needed during the optimization algorithm processing
when the processor internal memory is not enough. Many
storage types exist, and the selection of the right one is crucial
for a real-time computing system. The main parameters that
describe a storage system are:

o Size: how much data can be stored.

o Latency: time taken to read/write a data from/to storage.

o Data transfer rate: amount of data transferred in a unit

of time in/out of storage.
These performance parameters vary according to the storage
type. As an example, Table [I] reports the typical current
performance for three classes of storage systems: DDR3
RAM memory, solid state drives (SSD) and magnetic hard
disk drives (HDD).

Firstly, it should be noted that there is a trade-off between
storage size and speed (both latency and data rate): a big

TABLE I
STORAGE SYSTEM PERFORMANCE

Storage type | Size | Latency | Data transfer rate
DDR3 RAM memory 10GB Ins 16 GBps
SSD 500GB | 100 us 250 MBps
Magnetic HDD 1TB 3ms 60 MBps

storage system is much slower than a small one. On the other
hand, it is also important to keep the processor fed with
data to process and not to stall the computation because of
missing data. Data access speed depends on the algorithm and
how the data is stored in memory. As an example, consider
the elements of a vector stored in contiguous memory areas.
If the algorithm accesses the vector elements in the same
sequence as they have been stored, it makes sense to have
a high data transfer rate. This will be the case when dense
linear algebra is involved. On the other hand, if the algorithm
accesses the vector elements in a random order, as is often
the case in sparse linear algebra, the data transfer rate will
be lower and it might happen that the processor is idle for a
significant amount of time.

D. Design Trade-offs

Since the optimization algorithm and computational hard-
ware are tightly coupled with each other, sequential design of
the algorithm and hardware may lead to suboptimal designs.
This is illustrated by the following example.

Consider a cost function

V(J?s,l'h) = ‘/s(xs) + Vh(l‘h) + Vcoupling(-rsaxh) (11)

that reflects the performance of the closed-loop system as a
function of software x, and hardware z; design variables
(lower cost implies better performance). V; and V} are
software and hardware terms, respectively, whereas Veoupiing
defines the interaction between the algorithm and computa-
tional platform. Conventional sequential design will propose
minimizing V; over x, to design an algorithm, followed
by minimizing V}, over z; to implement the algorithm on
hardware. Since the interaction term is not taken into account,
the performance of the optimization solver cannot be expected
to be as good as possible. Minimizing (s, zp) — V(zs, zp)
simultaneously with respect to x5 and xj, is the only way
to achieve optimal performance. However, in practice it is
extremely difficult both to formally define and solve the
corresponding optimization problem.

Moreover, optimizing the performance of a closed-loop
system is usually accompanied with optimizing computa-
tional resources, namely time, energy and space. For that
reason, defining the co-design problem as a multi-objective
optimization (MOO) problem appears to be a natural way of

formalizing the design trade-offs [19]:

Vixs, zp)
. T(ms; Zh)
s | Bz, an)
S(xs,xn) (12)
subject to x5 € X
xn € Xy,

with 7', E and S defining computational time, energy and
space, respectively. Admissible sets X and X, for software
and hardware design variables reflect the design constraints.

The MOO problem can be tackled in at least two ways.
The first approach is integrated generating and choosing (IGC).
The method proposes minimizing an aggregate objective
function (AOF) with respect to the constraints in order
to obtain a Pareto optimal solution (i.e. a point where it
is impossible to improve one objective function without
worsening another). The most straightforward choice of AOF
is a weighted sum of all objectives. However, in practice AOF
cannot guarantee completeness nor evenness of the Pareto
set, which motivates the development of two-phase methods,
such as generate first-choose later (GFCL). GFCL implies
first generating a set of Pareto optimal points so that the
designer can make the final decision by choosing one single
point from the set [20], [21].

Regardless of the method that is used for generating
the Pareto sets, the MOO problem is usually reformulated
as a sequence of single objective problems. The decision
variables (x; and xp) for those problems can be both
continuous (discretization frequency, termination tolerance,
chip clock frequency) and discrete (parallelization level,
pipeline depth, model order), which makes solving the
optimization problem non-trivial. Furthermore, derivative
information is not always available for all objectives functions
of or this information might be unreliable. Evaluation of
an objective function itself can be a time consuming task in
some cases. For instance, depending on the complexity of the
circuit it may take up to several hours to perform a circuit
synthesis and hence evaluate the time, energy and space taken
by the hardware platform. Another issue is uncertainty, e.g.
the same high level code might be compiled in different ways
depending on many factors, including the vendor’s software
version. As a result, it turns out that computing derivatives
can be expensive, unreliable or even impossible. Taking into
account all these challengning properties, the most promising
robust option to solve MOO design problem is to use
derivative-free optimization [22].

