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Abstract—Social networks have revolutionized the way mil-
lions of users interact on the internet over the last decade.
Therefore, leading social media companies such as Facebook,
YouTube, LinkedIn and Twitter (to name but a few) have grown
dramatically to manage such enormous online user-populations,
which has led to an explosion of multimedia content on such
social networking websites. Thus, the individual and collective
behaviour of the ever-increasing user-base has been studied in
more depth by researchers and, consequently, the properties of
online social interactions have been modeled. In an attempt to
rigorously analyse such internet traffic, we propose a Multi-
dimensional HMM (MultiHMM) to act as a Multi-User workload
classifier. The MultiHMM is an adaptation of the original HMM,
using clustering methods and multi-processing of the Baum-
Welch algorithm. The model is trained by multiple user traces
simultaneously, whilst at the same time, the number of iterations
of the costly expectation-maximization (EM) algorithm is reduced.
The ultimate goals of our proposed MultiHMM are to classify
multiple online user streams with minimal processing needs, to
represent burstiness and correlation amongst groups of users and
to improve security measures in the social network. Experiments
have been carried out using multiple traces from Twitter data,
where original traces are analysed and compared with the
MultiHMM-generated traces. The metrics involved in validat-
ing our model include means, standard deviations, skewness,
autocorrelation and Mean Absolute Percentage Error (MAPE).
Applications and extensions of our model are considered and
further statistical results are presented in the final section.

I. INTRODUCTION

In the last decade, leading social media companies such as
Facebook, YouTube, LinkedIn and Twitter (to name but a few)
have grown to manage an enormous user-base, which has led to
an explosion of multimedia content on such social networking
websites. Thus, the individual and collective behaviour of the
ever-increasing user-base has been studied in more depth by
researchers and, consequently, the properties of online social
interactions have been modeled. For example, researchers have
used Twitter data to examine links within tweets and determine
characteristic patterns that help define misinformed events
[23]. Such work [23] has evolved the analysis of multiple crisis
events (i.e. Boston Marathon Bombings in 2013) and aims to
prevent bad information or “rumors” spreading via Twitter and
similar social media sites.

To accurately represent such user activity, one of the sim-
plest models is the Poisson process, which is a continuous-time
stochastic point-process, in which inter-arrival times (between
events) are independent and exponentially distributed. This
process can be discretized, via partitioning time-stamped data
into “bins”, and turned into a portable, discrete-time stochastic
process or time-series. One such parsimonious model is the

hidden Markov model (HMM), which has garnered success
characterizing and classifying Internet traffic data. HMMs were
used in [20] to approximate self-similar traffic from CAIDA
[22] traces and verify long-range dependence using the Hurst
coefficient. In [13], HMMs are used to analyse Traffic Bursti-
ness and Internet Packet-level Sources and variations of HMMs
have been applied to identifying trends in user behaviour
in social networks [19]. More specifically, [19] introduces a
new class of Coupled HMMs to describe temporal patterns of
user activity which incorporate users’ neighbours in a social
network. Each HMM corresponds to one user and the coupling
of models represents user interaction. These Coupled HMMs
provide better explanatory and predictive power compared with
existing models such as those based on Renewal Processes or
uncoupled HMMs. However, with increased interaction, the
coupling of HMMs became more complex and the training
more computationally expensive. Therefore, an improvement
suggested in [19] involves developing more efficient models
for social analysis on groups of users, although research
involving a model for individual email communication [11],
[24] has not considered Multiple User sessions.

Not surprisingly, then, a common problem that arises from
such work as [11], [19] is the lack of efficient training on multi-
ple traces, derived from communicating users, to represent and
classify Multi-User behaviour. Here we propose a model that
overcomes this issue, using a hybrid HMM which is both parsi-
monious and can classify Multi-User temporal activity, without
decreasing in accuracy and computational efficiency. Essen-
tially, this is a Multi-User HMM (MultiHMM), which uses
K-means clustering and a Multi-Input Baum-Welch algorithm
to obtain the required parameters to form a Discrete Markov
Multi-Arrival Process (DMMAP). For our results, we validate
this DMMAP1 by comparing quantitatively means, standard
deviations, skewness and autocorrelation computed from the
raw (i.e. unclustered) and MultiHMM-generated traces of
user actions. Another efficiency measure for the MultiHMM
(compared to a standard HMM) is the number of steps required
for the model parameters to converge in the Baum-Welch algo-
rithm component. We conclude by summarizing the advantages
of the MultiHMM over existing models and explain potential
MultiHMM real-world applications, for example quantifying
activity burstiness amongst groups of users and classifying
fake or suspicious users for security purposes. Based on our
results and experience, some ideas for enhancements to the
MultiHMM are proposed as future research and the Appendix
summarizes background information on HMMs and additional
statistical results for groups of users.

