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Electride support boosts nitrogen dissociation
over ruthenium catalyst and shifts the bottleneck
in ammonia synthesis
Masaaki Kitano1, Shinji Kanbara2, Yasunori Inoue2, Navaratnarajah Kuganathan3, Peter V. Sushko4,5,

Toshiharu Yokoyama1,5, Michikazu Hara2,5,6 & Hideo Hosono1,2,5,6

Novel approaches to efficient ammonia synthesis at an ambient pressure are actively sought

out so as to reduce the cost of ammonia production and to allow for compact production

facilities. It is accepted that the key is the development of a high-performance catalyst that

significantly enhances dissociation of the nitrogen–nitrogen triple bond, which is generally

considered a rate-determining step. Here we examine kinetics of nitrogen and hydrogen

isotope exchange and hydrogen adsorption/desorption reactions for a recently discovered

efficient catalyst for ammonia synthesis—ruthenium-loaded 12CaO � 7Al2O3 electride

(Ru/C12A7:e� )—and find that the rate controlling step of ammonia synthesis over

Ru/C12A7:e� is not dissociation of the nitrogen–nitrogen triple bond but the subsequent

formation of N–Hn species. A mechanism of ammonia synthesis involving reversible storage

and release of hydrogen atoms on the Ru/C12A7:e� surface is proposed on the basis of

observed hydrogen absorption/desorption kinetics.
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O
ver the past century, industrial ammonia synthesis has
been carried out by the Haber–Bosch process that uses
iron-based catalysts and requires high temperatures

(673–873 K) and pressures (20–40 MPa; ref. 1). The primary
difficulty in ammonia synthesis originates from the character of
the N�N bond, which is the strongest bond among diatomic
molecules. The role of the catalyst is to lower the dissociation
energy of the N�N bond. Both Fe and ruthenium (Ru) are well-
known catalysts for ammonia synthesis, and their catalytic
activity is significantly enhanced by basic promoters such as
alkali and alkaline earth metal oxides (Cs2þ xO, K2O, BaOx and so
on)2–6. Such enhancement of the catalytic activity is explained by
the electron transfer from the promoter to the antibonding
p-orbitals of N2 through the metal catalyst and is referred to as
electronic promoting effect2,7. However, the promoting effect
alone is not sufficient to facilitate ammonia synthesis under
mild conditions because the chemical composition of these
promoters—hydroxide or oxides8,9—constrains their ability to
donate electrons. Although pure alkali and alkaline earth metals
drastically enhance the catalytic activity of Fe and Ru10, they are
chemically unstable under ammonia synthesis conditions. Several
attempts were undertaken in the past decades to clarify the
reaction mechanism of ammonia synthesis over the Fe and
Ru catalysts. The following three possibilities for the rate-
determining step (RDS) of ammonia synthesis are suggested:
(1) the dissociative adsorption of N2 [N2-2N(ad)] (ref. 11);
(2) the surface reaction of adsorbed species [N(ad)þH(ad) -
NH(ad)]12 and (3) the desorption of adsorbed ammonia
[NH3(ad)-NH3(g)]13. At present, it is widely recognized that
N2 dissociation is the RDS of ammonia synthesis, irrespective of
the catalyst.

It was recently reported that 12CaO � 7Al2O3 electride
(C12A7:e� ), the first room temperature stable electride, func-
tions as an efficient electronic promoter for Ru catalyst14.
C12A7:e� has a unique crystal structure consisting of a
positively charged framework having the chemical formula
[Ca24Al28O64]4þ , and four extra-framework electrons,
accommodated in the cages as the counter ions15. It has been
demonstrated that the extra-framework electrons can be replaced
by various anions, such as OH� (refs 16,17), O� (ref. 18), F�

(ref. 17), Cl� (refs 17,19) and H� (ref. 20). As reported earlier14,
Ru/C12A7:e� exhibits an order of magnitude higher catalytic
activity, as defined by the turnover frequency (TOF), for
ammonia synthesis than Ru/C12A7:O2� and the conventional
Ru catalysts. C12A7:e� has a low work function (2.4 eV)
comparable to that of potassium metal; nevertheless, this
material is chemically and thermally stable21. Electrons
transferred from C12A7:e� to the supported Ru nanoparticles
shift the Fermi level up with respect to that in isolated Ru, which

in turn allows for the effective electron donation from Ru/
C12A7:e� to the antibonding p-orbitals of N2. These electrons
are replenished via the Ru contact with the C12A7:e� substrate,
thus providing persistent catalytic activity. In addition, the ability
of C12A7 to store and release hydrogen reversibly22 prevents the
poisoning of the Ru surface by the hydrogen adatoms.
Furthermore, the Ru/C12A7:e� catalyst is markedly different
from ammonia synthesis catalysts that have been extensively
studied so far in that it exhibits ca. 0.5 reaction order for N2, while
the reaction orders for conventional catalysts, including Fe- and
Ru-based materials, are 0.8–1.0. This observation suggests that N
adatoms populate the Ru/C12A7:e� surface more densely than
surfaces of other catalysts. While the origin of this effect and its
specificity to the electride-supported Ru nanoparticles have not
been established yet, it is clear that the details of the reaction
mechanism on Ru/C12A7:e� are different from those on other
catalysts.