It is theoretically possible to build an analytical model
describing the relationship between design variables and
objectives. Once the model is obtained the MOO can be
tackled by suitable algorithms [22]. However, in practice
it is extremely difficult to analytically describe the design
objectives. To overcome this problem, dedicated expensive
MOO algorithms can be employed. Expensive MOO algo-
rithms accept the fact that it is extremely costly to evaluate
the objective functions and efficiently utilize limited amount

10
Feasible design
O Pareto optimal design
c
.9
g .
] ©
@ .)
8 ® | «
a ® x xx x Kox [x
8 x
-— x %
B ® LI
®

(_g ® X xx 0K x)();l(x x
O ®® Xow kx| . x X wox X

® MW @ xé»(x " XX X

® ® ®(’§°.(% a0t @
1
10 - 0
10 10

Resource usage

Fig. 7. Trade-off between computational hardware resource usage and

closed-loop performance of a cyber-physical system. Both functions are
normalized to 1 with respect to maximum values. Resource usage is defined
as arithmetic mean of flip-flops, lookup tables, BRAMs and DSPs relative
utilization.

of evaluations to build a model and suggest the point for
consecutive evaluation [23].

Consider an example of a co-design problem in relation
to a model predictive controller (Figure [7). The testcase is
similar to the one from Section The controller horizon
length and number of fraction bits for data representation
were chosen to be software and hardware design variables,
respectively. Two objectives that have to be traded-off against
each other are the closed-loop cost function and FPGA
resource usage. The plot demonstrates all possible designs,
highlighting Pareto optimal solutions. Note that the Pareto
frontier is not necessarily convex.

V. CURRENT TECHNOLOGIES

We give a brief overview of the advantages and dis-
advantages of current processors and software tools for
implementing real-time optimization based algorithms.

A. Processors

We discuss five types of processor: microcontroller, multi-
core central processing units (CPU), graphics processing
units (GPU), field-programmable gate arrays (FPGA) and
programmable logic controllers (PLC). These processor types
are compared in Table

1) Microcontroller: A microcontroller is a single chip
that contains a memory unit, an input-output system and a
processing unit. The aim of a microcontroller architecture is
to provide low latency access to the input-output system at the
expense of the capacity of the memory and the computational
power of the processing unit.

For example, the microcontrollers of the Atmega fam-
ily [24] contain a special analog-to-digital signal converter
for measuring temperature and four interfaces to send data
to other computing devices. However, they can only execute
20 million instructions per second, which is about 150 times

fewer instructions per second than a smartphone CPU [25].
The device with the largest memory in this family of
microcontrollers has a total capacity of 2 KB, just enough to
store a square 27x27 matrix of real numbers. Nonetheless,
these microcontrollers are at the core of the popular Arduino
boards.

Processors with such small memories can be used for real-
time optimization in practice. A microcontroller is suitable
for the task if the optimization problem fits into the memory
system and if the required computational latency is more
than a millisecond. For example, a primal-dual interior
point method for the control of an artificial pancreas on
a microcontroller is reported in [26].

The power consumption of a microcontroller can be
in the order of a mW [24]. This is about two hundred
times smaller than that of a smartphone CPU [25]. Recent
microcontroller architectures [27] have more computationally
powerful processing units than in the past. These architectures
are capable of doing floating-point arithmetic operations,
so their computational performance is measured in floating-
point operations per second (FLOPS). The best computational
performance of microcontrollers is in the range of the
hundreds of millions of FLOPS. Also, recent microcontroller
architectures can carry out more computational tasks at
the same time. However, more computationally powerful
processing units come at the price of a power consumption
that is closer to that of a smartphone CPU.

2) Multi-core Central Processing Unit (CPU): A multi-
core CPU is a computing device composed of two or
more processing units. Multi-core CPUs can be found in
desktop and laptop computers, but also tablet computers and
smartphones. The design aim of a multi-core CPU is to
execute many computational tasks at the same time, putting
into effect a type of execution called multiple-instruction-
multiple-data [28]. For example, a multi-core CPU can
perform a matrix-vector multiplication with one processing
unit and a dot product with another processing unit at the
same time. Doing these operations in parallel can reduce the
computational latency of the conjugate gradient method, for
example [29, pp. 520-527].

Consuming up to 150 W [30] of power, multi-core CPUs
can be used for real-time optimization when power consump-
tion is not a primary concern. Compared to microcontrollers,
CPUs have more sophisticated computational logic. For
this reason, multi-core CPUs can process real numbers in
both single and double floating point format, while most
microcontrollers cannot. Also, compared to microcontrollers,
multi-core CPUs have a higher clock frequency and can do
more floating-point operations per second.

3) Graphics Processing Unit (GPU): GPUs are computing
devices that consist of eight to sixteen special processors,
called multi-threaded processing units (mPU), and a global
memory that is shared between the multi-threaded processing
units. Each mPU can execute a single instruction on many
data sets.

For example, the high-range GPU Nvidia Tesla GK210 [31]
has thirteen mPUs, and each one can process 2048 real

TABLE I
COMPARISON BETWEEN PROCESSOR TYPES

Architecture Parallelism

Power consumption

Clock frequency Peak FLOPS

Microcontroller ~ No parallelism in most cases, multiple- I mW-1W 10 MHz-150 MHz Up to 100 MFLOPS
instruction-multiple-data in recent ar-
chitectures
Multi-core CPU Multiple-instruction-multiple-data 1W-150W 800 MHz-3 GHz 800 MFLOPS-100 GFLOPS
GPU Single-instruction-multiple-data 1W-150 W 100 MHz-600 MHz 100 GFLOPS-3 TFLOPS
FPGA Any I W-10W 10 MHz-350 MHz Up to 10 TFLOPS

switch
matrix

| [
‘ I:l logic
| D block

00000 n

oooogog
H H

|
|

Fig. 8.