1Note: MultiHMM and DMMAP will be used interchangeably in this paper



II. RELATED WORK

We first give a brief introduction to some existing models
and identify their limitations. We focus on research involving
Hypergraphs as Twitter clones [4] and some variations of
HMMs for parallel training.

A. Hypergraphs

In social networks, studies have shown that Multi-User
Queries result in multiple operations [4] and thus are ex-
pensive in terms of performance. To model these Multi-User
interactions, a solution of Selective Replicated Partitioning
was implemented through a Temporal Activity Hypergraph
Model [4]. In this model, the vertices represented the users
and the nets corresponded to the Multi-User Queries. The
study in [4] used a Twitter clone (hosted on Amazon EC2)
to obtain a realistic experimental test bed. The Hypergraph
Model then performs simultaneous partitioning and replication
to reduce the query span while respecting load balance and
I/O load constraints under replication. Indeed, it was shown
that the Hypergraph Model is the best choice (among other
hash- or graph-based approaches) for predicting future query
patterns and significantly improving latency and throughput.
However, replicating whole sections of Twitter networks using
the Hypergraph method proves costly (in terms of storage
and computational complexity) for increased numbers of users
and their interactions. Also, the proposed model has many
parameters [4]. The HMM attempts to solve both of these
issues, acting as a parsimonious (efficient training with few
input parameters) model capable of Multi-User training.

B. Variations of HMMs

Recently, the literature has seen frequent research into
parallelization of HMM training algorithms (i.e. Baum-Welch),
mainly due to increasing applications of HMMs in User Mod-
eling and Pattern Classification. One technique has involved
GPUs to parallelize the Baum-Welch algorithm using CUDA
implementations [17], [18]. Apart from synchronization of
threads, other research has relied on variations of HMMs.
For example, a Factorial HMM [6], where observed outputs
are combined, requires separate hidden state sequences to
train the observation chain. Each sequence of hidden states is
independent from the next and there is no interaction between
chains via state probabilities. Other variations include Coupled
HMMs [19] (see Fig. 1), where the output (Ot) is separate
and each hidden state (Ct) emits an observation with a given
probability. The hidden state sequences interact with each
other, resulting in many possible combinations for model setup.
However, with increased interaction (i.e. coupling of HMMs),
Baum-Welch training becomes much more computationally
expensive; a potential problem noted earlier in the paper.

Layered HMMs have been used for multiple sensory
channels [14] with multiple state sequences corresponding
to one observation sequence, which iteratively updates based
on its likelihood. This model is less likely to suffer from
overfitting, but will be computationally more expensive on
Baum-Welch training compared to the traditional HMM. In [7],
two parallel and independent HMMs are combined, informa-
tion about sign language being merged for each model using
a token-passing algorithm. Despite the reduced computation

Fig. 1: Example of two Coupled HMMs [19]

requirement needed for the two models, scaling to higher
numbers of models (i.e. to train on larger vocabularies) would
not be as efficient. Here we propose a robust MultiHMM
solution to optimize training of the HMM on multiple traces,
whilst maintaining accuracy. The MultiHMM uses two layers
of clustering and an adapted Baum-Welch algorithm, where
multiple traces can be processed by a single HMM.

III. BACKGROUND

The focus of this paper is to determine Multi-User charac-
teristics and model the behaviour of groups of users on social
networks. The technical aim is to implement a Multi-User
unsupervised learning technique, which is essentially a hybrid
HMM. The underlying properties of the HMM (including its
stochastic, predictive and parsimonious nature) have made it
appealing in classifying user profiles on social media. These
defining characteristics of the HMM have led to a range of
applications in a wide variety of fields: originally, HMMs were
used in Speech Recognition [8], [16] and Genome Sequence
Prediction [10], [12]; more recently, they have represented
Storage Workloads [9], [21] and have modeled Hospital Patient
Arrivals [21] as well as Social Network Interactions [19]. In
all cases, these models have employed well-known statistical
algorithms to solve three fundamental problems credited to
HMMs. These problems are:

1) Find P (O;λ), the probability of observing O given
the model λ, using the Forward-Backward algo-
rithm [1].