Herein, we demonstrate, by using N2 isotopic exchange
reaction, hydrogen adsorption/desorption reaction and density
functional theory (DFT) calculations that N2 cleavage is not the
RDS in ammonia synthesis. Fast N2 cleavage is ensured by highly
efficient electron transfer from C12A7:e� to N2 molecules
adsorbed on the Ru nanoparticles. As a result, the bottleneck in
the NH3 synthesis reaction is shifted from the N�N bond
dissociation to the formation of N–Hn species.

Results
N2 cleavage on Ru/C12A7:e� . The details of dissociative
adsorption and associative desorption of N2 molecules on the
Ru/C12A7:e� catalyst were examined through an N2 isotopic
exchange reaction (equation 1)

15N2þ 14N2 ¼ 2 15N14N ð1Þ
under the conditions similar to those used in ammonia synthesis
(613–673 K) at 0.1 MPa. During this reaction, both dissociative
adsorption and recombinative desorption of N2 proceed on the
catalyst surface and the activation energy of the former is smaller
than that of the latter23–25. It is well known that efficient catalysts
for ammonia synthesis also exhibit high catalytic performance for
the N2 isotopic exchange reaction10,26–28. Supplementary
Figure 1a shows the Arrhenius plots for N2 isotopic exchange
reaction rate (R) of the tested Ru catalysts. The Ru particle sizes,
dispersion, activities and TOFs are summarized in Table 1.
Ru/C12A7:e� exhibits a remarkable activity for the reaction
among tested catalysts despite its low surface area (Table 1). This
is consistent with the results for NH3 synthesis as shown in
Supplementary Table 1. While Ru-Cs/MgO has been the most
active catalyst for ammonia synthesis among conventional Ru-
based materials, Ru/C12A7:e� surpasses Ru-Cs/MgO not only in

Table 1 | Activities of N2 isotopic exchange reaction.

Catalyst Surface area
(m2 g� 1)

Ru loading
(wt%)*

Dispersion
(%)w

Particle size
(nm)w

Catalytic activity TOF
(s� 1)z

Ea

(kJ mol� 1)y

mmol g� 1 h� 1|| mmol m� 2 h� 1z

Ru/C12A7:e� 1.0 1.2 3.2 41.3 2.73 2.73 0.200 58
Ru/C12A7:O2� 1.0 1.2 3.4 39.2 0.42 0.42 0.029 133
Ru-Cs/MgO 12.0 6.0 18.6 7.2 1.33 0.11 0.003 139
Ru/CA 1.2 1.2 3.2 41.3 0.07 0.06 0.005 154

Ru, ruthenium; TOF, turnover frequency.
Reaction conditions: catalyst (0.5 g), reaction gas (15N2: 14N2¼ 1: 4), pressure (26.7 kPa) and reaction temperature (633 K).
*Ru content was determined by ICP-AES.
wDispersion and particle size were calculated on the basis of CO chemisorption values, assuming spherical metal particles and the stoichiometry of Ru/CO¼ 1.
zTOF was calculated from the reaction rate divided by the number of CO atoms chemisorbed on the Ru surfaces.
yEa is the apparent activation energy calculated from Arrhenius plots of the reaction rate in the temperature range of 613–673 K.
||Catalytic activity was described as reaction rate per catalyst weight.
zCatalytic activity was described as reaction rate per surface area.
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catalytic activity per catalyst weight but also in TOF: the turnover
frequency of Ru/C12A7:e� exceeds that of Ru-Cs/MgO at 633 K
by the factor of 60. In addition, the activation energy in the case
of the electride catalyst is less than half of the corresponding
values found for other materials. We conclude that a faster
isotopic N2 exchange reaction with a smaller energy barrier
proceeds on Ru/C12A7:e� , and the origin of this effect can be
attributed to the ability of C12A7:e� to donate electrons at the
concentrations and rates exceeding those of alkali-based electron
promoters. For comparison, Ru/CA (CaO �Al2O3) has a moderate
catalytic activity in the tested catalysts. The crystal structure of
CA is composed of a fully polymerized network of corner-shared
AlO4 tetrahedra arranged into a tridymite lattice, with Ca2þ

occupying large voids within this network29. It can be viewed as a
negatively charged framework, lacking intrinsic nanostructure,
stuffed with positively charged ions. Catalytic performance of
such an oxide is inferior even to that of C12A7:O2� .