1/0O block

FPGA architecture

numbers in double precision at the same time. This is almost
two orders of magnitude more floating point operations per
second compared to the most high performance multi-core
CPU.

However, few parallelisable algorithms achieve this per-
formance when carried out on GPUs. Algorithms for dense
linear algebra operations, such as dense matrix-vector multi-
plication, are the best performing algorithms on GPUs. On
the other hand, algorithms that execute many conditional
statements, such as Givens’ QR decomposition, have the
worst performance on GPUs.

The average power consumption of a GPU is about the
same of that of a multi-core CPU, but the average clock
frequency is in the range of hundreds of MHz.

4) Field Programmable Gate Array (FPGA): An FPGA
is an integrated circuit that can be configured by a designer
with respect to the intended application. At the architecture
level, an FPGA represents a matrix of relatively simple logic
blocks connected via programmable switches (Figure [§).
The two major FPGA vendors, Xilinx and Altera, call
these logic blocks Configurable Logic Blocks (CLBs) and
Logic Array Blocks (LABs), respectively [32]. Although
theoretically any circuit can be implemented using standard
logic blocks, contemporary FPGAs have a set of special
purpose resources on the chip. This might include DSP slices
for high-speed arithmetic operations or RAM blocks for
dense data storage [33]. Interaction with the physical world is
performed via input/output blocks (IOBs), which are placed
around the perimeter of the chip.

The key outstanding feature of FPGAs is customizability.
This applies to the data processing unit, memory sub-system
and number representation. FPGAs allow implementing only
the computational units required by a specific algorithm,
unlike CPUs that have fixed logic for performing prede-
fined set of operations. Another important benefit of using
FPGAs is memory flexibility. Data can be partitioned into
separate memory blocks (ROM/RAM) and placed near the
corresponding processing units. This provides huge potential
for parallelization of computations both through pipelining
and loop unrolling. Furthermore, since both memory word size
and computational units are flexible, number representation
also becomes variable.

However, extended flexibility comes at the price of some
limitations. The first one is reduced clock rate compared to
CPU-like architectures. Expanding this bottleneck requires
achieving sufficient levels of parallelization, either by im-
plementing deep pipelines or by choosing appropriate loop
unrolling factors. Another restriction of an FPGA as an
embedded platform is high power consumption in comparison
with microcontrollers — this results in additional requirements
in terms of the power supply and cooling. Nonetheless, recent
research shows some promise in improving energy efficiency
of reconfigurable platforms for autonomous applications [34].

Exploiting parallelizability and customizability of FPGAs
allows significant reduction of algorithm execution delay and
hence sampling time of the system. Further reduction of the
sampling time can be achieved by incorporating so-called
intra-delay sampling techniques, which imply sampling faster
than the computational delay/latency. Intra-delay sampling can
be implemented by physically replicating the solver and/or by
using data pipelining, so that computation of a new solution
is started before termination of previous one. Disturbance
rejection capabilities of a controller can be improved as a
result of the increased sampling rate [35].

It should be emphasized that the application scope of
FPGAs is not limited to target computational platforms.
Engineers and researchers extensively use reconfigurable plat-
forms for prototyping to evaluate the functional correctness
of hardware designs. FPGAs can be used for fast design
exploration by allowing the estimation of silicon and energy
usage as a function of design parameters. As a result, the
development cost and time-to-market of non-reconfigurable
platforms are significantly reduced.

5) Programmable Logic Controller (PLC): A PLC is an
industrial computing device intended for automatic process

Power
management
block

~z

CPU/
Microcontroller

Input Output
E> Block E> :> Block E>

Fig. 9. PLC architecture

control. PLCs are capable of directly interfacing with in-
dustrial equipment, including sensors and actuators. This
is achieved by using specific input and output modules
(Figure [9), which can be chosen and configured with respect
to a given digital or analog interface. Power supply units are
usually integrated into the device.

PLCs have a set of distinguishing features compared to
microcontrollers. Firstly, PLCs are programmed using graphi-
cal ladder logic languages, which resemble relay systems
that were used before PLCs came into use. This differs
from microcontroller programming both in high (C/C++)
and low (assembler) level languages. Secondly, PLCs are
manufactured as complete devices, which can be used in
industry straightaway, whereas a microcontroller is a single
chip coming as a part of electronic circuit. In practice,
microcontrollers are commonly used as processing units for
PLCs. Finally, PLCs can operate with high DC/AC voltages,
while typical microcontrollers are compatible only with TTL
and/or CMOS technologies [24], [36].

Depending on the computational requirements, a microcon-
troller or CPU can be used as a processing core in a PLC.
Low-cost microcontrollers are ideal for performing logic
operations, but not for fast computations, which is crucial
for online optimization. However, expressing the solution
of an optimization problem as a piecewise linear function
of a measured value allows implementing optimization-
based algorithms with high sampling rates on low cost
PLCs. Nevertheless, large and medium scale optimization
problems still require direct or iterative solvers, which are
often implemented on relatively expensive CPU-based PLCs
capable of performing floating point operations, e.g. [37].

