
Selective Polymerization Catalysis: Controlling the Metal Chain End
Group to Prepare Block Copolyesters
Yunqing Zhu, Charles Romain, and Charlotte K. Williams*

Department of Chemistry, Imperial College London, London SW7 2AZ, U.K.

*S Supporting Information

ABSTRACT: Selective catalysis is used to prepare block
copolyesters by combining ring-opening polymerization of
lactones and ring-opening copolymerization of epoxides/
anhydrides. By using a dizinc complex with mixtures of up
to three different monomers and controlling the chemistry
of the Zn−O(polymer chain) it is possible to select for a
particular polymerization route and thereby control the
composition of block copolyesters.

A central challenge in polymer synthesis is to develop
methods that enable complex architectures to be prepared

from mixtures of monomers.1 Generally, using two or more
monomers, the copolymer composition or sequence is
determined by empirical monomer “reactivity ratios”.2 Recently,
controlled radical polymerization methods have enabled
pioneering sequence control.3 Using catalysis to control
monomer enchainment frommixtures would be highly attractive,
but there are not yet many such options for oxygenated
copolymers.
Some of the best routes to such oxygenated polymers are by

catalyzed ring-opening polymerization (ROP) of lactones or the
ring-opening copolymerizations of (ROCOP) of epoxides and
heterocumulenes (Figure 1).4 Previously, Coates pioneered

selective ROCOP catalysts for mixtures of epoxide, anhydride,
and CO2, to yield AB block copoly(ester carbonates).5

Subsequently others have shown the same selectivity applies to
various catalysts/monomers.6 Darensbourg and Lu used tandem
catalysis with epoxides, CO2, and rac-lactide to prepare block
copoly(ester carbonates).7 Last year, we reported a dizinc
catalyst (Figure S1) able to switch between the two different
polymerization cycles: ROP and ROCOP and to control block
sequences from mixtures of epoxide, CO2, and ε-caprolactone.8

Multiblock copolymers have the potential for significantly
enhanced properties and functionality.9 Block regulation
provides a means to differentiate macroscopic thermal/
mechanical performances and, of particular relevance for
oxygenated polymers, degradation rates.10 Directing the block
compositions in conventional polyester synthesis (by poly-
condensations) would be extremely difficult and more often
impossible, due to step-growth synthetic methods. In contrast,
the ROP of lactones11 or ROCOP of epoxides/anhydrides5,6,12

allow the controlled syntheses.13 Currently, the catalysts used for
these polyester syntheses have been reported separately and are
almost totally incompatible: there is just one report, from 1985,
of a homogeneous aluminum porphyrin complex active for both
routes to polyesters.14 Here, a new catalyst is reported for both
controlled ROP and ROCOP, as well as for selective catalysis
using monomer mixtures, leading to the clean formation of ABA
and multiblock copolyesters.
Using the dizinc acetate catalyst, previously reported for

epoxide/CO2/lactone copolymerization,
8 the terpolymerization

of ε-decalactone (ε-DL), phthalic anhydride (PA), and cyclo-
hexene oxide (CHO) afforded a mixture of polymers featuring
different end-groups (Table S1). Despite the high degree of
control exerted, both α-acetyl-ω-hydroxyl and α,ω-dihydroxyl
polymer end-groups were observed.6e,15 Although an encourag-
ing result, the limitation is that both AB and ABA type
copolymers formed concurrently, causing bimodal molecular
weight distributions.
In order to solve this problem, a new dizinc complex was

prepared: [L1Zn2(Ph)2] 1 (Figure S1−S4). Complex 1 is
activated by reaction with a diol to form, in situ, the catalyst
system (Scheme 1B and Figure S5) and thus is expected to yield
only α,ω-dihydroxyl polymer end-groups. It showed a good
performance in epoxide/anhydride ROCOP (Table 1, Figure 1).
It showed good activity, with TOF values of 25 h−1 and an