The Arrhenius plots for ammonia synthesis rate (r) over the
tested catalysts are shown in Supplementary Fig. 1b. Apparent
activation energy estimated from this plot corresponds to the
activation energy in the RDS in the overall chemical process. In
ammonia synthesis, this step has been considered to be N2

cleavage30. Again, Ru/C12A7:e� has the smallest apparent
activation energy among the tested catalysts, and its value
(49 kJ mol� 1) is 40–60% of that found for other catalysts, which
is consistent with highly efficient ammonia formation over
Ru/C12A7:e� (ref. 14). Table 2 summarizes the relevant
thermodynamic data, including activation energies for N2

desorption estimated by temperature-programmed desorption
(TPD) and difference (DE) in the apparent activation energy
between N2 isotopic exchange reaction and ammonia formation.
In Ru/C12A7:e� and Ru-Cs/MgO, there is no significant
difference between activation energies estimated from N2

isotopic exchange reaction and N2 desorption27,31, indicating
that the RDS of N2 isotopic exchange reaction is the
recombination of N adatoms. The data in Table 2 also show
that DE of Ru/C12A7:e� (9 kJ mol� 1) is significantly smaller
than that for Ru/C12A7:O2� (29 kJ mol� 1) and other catalysts
(36–78 kJ mol� 1). In particular, in the case of Ru/C12A7:O2� ,
the energy of N adatoms on the Ru is lower than that of gas phase
N2 by 29 kJ mol� 1, as shown in Fig. 1. Since adsorbed N atoms
have a positive electron affinity, electron transfer from C12A7:e�

substrate to Ru and then from Ru to N adatoms stabilizes them,
thus, resulting in a larger adsorption energy of N adatoms on
Ru/C12A7:e– than on Ru/C12A7:O2– (ref. 32). As a result, the
actual activation energy for N2 cleavage on Ru/C12A7:e� is
o29 kJ mol� 1 and the value is reduced by the difference (DEN)
between the binding energies of N adatoms to Ru/C12A7:e– and
to Ru/C12A7:O2–. This small energy barrier for N2 dissociation

strikingly differs from the apparent activation energy for
ammonia synthesis over Ru/C12A7:e� (49 kJ mol� 1).

Electron transfer from C12A7:e� to N2 molecules and their
adsorption energies were also examined by ab initio (DFT)
simulations using a model system (Fig. 2, and Supplementary
Figs 2 and 3). It can be seen that the charge (Q) transfer from
C12A7:e� surface to a Ru cluster (Q(Ru4)¼ � 1.66e), a model
active site corresponding to an edge of a Ru-nanoparticle, is
distinctly larger than that in the case of Ru loaded on
C12A7:O2� surface (Q(Ru4)¼ � 0.43e) (Supplementary Figs 2
and 3). Such electron transfer raises the Fermi level (Ef) of Ru
nanoparticles and the Ef of Ru on C12A7:e� is located at a higher
level, below the Ef of C12A7:e� , than that of
Ru/C12A7:O2� (Fig. 2e). When N2 molecules are adsorbed on
Ru particles, the charges of the molecules on Ru/C12A7:O2� and
Ru/C12A7:e� increase to � 0.69 and � 0.96e, respectively. The
adsorption energy is larger for Ru/C12A7:e� (27 kJ mol� 1) than
that for Ru/C12A7:O2� (16 kJ mol� 1). In addition, the resulting
N adatoms are much more stabilized on Ru/C12A7:e� than on
Ru/C12A7:O2� . Dissociative adsorption of N2 molecule proceeds
with the calculated energy gain of 40 kJ mol� 1 for
Ru/C12A7:O2� and 97 kJ mol� 1 for Ru/C12A7:e� , indicating
that dissociative adsorption of N2 on Ru catalyst is remarkably
enhanced by electron donation from C12A7:e� (Fig. 2c,d). The
results of these calculations substantiate the experimental
observations, as shown in Supplementary Fig. 1a, and support
the energy landscape displayed in Fig. 1.

Ammonia synthesis over heterogeneous catalysts includes the
steps of N2 cleavage and formation of N–Hn species (NH, NH2

and NH3); the former step has been considered to require larger
activation energy than the latter in all conventional catalysts
reported so far30. It is well known that H2 dissociation barrier on
Ru catalyst is negligibly small33. For this reason, it has been
generally accepted that N2 cleavage is the rate-limiting step of
ammonia synthesis from N2 and H2. The analysis presented here
indicates that the RDS of ammonia synthesis on the electride
catalyst is not dissociative N2 adsorption (the estimated barrier is
o29 kJ mol� 1) but one of the subsequent steps. Thus, we
conclude that the RDS for the Ru/C12A7:e� catalyst is in the
formation of N–Hn species.

Kinetic analysis. The energy profile for N2 dissociation reaction
must also make distinction in kinetics between Ru/C12A7:e�

and conventional catalysts. The reaction orders for N2, H2

Table 2 | Activation energy of NH3 synthesis and N2

desorption.

Catalyst Activation energy (kJ mol� 1) DE*

NH3

synthesis
N2exchange

(N2desorption)
N2 TPD

(N2desorption)

Ru/C12A7:e� 49 58 64w 9
Ru/C12A7:O2� 104 133 29
Ru-Cs/MgO 99 139 137z 40
Ru/CA 118 154 36
Ru/MgO 80 158z 78

TPD, temperature-programmed desorption.
*DE is difference in the activation energy between N2 exchange reaction and ammonia synthesis.
wFrom ref. 31.
zFrom ref. 27.