B. Software

Programming the hardware, thus translating the mathemat-
ical formulation of the optimization algorithm into software,
can be done using a variety of languages. They range from
text-based programming languages to graphical ones (e.g.
Simulink and LabView) and from generic languages (e.g.
C/C++, OpenCL, Python) to domain-hardware specific ones
(e.g. DSL, CUDA, HDL).

1) Domain-Specific Languages (DSL): This is a program-
ming approach specifically tailored for a small set of problems
belonging to a particular domain [38]. In many cases, a
DSL can be seen as a problem specific interface to common
sub-routine libraries. DSLs are used in many fields and
hundreds of them are available. Their domains range from
economics to physics through to creativity and computing.

An example in the field of optimization is ZIMPL [39], which
is an algebraic modeling language that requires the user to
describe a mathematical model in terms of sets depending on
parameters. This description is automatically translated into a
linear or nonlinear mixed-integer mathematical program that
can be fed into a mixed-integer program solver.

2) High level: These are programming languages with
a strong level of abstraction in which hardware details are
masked to the user. Among these, Python [40] is gaining
interest for its ease of use (few lines of code to express
complex concepts), code readability and cross-platform
compatibility. For these reasons, Python is also largely used
in mathematics, science and engineering through the SciPy
software [41]. SciPy is a collection of tools and libraries with
efficient numerical integration and optimization routines.

3) Model-based: Model-based languages provide the de-
signer a high level of abstraction from implementation
details allowing full concentration on algorithm structure.
The programming tool can be provided either by a hardware
vendor (Xilinx System Generator, Altera DSP builder) or
by third parties (Mathworks HDL coder, National Instru-
ments FPGA module). Despite hiding the most low level
implementation details, a model-based approach normally
supports parallelism, resource usage and energy consumption
customization depending on certain design constraints.

Automatic test-bench and stimuli file generation (e.g. [42],
[43]) simplifies verification of low level code produced by
the compiler. However, the resulting code often suffers from
lack of efficiency and readability. This puts some restrictions
on the application scope of model-based tools, especially
in relation to real-time systems. For this reason, tightly
time/resource-constrained applications may still require low
level handwritten code [33].

4) C/C++: C [44] and C++ [45] are two of the most
popular programming languages among real-time software
developers. The success of these two programming languages
is due to the high speed of the compiled code and the
availability of compilers and development tools for many
processors. Software libraries can be used inside C and
C++ source code to help in the development of real-time
optimization software. Eigen [46] is a C++ library for both
dense and sparse linear algebra. Eigen contains several linear
solvers and matrix decomposition algorithms, but carries
out nonlinear optimization as well. Independently from the
processor type, the source code of Eigen can be compiled with
any C++ compiler. The GNU scientific library (GSL) [47] can
be used with both C and C++ when the processor is a CPU.
GSL includes not only linear algebra algorithms, but also
simulated annealing and least-squares fitting. Intel MKL [48]
is a software library that is optimised for Intel CPUs, but its
source code is not public.

5) Vendor-specific: Some microcontrollers and PLCs can-
not be programmed in a general purpose programming
language like C and C++. In this case, a language specifically
designed by the vendor is used. Sofware written in vendor-
specific programming languages are highly optimised for
specific hardware architectures. This software cannot be

Device (GPU, FPGA, ..)

Compute unit

Compute unit

Processing
element

Processing
element

Processing
element

PN

Processing
element

2 s S s A

DN %

Host (CPU)

Fig. 10. OpenCL model of the architecture of a parallel accelerator.

executed on other hardware architectures or vendors. For
example, the Arduino language [49] is only used to program
the microcontroller in Arduino boards. CUDA [50] is a
popular vendor-specific programming language in the field
of scientific computing. The syntax of CUDA is similar to
C and C++, but CUDA can only be used to program Nvidia
GPUs.

6) Open Computing Language (OpenCL): Recently, both
industry and academia have been interested in standardising
how to program any kind of hardware accelerator, indepen-
dently from its architecture. Figure [I0] illustrates the OpenCL
model [51].

In this model, a device is composed of a number of process-
ing elements (PEs), which are the most basic computational
blocks in the architecture. A PE executes an elementary piece
of software, called a work item, and contains a small private
memory. PEs are packed into compute units (CUs) and share
a local memory. This has a higher access latency compared
to the private memory of each PE, but is also larger.

The set of all work items being processed by a compute
unit is called a work group. A device can have many compute
units, all sharing a global memory and each one processing
a different work group. Work groups are executed out-of-
order, which means their computation has to be mutually
independent. In fact, the execution of work items in a work
group can be synchronised, but that of work items in different
work groups cannot.

The set of all work groups processed on a device is called
a kernel. A device can process more work groups than its
compute units, because at the end of the execution of a work
group the local memory is flushed and a new work group is
loaded. For this reason, any data in common between different
kernels has to be stored in the global memory.