excellent selectivity for polyester (>99%, Figure S6). It also
showed high degrees of polymerization control, with predictable
molecular weights (MW) and narrow dispersities (≤1.30). The
MWs of the polymers are determined using SEC, calibrated with
polystyrene standards, and using multiple-angle-laser light
scattering (SEC-MALLS) (Table 1, Figure S7). Previously, the
MW of poly(cyclohexylene phthalate) (PCHPE) was only
determined by PS calibrated SEC; there was a poor correlation
between theoretical and experimental MW.6a,e In contrast, using
SEC-MALLS, excellent agreement between MW values is
observed, confirming that the ROCOP is very well-controlled.
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Figure 1.ROCOP and ROP reactions catalyzed by 1, where CHD is 1,2-
cyclohexanediol.
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The polymerization control is further demonstrated by the linear
fits ofMn vs [CHD] (Figure S8). The MALDI spectrum shows a
single series of perfectly alternating polyester chains, end-capped
by α,ω-dihydroxyl groups (Figure S9).
Complex 1, with 1,2-cyclohexanediol (CHD), was also tested,

as a catalyst for the ROP of ε-DL, using cyclohexene oxide as the
solvent (Table 2, Figure 1). It showed very good activity, with
TOF values of 160 h−1 and no evidence for any epoxide
homopolymerization or insertion into the PDL chain (Figures
S10−S11). The polymers’MWs are in close agreement with the
theoretical values and show narrow dispersities. Immortal
polymerization is also feasible and the amount of CHD used
controls the molecular weights while maintaining narrow
dispersities (Figures S12−S13).
Given that both ROP and ROCOP are catalyzed independ-

ently, it was of high interest to establish whether concurrent
reactions could be achieved using 1. Thus, mixtures of lactone (ε-
DL), epoxide (CHO), and anhydride (PA) monomers were
reacted with the catalyst system comprising 1 and diol (Table 3,
Scheme 1). The terpolymerizations were all successful and an

unexpected monomer selectivity was observed, resulting in the
controlled formation of only ABA type block copolyesters. Such
selectivity is very unusual, yet is potentially useful given the
importance of block copolymers. The terpolymerizations were
monitored by ATR-IR spectroscopy (Figure 2), which showed
that initially epoxide/anhydride ROCOP occurred, as shown by
the disappearance of the diagnostic PA resonance at 1790 cm−1

and the growth of the characteristic polyester (PCHPE)
resonance (1065−1068 cm−1). During this time, there was no
change to any resonances associated with the lactone (ε-DL), a
finding confirmed by aliquot analysis using 1H NMR spectros-
copy, which only showed signals for perfectly alternating
polyester (PCHPE) and residual ε-DL (Figure S14). Once the
PA was consumed, in the presence of excess CHO, the reaction
entered the second phase whereby ε-DL ROP occurred, leading
to triblock polyester formation. During this stage, the ATR-IR
monitoring showed the decrease of the ε-DL resonance, at 1735
cm−1, accompanied by the growth of the block of poly-
(decalactone) as signaled by its resonance at 1190 cm−1. All IR

Scheme 1. (A) Diagram Illustrating the Chemoselective Sequence Controlled Polymerization; (B) Reactions Corresponding to
the Steps Illustrated in Part (A)a

aThe typical reaction conditions are in the footnotes to Table 3.

Table 1. ROCOP of Phthalic Anhydride and Cyclohexene
Oxide, Using 1 and Cyclohexane Diol

# 1/diola Mn,theo
b MnSEC‑PS

c (Đ) MnSEC‑MALLS
d (Đ)

1 1:2 12.3 5.3 (1.33) 9.3 (1.03)
2 1:4 6.2 2.9 (1.29) 5.2 (1.02)
3 1:6 4.1 2.3 (1.33) 3.6 (1.10)
4 1:8 3.1 1.8 (1.27) 2.9 (1.06)
5 1:10 2.5 1.6 (1.32) 2.5 (1.07)

a[1]/[PA]/[CHO] = 1:100:800, 100 °C, 3−4 h, PA conversion >99%.
Diol refers to 1,2-cyclohexane diol (CHD). bDetermined on the basis
of {(MWPA + MWCHO) × (conversion of PA)}/[CHD], with units of
kg·mol−1. cDetermined by SEC calibrated using narrow MW
polystyrene (PS) standards, with units of kg·mol−1. dDetermined by
SEC-MALLS in THF (dn/dc = 0.133 ± 0.001 mL·g−1), with units of
kg·mol−1.