Ru/C12A7:O2–

133 kJ mol–1

29 kJ mol–1–ΔEN

58 kJ mol–1

Ru/C12A7:e–

29 kJ mol–1

Ru, N2(g)

104 kJ mol–1

Ru, 2N(ad)

ΔEN

Figure 1 | Energy profile of N2 dissociation. Potential energy profile for

dissociative adsorption of N2 and associative desorption of N2 on

Ru/C12A7:e� and Ru/C12A7:O2� . These values were estimated from the

results of N2 exchange and ammonia synthesis reactions. N2(g) and N(ad)

represent N2 in gas phase and adsorbed nitrogen atom, respectively.
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and NH3 in various ammonia synthesis catalysts34–36, including
Ru/C12A7:e� , Ru/C12A7:O2� and Ru/C12A7:H� , are
summarized in Table 3. The rate of ammonia synthesis (r) is
given by the following equation34:

r ¼ kPa
N2

Pb
H2

Pg
NH3

ð2Þ
Here, k is the rate constant and a, b and g represent the reaction
orders for N2, H2 and NH3, respectively. While the reaction
mechanism cannot be determined solely by reaction orders, they
provide useful insight into the atomistic origin of the reaction
mechanism. Variations in the rate of ammonia formation for
Ru/C12A7:e� , Ru/C12A7:O2� , Ru/C12A7:H� and Ru/CA with
N2 and H2 pressures are shown in Supplementary Fig. 4.

The reaction order for N2 is 0.8–1.0 in all conventional
heterogeneous catalysts (Table 3) as is already well known, but
the reaction order in Ru/C12A7:e� is only 0.46. A possible
explanation for the reaction order is that Ru/C12A7:e� is more
densely populated with N adatoms than other catalysts. In
conventional catalysts, where N2 cleavage is the rate-limiting step,
surface N adatom concentration on a transition metal surface is
limited by the rate of N2 cleavage, so that the reaction order for

N2 is B1. However, N adatom density on Ru/C12A7:e� is not
constrained by dissociative N2 adsorption and, therefore, can be
higher than that on other catalysts, resulting in the reaction order
of 0.46. In other words, the low reaction order is consistent with
our conclusion that N2 cleavage is not the RDS of ammonia
synthesis on Ru/C12A7:e� . The reaction orders for N2 on
Ru/CA, Ru/C12A7:O2� and Ru/C12A7:H� are in the range of
0.82–1.0 (Table 3), indicating that although these materials
belong to the same CaO–Al2O3 family and support the same
conventional catalyst (Ru), the lack of significant electronic
density of states at a shallow level makes them clearly distinct
from Ru/C12A7:e� .

Second feature to be noted in Table 3 is that the reaction order
for H2 of all Ru-based catalysts other than Ru/C12A7:e� is
between � 1 and 0. The negative values are due to so-called
hydrogen poisoning on Ru: dissociative adsorption of H2 is
preferred over N2 cleavage on Ru, thus, suppressing efficient
ammonia synthesis under high pressures37,38. From the view
point of yield, storage and transportation, high pressure is
obviously favourable for efficient ammonia production. However,
ammonia synthesis commensurate with increase in pressure is
not expected in conventional Ru-based catalysts because of severe
hydrogen poisoning on Ru surfaces. It is a major reason why the
Fe-based catalysts used in the Haber–Bosch process have not
been replaced by the Ru catalysts for over a century. In contrast to
the conventional catalysts, Ru/C12A7:e� exhibits þ 1 reaction
order with respect to H2, meaning that it is not subject to
hydrogen poisoning, and, instead, it maintains high catalytic
performance even under high pressure. In fact, ammonia
formation activity of Ru/C12A7:e� increases proportionally to
the total pressure14. C12A7:e� can incorporate H atoms into the
cages as H� , which can be described by the reaction between H
atoms and cage electrons: H0þ e�-H� . The electrons remain
in the cages when H atoms are released from the cages, hydrogen
release reaction H�-H0þ e� (ref. 22). This reversible
hydrogen storage–release reaction in Ru/C12A7:e� drastically
reduces hydrogen poisoning of the catalyst and controls the rate
of ammonia synthesis. However, such a reaction does not proceed
in Ru/C12A7:H� because no extra-framework electrons are
available to stabilize H–. Thus, it is reasonable that H2 reaction

Ru Ru
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e–

e–
e–

C12A7:O2– C12A7:e–
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E
ne
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ΔE = –97 kJ mol–1ΔE = –40 kJ mol–1
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–27 kJ mol–1
–70 kJ mol–1
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Cage conduction band 2.4 eV
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Ru/C12A7:O2–

Valence band: O 2p
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Ru/C12A7:e– Ef of bulk Ru

Figure 2 | Ab initio simulations of N2 interaction with the Ru/C12A7 catalysts. Character of the charge redistribution between C12A7 substrate and

deposited Ru clusters for the stoichiometric (a) and electride (b) C12A7. (c,d) Adsorption energies of N2 on C12A7-supported Ru, charge transfer

in the process of N2 dissociation (N2(g)þRu-2N(ad)þRu) and the corresponding energy gain (DE). In Ru/C12A7:O2– system (c), N2 and N accept

electron charge from the Ru cluster, making it positively charged. In Ru/C12A7:e– (d), the electron charge is transferred from the substrate, leaving

the Ru cluster nearly neutral. N2(g), N2(ad) and N(ad) represent N2 in gas phase, adsorbed N2, and adsorbed nitrogen atom, respectively. (e) Electronic

structure: the Fermi level (Ef) of Ru on C12A7:O2– is similar to that of bulk Ru (4.7 eV) and that of the Ru/C12A7:e– is determined by the charge transfer

from the cage conduction-band electrons of C12A7:e– (2.4 eV). Evac denotes vacuum level.