Table [III] illustrates how the model discussed above maps
onto the actual hardware of three different types of parallel
devices: GPUs, multi-core CPUs and FPGAs. A discussion
of the FPGA case can be found also in [52], [53].

7) Hardware Description Language (HDL): An HDL
is a formal language for describing the architecture of
an integrated circuit. In contrast to software programming
languages that define a set operations to be performed by a
processor (control flow), HDLs describe the architecture of
the processor itself (data flow). VHDL and Verilog are the
most widely used HDLs.

In practice, depending on the target platform, HDL code
is usually mapped to an existing array of logic gates, as for
FPGAs, or implemented using standard library cells, as for
Application Specific Integrated Circuits (ASICs)) [32]. An
HDL is the most efficient FPGA configuration approach that,
however, suffers from implementation complexity and hence
has a high entry barrier for designers.

The process of building an FPGA circuit from its HDL
description involves synthesis and place-and-route. Synthesis
is essentially constructing a connected graph, called a netlist,
that describes circuit logic gates and their interconnection.
Place-and-route, which follows synthesis, involves solving a
series of optimization problems in order to fit the netlist into
the physical device. The resulting configuration data can be
uploaded to an FPGA in the form of a bitstream.

8) Design Tools: Using dedicated design tools for real-time
optimization significantly speeds up the development process
both from the code generation and code implementation
perspectives. Code generation tools accept a high level
description of an optimization problem to generate reliable
custom code (mainly C/C++) for solving that particular
problem. The resulting code is often not fixed to any
platform and can be compiled for various real-time embedded
processors. Contemporary generation tools avoid using third
party libraries and dynamic memory allocation to ensure
robustness of the solver. The majority of code generation
tools exploit the structure of optimization problem and
precomputes all time-invariant values in order to satisfy
tight timing constraints. The tool might be intended for
optimization in general (CVXGEN) or suited to problems
arising in particular areas, e.g. in optimal control or estimation
(ACADO, gpOASES, FORCES).

VI. FUTURE ARCHITECTURES

This paper has outlined some of the issues that arise with
existing computer architectures, especially parallel architec-
tures for high performance embedded systems. However, it
is worth looking to the future to understand the trends of
computer architecture and how they may impact on real-time
optimization applications.

The move to parallelism for high performance, even
in embedded systems, has been driven largely by power
consumption considerations: for the same performance, it
has become far more efficient to implement many simple
processors operating in parallel than one complex low-latency
processor. However, there is a limit to efficiency gains that
come from adopting simpler von Neumann architectures,
leading to the need to fundamentally rethink microarchi-
tecture [54]. We envisage a number of trends in future

TABLE III

CORRESPONDENCE BETWEEN THE OPENCL ABSTRACT MODEL [51] AND ACTUAL ACCELERATOR ARCHITECTURES

Concept GPU Multi-core CPU FPGA
Processing A SIMD lane. Each SIMD lane has up Each core is composed of a single Defined ad-hoc for a given kernel.
element to 8 arithmetic-logic units (ALUs). Can PE, which usually supports a limited
(PE) perform the same operation on many in- vectorisation of operations.

teger or single-precision floating point

numbers at the same time.
Private A small DRAM memory private to Banks of registers inside each core. Configurable by the designer, usually
memory each SIMD lane. The size is in the based on flip-flops.

order of tens of bytes.
Compute A multithreaded processing unit (mPU). A processing unit. Ad-hoc parallel architecture for the
unit (CU) Composed of up to 32 lanes or process- given kernel.

ing elements.
Local Fast SRAM memory whose size is in ~ Cache memory. An average mCPU has Block RAM (BRAM). The size is
memory the order of kilobytes. An average GPU 32 KB local memories. configurable by the designer.

has 32 KB local memories. A local

memory is available to each CU.
Global DRAM memory accessible to all mul- A region of the RAM memory on the Configurable by the designer. Either
memory tithreaded SIMD processors in a GPU. computer’s motherboard. off-chip RAM in the FPGA board or

BRAM.

architectures that will affect the methods used for real-time
optimization:

o There will be more heterogeneous hardware, incorporat-
ing special purpose functional units, in order to avoid
power-inefficiencies of general purpose computing. This
means that further work will be required to develop com-
pilation frameworks from the specification of the real-
time optimization problem down to the implementation
in heterogeneous hardware. These frameworks will need
to be parameterisable by the available special purpose
units, to avoid the human effort that would be required to
program these architectures using today’s technologies.
It is likely that one or more “embedded control” system-
on-chip devices with custom units developed specifically
for real-time optimization will become available, and
the user community will need to work with vendors to
help specify these devices.

e There will be the need for algorithms to tolerate
hardware unreliability. The illusion of total hardware
reliability has always been maintained at a price in
power consumption and performance. In small geometry
CMOS processes, this price is increasing rapidly [55].
Real-time optimization provides an interesting use case
for architectures whereby total correctness need not be
preserved at the level of a single optimization solve, so
long as the global system behaviour is preserved. Thus
the embedded control SoCs we may see emerge in the
future are likely to have quite different error-recovery
mechanisms compared to those used in the data centre,
and these need to be formalised and integrated into the
design process of both the control algorithm and the
hardware specification.