2) Maximize P (O;λ) by adjusting the parameters of the
model λ using the Baum-Welch algorithm [2].

3) Obtain the most likely hidden state sequence for the
observation set O, using the Viterbi algorithm [3].

Using these algorithms to iteratively train on data sets, HMMs
can faithfully represent workloads for discrete time processes.
Therefore, HMMs can be used as portable benchmarks to
explain and predict the complex behaviour of these processes,
and more specifically for the social media phenomena such
as Twitter and Facebook. As HMMs can efficiently represent
workload dynamics, acting as parsimonious models that ob-
tain trace characteristics, their popularity in the social media
research sector is no surprise.

In the Appendix, we describe the aforementioned Forward-
Backward algorithm (FBA) and Baum-Welch algorithm
(BWA) in more detail, including their defining recursion equa-
tions. In fact, the BWA re-estimation formulas, defined by Eq.



(8), (9) and (10), only work on a single trace of observations
and a useful upgrade for the BWA is to handle multiple stream
analysis for characterizing users. Adapted versions of the FBA
and BWA, for the purpose of modeling Multi-User processes
using clustering techniques, are the novel contributions of this
paper and are explained in the next section.

IV. MULTIHMM

The novel contribution of this paper, namely a hybrid
HMM for Multi-User training, comprises a simple K-means
clustering algorithm for user traces and then a weighted BWA
(MultiBWA), which trains on multiple discrete traces simul-
taneously and maintains accuracy with respect to moments of
trace comparisons. The metrics for validating our MultiHMM
technique include the mean, standard deviation, skewness,
and autocorrelation of traces, as well as the Mean Absolute
Percentage Error (MAPE) of model-generated time series. We
begin by explaining our clustering methodology and present
our specialized algorithm in the following sections.

A. Clustering Methodology

Clustering is used in pre-processing of input traces for
training the BWA. One method involves K-means clustering to
group each observation point from all traces [21], which results
in a tuple of size H (where H is the number of input traces).
Each combination of data points in this tuple will produce a
distinct cluster, and in total there exist many possible clusters.
When H is large, this leads to unacceptably high computational
complexity for the BWA. For example, with only three traces
(H=3), there exists up to 3m possible combinations of 3-tuples,
where m is the number of distinct trace categories (i.e. ”No
tweets”, ”Few”, ”Medium”, ”Frequent”, etc.). This highlights
the need for a more computationally efficient method of
clustering traces.

Our proposed method of clustering involves reducing all
H traces to K, where K is the number of clusters used in
the K-means algorithm. If K < H, then the number of traces
is reduced to K through grouping together data points from
the same cluster (of tuples); if H ≤ K, then this process
of partitioning data points into cluster groups is omitted.
This extra clustering reduces the computational burden further,
before the BWA trains on the doubly-clustered traces. The next
step is to assign weights to each trace, after which we train
using the MultiBWA.

B. MultiHMM Algorithm

The full pseudo-code for the MultiBWA is provided in our
specialized algorithm (Algorithm 1). The algorithm initializes
its weights with equal probabilities, but a possible extension
would be to prioritize the weights, according to the respective
user streams. These priorities can define variations of the
MultiHMM, depending on the groups of users used to train
it. However, a potential pitfall of using certain types of user
traces for model training can result in a more specific, but less
applicable model. With any unsupervised learning technique,
the more data provided (with more diverse inputs), the more
accurate classification obtained. We apply this principle when
training our model on multiple traces, simultaneously.

Algorithm 1 Training using MultiHMM

Require: K Clusters ∧ H Traces ∧ size = Trace.length
for i = 1 : H Raw Traces do

while Cluster Points not Fixed do
K-means Clustering on Tracei

end while
end for
while K < H do

for j = 1 : K do
Groupj = {}
for t = 1 : size do

for i = 1 : H do
if Data Point Tracei(t) ∈ Clusterj then

if Groupj 6= {} then
H ← H − 1

end if
Add Tracei(t) to {Groupj}

end if
end for

end for
end for

end while
for 1 : K Observation Traces do

while MultiBWA Parameters not Converged do

α̂ =
N∑
i=1

ωiαi; β̂ =
N∑
i=1

ωiβi; ξ̂ =
N∑
i=1

ωiξi

γt(i) =
N∑
j=1

ξ̂t(i, j); π′i = γ1(i)

a′ij =

T−1∑
t=1

ξ̂t(i,j)

∑N
j=1

T−1∑
t=1

ξ̂t(i,j)

; bj(k)′ =

T∑
t=1,Ot=k

γt(j)

T∑
t=1

γt(j)

end while
end for

This model now contains Multi-User information, and
traces generated synthetically can be compared to invididual
user profiles for validation. In the next section, we explain the
simulation of the MultiHMM for various groups of Twitter
users along with a collection of corresponding results.