Table 3 | Orders of reaction for ammonia synthesis over
various Ru catalysts.

Catalyst N2 order (a) H2 order (b) NH3 order (c)

Ru/C12A7:e� 0.46 0.97 � 1.00
Ru/C12A7:O2� 1.00 0 �0.25
Ru/C12A7:H� 1.00 �0.63 �0.60
Ru/CaO �Al2O3 0.82 �0.38 �0.68
Ru/MgO* 0.82 �0.38 �0.68
Ru-Cs/MgOw 1.0 �0.43 �0.12
Ru powderw 0.96 �0.72 �0.15
Co3Mo3Nz 0.99 0.8 � 1.34
Co-Ba/Cy 0.9 1.2 �0.9
Fe(KM1)y 0.9 2.2 � 1.5

*From ref. 14.
wFrom ref. 34.
zFrom ref. 35.
yFrom ref. 36.
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order for Ru/C12A7:H� is � 0.63. Supplementary Fig. 5 also
shows that Ru/C12A7:H� , where all cage electrons are replaced
by H� anions, is much inferior to Ru/C12A7:e� in catalytic
activity. This result indicates that H� ions encaged in C12A7
have no promoting effect on the catalytic activity. For
Ru/C12A7:e� , extra-framework H� ions formed in close
proximity to the Ru catalyst by hydrogen spillover, and H
atoms from cage H� anions readily react with N adatoms on Ru,
resulting in ammonia formation and cage electrons. Therefore,
electrons in Ru/C12A7:e� are not fully substituted with H� ions
during ammonia synthesis. In fact, no decrease in activity of
Ru/C12A7:e� was observed even after 75 h of ammonia
synthesis14. As for the reaction order of NH3, Ru/C12A7:e�

showed a large negative value (� 1.0). Such a negative value
indicates that Ru/C12A7:e� exhibits high catalytic performance
for ammonia decomposition31, thus, effectively, inhibiting the
formation of NH3. While Ru catalysts are typically less inhibited
by NH3 than Fe and Mo catalysts38, the produced ammonia needs
to be removed from the catalyst bed because its catalytic activity is
reduced at high N2 and H2 conversions.

In order to elucidate the reaction mechanism of ammonia
synthesis over Ru/C12A7:e� , deuterated ammonia (ND3)
formation from N2 and D2 was examined. Supplementary Fig. 6
shows the Arrhenius plots for ammonia (NH3 or ND3) formation
rate over Ru-Cs/MgO and Ru/C12A7:e� . The rates of ND3

formation are higher than those of NH3 in both catalysts, that is,
k(D)/k(H)41 (where k(D) and k(H) are rate constants of the
formation of ND3 and NH3, respectively). This is due to the
inverse isotope effect that has been frequently observed for
ammonia formation on Fe and Mo metal catalysts39,40. To
rationalize this result, we note that the dissociation of N2 is
suppressed by adsorbed species such as N(ad) and NH(ad), and
that the deuterium system gives a lower concentration of these
suppressing species on the catalyst surface than the hydrogen
system. There is no large difference in apparent activation energy
between ND3 and NH3 formation by both catalysts, indicating
that the difference between ammonia synthesis using H2 and D2

is mainly determined by the pre-exponential factor of the rate.
Therefore, the reaction mechanism is not affected by deuterated
ammonia synthesis. It should be noted that the Arrhenius plot for
ammonia formation by Ru/C12A7:e� has an inflection point at
593 K (Fig. 3a). The activation energy of Ru/C12A7:e� below
593 K was estimated to be 91 kJ mol� 1, which is comparable to
that of conventional Ru catalysts, while it is B50 kJ mol� 1 at
temperatures above 593 K. This finding indicates that the
dominant reaction pathway on Ru/C12A7:e� is switched by
the reaction temperature. As shown in Fig. 3b,c, the reaction
orders for N2 and H2 on Ru/C12A7:e� at 573 K are 0.85 and
� 0.16, respectively, and there is no significant difference in
activation energy and reaction order at temperatures below 593 K
between conventional Ru catalysts and Ru/C12A7:e� :
Ru/C12A7:e� is also subject to hydrogen poisoning below
this temperature, as well as other Ru catalysts. As shown
in temperature-programmed absorption (TPA) and TPD
experiments (Fig. 4), both hydrogen storage and release
reactions proceed on Ru/C12A7:e� at temperatures above
593 K. These results strongly suggest that the change in the
reaction mechanism over Ru/C12A7:e� is significantly
influenced by the reversible hydrogen storage–release properties
of Ru/C12A7:e� (the details are discussed in the next section).