VII. CONCLUSIONS

The efficiency of a real-time optimization algorithm is
a function of the computational hardware on which it has
been implemented. Furthermore, since the computing system
is affected by measurements from a physical system or
process that is evolving in time, it is essential to consider for
what purpose the solution to the sequence of optimization
problems will be used. While the computation is being
carried out, the system is subject to uncertainties. Hence,
the correctness of the implementation should be assessed
based on the performance of the cyber-physical system, rather
than just considering the algorithm on its own. It is not
necessary, for example, to use double precision floating point
arithmetic and compute a globally optimal point to have
acceptable performance. An inaccurate and imprecise solution
implemented at a fast rate might be preferable to an accurate
and precise solution implemented at a slow rate.

There is currently a wide range of processors available
that allow the designer to trade off the time, energy, space
and cost of the computer system against the performance
and robustness of the overall system. There has also been
considerable developments in recent years in developing
frameworks, languages and software tools that make the
implementation easier and enable the use of a variety of
targets suitable for real-time use.

We therefore envisage a future of heterogenous computing
platforms made up of general-purpose, highly parallelizable,
application-specific and reconfigurable architectures. Some
of these architectures will have been specifically designed
for the kinds of mathematical operations needed in real-time
optimization. Engineers will therefore not have to deliver
sub-optimal implementations of an optimization algorithm
onto an inflexible computing system. Instead, advanced design
methods and tools will allow them to mix and match hardware

and software components suitable for the application.

ACKNOWLEDGEMENTS

The authors would like to acknowledge funding from EC
FP7 grant 607957 (TEMPO), EPSRC grants EP/1020357/1
and EP/I012036/1, Imagination Technologies and the Royal
Academy of Engineering.

[1]

[2]
[3

[t}

[4]

[6]

[7]
[8]
[9]

[10]
(11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

C. Rao, J. Rawlings, and D. Mayne, “Constrained state estimation
for nonlinear discrete-time systems: stability and moving horizon
approximations,” Automatic Control, IEEE Transactions on, vol. 48,
no. 2, pp. 246-258, Feb 2003.

J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory
and Design. Nob Hill Publishing, 2009.

J. Humpherys, P. Redd, and J. West, “A fresh look at the kalman
filter,” SIAM Review, vol. 54, no. 4, pp. 801-823, 2012. [Online].
Available: http://dx.doi.org/10.1137/100799666

D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967 — 2986, 2014.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0005109814005160

L. T. Biegler, Nonlinear Programming: Concepts, Algorithms, and
Applications to Chemical Processes. SIAM, 2010. [Online]. Available:
http://epubs.siam.org/do1/abs/10.1137/1.9780898719383

J. T. Betts, Practical Methods for Optimal Control and Estimation
Using Nonlinear Programming, 2nd ed. SIAM, 2010.
T. A. Davis, Direct Methods for Sparse Linear Systems.
A. Greenbaum, [terative Methods for Solving Linear Systems.
1997.

J. Kang, N. Chiang, C. D. Laird, and V. M. Zavala, “Nonlinear
programming strategies on high-performance computers,” in Proc. 54th
IEEE Conference on Decision and Control, Osaka, Japan, 2015.

J. Nocedal and S. Wright, Numerical Optimization, Second, Ed.
Springer, 2006.

V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for big
data,” IEEE Signal Processing Magazine, September 2014.

A. Shahzad, E. C. Kerrigan, and G. A. Constantinides, “A
stable and efficient method for solving a convex quadratic
program with application to optimal control,” SIAM Journal on
Optimization, vol. 22, no. 4, pp. 1369-1393, 2012. [Online]. Available:
http://dx.doi.org/10.1137/11082960X

G. A. Constantinides, “Tutorial paper: Parallel architectures for model
predictive control,” Proc. European control conference, pp. 138-143,
2009.

LogiCORE IP. Floating Point Operator. Product Guide, Tth ed., Xilinx,
April 2014.

J. L. Jerez, S. Richter, P. J. Goulart, G. A. Constantinides, E. C.
Kerrigan, and M. Morari, “Embedded online optimization for model
predictive control at megahertz rates,” Automatic Control, IEEE
Transactions on, vol. 59, no. 12, pp. 3238-3251, Dec 2014.

M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. Underwood, and
K. Hemmert, “A comparison of floating point and logarithmic number
systems for FPGAs,” in Field-Programmable Custom Computing
Machines, 2005. FCCM 2005. 13th Annual IEEE Symposium on, April
2005, pp. 181-190.

P. Vouzis, M. Kothare, L. Bleris, and M. Arnold, “A system-on-a-
chip implementation for embedded real-time model predictive control,”
Control Systems Technology, IEEE Transactions on, vol. 17, no. 5, pp.
1006-1017, Sept 2009.

C. T. Ewe, “Dual fixed-point: an efficient alternative to floating-point
computation for DSP applications,” in Field Programmable Logic
and Applications, 2005. International Conference on, Aug 2005, pp.
715-716.

E. C. Kerrigan, “Co-design of hardware and algorithms for real-time
optimization,” in Control Conference (ECC), 2014 European, June
2014, pp. 2484-2489.