V. RESULTS

We simulate a two-state MultiHMM for different groups of
Twitter users: The first simulation analyzes only three Twitter
users; The second simulation analyzes three groups of Twitter
users, where each group has 3134, 17594, and 42729 users,
respectively. Timestamped “tweet” information was captured
from each user and we refer to this time series of tweets as
a user’s “Twitter trace”. Each Twitter trace was partitioned
into one hour intervals (aka binned trace) by counting the
number of tweets present in each interval or “bin”. This binned
trace was then filtered through a K-means clustering algorithm,
where we set K=5 and thus obtained five clusters to which we
assigned integer observation values for our discrete time series
(aka observation trace). Each data point in the observation trace
is an integer between one and five (inclusive). The Twitter
traces all have length 3000 (i.e. user observed for 3000 hours)
and are input (in various groups) to the MultiHMM, where iter-
ative training, using the MultiBWA, results in model-parameter
convergence (i.e. A,B, π converge). The MultiHMM, using its



fixed parameters, can proceed to generate synthetic traces on
all types of user groups involved in the training. Therefore, we
obtain synthetic Twitter traces, which are simulated 1000 times
using random generation sampling. In fact, the MultiHMM
uses its own distribution of user Twitter data, defined by
mean and standard deviation, and 95% confidence intervals
are determined on both datasets. We compare our MultiHMM-
generated results with mean and standard deviation for raw and
(standard) HMM-generated traces; the HMM-generated trace
is a result of a traditional HMM trained on an observation trace
of length 3000.

A. Mean, Standard Deviation and Skewness

We calculated statistics on discrete traces of User Tweets
(original and synthetic) in two formats: First, each trace
corresponds to one user; results are presented in Tables I, II and
III; Secondly, each trace represents the activity of large groups
of users, which is summarized in Table IV (3134 Users),
Table V (17594 Users) and Table VI (42729 Users). Note, the
same MultiHMM is used to generate each trace (one-to-many
relationship), whereas, for the standard model, a new HMM
produces only one trace. This is an obvious advantage of the
MultiHMM over the standard HMM.

TABLE I: User 1 Statistics on the raw, HMM and MultiHMM-
generated traces

Trace Mean Std Dev Skewness

Raw 1.0 1.54 1.54
HMM 1.0 ± 0.007 1.53 ± 0.004 1.56 ± 0.011
MultiHMM 0.99 ± 0.002 1.54 ± 0.002 1.56 ± 0.004

TABLE II: User 2 Statistics on the raw, HMM and MultiHMM-
generated traces

Trace Mean Std Dev Skewness

Raw 1.0 1.56 1.59
HMM 1.0 ± 0.007 1.56 ± 0.004 1.61 ± 0.01
MultiHMM 0.92 ± 0.002 1.58 ± 0.002 1.66 ± 0.004

TABLE III: User 3 Statistics on the raw, HMM and
MultiHMM-generated traces

Trace Mean Std Dev Skewness

Raw 1.0 1.6 1.62
HMM 1.0 ± 0.007 1.6 ± 0.004 1.64 ± 0.011
MultiHMM 0.97 ± 0.002 1.61 ± 0.002 1.65 ± 0.004

TABLE IV: Group 1 Statistics on the raw, HMM and
MultiHMM-generated traces

Trace Mean Std Dev Skewness

Raw 3.13 1.9 0.84
HMM 3.14 ± 0.008 1.89 ± 0.02 0.85 ± 0.025
MultiHMM 3.35 ± 0.006 1.97 ± 0.002 0.59 ± 0.007

TABLE V: Group 2 Statistics on the raw, HMM and
MultiHMM-generated traces

Trace Mean Std Dev Skewness

Raw 17.59 7.5 0.59
HMM 17.56 ± 0.045 7.47 ± 0.014 0.61 ± 0.01
MultiHMM 17.64 ± 0.023 7.51 ± 0.007 0.58 ± 0.007