Hydrogen storage–release reaction over Ru/C12A7:e� . C12A7
has unique anion-exchange ability, for example, extra-framework
O2� ions can be replaced by e� and/or H� ions (Fig. 5). The
replacement of the extra-framework O2� ions with electrons can

be achieved by reacting C12A7:O2� with Ti or Ca metals under
vacuum at high temperatures, which results in the formation of
surface TiO2 or CaO and bulk C12A7:e� (formation enthalpy:
318 kJ mol� 1; refs 41–43). In addition, extra-framework H� ions
can be formed by the reaction of C12A7:O2� or C12A7:e� with
hydrogen gas. The formation enthalpies of C12A7:H� in these
processes are � 367 and � 434 kJ mol� 1, respectively43. The
formation enthalpy from C12A7:e� is larger by 67 kJ mol� 1

than that from C12A7:O2� . To clarify behaviour of hydrogen in
Ru/C12A7:e� , TPA and TPD of H2 were examined for Ru-
deposited catalysts, and the results are shown in Fig. 4. Ru/CA
catalyst cannot absorb H2 at all in a flow of H2–Ar gas. On the
other hand, TPA results for Ru/C12A7:O2� and Ru/C12A7:e�

show broad peaks at 623–873 K, and the latter has a larger peak
than the former. Neutral hydrogen species, such as H0 and H2,
are metastable in C12A7 because the cage wall is positively
charged, while H� ions are thermodynamically stable, as shown
in Fig. 5. The amounts of H� ions incorporated in Ru/C12A7:e�

and Ru/C12A7:O2� were estimated to be 164.8 and
39.0mmol g� 1, respectively. Ru/C12A7:e� is thermodynamically
more favourable than Ru/C12A7:O2� for hydrogen incorporation.
It was confirmed that the hydrogen incorporation of Ru/
C12A7:e� begins at lower temperatures than that of C12A7:e�

without Ru (Supplementary Fig. 7), indicating that dissociative
adsorption of H2 and spillover of H adatoms from Ru surface
facilitate hydrogen incorporation. Figure 4b shows H2 TPD for
Ru catalysts after the ammonia synthesis for 5 h at 633 K.
Although H2 desorption is not observed from Ru/C12A7:O2�

and Ru/CA, Ru/C12A7:e� shows H2 desorption peaks B573–
773 K. The amount of H� anions in Ru/C12A7:e� during actual
reaction (N2–H2) at 633 K was estimated from H2 TPD data
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shown in Fig. 4c. The amount of incorporated hydrogen increases
with reaction time at the initial stage of the reaction (0–5 h),
reaching a plateau after 20 h. The H� amount incorporated for
20 h was 8.6 mmol g� 1, which is only 1% of the theoretical
maximum (1,427.7 mmol g� 1) corresponding to C12A7:H� . The
results for Ru/C12A7:e� exposed to H2–Ar flow at the same
temperature are also displayed in Fig. 5c. In this case, hydrogen is
accumulated in proportion to reaction time, and the H� amount
incorporated for 40 h reaches 730mmol g� 1, corresponding to
50% of the theoretical maximum. These results clearly
demonstrate that fast ammonia formation on Ru surface limits
hydrogen incorporation into C12A7:e� , and thereby keeps a high
density of the cage electrons, preventing decrease in activity.

Discussion
A reaction mechanism for ammonia synthesis over
Ru/C12A7:e� , proposed on the basis of the above results, is
illustrated in Fig. 6. For all conventional catalysts, N2 dissociation
barrier (Edis) is the highest among all elementary steps in
ammonia synthesis, resulting that the dissociative N2 adsorption
is the RDS. In contrast, the reaction on Ru/C12A7:e� is not
limited by this step. This dissociation of the N�N bond enhances
the formation of N adatoms on the surface, resulting in the value
0.5 of the reaction order for N2, as expected for the N2 exchange

reaction. Instead, the rate-limiting step of the electride catalyst is
in the formation of N–Hn species. Dissociative H2 adsorption
proceeds in parallel to N2 cleavage, increasing concentration of H
adatoms on the Ru surface. A part of H adatoms moves into
C12A7:e� to provide a balance between H� storage reaction
(H0þ e�-H� ) and H atom release reaction (H�-H0þ e� ).
H� anions are not accumulated in proportion to reaction time
unlike the case of Ru-free C12A7:e� and the concentration is
kept at ca. 1% of the theoretical maximum, due to fast ammonia
formation derived from N adatoms with a high density and H
atom release reaction. Such a dynamic mechanism makes it
possible to keep high cage electron density and high catalytic
performance. In addition, since both the initial agents and the
reaction product are neutral, electrons transferred to nitrogen
species through Ru then come back to the Ru/C12A7:e� catalyst
after the ammonia formation step completed and remain
available for the next synthesis step14.