A. Messac and C. Mattson, ‘“Normal Constraint Method with
Guarantee of Even Representation of Complete Pareto Frontier,” AIAA
Journal, vol. 42, pp. 2101-2111, Oct. 2004. [Online]. Available:

http://dx.doi.org/10.2514/1.8977
G. Kirlik and S. Sayn, "A new algorithm for generating all non-

dominated solutions of multiobjective discrete optimization problems,”
European J. Operational Research, vol. 232, no. 3, pp. 479-488, 2014.

SIAM, 2006.
SIAM,

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36

[37]

(38]

[39]
[40]
[41]
[42]

[43]
[44]

[45]
[46]

[47]

A. Custodio, M. Emmerich, and J. Madeira, “Recent developments in
derivative-free multiobjective optimisation,” Computational Technology
Reviews, vol. 5, pp. 1 — 30, 2012.

M. Tabatabaei, J. Hakanen, M. Hartikainen, K. Miettinen, and
K. Sindhya, “A survey on handling computationally expensive
multiobjective optimization problems using surrogates: non-nature
inspired methods,” Structural and Multidisciplinary Optimization,
vol. 52, no. 1, pp. 1-25, 2015. [Online]. Available: http:
//dx.doi.org/10.1007/s00158-015-1226-z

8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System
Programmable Flash — ATmega48PA ATmega88PA ATmegal 68PA
ATmega328P, Rev. 8161 ed., ATMEL, Oct. 2009. [Online]. Available:
www.atmel.com/images/8161s.pdf

Cortex-A7 MPCore Technical Reference Manual, tOp3 ed., ARM, May
2012. [Online]. Available: http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0464{/index.html

C.-K. Chui, B. P. Nguyen, Y. Ho, Z. Wu, M. Nguyen, G.-S. Hong,
D. Mok, S. Sun, and S. Chang, “Embedded real-time model predictive
control for glucose regulation,” in Proceedings of the World Congress on
Medical Physics and Biomedical Engineering, ser. IFMBE Proceedings,
M. Long, Ed., vol. 39. Springer Berlin Heidelberg, 2013, pp. 1437—
1440.

C2000 Real-Time Microcontrollers, Texas Instruments, 2015. [Online].
Available: http://www.ti.com/lit/sg/sprb176x/sprb176x.pdf

M. J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Transactions on Computers, vol. C-21, no. 9, pp. 948-960, Sep.
1972.

G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

“Intel core 17-3970x processor extreme edition specifications,”
Online, 2012. [Online]. Available: http://ark.intel.com/products/70845/
Intel-Core-17-3970X-Processor- Extreme- Edition- 15M-Cache-up-to-4._
00-GHz

Tesla K80 GPU Accelerator, Nvidia, Jan. 2015.
[Online]. Available: http://images.nvidia.com/content/pdf/kepler/
Tesla-K80-BoardSpec-07317-001-v05.pdf]

V. Pedroni, Circuit Design with VHDL. MIT Press, 2004. [Online].
Available: https://books.google.com/books?id=bSNEgENaEn4C

L. Crockett, R. Elliot, and M. Enderwitz, The Zynq Book: Embedded
Processing with the Arm Cortex-A9 on the Xilinx Zyng-7000 All
Programmable Soc. Strathclyde Academic Media, 2014. [Online].
Available: https://books.google.com/books?1d=9dfvoAEACAAJ

P. Jamieson, W. Luk, S. Wilton, and G. Constantinides, “An energy and
power consumption analysis of FPGA routing architectures,” in Field-
Programmable Technology, 2009. FPT 2009. International Conference
on, Dec 2009, pp. 324-327.

D. Buchstaller, E. Kerrigan, and G. Constantinides, “Sampling and
controlling faster than the computational delay,” IET Control Theory
and Applications, vol. 6, pp. 1071-1079, 2012. [Online]. Available:
http://dx.do1.org/10.1049/iet-cta.2010.0440

STM32F303xB STM32F303xC product data, 11st ed., STMicroelec-
tronics, Apr. 2015. [Online]. Available: http://www.st.com/web/en/
resource/technical/document/datasheet/DMO00058181.pdf

S§7-200 Programmable Controller System Manual, Siemens, Postfach
4848, D-90327 Nuernberg, September 2007.

A. van Deursen, P. Klint, and J. Visser, “Domain-specific languages: An
annotated bibliography,” SIGPLAN Not., vol. 35, no. 6, pp. 26-36, Jun.
2000. [Online]. Available: http://doi.acm.org/10.1145/352029.352035
T. Koch, “Rapid mathematical prototyping,” Ph.D. dissertation, Tech-
nische Universitéit Berlin, 2004.

Python, 2015. [Online]. Available: http://www.python.org

E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001, [Online; accessed 2015-06-10]. [Online].
Available: http://www.scipy.org/

Vivado Design Suite User Guide. Model-Based DSP Design using
System Generator, Xilinx, April 2014.

DSP Builder Handbook, 14th ed., Altera, December 2014.

B. W. Kernighan, The C Programming Language, 2nd ed., D. M.
Ritchie, Ed. Prentice Hall Professional Technical Reference, 1988.