TABLE VI: Group 3 Statistics on the raw, HMM and
MultiHMM-generated traces

Trace Mean Std Dev Skewness

Raw 42.73 20.84 0.87
HMM 42.6 ± 0.163 20.68 ± 0.073 0.9 ± 0.019
MultiHMM 45.42 ± 0.066 21.83 ± 0.019 0.57 ± 0.007

B. Correlation

Correlation between users and groups of users is imperative
for finding the social “intruder” and therefore provides a useful
initial measurement for security in social networks. We define
Pearson’s Correlation Coefficient [5], as applied to a sample,
as:

c =

∑N
t=1(xt − x̄)(yt − ȳ)√∑N

t=1(xt − x̄)2
√∑N

t=1(yt − ȳ)2
(1)

where x̄ and ȳ are the means of observations x1, x2, . . . , xN
and y1, y2, . . . , yN , respectively.

Average Correlation Coefficients were generated (after
1000 runs) by pairing HMM and MultiHMM-generated user
traces with the original raw traces. Table VII presents statistics
for individual users.

TABLE VII: Average Correlation Coefficients for Twitter
Users on HMM and MultiHMM-generated traces after 1000
simulations

Trace User 1 User 2 User 3

HMM 0.4555 0.9356 0.9785
MultiHMM 0.5865 0.9931 0.9992

Analyzing the pairwise correlation between users can be
beneficial in terms of finding trends in their “online relation-
ships.” This could be interpreted as how often a pair of users
tweet each other, whether they are online at similar times,
etc. Information on pairwise user correlation is summarized in
Tables VIII and IX.

TABLE VIII: Pairwise Correlation Coefficients for Three Twit-
ter Users using MultiHMM

User 1 2 3 4

1 1.0 0.233 -0.306 0.416
2 - 1.0 0.315 0.456
3 - - 1.0 0.232
4 - - - 1.0



TABLE IX: Pairwise Correlation Coefficients for Five Twitter
Users using MultiHMM

User 1 2 3 4 5

1 1.0 0.197 0.174 -0.011 0.274
2 - 1.0 0.206 0.124 0.148
3 - - 1.0 0.208 0.065
4 - - - 1.0 -0.013
5 - - - - 1.0

C. Autocorrelation

Autocorrelation is a computational method for comparing
two time series, where the second series is a lagged version
of the first time series over a number of time periods. Hence,
another name for autocorrelation is lagged correlation. The
autocorrelation between a time series and its lagged version
is therefore a number between −1 and +1. If the result is
−1 then we have a perfect negative correlation, and if it is
+1 then there exists a perfect positive correlation – i.e. the
time series are identical. As autocorrelation is just normalised
autocovariance, the two terms are, unfortunately, sometimes
used interchangeably in industry.

The autocorrelation function (ACF) for observations
y1, y2, . . . , yN (with mean ȳ) is defined as:

pk =

∑N−k
t=1 (yt − ȳ)(yt+k − ȳ)∑N

t=1(yt − ȳ)2
(2)

One of the main purposes of the ACF is to find trends
or cycles in the underlying time series. We apply the ACF
(as defined above) to the raw, unclustered traces and then to
corresponding MultiHMM-generated traces.

The group of graphs (Figs. 2, 3, and 4) have ACFs for a
group of 3134 users with a lag of up to 500. There is little
autocorrelation observed in the raw trace and this is matched
by the HMM and MultiHMM, with ACF fluctuating between
values of 0.1 and −0.05.

Fig. 2: Raw Fig. 3: HMM Fig. 4: MultiHMM

D. Convergence of BWA

The order of convergence of the BWA is O(T2N), where
T is the trace length and N is the number of hidden states.
We performed a simulation to analyse the computational
efficiency of the BWA (trained on one trace) compared to
that of the MultiBWA (multiple traces trained at once). Fig. 5
summarizes these findings, displaying the number of iterative

BWA steps against the logarithm of the error (i.e. the maximum
error between the state transition matrix entries at each step).
Generally, the number of steps required to train the MultiHMM
on H traces simultaneously (through the MultiBWA) has order
O(T2N), compared to O(T2NH) for the standard HMM.