There are two possible routes to the formation of N–Hn

species. The first route is a classical Langmuir–Hinshelwood
mechanism between N and H adatoms on the Ru surface
(route 1). The efficient reaction of N adatoms with a high density
with H adatoms on the Ru surface consumes H adatoms, and the
fast reversible hydrogen storage–release reaction balances the
cage H� with H adatoms on the Ru. Another possible route
(route 2) is the direct reaction of N adatoms with H radicals,
‘nascent hydrogen’, from the cage H� anions. Potential energy
profile in ammonia synthesis for conventional catalysts, including
commercial promoted iron catalysts, indicates that the formation
of surface N–Hn species also requires a large activation energy
because hydrogen has to react with N adatoms against strong
N-transition metal interaction3,30. Ru has weaker interaction with
N adatoms than Fe, so that conventional Ru-based catalysts
exhibit higher catalytic performance around an atmospheric
pressure compared with Fe-based catalysts44. Hydrogen adatoms
have also to react with N adatoms to form N–H bonds, resisting
strong interaction between H adatoms and Ru surfaces. In such a
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case, direct reaction of N adatoms with nascent hydrogen from
the cage H� would be energetically of greater advantage than the
reaction among N and H adatoms on Ru surface. To further
understand the processes involving H surface species, pathways
leading to the formation of Hþ on Ru/C12A7:e� were also
examined. These pathways include (1) H2-2Hþ þ 2e� and (2)
H2-Hþ þH� reactions (Supplementary Fig. 8a,b). In the case
of the former, H2 is homolytically dissociated to produce two Hþ

ions and two electrons. As such, these Hþ ions may form O–H
bonds with framework O2– ions and electrons are introduced into
the empty cages. In this case, H� ions are not formed, which is
contrary to the H2 TPD result (Fig. 4b). Therefore, the former
possibility is ruled out. In the case of heterolytic H2 dissociation,
Hþ and H� ions are formed on the catalyst surface. This
phenomenon was found to take place on the surfaces of basic
oxides, such as MgO, CaO and SrO45 and in stoichiometric
C12A7 (ref. 46). H� ion can be dissociated into two electrons
and a proton, which is further converted to an OH� ion via
reaction with extra-framework oxide ion (O2� ) as reported
previously47. While there are no extra-framework O2� ions in
the bulk of Ru/C12A7:e� catalyst, we cannot rule out the fact
that the proton may be converted to an OH– species via reaction
with the framework oxygen at the surface of C12A7:e�

(Supplementary Fig. 8b). Hence, we cannot rule out the
formation of transient Hþ species through the heterolytic H2

dissociation. In any case, the formation of transient H� ion is the
important step of ammonia synthesis over Ru/C12A7:e� .

In summary, strong electron donation capability of C12A7:e�

allows ammonia formation along a new, highly efficient route
where the activation energy for N2 cleavage is smaller than those

of the subsequent N–Hn formation steps. Characteristics of fast
reversible storage–release of hydrogen atoms on the surface of
C12A7:e� near Ru nanoparticles not only prevent hydrogen
poisoning but also keep the cage electron density high near the
surface, resulting in stable and highly active catalyst even under
high pressure.

Methods
Catalyst preparation. C12A7:e� powder samples were prepared by solid-phase
reaction according to the following procedure. First, a mixture (Ca:Al¼ 11:14) of
CaCO3 and a-Al2O3 was ball-milled using a zirconia pot and yttria-stabilized
zirconia balls (3 mm diameter) at a speed of 150 r.p.m. for 30 min. Then, this
mixture was heated at 1573 K for 10 h in air, which led to the formation of
intermixed C12A7 and CaO �Al2O3 (CA) powders, and then treated in a vacuum at
1273 K for 15 h. The resulting powder was mixed with Ca metal shot in a glove box
filled with Ar gas, sealed in an evacuated silica tube and kept at 973 K for 15 h. The
following reaction proceeds during this heat treatment: 0.8Ca12Al14O33þ 1.4
CaAl2O4þCa-Ca12Al14O32. Some of the Ca metal precipitates at the inner wall of
the silica tube in this process. To compensate for this effect, we used twice the
amount of Ca metal needed for this reaction. The glass tube was opened in the
glove box and the reacted material was grinded with an agate mortar. Finally, the
obtained powder was sealed in an evacuated silica tube and kept at 1,373 K for 2 h.
C12A7:H� was prepared by heating C12A7:e� in a mixture of H2 and N2 gas flow
(N2:H2¼ 1:1) at 873 K for 12 h. CaO �Al2O3 (CA) was prepared by a reaction of
CaCO3 and a-Al2O3 with a molar ration of 1:1 at 1,573 K for 20 h in an ambient
air. The obtained powder was heated at 1,273 K for 15 h in a dynamically evacuated
silica tube (B1� 10� 4 Pa) to eliminate water and hydroxyl groups on the surface.
Ru-loaded samples were prepared by the following procedure. The sample powder
and Ru3(CO)12 were sealed in an evacuated silica tube and were heated under the
following temperature programme (2 K min� 1 up to 313 K, hold for 1 h; in 2 h up
to 343 K, hold for 1 h; in 2 h up to 393 K, hold for 1 h; and in 2.5 h up to 523 K, hold
for 2 h; cooling down to ambient temperature). Since all Ru catalysts are deposited
on the support by chemical vapour deposition method using Ru3(CO)12 as a
precursor, zero-valence state of Ru is confirmed by X-ray photoelectron
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spectroscopy (XPS) analysis. The obtained sample was reduced in situ in a fixed
bed flow system at 0.1 MPa in a stream of synthesis gas while the temperature was
increased to 673 K at 1 K min� 1.