Table 2. ROP of ε-Decalactone, Using 1 and Cyclohexane
Diol

# 1/diola Mn,theo
b MnSEC‑PS

c (Đ) MnSEC‑MALLS
d (Đ)

1 1:2 17.0 14.0 (1.16) 13.4 (1.07)
2 1:4 8.5 7.8 (1.10) 6.8 (1.06)
3 1:6 5.7 6.7 (1.12) 4.7 (1.05)
4 1:8 4.3 5.3 (1.11) 3.5 (1.11)
5 1:10 3.4 4.3 (1.12) 3.0 (1.05)

a[1]/[ε-DL]/[CHO] = 1:200:800, 100 °C, 1.25 h, ε-DL conversion
>95%. Diol refers to 1,2-cyclohexane diol (CHD). bDetermined on
the basis of {MWε-DL × (conversion of ε-DL)}/[CHD], with units of
kg·mol−1. cDetermined by SEC calibrated using narrow MW
polystyrene (PS) standards, with units of kg·mol−1. dDetermined by
SEC-MALLS, in THF, (dn/dc = 0.054 ± 0.001 mL·g−1 for entry 1,
0.067 ± 0.001 mL·g−1 for entry 2, and 0.072 ± 0.002 mL·g−1 for
entries 3−5), with units of kg·mol−1.
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absorptions were independently confirmed in control experi-
ments using pure monomers/polymers (Figure S15).
The selectivity would not be expected on the basis of the

activities, where the TOF values are ROP 160 h−1 and ROCOP
25 h−1, respectively. Scheme 2 illustrates the key intermediates

present during polymerization. The different rate of insertion of
monomers into the zinc alkoxide intermediate, which is common
to both catalytic cycles, is proposed to be responsible for the
selectivity. Accordingly, the rate of PA insertion into the Zn−
alkoxide bond is significantly faster than the insertion of ε-DL
(i.e., k1 ≫ k3). It is also relevant that the zinc-carboxylate
intermediate, formed by PA insertion, does not react with
lactones, a finding supported by the failure of LZn2(OAc)2 to
catalyze ε-DL ROP (Table S2). The further reaction of the zinc-
alkoxide intermediate with epoxide (CHO) has been calculated
to have a significantly higher barrier, and thus, ether linkages are
not observed experimentally.17

To confirm the ABA polymer structure, aliquots were analyzed
by SEC just before the complete conversion of PA (ca. 95%) and
after the propagation of PDL block (ca. 96% conv. of ε-DL)
(Figure 3). It is quite clear that after ε-DL ROP the polymer has a
higher MW and that in both cases distributions are monomodal,
with narrow dispersities. Since the block formed by ROCOP
(PCHPE) has an aromatic repeat unit, analysis using SEC with a
UV-detector can be used to confirm block attachment. 31P{1H}

NMR spectroscopy was also used to distinguish the two different
hydroxyl end-groups (from PCHPE and PDL, respectively), on
the basis of their chemical shifts after reaction with excess 2-
chloro-4,4,5,5-tetramethyl dioxaphospholane. There was a shift
from a peak at 147.1 ppm, due to PCHPE end groups, after the
first phase, to a single peak at 149.2 ppm, due to PDL end groups
for the ABA triblock (Figure S16). The 1H DOSY NMR
spectrum showed that all NMR signals belong to a single
copolymer with the same diffusion coefficient (Figure S17); in
contrast to a blend of PCHPE/PDL, of near equivalent MW,
which showed two different diffusion coefficients.
If transesterification reactions occur these would scramble the

block structure. The 13C{1H} NMR spectrum of the copolymer
shows only two carbonyl resonances, at 172.4 and 166.5 ppm,
assigned to the carbonyl groups of the PDL and PCHPE blocks,
respectively (Figure S18). In contrast, the 13C{1H} NMR
spectrum of the copolymer after reaction with a well-known
transesterification catalyst (1,5,7-triazabicyclo[4.4.0]dec-5-ene
(TBD), at 60 °C for 48 h) shows new signals at 168.1 and 164.2
ppm (Figure S19). The signals are assigned to scrambled [CHO-
DL] and [PA-DL] diads.7b Thus, there is no significant inter- or
intrachain transesterification, a finding previously observed for
other lactone ROP catalysts.18

The selective catalysis was extended, by addition of further
monomers, to prepare a multiblock copolymer (Table S3). Thus,
a PDL-b-PCHPE-b-PDL triblock was synthesized, and after
complete consumption of the ε-DL, the addition of more PA and
ε-DL led to the formation of a heptablock copolymer. The block
selectivity followed the same “rules” already established (Figures
3b and S20−S21).
Triblock copolyesters with different MW values and

compositions were prepared (Table 3). The copolymers showed
Tg values tunable over the range −59 to 61 °C. The

Figure 2. Shows a representative ATR-IR spectrum acquired during
(PDL-b-PCHPE-b-PDL) formation (Table 3, entry 2).