Fig. 5: log(error) vs. number of BWA and MultiBWA iterations
for different user traces

Fig. 5 reveals the difference in rates of convergence of the
standard BWA compared to its Multi-User, adaptive counter-
part. The graph shows that both models effectively eliminate
the error of the parameter updates (difference between aij
and a′ij entries). This proves, from a convergence point of
view, that the MultiBWA is more efficient than the BWA for
training on multiple traces. In the next section, we discuss the
advantages of MultiHMM in terms of burstiness, which, we
will see, is supported by our results.

E. Burstiness

We measure trace burstiness for the HMM and MultiHMM
in relation to individual users and groups of users. Figs. 6, 7,
and 8 present Twitter activity for one user using Clustered,
HMM, and MultiHMM traces, respectively. It seems the HMM
has large periods of no user activity (i.e. no tweets), unlike the
Clustered and MultiHMM traces, which have similar and less
frequent absences in tweets. Similarly, we analyse burstiness
for one large group of users (i.e. 17594 users) in Figs. 9,
10, and 11. It is quite clear that the Clustered trace is best
matched by the MultiHMM; both show two instances of very
high activity (or extreme “bursts”), one at the beginning of
the trace and one near the end. The HMM also shows signs
of high spikes in user activity, but randomly throughout the
trace, and thus fails to capture the extreme bursty behaviour
exhibited by the Clustered and MultiHMM traces.



Fig. 6: Clustered Fig. 7: HMM Fig. 8: MultiHMM

Fig. 9: Clustered Fig. 10: HMM Fig. 11: MultiHMM

F. MAPE

Mean Absolute Percentage Error (MAPE) is a measure of
accuracy for time series models that helps validate the synthetic
MultiHMM-generation of Twitter traces against raw data. The
value of MAPE is given by:

m =
1

N

N∑
t=1

|xt − yt|
xt

(3)

where xt is the actual value and yt is the forecast value.

Simulations of BWA and MultiBWA were executed 1000
times, and MAPE values were produced by comparing raw
with HMM-generated traces and also raw with MultiHMM
traces. Like before, we separate statistics for individual users
(Table X) and groups of many users (Table XI).

TABLE X: MAPE values for Twitter Users on HMM and
MultiHMM-generated traces after 1000 simulations

Trace User 1 User 2 User 3

HMM 0.4179 0.4889 0.4736
MultiHMM 0.4410 0.3659 0.4237

TABLE XI: MAPE values for Twitter Groups on HMM and
MultiHMM-generated traces after 1000 simulations

Trace Group 1 Group 2 Group 3

HMM 0.6471 0.7446 1.3442
MultiHMM 0.2570 0.2854 0.2530

G. Cumulative Distribution Function

For the raw data, HMM and MultiHMM, the Cumulative
Distribution Function (CDF), based on the cumulative relative
frequency histogram and underlying Gaussian distributions
(obtained from the sample mean and variance), respectively,
were plotted for the tweeting activity of 17594 users (Fig. 12)
spanning 1000 hours. One can clearly infer, for example, the
probability of the number of tweets being between 17 and
18 for raw, HMM and MultiHMM models. The MultiHMM
distribution seems to match the raw CDF more closely in terms
of shape than the HMM CDF.

Fig. 12: CDFs for 17594 Twitter users for raw, HMM and
MultiHMM fitting

H. Advantages of MultiHMM

Based on the above results, there is statistical evidence
that the accuracy of the MultiHMM is superior to that of
the standard HMM, in terms of synthetic generation of user
traces. The number of steps to convergence of the MultiHMM
on many traces is significantly less than training the standard
BWA for each user individually. A list summarizing some of
the advantages of the MultiHMM over other stochastic models
is as follows:

1) Very few parameters are needed to set up the Mul-
tiHMM (i.e. A,B, π), compared to the heavy param-
eterization in [11].

2) Periodic behaviour for MultiHMM is not fixed to one
length of time, which was the case in [11], where the
inter-session rate of the Poisson process was set to
one week.

3) Other models (e.g. Priority Queueing models) fail to
account for cycles and sessions of high activity (i.e.
burstiness), which the MultiHMM faithfully repli-
cates for large groups of users.

4) MultiHMM provides inference into user behaviour
through hidden states, and more so than trivial la-
belling of states as “Passive” or “Active” [11], [19].

5) MultiHMM aims to characterize groups of users
with common features and identify “intruders”, rather
than prioritising a high volume of users over model
features (as in [11]).

6) The Cascading Poisson process [24] is too computa-
tionally intensive in comparison to the MultiHMM.