B. Stroustrup, The C++ Programming Language, 3rd ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

G. Gaél, J. Benoit et al., “Eigen v3,” Online, 2010, accessed May
28th, 2015. [Online]. Available: http://eigen.tuxfamily.org

B. Gough, GNU Scientific Library Reference Manual, 3rd ed. Network
Theory Ltd., 2009.

http://dx.doi.org/10.1137/100799666
http://www.sciencedirect.com/science/article/pii/S0005109814005160
http://www.sciencedirect.com/science/article/pii/S0005109814005160
http://epubs.siam.org/doi/abs/10.1137/1.9780898719383
http://dx.doi.org/10.1137/11082960X
http://dx.doi.org/10.2514/1.8977
http://dx.doi.org/10.1007/s00158-015-1226-z
http://dx.doi.org/10.1007/s00158-015-1226-z
www.atmel.com/images/8161s.pdf
http://infocenter.arm.com/help/index.jsp?topic=/ com.arm.doc.ddi0464f/index.html
http://infocenter.arm.com/help/index.jsp?topic=/ com.arm.doc.ddi0464f/index.html
http://www.ti.com/lit/sg/sprb176x/sprb176x.pdf
http://ark.intel.com/products/70845/ Intel-Core-i7-3970X-Processor-Extreme-Edition-15M-Cache-up-to-4_00-GHz
http://ark.intel.com/products/70845/ Intel-Core-i7-3970X-Processor-Extreme-Edition-15M-Cache-up-to-4_00-GHz
http://ark.intel.com/products/70845/ Intel-Core-i7-3970X-Processor-Extreme-Edition-15M-Cache-up-to-4_00-GHz
http://images.nvidia.com/content/pdf/kepler/ Tesla-K80-BoardSpec-07317-001-v05.pdf
http://images.nvidia.com/content/pdf/kepler/ Tesla-K80-BoardSpec-07317-001-v05.pdf
https://books.google.com/books?id=b5NEgENaEn4C
https://books.google.com/books?id=9dfvoAEACAAJ
http://dx.doi.org/10.1049/iet-cta.2010.0440
http://www.st.com/web/en/resource/technical/document/ datasheet/DM00058181.pdf
http://www.st.com/web/en/resource/technical/document/ datasheet/DM00058181.pdf
http://doi.acm.org/10.1145/352029.352035
http://www.python.org
http://www.scipy.org/
http://eigen.tuxfamily.org

[48]

[49]

[50]

[51]

[52]

F. Jeanette, Intel Math Kernel Library Reference Manual, 11st ed.,
Intel, Aug. 2014. [Online]. Available: |software.intel.com/en-us/mkl_11|
2_ref_pdf

B. W. Evans, Arduino programming notebook, 2007. [Online]. Available:
playground.arduino.cc/uploads/Main/arduino_notebookv 1- 1.pdf

CUDA Toolkit Documentation, 5th ed., Nvidia corporation, Oct. 2013,
accessed 1 March 2014. [Online]. Available: http://docs.nvidia.com/
cuda/cuda-toolkit-release-notes/index.html

J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
& Engineering, vol. 12, no. 3, pp. 66-73, May 2010.

Implementing FPGA Design with the OpenCL Standard, Nov.
2013. [Online]. Available: http://www.altera.co.uk/literature/wp/

[53]

[54]

[55]

wp-01173-opencl.pdf

The Xilinx SDAccel Development Environment, 2014. [On-
line]. Available: http://www.xilinx.com/publications/prod_mktg/sdnet/
sdaccel-backgrounder.pdf

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Berger, “Dark silicon and the end of multicore scaling,” in Proc.
38th International Symposium on Computer Architecture (ISCA’11),
2011.

D. Ernst, N.-S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “A low-power
pipeline based on circuit-level timing speculation,” in Proc. 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003.

software.intel.com/en-us/mkl_11.2_ref_pdf
software.intel.com/en-us/mkl_11.2_ref_pdf
playground.arduino.cc/uploads/Main/ arduino_notebookv1-1.pdf
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/ index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/ index.html
http://www.altera.co.uk/literature/wp/wp-01173-opencl.pdf
http://www.altera.co.uk/literature/wp/wp-01173-opencl.pdf
http://www.xilinx.com/publications/prod_mktg/sdnet/ sdaccel-backgrounder.pdf
http://www.xilinx.com/publications/prod_mktg/sdnet/ sdaccel-backgrounder.pdf

	What's in a Name?
	Time and Uncertainty in Cyber-Physical Systems
	Real-time Optimization
	Dynamic Optimization
	Matching Algorithms and Hardware

	Computer Architectures
	Processing
	Parallel Processing
	Number Representation

	Communication
	Storage
	Design Trade-offs

	Current Technologies
	Processors
	Microcontroller
	Multi-core Central Processing Unit (CPU)
	Graphics Processing Unit (GPU)
	Field Programmable Gate Array (FPGA)
	Programmable Logic Controller (PLC)

	Software
	Domain-Specific Languages (DSL)
	High level
	Model-based
	C/C++
	Vendor-specific
	Open Computing Language (OpenCL)
	Hardware Description Language (HDL)
	Design Tools

	Future Architectures
	Conclusions
	References