Catalytic reaction. N2 isotopic exchange study was conducted using a U-shaped
glass reactor connected with a closed gas circulation system as reported else-
where10,28. The mixture of 15N2 and 14N2 gases (total pressure: 20.0 kPa, 15N2:
14N2¼ 1:4) was adsorbed on the catalyst without circulation at the reaction
temperature until an adsorption equilibrium was achieved. The change in the
composition of circulating gas was monitored by a quadrupole mass spectrometer
(Bell Mass, BEL, Japan). The circulating pump placed in the system removes
diffusional and adsorption/desorption limitations. The masses 28, 29 and 30 m/z
were monitored as a function of time to follow the exchange. Ammonia synthesis
was carried out in a fixed bed flow system with a synthesis gas (H2/N2¼ 3) flow
rate of 60 ml min� 1. Limitations by diffusion and adsorption/desorption were
avoided by using 0.2 or 0.025 g of catalyst (bed heighto10 mm), which is similar to
the conditions reported previously37. The reaction temperature was varied from
523 to 673 K, and the pressure was kept at 0.1 MPa. In addition, ammonia synthesis
was performed using D2 instead of H2 to investigate the isotope effect. All kinetic
experiments were carried out under far from equilibrium conditions (for example,
the conversion level is smaller than 30% of that at equilibrium). The reaction orders
with respect to N2 and H2 were obtained at a constant flow rate (60 ml min� 1)
using Ar gas as a diluents, and that for NH3 was determined with (3H2þN2) by
changing the synthesis gas flow rate14. The produced ammonia was trapped by in a
5-mM sulfuric acid solution, and the amount of NH4þ generated in the solution
was determined by ion chromatography (LC-2000 plus, JASCO).

Measurement of the electron density of Ru/C12A7:e� . An iodometric titration
method was used to confirm the presence of electrons and quantify the electron
concentration (Ne) in the Ru/C12A7:e� catalyst. Approximately 10 mg of catalyst
was dispersed in an aqueous I2 solution (5.0� 10� 3 M, 3 ml), and then 0.1 ml of
HCl was poured into the solution. After confirming complete dissolution of the
sample, the amount of residual I2 was titrated using sodium thiosulfate solution
(5.0� 10� 3 M). Observation of the endpoint was enhanced by adding a few drops
of starch solution, which induces a violet coloration. The average electron density
was obtained from three independent measurements.

Temperature-programmed absorption. TPA of H2 was analysed using a
BELCAT-A instrument (BEL, Japan). Before measurements, the samples
(B100 mg) were heated in an Ar stream (50 ml min� 1) at 393 K for 90 min to
remove water adsorbed on the surface, followed by cooling in a stream of Ar. Then,
the sample was heated (2 K min� 1) in a stream of 4.8% H2/Ar mixture, and the
consumption of H2 was monitored by a thermal conductivity detector (TCD) and
mass spectrometer (Bell Mass, BEL, Japan).

Temperature-programmed desorption. TPD of H2 was performed using the
same instrument as TPA experiment. Before the measurements, the sample was
heated under a mixture of H2 and N2 (H2/N2¼ 3, flow rate: 60 ml min� 1, pressure,
0.1 MPa; temperature, 633 K, time, 5 h), which is the same reaction condition as
that of ammonia synthesis. After cooling to room temperature, the sample was
exposed to air to remove hydrogen adatoms on the Ru surface. Then, the sample
was heated in an Ar stream (50 ml min� 1) at 393 K for 90 min to remove water
adsorbed on the surface and was heated (10 K min� 1) in an Ar stream
(50 ml min� 1), and the concentration of H2 was monitored by a thermal
conductivity detector (TCD) and mass spectrometer (Bell Mass, BEL, Japan).

Computational modelling. Ab initio simulations were carried out using the
density functional theory (DFT), with the generalized gradient approximation
functional of Perdew–Burke–Ernzerhof48, and the projected augmented waves
method49 implemented in the Vienna ab initio simulation package50,51. The plane-
wave basis set cutoff was set to 500 eV. The C12A7 surface was modelled using a
quasi-two-dimensional slab52. The super-cell parameters in the x–y plane and in
the direction perpendicular to the surface were fixed at 12 and 24 Å, respectively.
As the near-surface region is partially disordered50, the calculations were carried
out for the G point of the Brillouin zone only. Atomic charges were determined
using the Bader analysis of the charge density distribution53.
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