7) MultiHMM saves steps in training and convergence
of its MultiBWA, whereas standard HMMs are ill-
suited to situations where multiple processes interact.

8) The CoupledHMM of [19] is computationally expen-
sive, relying on increased coupling between Markov
chains to represent social influence amongst users.
In fact, the MultiHMM acts as a basic hierarchical
“Social Influence” driven model for groups of users,
thus extending [19].

VI. CONCLUSION

In user classification, Individual Parameter Estimates fluc-
tuate less over time than they do across individuals. Therefore,
individual attributes are quite persistent, and can be good
candidates for characterizing users. This assumption has been
tested in our Multi-User classification model. It has already
been established that HMMs, combined with the supporting
clustering analysis and appropriate choice of bins, are able to
provide a concise, parsimonious and portable synthetic work-
load [9]. However, the deficiency of such models is their heavy
computing resource requirement, which essentially precludes
them from any form of parallel or Multi-User analysis. The
MultiHMM we have developed has a vastly reduced computing
requirement making it ideal for modeling workload data in
real-time, whilst at the same time providing excellent accuracy
compared with both the resource-costly traditional HMM and
the training traces themselves. Validation of the MultiHMM, in
terms of means, standard deviation, and skewness, has proved
a simple method for verifying average “bin” probabilities of
storage workloads, in simple terms. ACFs have also validated
the dynamics of the generated workload traces, focusing on
the inter-bin correlation. Additionally, burstiness in a network
of users has been replicated by the MultiHMM for extended
periods of time.

Such mathematical descriptions of workload must ulti-
mately be assessed quantitatively against independent data (i.e.
traces not used in model construction) that they purport to
represent, and more extensive tests are planned for our Multi-
User model. Nonetheless, the specialized algorithm used in our
MultiHMM has been successful after statistical comparisons
between raw and model-generated traces. Our model has
improved current Markovian temporal models, and we list
some potential applications of the MultiHMM:

1) Spam detection by recognizing “fake” users.
2) Model behaviour of groups of users on trending

topics.
3) Efficient online resource allocation, by exploiting the

highs and lows of user burstiness.
4) Analysis of multiple sessions of users online, to

understand the dynamic behaviour of Twitter groups.
5) User classification for security purposes (i.e. Normal,

Aggressive, Intruder, etc.)

Extensions to our model include using hierarchical cluster-
ing to improve the cluster allocation in different user traces.
This will give a better choice for the number of clusters and
improve the accuracy of model-generated trace distributions
and dynamics. Also, we plan to adapt the MultiHMM training
algorithm to use varying weights for each trace to represent
priorities in streams of users. Another possible extension is

to look specifically at retweets for very popular tweets (i.e.
millions of users retweeting celebrities). This might provide
an initial prediction of “super busy times” in a network and
thus help in resource allocation.
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APPENDIX

Here, important results are summarized to compliment the
research in this paper. First, to support the Background section,
we define the Forward-Backward and Baum-Welch algorithms.
Secondly, statistical results are presented for a group of five
Twitter users.

A. Forward-Backward Algorithm

The Forward-Backward Algorithm (FBA) solves the fol-
lowing problem: Given the observation sequence O =
(O1, O2, . . . , OT ) and the model λ = (A,B, π), calculate
P (O;λ) (i.e. the probability of O given the model), and
thus determine the likelihood of O. The parameters of λ are
defined as follows: A is the state transition matrix and contains
probabilities for moving from one state to another; B is the
observation matrix and gives emission probabilities for each
state emitting each observation; π is the initial hidden state
distribution. Based on the solution in [15], we present the
“Forward” part of the algorithm, which is the α-pass, followed
by the ”Backward” part or the β-pass. We define the forward
variable αt(i) as the probability of the observation sequence
up to time t and of state qi at time t, given our model
λ. In other words, αt(i) = P (O1, O2, . . . , Ot, st = qi;λ),
where i = 1, 2, . . . , N (where N is the number of states),
t = 1, 2, . . . , T , (where T is the number of observations)
and st is the state at time t. The solution for αt(i) (for
i = 1, 2, . . . , N ) is initially given by α1(i) = πibi(O1) and
defined recursively (for t = 2, 3, . . . , T ) as follows:

αt(i) =

 N∑
j=1

αt−1(j)aji

 bi(Ot) (4)

where αt−1(j)aji is the probability of the joint event that
O1, O2, . . . Ot−1 are observed (given by αt−1(j)) and there
is a transition from state qj at time t − 1 to state qi at time
t (given by aji); bi(Ot) is the probability that Ot is observed
from state qi.