Scheme 2. Reactions Proposed to Occur during Sequence-
Selective Polymerizationsa

a[Zn] [Zn] is the active site of 1, and P is a propagating polymer
chain.

Figure 3. (a) SEC traces of the polymer aliquots before and after
propagation of the PDL block (Table 3, # 3). (b) SEC traces during
formation of the heptablock copolyester (Table S3).

Table 3. Sequence Controlled Block Copolyester Syntheses

# [PA]/[ε-DL]a % PCHPEb Mntheo
c Mnexp

d Đd Tg (°C)
e

1 0:100 0 8.5 6.9 1.20 −58
2 50:100 33 18.9 12.3 1.25 −49
3 100:200 42 28.0 15.9 1.21 −49;57
4 100:100 59 22.4 12.0 1.15 −47; 61
5 150:50 81 22.7 11.9 1.29 55
6 100:0 100 12.3 5.3 1.33 97

a[1]/[CHD]/[CHO] = 1:2:800, 100 °C, PA and ε-DL conversion
>95%. bWeight content of PCHPE block in the polyester (PDL-b-
PCHPE-b-PDL). cDetermined by {(MWPA + MWCHO) × (conversion
of PA) + MWε-DL × (conversion of ε-DL)}/[CHD] with units of kg·
mol−1. dDetermined by SEC using polystyrene calibration, with units
of kg·mol−1. MALLS is not suitable for such block copolymer
analysis.16 eDetermined after three heating−cooling cycles, on the
third cycle.
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homopolymers are both amorphous, with Tg values of −58 °C
(PDL) and 97 °C (PCHPE), respectively. A blend of them
showed identical Tg values to the homopolymers. Copolyesters
with low (33 wt %) or high (81 wt %) PCHPE compositions
showed only a single Tg, close to that of the dominant block
material (PDL or PCHPE). Where the block composition was
more evenly balanced (42−59 wt % PCHPE), twoTg values were
observed, suggesting microphase separation of the soft/hard
blocks (Figure S22).
As part of a preliminary evaluation of the generality of the

selective synthesis, it was successfully applied using other
epoxides and cyclic esters (Table 4). In all cases, the

polymerizations showed the same sequence selectivity with
ROCOP of the epoxide/anhydride occurring prior to ROP of the
lactone (Figure S23). The block structures were confirmed, in all
cases, using 1H DOSY NMR and 13C NMR spectroscopy
(Figures S24−S27).
In summary, a single homogeneous catalyst for both lactone

ROP and epoxide/anhydride ROCOP is reported. ABA triblock
copolyesters are prepared, in one-pot from monomer mixtures,
using the selective catalysis that bridges between the two
polymerization cycles. The ground rules for implementing the
selective process are uncovered, and the ability to apply it to
other monomers is demonstrated; it is clear that other classes of
catalysts and monomers warrant investigation. The method also
simplifies the preparation of block copolyesters and is expected
to be of value for the preparation of materials with tailored
properties, such as new types of thermoplastic elastomer.
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Table 4. Block Copolyesters Prepared Using Other Epoxides
and Cyclic Esters: 4-Vinyl-1-cyclohexene 1,2-Epoxide (v-
CHO), rac-Lactide (rac-LA), and δ-Valerolactone (δ-VL)a

# monomersb
Mnexp

c (Đ) of the first
aliquot

Mnexp
d (Đ) of the final
polymer

1 PA/v-CHO/ε-DL 4.2 (1.32) 12.8 (1.34)
2 PA/CHO/rac-LA 2.5 (1.16) 6.0 (1.53)
3 PA/CHO/δ-VL 5.5 (1.34) 11.6 (1.59)
4 PA/vCHO/δ-VL 3.9 (1.33) 12.0 (1.60)

aSee Scheme S1 for monomer structure and Figures S24−S27. b[1]/
[CHD]/[anhydride]/[epoxide]/[cyclic ester] = 1:2:100:800:200, 100
°C. cDetermined by SEC using polystyrene calibration, with units of
kg·mol−1 (PA conversion >90%); dDetermined by SEC using
polystyrene calibration, with units of kg·mol−1 (cyclic ester conversion
>80%).
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