Similarly, we can define the backward variable βt(i) as
the probability of the observation sequence from time t + 1
to the end, given state qi at time t and the model λ. Then,
βt(i) = P (Ot+1, Ot+2, . . . OT ; st = qi, λ). The solution for
βt(i) (for i = 1, 2, . . . , N ) is initially given by βT (i) = 1 and
defined recursively (for t = T − 1, T − 2, . . . , 1) as follows:

βt(i) =

N∑
j=1

aijbj(Ot+1)βt+1(j) (5)

where we note that the observation Ot+1 can be generated
from any state qj .

With the α and β values now computed, the equations
defining the Baum-Welch algorithm are described in the next
section.

B. Baum-Welch Algorithm

Given the model λ = (A,B, π), the Baum-Welch algo-
rithm (BWA) trains a HMM on a fixed set of observations
O = (O1, O2, . . . , OT ). By adjusting its parameters A,B, π,
the BWA aims to maximise P (O | λ). As explained in
Section 2.3.2 of [21], the parameters of the BWA are updated
iteratively by the following formulas (for i, j = 1, 2, . . . , N
and t = 1, 2, . . . , T − 1) as follows:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O;λ)
(6)

γt(i) =

N∑
j=1

ξt(i, j) (7)

A = a′ij =

T−1∑
t=1

ξt(i, j)

∑N
j=1

T−1∑
t=1

ξt(i, j)

(8)

B = bj(k)′ =

T∑
t=1,Ot=k

γt(j)

T∑
t=1

γt(j)

(9)

π′i = γ1(i) (10)

We can now re-estimate our model-parameters iteratively
using λ′ = (A′, B′, π′), where A′ = {a′ij}, B′ = {bj(k)′} and
π′ = {π′i}, as defined in Eqs. (8), (9) and (10), respectively.

C. Extensive Results

This section summarizes some more extensive results on
Twitter users, where synthetic workload traces were generated.
These results support the work presented earlier in the paper,
justifying the applicability of the MultiHMM to a wide range
of Multi-User traces. Five Twitter users (three followers of
each other, and two non-followers) had their tweets recorded
into timestamped traces. These were processed using our Mul-
tiHMM Algorithm 1 and once converged, the model generated
five synthetic traces, producing sets of statistics. We present
these statistics in Tables XII, XIII, XIV, XV, XVI. From these
results, one can deduce the non-followers as User 2 (Table
XIII) and User 3 (Table XIV).



TABLE XII: User 1 Statistics on the raw, HMM and
MultiHMM-generated traces

Trace Mean Std Dev Skewness

Raw 0.47 0.63 0.75
HMM 0.48 ± 0.003 0.64 ± 0.002 0.74 ± 0.001
MultiHMM 0.51 ± 0.001 0.64 ± 0.0003 0.63 ± 0.003

TABLE XIII: User 2 Statistics on the raw, HMM and
MultiHMM-generated traces

Trace Mean Std Dev Skewness

Raw 1.38 1.39 0.85
HMM 1.37 ± 0.003 1.4 ± 0.002 0.86 ± 0.002
MultiHMM 1.3 ± 0.002 1.35 ± 0.001 0.98 ± 0.003

TABLE XIV: User 3 Statistics on the raw, HMM and
MultiHMM-generated traces

Trace Mean Std Dev Skewness

Raw 2.74 2.72 0.65
HMM 2.75 ± 0.002 2.71 ± 0.002 0.64 ± 0.002
MultiHMM 2.84 ± 0.003 2.4 ± 0.002 0.61 ± 0.002

TABLE XV: User 4 Statistics on the raw, HMM and
MultiHMM-generated traces

Trace Mean Std Dev Skewness

Raw 0.68 0.82 1.47
HMM 0.67 ± 0.003 0.81 ± 0.002 1.48 ± 0.002
MultiHMM 0.67 ± 0.001 0.78 ± 0.001 1.56 ± 0.001

TABLE XVI: User 5 Statistics on the raw, HMM and
MultiHMM-generated traces

Trace Mean Std Dev Skewness

Raw 0.49 1.1 2.18
HMM 0.5 ± 0.007 1.09 ± 0.004 2.17 ± 0.01
MultiHMM 0.52 ± 0.001 0.92 ± 0.001 2.01 ± 0.004


